REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

FINAL 01 JAN 95 TO 31 DEC 95

4. TITLE AND SUBTITLE

(DURT94) INTERACTIVE GRAPHICS FOR ELECTRONIC STRUCTURE THEORY

5. FUNDING NUMBERS

F49620-95-1-0112
3484/US 61103D

6. AUTHOR(S)

MARK S. GORDON

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

IOWA STATE UNIVERSITY
DEPT OF CHEMISTRY
AMES IOWA 50011

8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
110 DIUNCAN AVE, SUITE B115
BOLLING AFB DC 20332-8080

9. SPONSORING/MONITORING AGENCY REPORT NUMBER

F49620-95-1-0112

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

AFOSR-TR-96

C315

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

SEE REPORT FOR ABSTRACT

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500

DTIC QUALITY INSPECTED 1

Standard Form 298 (Rev 2-89)
The funds awarded were used to purchase two nodes for an IBM SP2 parallel computer ($75,570) and a DEC ALPHA 250 graphics workstation. The AFOSR funds were augmented by funds from other sources to purchase a Power Macintosh for the purpose of graphics development.

These computers are being used for a variety of AFOSR-related research projects.

1. We have developed a graphics interface for our electronic structure program GAMESS. This graphics interface is called MacMolPlt. Its primary function is as a "back-end" interface, meaning that it is used primarily to interpret the results obtained by the quantum chemistry calculations using GAMESS. For example, we can make animations of computed vibrational frequencies, we can animate reaction paths that take a reacting system from reactants through transition state to products, and (using a new feature in GAMESS) we are able animate classical trajectory simulations. The most recent addition to this program is the ability to visualize orbitals. Very recently, we have developed a graphical front end for GAMESS, which provides the ability to construct input using a menu. These graphical capabilities greatly enhance our ability to interface with and understand the results obtained using our local SP2 and the much larger SP2 at the Maui Supercomputer Center.

2. We are using the SP2 and the DEC computer to address several important Air Force problems. In the HEDM program, we are studying the potential energy surface for high energy forms of the NO dimer, we have completed a study of high energy structures of fluorine azide, and we are studying several metal-doped hydrogen systems. We have also initiated an investigation of octa-sila cubane. This compound, which has been synthesized using bulky substituents, is predicted to be a very promising additive. In the area of silicon chemistry, we are investigating the role of divalent Ti as a catalyst in the hydrosilation reaction, an important industrial process to make new SiC bonds as silicon carbide precursors. We have completed a study of a series of titanatrane, precursors for titanium silicides and carbides, and we have just initiated an investigation of silsesquioxanes.