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Abstract

When a trigram backoff language model is created from a large body of text,
trigrams and bigrams that occur few times in the training text are often excluded
from the model in order to decrease the model size. Generally, the elimination
of n-grams with very low counts is believed to not significantly affect model per-
formance. This project investigates the degradation of a trigram backoff model’s
perplexity and word error rates as bigram and trigram cutoffs are increased. The
advantage of reduction in model size is compared to the increase in word error
rate and perplexity scores.

More importantly, this project also investigates alternative ways of excluding
bigrams and trigrams from a backoff language model, using criteria other than the
number of times an n-gram occurred in the training text. Specifically, a difference
method has been investigated where the difference in the logs of the original
and backed off trigram and bigram probabilities was used as a basis for n-gram
exclusion from the model. We have shown that excluding trigrams and bigrams
based on a weighted version of this difference method results in better perplexity
and word error rate performance than excluding trigrams and bigrams based on
counts alone.



1 Introduction

A language model is a fundamental component of a speech recognizer that assigns
prior probabilities to hypothesized word sequences supplied by a speech decoder.
Statistical language models estimate these prior probabilities by counting the
number of occurrences of all words and certain word sequences of interest in a
given training text. The reliability of these probability estimates when used for a
particular speech recognition task depend on the source of the training text and the
amount of training text available. Inaccuracies in probability estimates frequently
arise when the training text does not resemble the nature of the language to be
recognized, or when there is not enough training data available to obtain a reliable
representation of word and word sequence frequency from a particular text source.

Current collections of text for statistical language model training are making
the sparse training data problem less serious for certain domains, such as ARPA’s
Wall Street Journal corpus, which is part of the 305 million word North American
Business News collection. The more training text that is used for language model
creation, the more unique word sequences are encountered that must be stored in
the model. Thus, as training text size increases, language model size necessarily
increases, which can lead to models that are too unwieldy and memory-demanding
to be of practical use. This overabundance of training data will allow us, or more
correctly force us, to be selective in choosing the training data that we use to create
our models.

This project investigates methods of training text pruning that allow for com-
pact and efficient creation of trigram backoff language models. One pruning
method, the popular cutoff method, eliminates from the trigram backoff model
those bigrams and trigrams that occur the fewest number of times in the training
text. We develop another method based on weighted differences, where the dif-
ference in the logs of the original and backed off trigram and bigram probabilities
is used as a basis for n-gram exclusion from the model. Perplexity and word error
rates are used to assess a model’s performance as fewer bigrams and trigrams are
incorporated into the model. Also, different amounts of training text are pruned
down to create models of the same size, so that the effect of the original amount
of training data on a scaled-down model can be concluded. These results help
determine if the statistical advantages of creating a language model from a large
training text can be carried over to scaled down versions of the same model, for use
on systems whose memory capacities do not meet the large model’s requirements.
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2 The Backoff Language Model

The backoff language model was developed by Katz [2] to address the problems
associated with sparse training data. Small amounts of training data are more
likely to misrepresent the true distribution of word frequencies from a particular
language source due to a lack of sufficient samples. The backoff model handles this
type of sampling error by reducing the probability of unreliable estimates made
from observed frequencies and distributing this freed probability mass among
those words from a given vocabulary that did not occur in the training text [2].
Generally, an estimate is deemed unreliable if it occurred few times in the training
text. Word sequences, or n-grams, with low counts have their maximum-likelihood
estimates replaced by Turing’s estimates.

The trigram backoff model is constructed by counting the frequency of uni-
grams, bigrams and trigrams in a sample text relative to a given vocabulary. Those
n-grams that occur few times in the text are discounted, and the extra probability
mass is divided among those words in the vocabulary that are not seen in the
training data. As a result, every word in the vocabulary has a finite probability
of occurring when the model is used to predict new word sequences. The model
also tries to use as much word history as possible when assigning the probability
of a word given the two words that precede it. The probability assigned to a word
sequence is shown in Equation 1, wherewk

j represents the sequence(wj; : : :wk),
the discount ratiod is a function of the countC(wn

1), and the�’s are the backoff
weights that ensure that the probabilities sum to one:

Pn(wnjw
n�1
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(1� d)C(wn

1) = C(wn�1
1 ) if C(wn

1) > 0

�(C(wn�1
1 )) � Pn�1(wnjw
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2 ) if C(wn

1) = 0
(1)

In the case of a trigram model, the word history is limited to the two words
preceding the word for which we are defining a probability. The model tries to
assign the trigram probabilityP (wnjw

n�1
n�2) if it exists in the model. If there is no

trigram probability for that word sequence, then the model backs off and uses a
weighted version of the bigram probability,P (wnjwn�1). If the bigram was not
seen in the training text, the model backs off again and uses a weighted version of
unigram probabilityP (wn).

As the amount of training text used to create the backoff model increases,
the number of unique trigrams and bigrams increases. (The number of unigrams
stays constant and equals the size of the vocabulary.) The language model will
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necessarily takes up more memory in order to store the additional information
from the training text. At some point, the model’s memory requirements will
exceed any practical system capacity. Therefore, we can either limit the amount of
training data we use to develop the model, or take from a large amount of training
text that portion which leads to the most reliable word predictions. Thus, a large
amount of training text can be scaled down to create a compact model of a desired
size. Two scaling techniques that can be used to select specific amounts of training
text will be introduced in the following sections.

3 Pruning Techniques

As has been previously suggested, word sequences that occur the fewest number
of times in a training text can lead to unreliable predictions. This idea has led to
the popular cutoff method of training text reduction, where only information about
the most frequently occurring bigrams and trigrams is included in the language
model. This method will be explored in depth in Section 3.1. However, we
also need to consider the word sequences for which the model would not make
a good prediction if the probability for that sequence was not included in the
model. There may be a way to exploit the redundancy present in the structure of
the backoff model by specifically considering which information from the training
data would do the most harm if excluded. This idea has led to the development of
the weighted differencemethod of training text reduction, which will be introduced
in Section 3.2.

3.1 The Cutoff Method

The cutoff method of training text pruning excludes from the language model those
bigrams and trigrams that occur infrequently. The motivation for this method lies
in the argument that there is not much difference between a trigram or bigram
occurring once in a text of millions of words and it not occuring at all. A trigram
will occur only once in a training text for one of two reasons: either the trigram
represents a word sequence that is rarely emitted from the training text source,
or a sampling error has occurred and the training text does not accurately reflect
the true expected frequency of that trigram. In either case, there should not be
much harm done to the model’s performance if that trigram is excluded from the
model. If the trigram does in fact occur only rarely, then it will most likely occur
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infrequently during the model’s use, leading to infrequent probability errors. The
model will back off to a bigram probability estimate, which will hopefully lead to
a stronger (more reliable) probability estimate for those cases where a sampling
error has occurred. Just by excluding those trigrams with a count of one from
a model, a significant savings in memory can be achieved. In a typical training
text, roughly 80% of unique trigram sequences occur only once. This idea can
be extended further to bigrams and trigrams that occur more than once. We can
designate a trigram cutoff and a bigram cutoff, where a cutoff ofk means that
n-grams occuringk or fewer times are discarded.

What kind of memory savings can we expect from excluding bigrams and
trigrams in this manner? In Carnegie Mellon University’s Sphinx II speech rec-
ognizer, each trigram takes up 4 bytes of memory (2 bytes for word identification
and 2 bytes for the probability) and each bigram takes 8 bytes (2 bytes for word
identification, 2 bytes for the probability, 2 bytes for the backoff weight and 2 bytes
for a pointer to the trigrams.) The memory required for unigram probabilities and
constants can be considered a fixed overhead, and is not included in our memory
calculations. Using a 58,000 word dictionary and 45 million words of Wall Street
Journal training data (1992 - 1994), the memory requirements of models created
with different cutoffs can be computed. Several sample model sizes are shown in
Table 1, with cutoffs indicated by (bigram cutoff – trigram cutoff).

Model Cutoffs # Bigrams # Trigrams Memory (MB)
(0–0) 4,627,551 16,838,937 104
(0–1) 4,627,551 3,581,187 51
(1–1) 1,787,935 3,581,187 29
(0–10) 4,627,551 367,928 38
(10–10) 347,647 367,928 4

Table 1: Model Cutoffs and Resulting Model Size

For this data, 78.5% of the trigrams and 61% of the bigrams occur only once, so
we see that significant memory savings can be obtained by cutting out the bigrams
and trigrams that appear infrequently.

In order to investigate the effects of raising bigram and trigram cutoffs, several
models were created using the Carnegie Mellon Statistical Language Modeling
Toolkit [4]. The perplexities of the scaled down models were computed using
the official ARPA 1994 Language Model Development Set, and the word error
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Figure 1: Perplexity vs Scaled Language Model Size, Trigram Pruning Only, 1992
- 1994 Data.

rate was computed using CMU’s Sphinx II system and the ARPA 1994 Hub 1
Acoustic Development Set (7387 words). The number of trigrams to be retained
in the model was chosen to be some fixed number, and then the cutoff was set to
be the maximum cutoff possible so that all trigrams with a count equal or less than
the cutoff plus some number with a count of (cutoff+1) were removed from the
model. The trigrams cut out at level (cutoff+1) were the first ones encountered in
an alphabetized list.

Figures 1 and 2 show the effects of cutting out only trigrams on perplexity and
word error rate. Figures 3 and 4 show the effects of cutting out both bigrams and
trigrams from the model. For each model, a fixed number of trigrams was chosen
to be retained in the model. For bigram pruning, the number of bigrams retained
in the model was as close as possible to the number of trigrams in the model. The
bigram and trigram cutoffs were chosen so that these desired totals could be met,
resulting in bigram and trigram cutoffs that were not necessarily the same number.
As can be seen from the graphs, the savings in terms of memory are much greater
when bigrams are excluded from the model.

As the language model size is decreased, the perplexity rises sharply (Figures 1
and 3.) The word error rate also rises sharply, although the increase only truly
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Figure 2: Word Error Rate vs Scaled Language Model Size, Trigram Pruning
Only, 1992 - 1994 Data.
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Figure 3: Perplexity vs Scaled Language Model Size, Bigram and Trigram Prun-
ing, 1992 - 1994 Data.
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Figure 4: Word Error Rate vs Scaled Language Model Size, Bigram and Trigram
Pruning, 1992 - 1994 Data.

becomes significant once bigrams are pruned from the model.

3.2 The Weighted Difference Method

The cutoff method shows that training text reduction can result in a significant
savings in memory with a generally acceptable increase in WER and perplexity.
However, there should be a more intelligent way to choose which trigrams and
bigrams to include in the model than just those which occur the most often in the
training text. If an n-gram is not present in the model, the model uses a backed off
probability estimate in place of the original estimate. If that backed off estimate
is very close to the original estimate, then there is no need to store the original
estimate in the first place. This idea has led to the weighted difference method of
training text reduction.

The weighted difference factor of an n-gram is defined to be

w:d:factor = K � (log(original prob)� log(backedoff prob)) (2)

whereK is the Good-Turing discounted n-gram count. This factor reflects our
desire to keep an ngram in the language model.
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The CMU Statistical Language Modeling Toolkit was modified to create
weighted difference language models by pruning n-grams based on their weighted
difference factor. Several models were created. The results are plotted with the
cutoff method results, and are shown in Figures 5 - 8. In both cases, as the
language model size is decreased, the perplexity rises sharply. Trigram pruning
does not have much effect on WER, but bigram pruning causes memory savings
and increases in WER to become significant.

As can be seen from these figures, the models created with the weighted
difference method have significantly lower perplexity values than for the cutoff
models, but the perplexity rises in the same manner in both cases. The word error
rates for the weighted difference models are almost always lower than that of the
cutoff models, but the significance of the difference is questionable. We can say
with confidence that using the weighted difference method is at least as good as
the cutoff method, and generally yields improved perplexity and word error rates
over the cutoff method.

Table 2 displays more clearly the results depicted in Figure 8 for the weighted
difference method, with the relative increase in WER over the original (0–1) model
shown.

# Bigrams # Trigrams Memory (MB) WER (increase)
4,627,551 3,581,187 51 MB (original model)
4,627,551 400,000 39 MB 1% relative
4,627,551 70,000 37 MB 3% relative

934,351 900,000 11 MB 5% relative
416,338 400,000 5 MB 9% relative
108,117 100,000 1.3 MB 20% relative

Table 2: Model Reduction and Resulting WER Increases

Is model size reduction a feasible practice? We see in Table 2 that significant
memory reduction can be achieved. Certainly, for particular applications, the
increase in WER is worth the savings in memory.

4 Effects of Different Amounts of Training Data

In order to verify that using more training data and then pruning it down is a better
approach than just starting with a smaller body of training data, three different
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Figure 5: Perplexity vs Scaled Language Model Size, Trigram Pruning Only, 1992
- 1994 Data.

15

16

17

18

19

20

40 42 44 46 48 50 52

W
E

R
 (

%
)

Memory (MB)

Cutoff method
Weighted Difference method

Figure 6: Word Error Rate vs Scaled Language Model Size, Trigram Pruning
Only, 1992 - 1994 Data.
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Figure 7: Perplexity vs Scaled Language Model Size, Bigram and Trigram Prun-
ing, 1992 - 1994 Data.

18

19

20

21

22

23

24

25

26

0 10 20 30 40 50 60

W
E

R
 (

%
)

Memory (MB)

Cutoff method
Weighted Difference method

Figure 8: Word Error Rate vs Scaled Language Model Size, Bigram and Trigram
Pruning, 1992 - 1994 Data.
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Figure 9: Perplexity vs Scaled Language Model Size, Bigram and Trigram Prun-
ing, 1993 - 1994 Data.

sized data sets were defined and used to create models of the same size. The first
data set consists of 45.3 million words of Wall Street Journal data (1992 - 1994),
the same data set used in the examples above. The second data set is a subset of
the first data set, consisting of 28.5 million words of Wall Street Journal data from
1993 - 1994. The third set is yet a smaller set, 6.5 million words of 1994 Wall
Street Journal data. Several language models of approximately the same size were
computed with the three data sets using both the cutoff and weighted difference
methods, pruning as many bigrams and trigrams as necessary in order to reach the
desired size. The perplexity and word error rate results are shown in Figures 9
- 12 for the second (1993 - 1994) and the third (1994 only) data sets. Refer to
Figures 7 and 8 for the 1992 - 1994 results. For the third set of data (6.5 million
words), the largest memory data point represents a (0–0) model, where no pruning
has occurred at all. For all three sets, the weighted difference method generally
outperforms the cutoff method in terms of perplexity and word error rate.

Figures 13 and 14 show the weighted difference results for all three data
sets. It can clearly be seen that the 6.5 million word models perform significantly
worse than the models originally created from 45.3 and 28.5 million words. The
difference between the first and second data sets is not as significant, yet the larger
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Figure 10: Word Error Rate vs Scaled Language Model Size, Bigram and Trigram
Pruning, 1993 - 1994 Data.
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Figure 11: Perplexity vs Scaled Language Model Size, Bigram and Trigram
Pruning, 1994 Data.
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Figure 12: Word Error Rate vs Scaled Language Model Size, Bigram and Trigram
Pruning, 1994 Data.

data set does do slightly better.
There are several factors that need to be considered when analyzing the results

of Figures 13 and 14. First of all, the three data sets do not come from the
same distribution. There is a time shift present, in that the data that is added to
the 6.5 million words to get the 28.5 and 45.3 million words is older data. If a
significant change of style or content has occurred over time for that source, the
statistics of the older data may be less helpful in modeling probabilities due to
bigram and trigram frequencies that do not accurately reflect the current frequency
distributions of the language source. In fact, we found a consistent 10% perplexity
increase when the 6.5 MW of 1994 data was replaced by a comparable amount of
1992 data. In previous work ([3]), we found a similar effect on the OOV rate.

Second, there seems to be a threshold at about the 1–2 MB model size for
which the perplexities and word error rates degrade equally no matter how much
data was used initially. At some point, so much information has been pruned
from the model that perhaps the models converge to approximately the same set of
bigram and trigram sequences, which are those that occur the most frequently. For
example, 92% of the bigrams and 87% of the trigrams are the same in the two 1.3
MB models based on 28.5 MW and 45.3 MW. Further intersecting with the 6.5 MW
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Figure 13: Perplexity vs Scaled Language Model Size for Different Amounts of
Training Data (Weighted difference pruning.)
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model yields a 73% bigram and a 59% trigram overlap. Using approximately the
same set of bigrams and trigrams with approximately the same set of probabilities
is likely to lead to similar performance.

5 Conclusions

From the results presented in the previous sections, we can come to the following
conclusions about the usefulness and performance of compact language models:

� Training text pruning can be used to build compact and efficient language
models that require significantly less memory than language models built
from complete training text.

� As model size decreases, the weighted difference method of training text
pruning results in a significantly smaller perplexity increase than the cutoff
method.

� As model size decreases, the weighted difference method of training text
pruning generally results in a slightly smaller word error rate increase than
the cutoff method.

� Using more training data, up to at least 25 - 30 million words initially, and
then pruning it down is a better approach than just starting with a small
amount of training data, as long as the training text does not contain signif-
icant style changes and the pruning is not severe (at least 2MB remaining).
Beyond 25 million words, the amount of training data does not have a
noticeable effect.

6 Future Work

There are several issues of interest that could be addressed in future work on
scalable language models. Currently, the weighted difference method provides
two lists: one for bigrams and one for trigrams. The user decides how many
trigrams and bigrams to include in the scaled down model. A one list approach
would be much more useful, where the system decides automatically whether a
trigram or bigram should be the next entity pruned from the model. The two
list approach was used here because the memory requirements of bigrams and
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trigrams are implementation dependent,and also due to the complication of trigram
dependencies on bigrams. In our implementation of the backoff language model,
a bigram cannot be excluded from the model if it is an initial part of a trigram
that is still in the model. Trigram pruning occurs first, and then the bigrams are
pruned only if they have no dependent trigrams. A different implementation of
the backoff model may be able to avoid this problem.

Alternatively, a one list approach can be used despite trigram dependencies on
bigrams. One list can be made containing all of the weighted difference factors for
all of the bigrams and trigrams in a large model, and then the top n-grams from the
list (those with the highest weighted difference factors) can be chosen in order to
meet a desired memory size. Whenever a bigram is to be excluded from the model,
all of its dependent trigrams are thrown out, regardless of whether they were to
be retained in or excluded from the model. An initial exploration of the one list
approach shows that the perplexity of these models (for this data) is essentially the
same as the weighted difference perplexities of models where approximately equal
numbers of bigrams and trigrams were retained. Dividing the weighted difference
factor for the bigrams by two (since they take up twice the space of a trigram
in our current implementation), hence increasing their likelihood to be excluded
from the model, shows no effect on model perplexity, though significantly more
trigrams are retained in the model. Also, hand-picking the ratio of bigrams to
trigrams to be 1:5 and 5:1 (rather than 1:1) results in worse perplexity measures
than the 1:1 ratio. Further studies are required to determine if there is an optimal
ratio of bigrams and trigrams that minimize model perplexity.

As a second topic of further investigation, an additional factor may prove
helpful in the weighted difference measure. If a time coefficient is somehow
added into the equation, then the effects of time shift in the training text may be
accounted for. More recent text could be weighted more heavily, meaning that
those trigrams and bigrams would have a greater chance of surviving the pruning
step and be retained in the model. In this way, newer vocabulary and more current
topics of interest could be reflected in the model, as they will be more likely to
occur during the model’s use. However, similar attempts to factor data time shift
into vocabulary selection failed to show a significant effect [3].
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