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ABSTRACT

Accurate stress and strain calculations at a notch usually require a non-linear finite
element analysis when local yielding has occurred. The strain energy density hypothesis
is a method to predict these stress and strain values. This method proposes that the
plastic strain energy density is equivalent to the strain energy density found assuming the
material to be entirely elastic. This hypothesis was evaluated using the finite element
method, which was tested by comparing to exact solutions of elastic and elasto-plastic
problems, to calculate the stress and strain field for two notched plates of varying widths
under elasto-plastic loading. For both geometries, a plane stress and plane strain analysis
was performed.

The elasto-plastic strain energy density from the finite element method was found
to be greater than that predicted by this proposal, which in turn resulted in under-
predicting the local stresses and strains. This difference was greater for the plane stress
condition than for the plane strain condition. Comparisons were also made with notch
stresses based the Neuber method. The two methods appear to give an upper and lower
bound to the actual stresses and strains. By combining the results of the strain energy
density method and the Neuber method, reasonably accurate estimates of stress and strain

values can be obtained.




Vi




TABLE OF CONTENTS

. INTRODUCTION .....coooiiiiieieetieiiie et eeece sttt sis ettt seesresss st saesaesassassassnsesaesreaasens 1
A. FATIGUE LIFE ..ottt st s saesbas s ere s n b ans e 1

B. STRESS CONCENTRATION FACTOR......ccccoocniiiiiiiiniiiiiicnicicie s 2

I[I. THEORETICAL BACKGROUND.....cccccctriitinienieririit et eae s 5
A. NEUBER’S MODEL . .......coooviitiiiiineeieiesenenee et 5

B. GLINKA MODEL: STRAIN ENERGY DENSITY APPROACH..................... 6
IL.STRAIN ENERGY .....ooiiiiieiieieieeeee bttt ettt ettt et sttt sae e sre et esnesassssenssnan e 9
A. STRAIN ENERGY PRINCIPLE ......cccooiiiriiiieniiitcitcie et 9

B. DERIVATION OF STRAIN ENERGY RELATIONSHIP .........cccoovvviiininnne 10

C. STRAIN ENERGY DENSITY ...cooiioiiiiiietnienreceiniiienie e 11

1. Strain Energy Density for the Elastic Case ...........ccccovivininiininnciiniinen, 12

2. Strain Energy Density for the Plastic Case.........cccocovvviviviiinniininiiicii 12

IV. VERIFICATION OF FINITE ELEMENT METHOD .........ccccccniniiniiiniiiiinenn 15
A. VERIFICATION OF ELASTIC FINITE ELEMENT MODEL........................ 17

1. Elliptical Hole in an Infinite Plate............ccocoiviiiniiiniis 17

2. Conclusion of Elastic Finite Element Model ............ccocoeiiiniinniiniinnin, 25

B. VERIFICATION OF ELASTOPLASTIC FINITE ELEMENT MODEL.......... 25

1. Uniaxial Test of Stress-Strain CUrVe.........cooeecveeiieviuieieniienrenecnicsneineanns 25

2. Infinite Plate with a Circular HOl€ .........cocoovviiniiiininiiii, 26

3. Comparison to Experimental Data...........ccocooeiniioiniiiiiii 41

V. NUMERICAL CALCULATION OF STRAIN ENERGY DENSITY .......cccocenne. 51
A. INTEGRATION ROUTINE.........coiiieiiiirerrrtrecneen e 51

B. RESULTS OF NUMERICAL SCHEME ON UNIAXIAL CASE .................... 53

VI. CALCULATIONS AND RESULTS OF STRAIN ENERGY DENSITY ............... 57
A. NOTCH GEOMETRY AND MATERIAL SELECTION ........ccccoeeviniiinninne 57

B. FINITE ELEMENT MODELING.......cccccceotiiiniiiiiirniii s 59

C. RESULTS OF FINITE ELEMENT ANALYSIS ..o, 66

1. Computational Procedures ...........cccooviniiiniiiiiiinienceie e 66

2. Plane Stress Condition ........ccceeeeeeeriiecieninnicneniiienie e 66

3. Plane Strain Condition ........cccceveiivrieeiieeieenieeneieereceieesens it ssres e 74

VII. STRESS AND STRAIN CALCULATIONS.......coctrtiicinenienienenierceeneseeesae e 81
A. PLANE STRESS CONDITION.......cccccortitieneeiiiisicniniein e 81

1. Finite Element Method Results.......ccccoceviiniiniininiiiiiiiiiiccicccecn 81

2. Notch Root Stress and Strain Calculations and Comparisons...................... 84

B. PLANE STRAIN CONDITION.......cccciititeienentnieerciee e 90

1. Finite Element Method ReSUltS .......cccvvvireiiiriiiiiniiiiiiirieiniec e 90

vii




2. Notch Root Stress and Strain Calculations ....c.veeeeeeeeeeeeeeeeeeoeeeeoee 90

VIII. APPLICATION OF RESULTS TO FATIGUE CALCULATIONS ...................... 101
A. STRAIN LIFE CALCULATIONS ....ccootiiitiietieeceeeeeeeteeeeeee e 101
B. RESULTS OF STRAIN LIFE FATIGUE PREDICTIONS .........cccccocoeununn..... 102
IX. CONCLUSIONS ......ooiitiiiiiteeirree sttt ettt eenee e 105
A. FINITE ELEMENT CALCULATIONS ......coooiiiieiieie et 105
B. STRAIN ENERGY DENSITY CALCULATIONS.........cccooviieirieeereeee. 106
C. NOTCHROOT STRESS AND STRAIN CALCULATIONS..........cocven.... 107
D. IMPACT ON FATIGUE LIFE PREDICTIONS .........c.ccoooivviiieeeeeeeeans 107
E. RECOMMENDATIONS ......c.ccciitimiiinnreeeeee et 108
REFERENCES ...ttt 109
INITIAL DISTRIBUTION LIST.....cociiiiiiieiiiiiiniiiite ettt 111

viii




o o o
Ly

oy Moo

o

LIST OF SYMBOLS

fatigue strength exponent

fatigue ductility exponent

Kronecker delta

Young’s modulus

plastic modulus (slope of plastic stress-strain curve)
secant modulus of plastic stress-strain curve

secant modulus of total stress-strain curve

far-field strain

local uniaxial strain

total strain components
elastic strain components

plastic strain components
equivalent total strain
equivalent elastic strain

equivalent plastic strain

fatigue ductility coefficient

finite element method

shear modulus

strength coefficient

theoretical stress concentration factor
stress concentration factor

strain concentration factor

Lamé’s constant

strain hardening exponent

reversals till crack initiation

local uniaxial stress

iX




local stress component

equivalent stress
yield stress

fatigue strength coefficient

nominal stress

stress deviator tensor

strain energy density

strain energy density based on elastic material properties

strain energy density based on elasto-plastic material properties
local strain energy density

farfield strain energy density




ACKNOWLEDGMENT

The author would like to thank Prof. Lindsey for his indispensably guidance and
patience throughout this study. The author also thanks his wife, Rene€, for her support,

encouragement, and understanding during this work.

X1




I. INTRODUCTION

A. FATIGUE LIFE

Fatigue phenomena were first considered in 1850 when it was discovered that
railroad car axles failed after a certain amount of time under cyclic loads. The concept of
endurance limit was introduced, which states that below a minimum load cyclic load, or
endurance limit S,, some materials will never fail [Ref. 1]. To prevent fatigue failure, one
only has to design the structure strong enough so that the stresses remain below this
endurance limit. However, certain structural applications require low weight, and this
excessive design would be unfeasible. Such is the case with aircraft. All aircraft are put
under cyclic loads every flight — from repetitive takeoffs and landings, basic
maneuvering, and flight gust loads. While aircraft are designed to withstand mechanical
failure modes of large scale yielding and sudden monotonic fracture, it is unrealistic to
design an aircraft that will never experience fatigue.

It is not surprising then that the service lives of U. S. Naval Aircraft are based on
the fatigue life of the aircraft structure. Due to both a safety factor and a cost factor, the
structural life of every U. S. Naval aircraft is thoroughly tracked. Engine or aircraft
system components can. be replaced, but when the main structural components of an
aircraft fail, there are few options. The aircraft is either taken out of service, or major and
costly rework such as replacing the wings on the A-6E Intruder aircraft is required to
extend its life. Known weak spots are constantly inspected and reworked, if required, to
extend the life of the aircraft. These critical areas of failure, or crack initiation, usually
occur at stress concentrations, such as those occurring at notches or rivet holes. Current
fatigue calculations can estimate the cyclic life of a component given the range of stresses
and strains it will undergo. However, for these calculations to be accurate, precise stress
and strain figures are required. This is especially true when the cyclic fatigue calculations
occur over tens of thousands of cycles, and any error gets multiplied many-fold. Thus,
accurate calculations of the stress at a notch root is the first step in accurate fatigue life

estimation.




B. STRESS CONCENTRATION FACTOR

Stress concentrations are stresses that are locally higher than the far-field stress for
any loaded material. Stresses increase and decrease due to the geometry of a part, and
when abrupt geometric changes occur, such as a notch or a hole, stresses can be two to
three times greater than the far-field stresses. Given a defined geometry and applied
loads, a ratio of local (notch root) stress ¢ to the far-field stress S can be determined and
remains constant as long as ¢ and S remain in the linear range of the stress-strain curve.
For a notched specimen, the maximum stress will occur at the notch root, and the ratio of
the maximum stress to the nominal stress is the stress concentration factor:

o)
K =— 1.1
i (L.1)

Throughout this thesis, K is the theoretical stress concentration factor based on a
elastic model. Even though it is labeled theoretical, its value may be obtained from
analytic solutions or a finite element analysis. Regardless, it is a constant and holds for
any stresses in the elastic range.

The difficulty in calculating the stresses for a geometry such as a notch or a hole
arise when local yielding occurs. Although an analytic solution or a finite element
analysis can easily calculate the stress concentration factor that remains constant in the
elastic range, as soon as plastic yielding occurs, this stress concentration factor decreases
in magnitude as the yield zone around the notch increases. This may often be the case,
since local yielding is allowed in the design of the aircraft, and for stress concentrations
of two to three, it is difficult to design a structurally efficient wing that will prevent local
yielding. Once the local stress departs the linear range of the stress-strain curve, it thus
becomes more difficult to calculate the local stresses and strains at the notch root. A
finite element analysis is possible, but this becomes expensive and time consuming when
used in high-cycle fatigue calculations that involve tens of thousands of runs.

In 1961, H. Neuber [Ref. 2] derived a relationship for determining stresses and
strains at a notch that has been loaded into the plastic range. Although Neuber’s
derivation involved a notch loaded in antiplane shear, it has been widely applied to

general notch problems. By the 1980°s, the Neuber method had been adopted by virtually




all fatigue analysts, including the Naval Air Systems Command. However, over the years
since Neuber’s original paper and ever since it has come into prominent use, many
investigators have proposed alternative means.

One proposal by Glinka et al. [Ref. 3, 4, 5, 6] is based upon the concept that the
strain energy density of the material in the yielded zone is virtually the same as the strain
energy density considering the material to be elastic. This is represented below in Figure
1.1, where W, is the strain energy density assuming an elastic material and equals the area
under the linear curve, and W, is the strain energy density for an elasto-plastic material
and equals the area under the nonlinear curve. This conjecture results in being able to
calculate the stress concentration factor in the elasto-plastic zone from the strain energy
density of the elastic model. This proposal is based on reasoning that the for local plastic
yielding, there is a relatively large volume of material in the elastic region surrounding
the plastic zone. Glinka continued to work on his proposal through the 1980’s, and

published several papers applying his model to plane stress and plane strain problems. In

o

KS | — — — — — — — _ _ ,

W= V2K 2Se

W,,=fcdt—:

Ke £

Figure 1.1. Representation of Strain Energy Density Equivelance Concept

1992 W. N. Sharpe, Jr., C. H. Yang, and R. L. Trengoning [Ref. 7] evaluated the Glinka
relations with that of Neuber’s for various plane strain and plain stress configurations

using experimental data at the notch root. Their conclusions were mixed, and stated that




some cases were better predicted by the Glinka model, while others were accurately
predicted by the Neuber model.

Drawing upon advanced finite element techniques, the proposal that the strain
energy density in the plastic zone is equal to that calculated on the basis of an elastic
solution has been further tested, not only at the notch root, but throughout the plastic zone
of the model. Elastic and Elasto-plastic problems with closed form solutions, along with
previously published experimental data have verified the finite element modeling, which
was then used to calculate strain energy density. Assessments are then made of its impact

upon fatigue life calculations of aircraft as compared to the Neuber approach.




II. THEORETICAL BACKGROUND

This thesis will concentrate on the Glinka model for calculating the stress
concentration in the elasto-plastic range. The Neuber model is reviewed below, and will

be used for comparison of results at the notch root with that of the Glinka model.

A. NEUBER’S MODEL

Neuber proposed that at the notch root under plastic yielding, the elastic stress
concentration factor was the geometric mean of the stress concentration factor and strain
concentration factor, as shown in Equation 2.1 [Ref. 2].

K, =K K, (2.1)
where K =2 and K, =L
S e

When the far-field stress S is in the linear rage, this can be rewritten as:

K} =KX,
K% = GEF
" Se
K:2 = gg
S S
or: (K,S)’ = Eot (2.2)

There are two unknowns here, ¢ and €. To solve for them, the stress-strain constitutive
relationship is required. One of the most common stress-strain relationships that can be

applied is the Ramberg-Osgood curve. For a uniaxial stress state, this is:

c (o)
€ =— —-—) ( 23 )
E \K

where E, K, and n are obtained from a curve fit to the uniaxial stress-strain curve.

Substituting Equation 2.3 into Equation 2.2, the Neuber relation gives Equation 2.4

shown below.

2 2 %
(K.5) _ im(-"—) (24)




For the above derivation, the stress-strain relationship using the Ramberg-Osgood
relationship is based on true stress, &, and true strain, €. However, the computational
finite element analysis is based on engineering stresses and strains, ¢ and €. The
relationship between true and engineering stresses and strains, valid up to necking, is
given below in Equation 2.5. It can be seen that for small strains such as € < 0.01, the
difference between true and engineering strains is less than 0.5%, and the difference
between true and engineering stresses is less than or equal to 1.0%. Therefore, for small
strains, as is the case in this thesis, the true and engineering stresses and strains can be
interchanged without any significant error.
€=In(l1+¢) c=0c(l+g) (2.5)

While Neuber’s rule has been well established as an engineering tool to calculate
notch stresses and strains, it has been shown to overestimate these values [Ref. 3]. The
accuracy of strain estimation is critical for fatigue calculations, therefore, a more accurate

method would prove very beneficial.

B. GLINKA MODEL: STRAIN ENERGY DENSITY APPROACH

Glinka proposed that the energy density at the notch root, calculated on the basis
of elasto-plastic constitutive laws, is equal to that based on linear elastic constitutive laws
for equivalent far-field loading. In Chapter III, a detailed derivation of the strain energy

density will be shown, for now it is given below for the uniaxial case:
W, = [ode (2.6)
0

Using the above definition of strain energy density, the strain energy at the notch and far-
field regions are calculated (using a linear elastic stress-strain relationship ¢ = Ee ). For

the notch root, this becomes:

W, = JeEe de (2.7)
0

2

W =E— (2.8)

¢




W, =— 29
°=5F (29)
For the far-field region,c =S and e = e:
eZ
W, =E— (2.10)
2
Sz
W, =— 2.11
s=0F ( )

Rewriting the stresses in terms of strain energy density and substituting these values into

the theoretical stress concentration factor in Equation 1.1, one gets:

S (2.12)

However, Glinka’s hypothesis is that the strain energy density at the root will result in the
same value, regardless if calculated for a linear elastic or an elasto-plastic material.
Therefore, this ratio remains constant, even when local yielding occurs at the notch root.
The argument is that if the area of local yielding is small, and is surrounded by a large
volume of elastic material, then the energy distribution does not change significantly,
even when local yielding occurs.
For a nonlinear stress-strain relationship, Wy is found by manipulating the

integrand of Equation 2.6:

ode=edo+ode-edo=d(ce)—edo (2.13)

Substituting Equation 2.13 into Equation 2.6 results in:
Wc=_|‘[d(ce)—edo]=oe—foc;5dc (2.14)

Substituting the Ramberg-Osgood stress-strain relationship (Equation 2.3) into

Equation 2.14 results in the strain energy density in terms of the local uniaxial stress:

S (LY o[l (SY
W°_E+(KJ (o) I[E+(K) do (2.15)

o> (1Y, ga |0 (1) vl 1
Wc —'—E—+(Ej (O') _‘:—QE_*-(E) (G) —1—+1le (216)




2 0
wo="_|- 2 |S (2.17)
2E \1+n \K

Substituting 2.17 back into the ratio for K; (Equation 2.12) one obtains an equation in
terms of the far-field stress S, material properties E, n, and K, and the theoretical stress
concentration factor K; that can be solve numerically for the local stress G:

2 1
KS)Y o :
(KS) _o*, 2 (2) (2.18)
E E l+n\K

This expression applies only for the uniaxial case. In Chapter III, the strain energy
density is expressed in terms of the general stress-strain equations.

By inspecting Equations 2.18 from Glinka and Equation 2.4 from Neuber, one can
observe that the only difference is the factor of 2/(1+n) in the strain energy density
model. Since 7 is less than 1, this term is greater than 1, and for the left side of these two
equations to be equal, the local stress in Equation 2.18 must be less than the local stress in
Equation 2.4. Likewise, if the local stress in the strain energy model are lower than those
in the Neuber model, so will be the local strains. In fact, Glinka states that the Neuber

model has been shown to overestimate the local stresses and strains [Ref. 3].




III. STRAIN ENERGY

A. STRAIN ENERGY PRINCIPLE

For a general deformable body, external applied loads will cause internal stresses
and strains to develop until an equilibrium point is reached. The result is an internal
potential energy, or stored energy that is able to do work. In other words, potential strain
energy is the potential energy due to internal stresses referenced from a zero stress state of
a deformable body. For a system with no losses, potential energy equals the work put
into the system. To develop the strain energy relationship, consider a general body with

externally applied loads as shown in Figure 3.1 below.

Figure 3.1. External Loads to a General Deformable Body.

Given a traction force T acting on a portion of the body dS with a outward normal

n and that displaces du, then the work increment is:

8W=H(T08ﬁ)d5 (3.1)
N

To develop potential strain energy, the basic governing equations are shown
below:
Boundary Conditions:
T.=6,n +06,n, +0,n,
T,=0,n,+06,n,+0,n, (3.2)

T,=0,n +0,n,+0,n,




B.

Equations of Equilibrium:

dc, 05, Jdo

= 4 +—2=0
ox dy 0z
J5, +80”,+8<5),Z ~o (33)
ox dy oz '
acxz + aoﬂ + aczz =0
ox dy 0z

Strain-Displacement Relationships (Engineering Strains):

du dv dw
S s S
- z
Y (3.4)
dv du dw du dw dv
€, =—+— €, =—+— €, =—+—
dx dy dx dz dy dz

DERIVATION OF STRAIN ENERGY RELATIONSHIP

From this point on, tensor notation will be used as a shorthand notation to develop

the strain energy terms. The governing equations are rewritten below. The only change

is in the shear strain terms, in which the tensor shear strains are 1/2 of the value of the

engineering shear strains.

Boundary Conditions: T.=0;n; (3.5)
N . do, |
Equilibrium Equations: F c,,=0 (3.6)
. ,
/
Strain Displacement Relationships: g; = %(uh jtu j',.) (3.7)

Returning to equation 3.1, we substitute in the boundary conditions and expand:

aw = [[ T, &u, ds
N
aw = [[(o,n,)8uds

N
aw = [[ (o,84)n,ds
N

10




At this point, the Gauss-Divergence theorem can be applied, and the internal

strain energy can be obtained from the externally applied loads:

W = m o,8u,)

8W=m o, Su, +o,u,,)dv
1%

When the equilibrium equations are substituted into the above equation, the first

term goes to zero. The result is expanded to form a symmetric and a skew-symmetric

matrix:
W = J:UA Gij(%?}ui,j + %Suu)dV
v
5w = [[f o, [4(8u,, +8u, )+ 4 (5u,, ~8u,,)|av
v
W = m'c,.j(Se,.J + Smi,j)dV
v
where ® is defined as: 0= —;—(uw. - uj',.)

However, since ® is a skew-symmetric matrix, and since a skew-symmetric
matrix multiplied by a symmetric matrix is zero, the last terms disappear in the above

equations. The final result is:

W = [[[ o,8e,dv (38)
v

C. STRAIN ENERGY DENSITY

Equation 3.8 is the differential strain energy. To find the total strain energy, the
integration along each strain can be accomplished inside the volume integral. Strain
energy density is the strain energy per unit volume and can be represented as the
integrand of equation 3.8. The  operator will be changed to a differential, and when

considered from a zero stress state, this becomes:
&
W, = "o,de, (39)

where g; is the strain value at the final stress state.

11




1. - Strain Energy Density for the Elastic Case

To calculate the strain energy density for the elastic case, the elastic stress-strain

relationship, given below, is substituted into equation 3.9:

o, =2Ge, +Ae .3, (3.10)
vE E Li=j
ith A gi : A=r—————; G=———,; and §, =
Wit A given as A+ v)1-2v) 21+v) ¢ % {0, oy
The evaluation of the integral is straight forward:
we =j0"’(2Ge,.j +he, 8, )de, (3.11)
M 2
W, = Gee, + 2"" (3.12)
Ae €,
WS =Geye, +— 3, (3.13)
e _ &y
W =-27.(2Ge,.j +2e;8,) (3.14)

Replacing the term in brackets again by the elastic stress-strain relationship, the strain
energy density can be written as:

1
ws =Ec,.je,.j (3.15)

Geometrically, this is the area under the linear stress-strain curve for the case of

uniaxial tension.

2. Strain Energy Density for the Plastic Case

To evaluate the strain energy density for the plastic case, the strain energy density

relationship, equation 3.9, is separated into an elastic term and plastic term:
W, =W + W, = [o,de; +[c,de’ (3.16)

The first term is equation 3.15, and the second term can be manipulated in the same

manner as Equation 2.14 to give:

1 e
M=EGUEU+GU85—J85 do; (3.17)

12




The stress-strain relationship for elasto-plastic behavior for deformation theory based on
the Prandtl-Reuss equations is given as Equation 3.18 [Ref. 8].

1 v 31 Cu
Where E, is the secant modulus of the effective stress versus plastic strain curve:

8]
E = (3.19)

where the effective stress, 0., and effective plastic strain strain, €., are defined as:

Effective Stress: O, =355, (3.20)

Effective Plastic Strain e’ =, |3elel (3.21)

. . c
where the stress deviator tensor is:  s; =G — —-3&5,7

Substituting the plastic strain component of the relationship given in Equation 3.18 into

Equation 3.17, the strain energy density becomes:

1 . 3 O u 3 Ou
w, =Ec,.jeij+0U{ﬁ—(cy——;8ﬁﬂ—ja—é—[og Y i,-]d% (3.22)

If the Ramberg-Osgood uniaxial stress-strain curve is rewritten in terms of effective stress

and effective strain, it becomes:

(o) (8] g
=gl+el =—t4| =2 ~ 3.23
e =erver = eu %) (323)

Substituting the plastic portion of the effective strain of the Ramberg-Osgood relationship
in Equation 3.23 into the definition of the secant plastic modulus, Equation 3.19, it can be

rewritten in terms of the effective stress and the Ramberg-Osgood material constants.

1
ot
1_\K (Lj b (3.24)

== G n
E o K €

5 e

Substituting this back into equation 3.22 results in the strain energy density relationship

13




in terms of stresses only (based on the Ramsberg-Osgood stress-strain curve):

1 3 (%) 3 (%) o
W, =08 +0, — (c,) (GU ——6,.1.) -|—(o.) (cq——féyjdﬁﬁ(aﬁ)
2K" 2K"

Before calculating the strain energy density from the finite element results, the
finite element program as applied to notched geomentries will be verified in Chapter IV.
Following verification of the FEM results, the strain energy density Equations 3.9, 3.17

and 3.25 will be numerically integrated to calculate the actual strain energy density.
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1V. VERIFICATION OF FINITE ELEMENT METHOD

To evaluate the strain energy density concept for calculating stress concentrations
in the plastic zone, a finite element model was used to obtain the stress and strain data as
an input to the calculations. However, verification of the finite element data was
paramount to ensure that a legitimate analysis is performed. The finite element program
used was I-DEAS Master Series - Release 1.3 and 2.1. Quadrilateral plane stress and
plain strain elements were employed, and a non-linear stress-strain analysis was
performed.

The I-DEAS Master Series " offers several approaches to createing a finite
element model. The general approach was to create a three dimensional model to
represent the physical specimen. Next, an element mesh was created by specifying the
type of element to be used and the number of elements on each side of the surface being
meshed. All plane stress and plane strain analyses throughout this thesis used an eight
node quadrilateral element. These elements are two-dimensional, with nodal degrees of
freedom consisting of translation in x and y directions, and rotation about the z axis.
Only one face of the model was required to be meshed. A mesh refinement routine can
be used to refine the element shapes to reduce distortion (i.e., skewing and stretching),
and this routine was used to refine the finite element meshes for all analyses. After
generation of the mesh, boundary conditions were applied to represent external loads and
fixed displacements. Note that boundary conditions can be applied at lines of symmetry;
thus reducing a block by one half or one quarter of the original geometry, resulting in
significantly reduced computation time.

Effective mesh generation is paramount in obtaining a correct solution for the
finite element method. A coarse mesh (few elements, large distance between nodes) will
not produce the correct solution while an overly fine mesh (many elements, small
distance between nodes) may result in excessive computational time and storage.
Additionally, a dense mesh near large stress gradients is not only necessary for accurate
solutions, but also to provide the data for effective post processing analysis. Thus, for
each problem, a mesh study was performed to determine the optimal mesh size and

distribution to use. This involved running several finite element models with varying
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mesh sizes and distributions, and determining at what point further mesh refinements did
not effect the solution.

Two additional factors effect the non-linear portion of the analysis: the non-linear
stress-strain relationship and the iteration procedure. For a non-linear stress-strain
analysis, the I-DEAS Master Series program uses input data points to model the stress-
strain curve. The program assumes a constant stiffness between each point, breaking the
curve up into individual linear sections. A maximum of twenty points can be entered.
To ensure a smooth curve, all twenty points were used to define the stress-strain curve,
with denser groupings at the highest curvature. Two basic iteration procedures are
available: either the Newton-Raphson method or the Modified Newton-Raphson method.
The Newton-Raphson method was used, and although this may mean more computational
time per iteration, it generally iterates at a faster rate than the Modified Newton-Raphson
method, requiring fewer iterations. For either method, a convergence requirement can be
set, specifying the minimum value a function can change from one iteration to the next
before the solution is considered to have converged.

Two basic types of comparisons can be made: the first to an analytic solution, and
the second to experimental data. The first type provides a comparison to an exact
solution, and differences between the finite element method and an analytic solution
should be minimal. The advantage of this type of comparison is that it will show the
error of the finite element method compared to the governing equations of solid
mechanics. The comparison of the finite element method to experimental data will
indicate how well the finite element method models actual mechanical behavior. The
critical area in this case is the elasto-plastic relationship, or how well the Prandtl-Reuss
equations represent this relationship. This includes modeling the effective stress and
effective strain with a uniaxial stress-strain curve.

Full stress field measurements in solid mechanics must rely on surface techniques
and assume plane stress or plane strain conditions. There are also approximations
necessary in obtaining the elasto-plastic measurements, such as reducing the data via the
Prandtl-Reuss equations. Another disadvantage of using experimental data is the percent

error introduced when making measurements. Despite these difficulties and experimental
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error, qualitative experimental results are indispensable, and when executed properly, can
show were the mathematical model differs from the actual physics. Numerical
computational techniques will have no validity unless they can be shown to truly
represent the actual physical phenomenon. Therefore, despite the difficulty in obtaining
experimental data, an attempt has been made to compare the finite element method to

previously published experimental results.

A. VERIFICATION OF ELASTIC FINITE ELEMENT MODEL
1. Elliptical Hole in an Infinite Plate

The first step in the finite element modeling was to ensure the program could
obtain accurate results for a notched type of geometry under linear elastic loading. An
elliptical hole in an infinite thin plate was used for this comparison. Durelli [Ref. 9]
gives the stress distribution around the elliptical boundary and compares this with
experimental data. Brown [Ref. 10] gives the complete stress field for any uniaxial load.
The stress distributions for a infinite plate with an elliptical hole are given in elliptical
coordinates, which are shown in Figure 4.1 and Figure 4.2, for an ellipse of a=1and b =

0.5.

y n= 60°
—& = 0.987

~-£=0783 / n,>30°

SE = 0549\\

Figure 4.1. Elliptical Coordinate System.
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€ = constant _

M = constant

Figure 4.2. Normal Stress Components on an Element Referenced to Elliptical
Coordinates.

The conversion from elliptical to Cartesian coordinates is given by:

x =ccosh&cosm

4.1
y =csinh&sinm (4.1)
where c is the focal distance of the ellipse given by:
CZ = a2 _ b2
The stress around the circumference of the elliptical boundary is:
5, =S sinh 2§ + e°* cos2n -1 (42)

cosh 2§, —cos2n
were o is the value of § at the boundary of the ellipse.
The stress components, as shown by Brown [Ref. 10], throughout the body are given as:

5 =S| . cos 2n—cosh 2, + cosh(2€ — 2& )cos2n
= i g
cosh 2§ — cos 2

T2

N sinh 2§ sinh 2 — sinh 2 cos 21]] (4.3)

(cosh 2& — cos 2n)’
sinh 2& — (%% . Sinh 2&(cosh 2€, +1) —sinh 2& cos 21
cosh 2§ — cos 21 (cosh 2€ — cos 21m)’

and
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5. =S| [ cos 21+ cosh 2€ —cosh(2€ - 2§, )cos 2n
=] e
) cosh 2€ — cos2n

_sinh 28, sinh 2 — sinh 2 cos Zn} (44)

(cosh 2& —cos 2n)’

sinh 2€ — %) , sinh 2&(cosh 2€,, +1)—sinh 2E cos 21
cosh 2& —cos 21 (cosh 2E - cos 211)2

Along the x axis, Oen = 0, | = 0, therefore 6, = ¢ and 6y = 6. On the y axis, 6gq =0,
1 = /2, therefore oy = G¢ and Cx = Oy,

To approximate an infinite plate, a plate 40 inches by 40 inches with a central
elliptical hole with a major axis of 1 inch and a minor axis of 0.5 inches was used. A far-
field load of S = 1000 psi was applied. Due to symmetry, only one quarter of the block
was modeled (20 inches by 20 inches). The boundary conditions required to accomplish
this symmetry were zero displacement in the y direction along the x axis, and zero

displacement in the x direction along the y axis. This is shown below in Figure 4.3. A

S
SR N O O

:

20in FEM
Portion

0.5 inch

Figure 4.3 Layout of model representing an elliptical hole in an infinite plate.
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mesh of 30 by 30 quadrilateral plane stress elements was used. Figures 4.4 and 4.5 below

show the layout of the finite element mesh used.

i
((HH/

Figure 4.4. Finite element mesh for elliptical hole in an infinite plate.

Figure 4.5. Detail of finite element mesh around elliptical hole.

Comparison of the finite element results with that of the analytical solution shows

very good agreement between the two. Figure 4.6 shows the tangential stress along the
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boundary of the ellipse plotted against the x-axis location. The finite element results

coincide with the analytic solution across the complete boundary.

BOOO - - - - n s e e e e e e 0.6

4000 4 oo e .05
3 ‘ 2

3000 +------- AR SRR IR I -+ 04 S
g e Finite Element Solution %0
“o2000 e T03 =2
8 Analytic Solution 3
[=] =
% 1000 | - Boundary of Ellipse | ... ... . . &% . L.ot02 3
S Q
=

O+ - - e By e + 0.1
-1000 f i = 0

0 0.2 0.4 0.6 0.8 1
Distance along X-axis

Figure 4.6. Tangential Stress o, Along Elliptical Boundary.

Figure 4.7 below shows the percent error from the analytic solution. The error is
generally less than 1.0%, even at the point of maximum stress (x = 1). The greatest error
occurs near the point of sign reversal (x = 0.65) and is a maximum of 7.45%. However,
the stresses at this point are on the order of 5 times less than the applied far-field stresses,
and the actual solution crosses zero. Therefore, a better representation of the amount of
error is to normalize the difference between the finite element data and the analytic
solution by the far-field stress vice the analytic solution itself, as stated in Equation 4.5.

This is shown in Figure 4.8.

O Finite Element — CAmalytic Value %100 % ( 45)

Normalized Stress Error = S
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2.00%

0.00%

-2.00%

Percent Error

-4.00%

-6.00%

-8.00% f f % i 1

Distance ( X axis)

Figure 4.7 Percent Error of tangential stress oy along elliptical boundary.

Percent Normalized Error

Distance ( X - axis)

Figure 4.8 Percent Normalized Error of tangential stress oy along elliptical boundary.

A comparison was also made of the stress distribution along 1 =0 and 1} = w2. Figure
4.9 below shows the G, stress distribution along 1 = 0 for both the finite element

calculations and the analytic solution. Very good correlation is shown, with the
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maximum error at 1.23% (see Figure 4.10). Figure 4.11 below shows the Gy, stress
distribution along n = /2 for both the finite element calculations and the analytic
solution. Again, very good agreement of the finite element method with the analytic

solution was achieved. The normalized error is shown in Figure 4.12.

5000 —— Analytic Solution

o Finite Element Solution

4000

3000 +¢

Stress

2000 +-

1000 -

X-axis

Figure 4.9. Axial stress ( oy ) along n = 0.
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0.00%

-0.40%

-0.80%
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-1.60% | f | i
Distance ( X axis)

Figure 4.10 Finite Element Error of Axial Stress ( o, ) Along n = 0.

8
7 -
o Finite Element Results
6 —— Analytic Solution 1
5
4
3
2
1
0 : ; ; : : ; : = :
-1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0 100

Stress

Figure 4.11 Axial Stress ( oy ) Along n=n/2.
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Figure 4.12. Finite Element Normalized Error of Axial Stress ( o, ) Along 1 = 7i/2.

2. Conclusion of Elastic Finite Element Model

The comparison of the finite element results with the analytic solution of the
stress distribution around an elliptical hole shows that the IDEAS finite element program
can be used to accurately analyze notch stresses under linear elastic loading. Even though
the maximum error along the hole edge was 7.45%, this occurred at a point were the
stresses were only 3% of the far-field applied stress. The focus of these finite element
analyses was to obtain accurate stresses and strains in the vicinity of the plastic zone.
Therefore, this error at the low stress regions becomes insignificant when compared to the

magnitude of the applied loads and of the peak stresses.
B. VERIFICATION OF ELASTOPLASTIC FINITE ELEMENT MODEL
1. Uniaxial Test of Stress-Strain Curve

The first elastoplastic comparison of the I-DEAS™ Software was on a long narrow

block to verify the input of the stress-strain curve. A finite element mesh of 3 elements
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by 100 elements with the outer dimensions 1.0 m by 0.03 m, shown in Figure 4.13. This
simple case illustrates that the elasto-plastic solution converges to the input stress-strain

curve. Figure 4.14 shows the stress-strain curve used, along with the FEM calculations.

Figure 4.13. Finite Element Model of Uniaxial Tension.

3.0E+08 -

2.5E+08 -

2.0E+08 -

1.5E+08 -

—+— Input Stress-Strain Curve
© FEM Resulits

Stress (Pa)

1.0E+08 -

T

5.0E+07 -

] ] it | i
T T T T 1

0 0.002 0.004 0.006 0.008 0.01
Strain (in/in)

0.0E+00

Figure 4.14. Results of Uniaxial Test Case.

2, Infinite Plate with a Circular Hole
a. Analytic Solution — Elasto-plastic Case

The elastic solution of the stress distribution of a circular hole in an
infinite plate with a far-field applied load of G, = G, as shown in Figure 4.15, can be
obtained in closed form and is shown in Equation 4.6. To obtain the elasto-plastic stesses

and strains, both incremental and deformation theory have been applied to this problem

(,12 a2
o, =G(1_7j O, =0(1+—r7j (4.6)
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B

[Ref. 11, 12, 13, and 14]. Tuba [Ref. 12] and Chakrabarty [Ref. 14] show that both these

solutions are identical. The solution below is taken from Chakrabarty [Ref. 14].

Figure 4.15 Infinite plate with circular hole

Applying the governing equations in polar form for axisymmetric loading,
one obtains the stress components in terms of constant ¢; and c3 that can be solved for the
imposed boundary conditions:

S Cs
G,=2€2+—r— 0'9=262—7 (4.7)

The elastic solution shows that at the hole edge, Gg is twice the far-field value o, with all
other components being zero. From the von Mises yield criteria, Equation 4.8, yielding
will occur once o is greater than one half of the yield stress 0y, and a region of plastic
deformation will extend from the edge of the hole out to a certain radius of r > a. If the
radius of the elastic/plastic boundary is given as ¢ then the boundary conditions for
Equation 4.7 are 0, = O, at r = ¢ and G, = © at r = e, where O, is the yet to be determined
value of the radial stress at the elastic/plastic boundary.

6,0 =0, —0,0,+0,’ (4.8)
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The constant c3 in Equation 4.7 can now be solved for in terms of 6y and c, and the
stresses in the elastic region reduce to:
6 g |9 P (49)
,=0-— - C, = - .
\/g r’ (502 ¢ ﬁ r ) 02

In the plastic region, the Von Mises stresses can be expressed in parametric form as:

2

2 2 T
G, =—=0,sin O, =—7=0,Cc08| —— 4.10
r -\/5 e (p ¢} \/_3_ e (6 (D] ( )
The stress-strain constitutive relationships given in Equation 3.18 are restated in polar
form:
1 3(1 1Y i
=—loc - +—=| === -—lo +
e, =7 (c, voe) A _0, (0, 09)4
(4.11)
ey =t(0o-vo )+ L-Lo, Lo +,)
o = \%o vo, 2\E T E ) o ~3\0 o/]

The plastic secant modulus has been rewritten as follows:

were E' is the secant modulus of the total stress-strain curve. The solution of the stresses
is independent of the elastic Poisson’s ratio, v, and therefore this can be set equal to 0.5.
This transform simplifies the constitutive relations, while allowing solution for the
correct stress values [Ref. 13]. With this simplification, and the substitution of the
definition of the secant modulus as the ratio of the effective stress to the effective total

strain, the stress-strain relations in the plastic region can be expressed as:
— . T —
€ =¢,sin q)—--6— €, =¢€,co80 (4.12)

where € and €, are the strain values for an incompressible material (v = 0.5). Once the

stresses have been found, then the actual strains can be found using Equation 4.11 and the

correct value for Poisson’s ratio v.
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The strain €, is related to the equivalent stress 6, by Equation 3.23, or a similar
stress-strain curve. Another such empirical relationship that can be used is a modified

Ludwick curve [Ref. 14], which is separated into an elastic and a plastic range:

00
Ee £<—
E
c= , (4.13)
\ o, T E

A plot of a family of curves of this form is shown below in Figure 4.16, where 6o =

30,000, E = 30.0 x 10°, and n varies from 0 to 0.5. At the elastic/plastic boundary, the

A5000 7 - - - - e
40000 - n=05 |
35000 -
30000 - :
25000 - n=0

o 20000 -
15000
10000 - €=—

5000 - '

0 . : , ﬁ
0.0000 0.0005 0.0010 0.0015 0.0020
£

Figure 4.16 Modified Ludwick Stress-Strain Curve.

auxiliary angle ¢ is found by setting the radial component of the stress in Equation 4.9

equal with the radial stress component in Equation 4.10. The substitution of r = ¢, and

2
¢C=sin'1[€0——l- 1—0—2) (4.14)

When stresses in Equation 4.10 are substituted into the equilibrium condition, the result

G, = G, results in:

18:
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1 do, do 1
o ar W0t g =, (o) (41

Likewise, when the strains in Equation 4.12, along with the stress-strain law of

Equation 4.13, are substituted into the compatibility equation, the result is:

1do. _ % n
p _ntan¢ar+2r(ﬁtan¢—3) (4.16)

The relationship between the auxiliary angle ¢, r, and n (material constant from
Equation 4.13) can now be found by eliminating the equivalent stress from Equations
4.15 and 4.16. The resulting differential equation is:

@l_ (w/g—tan¢)(l+x/§ ntan¢)
"or T 2(l+ntan’ o)

(4.17)

The solution to this can be solved by separation of variables, and can be reduced to r as

function of ¢:

a_2 = ———(\/_0054) —sin q))(cosq) + x/-3_ncosq))‘::: e[—ﬁﬁ'ﬂ) (4.18)

<|

The equivalent stress must also be found, and this is obtained by eliminating the radius

from Equations 4.15 and 4.16. The resulting differential equation leads to the solution of

the equivalent stresses as a function of ¢, n, and G:

1 do, V3 -tan¢ (419)
—_ =-n .
G, 90 1++/3ntan¢
The relationship between ¢ and o, is now found as:
—n{i+3n + ﬂ2 -\/—n(l n)¢
c,= K,o‘(cos¢+w/?_,nsin ¢) (eomffes )e[ +3n® ) (4.20)
The stress concentration factor is obtained by setting ¢ = ¢, and thus 6(¢) = oy in
Equation 4.20:
n{1+3n)
1 1+3n® J”‘(l n) 3
Ktzg—(—’—{(1+3n) ° J—( ) 1———} g (4.21)
o} 200 O,
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For a given applied load of o, = G, the plastic stresses in Equation 4.10 can
be obtained by first solving for ¢. and K; as given in Equations 4.14 and 4.21. The
auxiliary angle ¢ in Equation 4.18 is solved for a given radius by an iterative method.
Finally o, is solved from Equation 4.20, which is then substituted into Equation 4.10 to
solve for the component stresses. For a work-hardening material ( # # 0 ), the strains are

then found by Equation 4.11.

b. Analytic Calculations

Two cases were solved analytically to be used with comparison to the
finite element solution. The first involved an elastic perfectly plastic material that
matched that used by Davis [Ref. 11] for his numerical results using incremental theory.
The second case used the same elastic properties but changed the plastic property to a

work hardening material. Table 4-1 below shows the material properties:

Material Constant Value
Co 30,000
E 30 x 10°
v 0.3
c 22,500
n, Case 1 0
n, Case 2 0.25

Table 4-1 - Material Properties of Infinite Plate with hole

For the two separate cases, the calculated values of ¢, ¢, and K, are listed below.
Figure 4.17 shows a plot of Equation 4.18 for the two cases. Note that there are two
solutions shown, and care must be taken to ensure that the correct root is solved for. The
mathematical software Maple V® was used to solve ¢ for each input radius. This program
allows the analyst to limit the range in which to search for a solution, and therefore only
solutions for 0 < ¢ < 60° were obtained without any difficulty. Once ¢ was found for a

specific radius, the calculations of G., followed by ¢, and 6, was straight forward.
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Maple V® was programmed to make all these calculations at a radial distance

corresponding to each node location along the x-axis.

Variables Case 1l (n=0) Case2(n=0.25)

O, 0.32446 0.32446
c 1.51550 1.47886
K, 1.3333 1.50195

Table 4-2 Solution Variables for Case 1 and Case 2.
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r 2 |
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Figure 4.17 Solution of Equation 4.18.

c. Finite Element Solution

The infinite plate with a circular hole was modeled using a 60 degree
section on an annulus with a inner hole radius of a = 1.0 and an outer radius of 30. Due
to the axisymmetric loading, a variety of finite elements are available that would
efficiently model the axisymmetric problem; however, the above geometry with
quadrilateral plane stress elements was used in order to verify these elements and the
I-DEAS™ software for more general notched geometries.

The first step was to determine beyond what mesh sizing the solution was

mesh independent. Three separate meshes as listed in Table 4-3 were analyzed and are

32




shown in Figures 4.18 and 4.19. The coarse and medium element meshes each used

equal numbers of elements on opposite sides of the geometry, while the fine mesh had
one row of elements at the outermost radius that split into a finer meshing using
triangular elements. This was possible since both the radial and cicumferential stresses
rapidly approach the far-field value, and for the load used, reaches within 2% of the far-
field value at a radial distance of 7.5a and within 0.5% of the far-field value at 15.13a.
The finite element model extends radially to 30a, hence there is little gradient in the

stresses and strains beyond a radial distance of 15a.

Mesh Elements Nodes
Coarse 200 661
Normal 800 2,521
Fine 1378 4,247

Table 4-3. Mesh sizes for hole in infinite plate.
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Medium Mesh

800 elements

Fine Mesh
1378 elements

Coarse Mesh

200 Elements

Figure 4.18. Layout of Element Meshes for Hole in an Infinite Plate.
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Coarse Mesh
200 Elements

Fine Mesh
1378 elements

Figure 4.19. Exploded Views of Element Meshes Near Hole Boundary.

The results of the mesh comparisons is shown in Figure 4.20. The mesh
refinement results in only a slight change in the solution, particularly at the elastic/elasto-
plastic boundary. The solution change from the medium to fine mesh is insignificant, and
it can be concluded that the 20 by 40 element mesh provides a result that will not improve
significantly with an increase in the mesh density. For the rest of the comparisons to the

analytic solution, only the 20 by 40 element mesh will be used.
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Figure 4.20 Circumferential stress for various mesh sizes.

The results of the FEM were taken along the one line of elements at 6 = 0.
As would be suspected, the angular change in the FEM solution was insignificant, as
shown in Figure 4.21, which shows the effective stress distribution throughout the finite
element model. The radius of the elastic/plastic boundary, c, corresponding to an
effective stress of 30,000 psi, was interpolated between nodal points to be 1.5185 inches
for case one, and 1.5107 for case two, with the analytic values listed in Table 4-2. This is
an error of only 0.2% for the former case, and 0.59% for the later. Note that the finite
element value is linearly interpolated, and though the nodal values may be correct, this in
itself will introduce a slight error.

For both case one and case two, the finite element solution was found to
match the analytic solution very well. Figure 4.22 shows the finite element stresses with
the analytic curves superimposed for the perfectly plastic model (case 1). The normalized
error was less than 1% for each data point (see Figure 4.23). The stress distributions for
case 2 are shown in Figure 4.24. Again, very good agreement is made with the analytic
solution, and the normalized error remains less than 1% for the work hardening material
(see Figure 4.25). For the elastic/perfectly-plastic model, the strains in the plastic region

cannot be obtained analytically. However, for case 2, one simply solves Equation 4.11.
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The strain distribution for case 2 is shown in Figure 4.26. As in the case of the stresses,
the finite element method produces very accurate results. The error was normalized with
respect to (S/E) as shown in Equation 4.22 for the same reason the stress error was

normalized in the preceding section.

8'inie “emen —£ nalytic Value .
Normalized Strain Error = —meBemen _Anbtie Vebe o 100 % (4.22)

(s/E)
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Figure 4.21. Effective Stress for Case 2.
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Figure 4.22. Comparison of FEM stresses with analytic solution for case 1.
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Figure 4.23. Normalized error of FEM stresses versus analytic solution for case 1.
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Figure 4.24. Comparison of FEM stresses with analytic solution for case 2.
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Figure 4.25. Normalized error of FEM stresses versus analytic solution for case 2.
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Figure 4.26. Comparison of FEM strains with analytic solution for case 2.
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Figure 4.27. Normalized error of FEM strains versus analytic solution for case 2.
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d. Conclusion on the Accuracy of the Finite Element Method

Comparisons of the I-DEAS Master Series  finite element program to the
specific problems shown reveal the excellent results obtainable for both linear and non-
linear analysis by the finite element method. The differences between the finite element
calculations with exact analytic solutions for both stress and strain calculations were
minimal, even in regions of high gradients. It was also shown that a mesh-independent
solution was readily obtainable after one or two mesh refinements. From these results of
the application of the [-DEAS Master Series” program to model problems, follow-on
finite element analyses for notch geometries were performed with a very high degree of

confidence in the accuracy of the solutions.

3. Comparison to Experimental Data

a. Finite Element Modeling of Experimental Specimen

Although the availability of recently published full-field stress data for
basic notched and hole specimens under tensile loads is slim to non-existent, several
works were completed more than thirty years ago using photoelastic techniques. Two
notable works are from Durelli and Sciammarella [Ref. 15] and Theocaris and Marketos
[Ref. 17]. A comparison to the Theocaris and Marketos experiment was chosen vice the
Durelli and Sciammarella due to the fact that Theocaris and Marketos were able to show
the maximum peak tensile stresses progressing away from the notch root. This peak oy
stress progression occurs due to a multi-axial stress state and given stress distributions
allowing for a higher oy stress before yielding occurs. This was also the result of all the
finite element analyses completed. The test specimens used by Theocaris and Marketos
were two sheets of aluminum alloy 57S, one with a hole diameter to width ratio of 1/2,
the other 1/3. The later ratio of 1/3 was chosen, and the dimensions are shown below in

Figure 4.28.
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Figure 4.28. Dimensions of Plate with a Central Hole, [After Ref. 17].
The stress-strain curve of the Aluminum alloy 57S as given by Theocaris

and Marketos [Ref. 17] is shown in Figure 4.29, with a curve fit to the Ramberg-Osgood

equation resulting in the coefficients listed in Table 4-4.

Coefficient Value
E (kg/mm®) 7,000
K (kg/mm?) 33.1

n 0.048

Table 4-4 Ramberg-Osgood Material Coefficients for Aluminum 578.
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Figure 4.29. Equivalent Stress-Strain Curve for Aluminum 575, [After Ref. 17].

The first step, as in the case of the model of the hole in an infinite plate,
was to determine at what mesh density mesh independence was achieved. Three separate
meshes were generated and analyzed: a 20 by 20 mesh, a 30 by 30 mesh, and a 40 by 40
mesh. These are shown in Figure 4.30. Figure 4.31 shows the y-component of stress for
a load well into the plastic range. The change in the FEM stresses from the 30 by 30
mesh to the 40 by 40 mesh are insignificant, hence the 30 by 30 mesh will be used for the

comparison to the experimental data.
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Figure 4.31. Distribution of o, for Various Mesh Sizes.

Table 4-5 shows the applied loads used by Theocaris and Marketos. The
first load resulted in the initial onset of plastic deformation, while the last load creates a
plastic zone that extends a distance 3/4 of the hole radius from the edge of the hole and

covering approximately 1/3 of the minimum cross section.

Load Set  Applied Force S MPa)  Sner MPa)

N)
I 19162.97 67.89 101.84
1 21384.95 75.76 113.65
m 25520.79 90.42 135.63
v 30399.66 107.70 161.55
\% 34286.34 121.47 182.21
VI 38926.48 137.91 206.87

Table 4-5. Load history for Theocaris Photoelastic Experiment, [Ref. 17].
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b. Finite Element Results

A comparison of the oy stress was made for all six load sets, and these are
shown in Figures 4.32 and 4.33. Several differences are noticeable between the FEM
results and the Theocaris and Marketos data. First, although Theocaris and Marketos
show a peak oy stress that progresses inward as the plastic deformation increases, they
also show that it initially decreases before reaching a maximum for the last three applied
loads. The FEM shows that the maximum value of 6, moves away from the hole edge,
but it also shows that 6, constantly increases until it peaks. The second difference
between the FEM and the Theocaris and Marketos data is the magnitude of the decrease
in Oy near the edge opposite the hole. This results in significant disagreement between ‘
the two values, approaching an 80% difference for the first applied load. Figure 4.34
shows the difference between the FEM calculations and the experimental data. One test
of the accuracy of both results is to determine if equilibrium has been satisfied at the
minimum cross section. The stress distribution curves were numerically integrated to
determine the resulting force. These results are listed in Table 4-6. The values are only
for half of the plate, hence the total applied force will be twice these values. Even though
these calculations are only approximate, it is easily seen that the FEM has satisfied
equilibrium, while the Theocaris and Marketos results have underestimated the stress
distribution for the first three load sets. It should also be noted that the photoelastic
analysis shows fringes in the regions of strain gradients, and since this is a region of

relatively uniform stress and strain, the accuracy of the method degrades.
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Figure 4.34. Difference of FEM and Theocaris data for o,

Load | Applied FEM Calculations Theocaris Data
Set Force

Fy at Far Fy at minimum  Error Fy at minimum Error

Edge (N) section (N) section (N)
I 19162.97 19166.13 0.02% 17254.83 -9.96%
i 21384.95 21387.70 0.01% | 20004.95 -6.45%
I 25520.79 25522.31 0.01% | 24975.24 -2.14%
v 30399.66 30401.50 0.01% | 30473.38 0.24%
\% 34286.34 34286.69 0.00% | 35225.31 2.74%
VI 38926.48 38925.78 0.00% | 39660.45 1.89%

Table 4-6. Equilibrium calculations at minimum cross-section.

c. Conclusion on the Accuracy of the Finite Element Method

The finite element analysis compared favorably with the experimental data

of Theocaris and Marketos. Within 20 mm of the hole edge, the error was less than 10%

for all but one load set. Additionally, the results at the edge itself were within 4%. In

addition to the experimental errors referred to in the beginning of this Chapter, the data
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used in this study was taken from published graphs, resulting in an additional error added
to the comparison. Considering these shortcomings, the FEM analysis provided
quantitative results as reasonably as could be expected, and matched the qualitative trends

exceptionally well.

49




50




V. NUMERICAL CALCULATION OF STRAIN ENERGY DENSITY
A. INTEGRATION ROUTINE

In order to analyze the strain energy density from the finite element data, an
integration routine must be used to calculate the plastic strain energy density as shown in
equation 3.25. The accuracy of any integration routine will be dependent on the number
of data points integrated and the scheme implemented. This is especially true at the
‘knee’ of the stress-strain curve, or just past yielding where the curve bends. To increase
accuracy, a third order accurate integration scheme was used by approximating the first
and second derivative of each point by a central difference scheme, and using these values
to perform the numerical integration. This scheme is similar to Simpson’s rule, but
applied for non-equally spaced points. To develop the integration routine, a function I(x)

is assumed in which:
I(x)= [ f(x) dx (5.1)

Expanding I(x) about the i™ point by Taylor series, we get:

2 3
I(x, + Ax,) = I(xi)+Axil’(xi)+%l”(xi)+£;-I”’(x,.)+ H.O.T.
. 2 3. 3 ( 5.2)
Ax, Ax,
I0x, = A ) = 10x) = A I'(x )+ =2 17(x) - —E-I7(x)+ H.OT.

were the subscripts refer to each data point as shown in Figure 5.1.
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Figure 5.1 Integration points for numerical scheme.

However, from Equation 5.1, we know that:

I'=f(x) I"(x)=f"(x) I"(x)=f"(x)

Substituting these into Equation 5.2 and solving for the integration between the i - 1 and

the ™+ 1 point and defining this value as /; results in:

I = Tf(x)dx

Xi-1

L =1(x,+Ax)~- I(x, - Ax, )+ H.O.T,

2 2 3 3
I =(Ax, +Ax,, )f(x,.)+[wjf'(x,.n(w}f”(xﬁ HOT. (53)

2! 3!

The first and second derivatives of the function are approximated by a central difference

scheme as follows:

Ax, P (F () = FO))+ A (F(x) = f(x,)

fi(x)= Ax,_ Ax, (Ax;—x + Axi)

and

Axi_l(f(xm)_f(xi))+Axi(f(xi_1)"f(xi))
Axi—lei(Axi—l + Axl)

f(x)=2

52

(54)

(5.5)




Equations 5.4 and 5.5 are substituted into Equation 5.3, then summed over every other

data point to obtain the final integration value:

i=N-1

ff<x>= 21 (5.6)

even i

B. RESULTS OF NUMERICAL SCHEME ON UNIAXIAL CASE

A comparisons of the above numerical integration routine to a standard
trapezoidal integration routine were made, using the uniaxial strain energy density
equation with the Ramberg-Osgood stress-strain relationship. The stress-strain curve
integrated is shown below in Figure 5.2, with the limits for both stress and strain labeled.
The material constants were n = 0.053, K = 95ksi, and E = 10 x10° ksi. For the modified
Simpson’s rule integration routine, two forms of the strain energy integral were used,
Equation 2.6 and 2.14. The actual value is given by Equation 2.17. Note that for
integration by the trapezoid rule, both of these forms of the strain energy density produce
identical values; however, for the applied integration routine, an upper and lower bound
is calculated. This is shown in Figure 5.3, which applied the routine to equally spaced
points. Note that the actual implementation of this routine will produce improved results
due to a more efficient distribution of the data points; i.e., few points along the linear
portion and a closer distribution in the region of higher curvature. Since the modified
Simpson’s integration routine produced better results than the trapezoidal rule for higher
data points, this was chosen as the means of integration to calculate the strain energy
density. Additionally, the basic form of the strain energy density integral as given in
Equation 2.5 was able to be incorporated within the [-DEAS Master Series  post-
processing module; hence, this was the final form used to calculate the strain energy

density.
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Figure 5.2. Stress-Strain Curve for Integration Comparison.
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VI. CALCULATIONS AND RESULTS OF STRAIN ENERGY DENSITY

In order to test the validity of the Glinka strain energy density proposal, the strain
energy density for a given loading was calculated based on an elasto-plastic material (W),)
and an elastic material (W,), and comparisons between the two calculations were made.
The strain energy density calculations were performed at each node throughout the FEM
model, with the plastic strain energy density (W,) being numerically integrated at each
load step as shown in Chapter V. In addition to the strain energy density calculations,
comparisons were made between the notch stresses and strains based on the finite
element method and values obtained via both the Glinka and the Neuber method. These
comparisons will be made in Chapter VII. The finite element analysis was performed on

a plate with symmetrical, semi-circular edge notches.

A. NOTCH GEOMETRY AND MATERIAL SELECTION

Two separate geometries were evaluated, one had a notch radius of 1.0 inch, and a
plate width of 6.0 inches (/D = 1/6), and the second had a notch radius of 1.0 inch and a
plate width of 10.0 inches (#/D = 1/10). These two layouts are shown below in Figure
6.1, with the shaded regions representing the finite element geometry. For each
geometry, plane stress (thin plate) and plane strain (thick plate) analyses were performed.
The strain-hardening material used modeled 7075-T6 Aluminum. This was represented
in the I-DEAS Master Series™ finite element program as 20 data points, shown in Figure
6.2. This figure also shows the yield stress, determined to be 66 ksi based on a plastic
strain offset of 0.002. However, it should be noted that the stress-strain curve departs
from linearity at 40 ksi. The 20 data points were obtained by curve fitting the Ramberg-
Osgood equation to actual stress-strain data from the Military Handbook V [Ref. 110];
then calculating these points from the resulting Ramberg-Osgood equation. Although this
may have resulted in the stress-strain curve used by the FEM analysis differing from the
actual 7075-T6 data, it ensured that the notch root strains and plastic strain energy density
could be calculated from the finite element stresses using the Ramberg-Osgood equation.

This enabled correlating predicted strains based on the Ramberg-Osgood equation and
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either the Neuber or Glinka method to the finite element results. The material property
coefficients, including values resulting from the data fit to the Ramberg-Osgood equation,

are listed in Table 6-1.

i O O

D D
r_1 r_1
D 6 D 10

K, =2.042 K, =2421

A A I A A A A

Figure 6.1. Notch Geometry and Finite Element Boundary Conditions.
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Figure 6.2 Stress-Strain Curve for 7075-T6 Aluminum.

Coefficient Value
E (ksi) 10,000.0
K (ksi) 92.0
oo (ksi) 66.18
n 0.053

Table 6-1. 7075-T6 Material Constants.

FINITE ELEMENT MODELING

Due to the two lines of symmetry for this geometry, the finite element model was

reduced to one quarter of the physical model by applying appropriate constraints along

each boundary, as shown in Figure 6.1. For each configuration, 21 increments were used

to increase the loading from an initial nominal stress of 12 ksi to a final value of 49.5 ksi,

or 75 percent of the yield stress. This load increment ensured convergence of the finite

element solution and provided a small enough step to numerically integrate the strain

energy density with reasonable accuracy. The first two load points were in the elastic

range, and plastic deformation began at the third load step. The stress concentration factor

K, was determined from the finite element analysis at the first load step, and found to be
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2.042 and 2.421 for the narrow and the wide plate, respectively. Table 6-2 shows the
load schedule for each of the geometries.

As in the previous finite element analyses, a mesh comparison was performed for
each of the geometries. The number of elements and nodes for each geometry used in the
comparison are shown below in Table 6-3. For the wide plate (r:D = 1:10), the medium
mesh was obtained directly from the coarse mesh by an I-DEAS Master Series’ routine
of splitting elements in the region of highest elastic strain energy density. The mesh
layouts are shown in Figures 6.3 and 6.4. Comparisons of both stresses and strains were
made for each of the mesh sizes at load step 21. The comparison showed that the mesh
refinement resulted in little change in the stresses and strains throughout the model.
Figures 6.5 and 6.6 show the stress and strain distributions along the minimum cross
section for the each plate. For the narrow plate at the notch root itself, the stress
decreased by 0.16% going from the coarse to medium mesh, and decreased by 0.03%
going from the medium to fine mesh. For the strains, the medium mesh resulted in a
0.24% decrease in strain compared to the coarse mesh, and there was no change
compared to the fine mesh. Similar results are shown for the mesh refinement for the
wide plate. The mesh adaptation used on the coarse mesh to obtain the medium mesh
resulted in a decrease of the notch root stress by only 0.22%. The strain at the notch root
decreased 0.58% from the medium mesh to the coarse mesh. These results showed that
the medium mesh for both geometries was sufficient to provide mesh independent

solutions. Hence, for all further finite element analysis, the medium meshes were used.

60




Load Notch r:D =1:6 Notch r-D = 1:10
Step P (ksi) S(ksi) K,S(ksi) | P (ksi) S(ksi) K.S (ksi)
1 8.00 12.00 24.50 9.60 12.00 29.05
2 13.00 19.50 39.81 15.60 19.50 47.21
3 15.00 22.50 4594 18.00 22.50 54.47
4 16.00 24.00 49.00 19.20 24.00 58.10
5 17.00 25.50 52.06 20.40 25.50 61.73
6 18.00 27.00 55.13 21.60 27.00 65.36
7 19.00 28.50 58.19 22.80 28.50 68.99
8 20.00 30.00 61.25 24.00 30.00 72.63
9 21.00 31.50 64.31 25.20 31.50 76.26
10 22.00 33.00 67.38 26.40 33.00 79.89
11 23.00 34.50 70.44 27.60 34.50 83.52
12 24.00 36.00 73.50 28.80 36.00 87.15
13 25.00 37.50 76.56 30.00 37.50 90.78
14 26.00 39.00 79.63 31.20 39.00 9441
15 27.00 40.50 82.69 32.40 40.50 98.04
16 28.00 42.00 85.75 33.60 42.00 101.68
17 29.00 43.50 88.81 34.80 43.50 105.31
18 30.00 45.00 91.88 36.00 45.00 108.94
19 31.00 46.50 94 .94 37.20 46.50 112.57
20 32.00 48.00 98.00 38.40 48.00 116.20
21 33.00 49.50 101.06 39.60 49.50 119.83
Table 6-2. Load Increment Schedule.
Geometry Mesh Element Nodes
Narrow Plate Coarse Mesh 298 965
(r:D = 1:6) Medium Mesh 1,128 3,507
Fine Mesh 2,291 7,046
Wide Plate Coarse Mesh 456 1,453
(r:D=1:10) Medium Mesh 1,064 3,233

Table 6-3. Number of Elements and Nodes for Mesh Comparison.
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Figure 6.3. Mesh Lalyouts for Narrow Notched Plate.
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C. RESULTS OF FINITE ELEMENT ANALYSIS
1. Computational Procedures

The elastic strain energy density (W,) at each node was initially calculated at the
first load step. To determine W, at later load steps, this value was simply multiplied by a
factor of (P/Py)*, where P; is the load at the i™ step, and P, is the initial load. Plastic
strain energy density (W,) was calculated incrementally with the integration procedure
shown in Chapter V. To calculate a strain energy density increment AW,, two new data
points were required, in addition to last point of the previous increment. Since the first
load step was under elastic conditions, W, is equal to W,; hence, the first load step
resulted in the first plastic strain energy density calculation without requiring any

integration. Subsequent calculations were performed at all odd load steps.

2. Plane Stress Condition

For thh plate widths, the plastic strain energy density was found to be greater
than the elastic strain energy density in the vicinity of the notch root. Figures 6.9
and 6.10 are plots of W, at load step 21 for the narrow and wide plates, respectively,
under plane stress conditions. These show that the plastic strain energy density
throughout the model has its maximum value at the notch root, but rapidly approaches the
far-field value away from the notch. Figures 6.11 and 6.12 show W, for several load steps
along the minimum cross section of the plates, with W, included at the final load step.
This shows that not only does W, give under estimated values at the notch root, but also

W, - W,
Werror = — 35— (6.1)

P
follows a different distribution shape than W,. At the notch root itself for the final load
step (S = 0.750y), the difference between W, and W, reaches a value of 16.8% and 23.2%
for the narrow plate and wide plate respectively. Figures 6.13 and 6.14 show contour

plots of the difference in W, as compared to W,, as shown in Equation 6.1, so that positive
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values indicate that the actual W, is higher than that estimated by the Glinka Method.
These values are taken at the final load step (S = 0.75 6). In the plastic region, the
greatest difference between the two calculations occurs not at the notch root itself, as may
be expected, but slightly offset along the x-axis. This maximum error is also on the order
of twice the value of that at the notch root. The location of the maximum difference
between W, and W, corresponds fairly well with the location of the maximum oy value. It
should be noted that although the contour plots show the maximum global error occurring
slightly above the notch near the plate edge, this is also a region of very low to zero strain
energy density, and therefore these errors are actually insignificant. Figures 6.15 and 6.16
show the error in strain energy density for each load step across the x-axis (aty =0).
These plots show that, as previously stated, the maximum error occurs at the notch root
for small plastic yielding, then gradually progresses inward along the x-axis. Global
errors for the previous load steps followed the save trends as that of the final load step.
Starting with zero error at the initiation of plastic deformation, the regions of significant
error (greater than 1%) start at the notch root, and move inward, while at the same time
proceeding at an angle toward the vertical centerline of the plate. This trend also
corresponds to the region of high &, and the growth of the plastic zone (this growth is

well documented by Theocaris and Marketos [Ref. 18]).
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Figure 6.9. Plastic Strain Energy Density Wp for Narrow Plate in Plane Stress
at Load Set 21.
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Figure 6.10. Plastic Strain Energy Density Wp for Wide Plate in Plane Stress at
Load Set 21.
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3. Plane Strain Condition

The results of the strain energy density calculations showed better agreement
between W, and W, than for the plane stress condition. Figures 6.17 and 6.18 are plots of
W, at the final load step. As in the plane stress case, there appears a high peak value at
the notch root, with a rapid drop-off to the far-field value. Figures 6.19 and 6.20 show W,
for several load steps along the minimum cross section of the plates, with W, included at
the final load step. Closer agreement between the two strain energy densities is shown
than for the plane stress condition. The plane strain problem results in a configuration
that is physically more constrained than that of the plane stress problem, and hence the
amount of plastic growth at the notch under plane strain conditions will be less than that
of the plane stress condition. Therefore, the basis that the strain energy density
distribution in the plastic region remains relatively unchanged due to a high volume of
elastic material surrounding the plastic region should be even more valid for the plane
strain condition than that of the plane stress condition. This was in fact shown to be the
case when comparing the finite element plastic strain energy density W, with that of W,,
as can be seen in Figures 6.21 and 6.22, which are contours of the difference between the
two energies. As in the case of the plane stress condition, W, for the plane strain
condition is shown to be greater than that of W,. However, both the amount of error and
region of significant error (greater than 1%), is much improved over the plane stress
condition. At the notch root itself, the difference between the two calculations was only

7.76% for the narrow plate and 10.6% for the wide plate.
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Figure 6.20. Strain Energy Density along x-axis for Wide Plate in Plane Stress.
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VII. STRESS AND STRAIN CALCULATIONS

A. PLANE STRESS CONDITION

1. Finite Element Method Results

The stress distributions for plane stress for both geometries are shown in
Figures 7.1 through 7.4. These plots depict either oy, or Oy along the minimum cross
section (y = 0) as a function of the nominal loading. As stated in Chapter IV, the
maximum Oy, value progresses inward from the notch root as yielding increases. This can
be attributed to the 6, component, which starts from zero at the notch root and rapidly
approaches its maximum value inward from the notch root. This increase in the O
component results in a higher allowable &, than at the notch root before yielding occurs.
If one considers the limiting case of a perfectly plastic material; then at the notch root,
oy, would remain at the value of the yield stress after initial yielding. However, at some
point inward from the notch root, 6y would be higher than the yield stress due to the Ok
component. The other limiting case is an elastic only material, where 6, would linearly
increase with loading. As can be seen from the stress distributions, the results of the

work-hardening material falls somewhere between these two extremes.
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2. - Notch Root Stress and Strain Calculations and Comparisons

In addition to comparing the plastic strain energy density W, to the predicted
strain energy density W,, comparisons were also made between the finite element stress
and strain results with those predicted by the Glinka and Neuber methods. The form of
the Glinka method used was Equa;ion 2.18, while for the Neuber method, Equation 2.4
was used. If the nominal stresses are high enough then S # Ee, and Equations 2.18 and
2.4 are not valid. They may be modified, however, by using the Ramberg-Osgood
equation instead of Hooke’s law to determine the nominal strains [Ref. 1, page 138]. For

example, the Neuber’s Method, from Equation 2.2 would become:

s (sY"] ¢ c "
K,ZS{E+(E) ]=E+G e (7.1)
Likewise, the Glinka method, from Equation 2.12, would result in:
K>S 5,2 (lg—jvn —(—’i+ 20 (gjw (7.2)
‘TlE n+l\K) | E n+l\K '

However, when these modified forms were applied to the loading levels analyzed in this
thesis, the amount of improvement was minimal to none. For example, when this
adjustment was calculated for the final load level in the case of the narrow plate under
plane stress conditions, the error in notch root strains at the final load step decreased from
-11.85% to -11.66% for the Glinka method, and for the Neuber method the error actually
increased from 14.71% to 14.88%.

In Chapter VI, the strain energy density calculations showed that the predicted
strain energy density based on elastic material properties (W,) was less than the actual
strain energy density (W,). From this comparison of strain energy densities, it was known
that the Glinka method would under predict the stresses and strains at the notch root. The
stress and strains were also predicted based on the Neuber method. As was stated in
Chapter II, the Neuber method has been shown to overestimate the stresses and strains.
This was also true for all of the configurations analyzed in this thesis. These results of
the Glinka method under predicting the stresses and strains and the Neuber method over

predicting the stresses and strains are shown in Figures 7.5 and 7.6.
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These plots show the stress and strain concentration factor as a function of the
nominal load for the FEM analysis, the Glinka method and the Neuber method.
Additionally, a stress based on the average of the Glinka and Neuber determined stresses,
and a strain determined from the Ramberg-Osgood equation and this average stress was
determined for all configurations. It should be noted that whenever strain values are
based on an average of the Glinka and Neuber methods, this implies that it is based on the
average of the calculated stresses, and not the average of the strains. The amount of error
for the stress and strain predictions for both methods is shown in Figures 7.7 through
7.10. Note that the strain is more sensitive than the stress for both calculations. This is
self-evident from the fact that for the uniaxial stress-strain curve beyond the yield point,
strain is highly sensitive to changes in stress. This sensitivity is plotted in Figures 7.11
and 7.12, which shows the percent error of the Glinka method predictions with respect to
the percent difference in strain energy density. Note that this sensitivity is also dependent
on loading condition as it relates to the current stress-strain relationship. For example, as
the loading increases, the error in stress prediction appears to asymptote to a single value
after an initial increase, while the error in strain is almost linear with respect to the error
in strain energy density. As a material approaches perfectly plastic, then from Equation
2.6, any change or error in W, will result in a linear change in €, since ¢ will approach a
constant value.

For the notch geometry and plane stress condition, the Glinka and Neuber method
give an upper and lower bound to both the stress and strain predictions. Results based on
the average of the stresses of the Glinka and Neuber method are in good agreement to the
FEM results. It should be noted after about a S/G, ratio of 0.5 to 0.6, the rate at which the
error increases for the Glinka method appears to be constant, while even though the error
for the Neuber method continually increases, that rate at which it increases diminishes.
This results in the error for the average of these two methods to reach a maximum
between a S/ ratio of 0.54 to 0.64, then decrease as the loading increases. However, it
does not appear to asymptote toward zero, but to merely change sign as the error from the

Glinka method becomes greater than that from the Neuber method.
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B. PLANE STRAIN CONDITION

1. Finite Element Method Results

The stress distribution for the plane strain case are shown in Figures 7.13 through
7.18. These plots depict either oy, Oy or G, along the minimum cross section (y =0 ) as a
function of the nominal loading. When compared to the plane stress condition, the plane
strain results in higher axial stresses. This is due to the o, stress, which results in a higher
hydrostatic pressure for a given loading, thus reducing the amount of plastic growth. The
reduced plastic growth likewise results in the stresses increasing at a higher rate than in
the plane stress condition. Additionally, the plane strain condition results in higher stress
gradients in the vicinity of the notch. As in the plane stress condition, the oy stress peaks
at a point inward from the notch root as plastic growth occurs. For the plane strain

condition, this also occurs for the o, stress.

2. Notch Root Stress and Strain Calculations

For the plane strain analysis at the notch root, W, is a function of 6, and €,. For
the plane strain condition, however, € is a function of both 6, and 6,, and the strain
energy density equation does not reduce to the simple uniaxial version. To solve the
plane strain problem, Glinka [Ref. 4, 5, 6] uses the transformation as suggested by
Dowling, et al. [Ref. 19] that relates the uniaxial stress-strain curve to a plane strain
stress-strain curve. From this transformed stress-strain curve, €, can be found directly

from G,. To obtain €y, &, and Oy are related to the uniaxial stress-strain curve as shown

below:
T Jl-p+p? N PETRTE '
v+E5£—
where u——-———g—
€
l1+E-LX
(9
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The Ramgerd-Osgood relationship can then be fitted to these transformed stresses and

strains, and new parameters are determined:

o, (o, Vn . _E
e =—+|— where E =7——>3 (7.4)
(1-v?)

For the 7075-T6 material parameters, the plane strain transformed parameters are
shown below in Table 7-1. Once these values are found, the stresses at the notch root can

then be found by substituting all the normal coefficients with the transformed coefficients

in Equation 2.18 and Equation 2.4, then using Equation 7.4 to determine the strains.

Coefficient Value
E" (ksi) 11,222
K" (ksi) 106.77
n' 0.0541

Table 7-1. Plane Strain Transformed Material Coefficients.

Since the results of the strain energy density comparison was much improved for
the plain strain condition, it was expected that the stress calculations using the Glinka
method would also be improved. This was indeed the case, as is shown in Figures 7.19
and 7.20,, which compares the stress concentration factor as a function of the nominal
loading. Note that again an average value of the two methods was calculated, and plotted
for comparison. Another plot of the strain values is shown in Figures 7.21 and 7.22.
Here, K.S is plotted versus the calculated notch root strain €,. Overlaid on this plot is the
uniaxial stress-strain curve, the transformed plane strain stress-strain curve, and the notch
stress versus notch strain results. Not only does this show that the Glinka method gives
better results than the Neuber method, it also shows that the FEM notch root stresses and
strains follow the transformed stress-strain curve. Therefore, one can conclude that the
transformation used to obtain the plane strain results is valid at the notch root. The error
in both the stress and strain calculations for both geometries is shown in Figures 7.23
through 7.26. These show that the Glinka method provides results three times more
accurate than the Neuber method. Additionally, strains calculated based on the average

stresses of the two methods give slightly more accurate values than the Glinka method
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itself. This process also results in strains that are slightly higher than those of the FEM
analysis, vice those of the Glinka method, which are slightly lower than the FEM

analysis.
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VIII. -APPLICATION OF RESULTS TO FATIGUE CALCULATIONS
A. STRAIN LIFE CALCULATIONS

To determine the consequences of the Glinka method on fatigue life calculations,
the results obtained in Chapter VII for the plane stress condition were applied to a strain
life analysis as given in Equation 8.1 [Ref. 1]. From this relationship, the number of
reversals to crack initiation ( Ny ) is based on the strain amplitude ( Ag ). The fatigue
strength coefficient ( 67), fatigue ductility coefficient ( £7%), fatigue strength exponent

( b), and fatigue ductility exponent ( ¢ ) are material properties and are listed in Table

—A2—€=°—I;(2Nf)b+s;(2zv,)° (8.1)
9.1. For all fatigue calculations, it was assumed that the cyclic stress-strain curve
remained constant (i.e., no hysteresis effects). Although this does not accurately depict
the cyclic 7075-T6 aluminum properties, it does provide a means to compare the
individual methods as they apply to fatigue calculations using the results shown in
Chapter VII. Additionally, the fatigue life calculations are based on fully reversed
loading, with the load levels as shown in Table 6-2 used as the amplitude of the
alternating load. With these assumptions, the strain values obtained previously in

Chapter VII were simply half of the strain amplitudes for the cyclic fatigue calculations.

Coefficient Value
or’ (ksi) 191.0
& 0.19
b -0.126
c -0.52

Table 8-1. Fatigue Properties of 7075-T6 Aluminum.
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B. RESULTS OF STRAIN LIFE FATIGUE PREDICTIONS

Figures 8.1 and 8.2 show reversals to failure (crack initiation), Ny, as predicted by
the FEM, Glinka method, and Neuber method. These figures show the predicted life as a
function of the far-field loading. The fatigue life range covers from over 6,000,000 cycles
at the initial load for the narrow plate, which can be considered an infinite life, to less
than 1,000 cycles at the high loads. Figures 8.3 and 8.4 show the error in fatigue
predictions based on the Glinka and Neuber results as compared to the FEM analysis. It
is not surprising that the greatest error occurs at the higher loading, which corresponds to
where the highest differences in strain calculations occur. Additionally, the Glinka
method produces greater errors at the higher loads than the Neuber method. While the
Neuber method appears to have a maximum error just under 40% between an applied
load of £30 ksi to£35 ksi, the Glinka method continually gets worse, obtaining a 91%

error for the wide plate at fully reversed load of £39.6 ksi.

10,000,000 -
—— FEM Prediction
1,000,000 + - - - - 0 Glinka Method
o) A Neuber Method
-
E 100,000 - X Average of Glinka and Neuber Stresses
]
E
§ 10,000 -
[}
[+4
1,000 7 A A A
A a
100 T T T T T T 1
5 10 15 20 25 30 35 40

Far-Field Alternating Load (ksi)

Figure 8.1. Reversals to Failure for Narrow Plate in Plane Stress.
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Figure 8.3. Error in Fatigue Life for Narrow Plate in Plane Stress.
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Figure 8.4. Error in Fatigue Life for Wide Plate in Plane Stress.

The comparisons of the Glinka method versus the Neuber method applied to
strain life predictions show that although the error in strain calculations are of the same
magnitude, underestimating the stresses and strains results in a greater error when
calculating the fatigue life. Additionally, not only does this result in a greater error in
fatigue calculations, but it errs on the high side of these life calculations. This could have
alarming consequences when applied to safety critical parts. It should be noted that the
strain-life calculations give only a model of when the actual crack initiation will occur.
These comparisons do, however, provide an accurate picture of the trends in using either
the Neuber or Glinka methods in a popular model that is used to make fatigue life

predictions.
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IX. CONCLUSIONS

This study has examined the proposal by Glinka that the strain energy density at
the notch root is the same regardless if the material is elastic or elasto-plastic. A detailed
comparison of the two strain energy densities was performed not only at the notch root,
but throughout the field of symmetrical, semi-circular double notched plates. These
comparisons were made for both plane stress and plain strain conditions. Strain energy
density was calculated based on finite element analyses that had been rigorously tested
with analytic solutions and experimental data. The strain energy density was numerically
integrated, applying 21 load steps to reach a nominal stress equal to three fourths of the
yield stress for each configuration.

In addition to strain energy density calculations, stress and strain calculations
based on Glinka’s strain energy density proposal and the Neuber method were performed,
and compared with the finite element method results. To calculate the notch root stresses
and strains, a transformation to a plane strain stress-strain relationship was performed.
For the plane stress condition, the strain results were applied to fatigue life predictions,

using the relationship between number of reversals and the strain amplitude.

A. FINITE ELEMENT CALCULATIONS

Prior to calculating the strain energy density for the notched geometries, the finite
element program I-DEAS Master Series  was thoroughly tested by applying it to
problems that offered an analytic solution and experimental results. The conclusion
concerning the accuracy of the finite element program are listed below:

e The finite element program provided very accurate results for the elastic
analysis of an elliptical hole in an infinite plate under uniaxial tension. This
included a comparison of all stress components along the axis of the plate and
the edge of the ellipse.

e The finite element analysis of a hole in an infinite plate under elasto-plastic

loading again produced exceptional results when compared to the analytic
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solution. This included the both stress and strain results in the plastic and
elastic region.

¢ The finite element analysis of the narrow plate with a central hole produced

good results when compared to the experimental data of Theocaris and
Marketos [Ref. 17], especially at the hole edge. When equilibrium at the
minimum section was tested, the finite element analysis gave exceptional
results, while the experimental data was in error by as much as 10%.

The results show that the finite element analysis had been extensively verified
with analytic solutions based on the governing equations of mechanics. The stresses and
strains from the finite element program were input into an integration algorithm that
calculated strain energy density. Since the stresses and strains have been shown to be
highly accurate, it can be inferred that the strain energy density calculations are also

accurate.

B. STRAIN ENERGY DENSITY CALCULATIONS

The strain energy density based on an elastic material and an elasto-plastic
material was calculated at every second load step for a total of twenty one loads. A
detailed comparisons of the two strain energy densities reveal that:

e The strain energy density in the vicinity of the notch root based on elasto-
plastic material properties is higher than the strain energy density assuming
elastic only properties.

* The plane strain condition results in better agreement between the two strain
energy densities than the plane stress condition.

e At the higher loads, the greatest deviation between the two energies occurs
slightly inward from the notch root, vice at the notch root itself.

e The distribution of the two strain energy densities along the minimum cross

section not only differ in magnitude, but also in shape.
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C. NOTCH ROOT STRESS AND STRAIN CALCULATIONS

The notch root stress and strain values were calculated based on the Glinka
proposal at the notch root, and compared to the finite element data and the Neuber
method of estimating notch root stresses and strains. The comparison of these two
methods revealed:

e The Glinka strain energy density method under estimates the stresses and

strains, while the Neuber method overestimates the stresses and strains.

e For the plane stress condition, the two methods appeared to give an upper and
lower bound. Taking the average of the stresses from each method and
determining the strains from this value gave very good results.

e The Glinka method, while under estimating the stress and strain values,
produces results two to three times better than the Neuber method for plane

strain conditions.

D. IMPACT ON FATIGUE LIFE PREDICTIONS

Fatigue life calculations were made based on the Glinka method, the Neuber
method, and the average of the stress values of these two methods, and compared to
fatigue life calculations based on the FEM results for the plane stress condition. The
impact of the two methods is summarized below:

e Since the Glinka method under estimated the stresses and strains, it
overestimated the predicted life. However, the amount of error steadily
increased with the applied load, growing up to 90% for the wide plate
geometry at its final load level. For the Neuber method, the error appears to
reach a maximum of 40% for a lower cyclic load and improves slightly as the
load increases.

e Estimating the fatigue life by using an average of the stresses of the two
methods produce results that were £10% from those based on the finite

element results.
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Even though the fatigue calculations were based on finite element data, with no
comparisons made to experimental data, a valid comparison between the two methods
was made. Since the Glinka method under estimates the stresses and strains, the fatigue
life based on this method will be greater than the actual fatigue life. This would result in
parts failing prior to their expected life cycle, and would be very detrimental unless safety

factors were built into the structure and the calculations.

E. RECOMMENDATIONS

This study thoroughly analyzed the Glinka strain energy density proposal for
stress concentration calculations at the notch root, and compared the findings with results
from the Neuber method. For the geometries studied, it was shown that the Glinka
method under-predicts the stresses and strains, while the Neuber method over-predicts the
stresses and strains. Further comparisons should be made not only to different
geometries, but also with different material properties. A study should also be performed
by comparing actual fatigue data with predictions based on the two methods. Taking an
average value of the two methods appears to give good results, and as in the case of either
the Glinka or Neuber method, can be a means of quickly and efficiently computing notch
root stresses and strains. This mean value of the two methods should also be compared
with different geometries and material properties, along with comparisons to actual

fatigue data.
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