DESIGN AND ANALYSIS OF A
NAVIGATION SYSTEM USING
THE FEDERATED FILTER

THESIS

STEPHEN J. DELORY
MAJOR. CANADIAN FORCES

AFIT/GSO/ENG/95D-02

i DISTRISUIOR S°LTowENe E-i:
fipproved to1 puzuc reieasgd
e Dismbuncn Unlmated
DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

oy
-

Wright-Patterson Air Force Base, Ohio

—

WYY e
<l O LT T




oN

 DISCLADMER NOTICE

THIS DOCUMENT IS BEST
'QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
- CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.



AFIT/GSO/ENG/95D-02

DESIGN AND ANALYSIS OF A
NAVIGATION SYSTEM USING
THE FEDERATED FILTER
THESIS

STEPHEN J. DELORY
MAJOR, CANADIAN FORCES

AFIT/GSO/ENG/95D-02

19960617 006




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments re?ardlng this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate

N ) or Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2 e%%?n%rero ﬁ%5

3'1\&5;1%'}‘1.8%5%8@”0 DATES COVERED

4. TITLE AND SUBTITLE

Design and Analysis of a Navigation System
Using the Federated Filter

6. AUTHOR(SJ)
Stephen J. DeLory

Major, Canadian Forces

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER
AFIT/GSO/ENG/95D-02

Capt Paul Lawrence
WL/AAAIL3

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Wright-Patterson AFB, OH 45433

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The purpose of this paper was to design and analyse a federated filter design, to be used for retrofit of an
Embedded GPS/INS (EGI) navigation unit into an existing Kalman filter-based air navigation system. A design
was selected and simulations were conducted in the Distributed Kalman Filter Simulation software (DKFSIM).
As well, a centralized Kalman filter design was simulated under identical conditions for comparison purposes.
The federated filter was shown to be a feasible design, with accuracy in position and velocity very close to
centralized Kalman filter values. The federated filter design also showed some atractive fault detection and
isolation features, superior to the centralized Kalman filter, due to the independent operation of the component
Kalman filters. The federated filter was shown to be well worthy of continued study for implementation in air
navigation systems, especially where distributed filters are required.

14. SUBJECT TERMS

Federated filters, distributed filters, inertial navigation systems

15.1§YMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION

oA FIED

18. SECURITY CLASSIFICATION

RS EMFfED

19. SECURITY CLASSIFICATION

UNBEREEHED

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANS! Std. Z39-18
298-102




GENERAL INSTRUCTIONS FOR COMPLETING SF 298

-The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 lun 88).

Block 4. Title and Subtitle. Atitleistaken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. Toinclude contract
‘and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and _Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information notincluded elsewhere such as:
Prepared in cooperation with...; Trans. of...; Tobe
published in.... When a reportis revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - Seeauthorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leaveblank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.- 19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
asreport). Anentry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

*U.8.GP0:1993-0-336-043

Standard Form 298 Back (Rev. 2-89)




AFIT/GSO/ENG/95D-02

Design and Analysis of a

Navigation System using the Federated Filter

Thesis

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Space Operations

Stephen J. DeLory, B. Eng. (Electrical)

Major, Canadian Forces

December, 1995

Approved for public release; distribution unlimited




Preface

As an Air Navigator, I feel indebted to the AFIT/ENS and ENG faculty for
allowing me to pursue the Guidance, Navigation and Control sequence, and allowing me the
opportunity to conduct research in a critical-technology area. I want to thank my thesis advisors,
Lt Col Bob Riggins and Capt Ron DeLap, for providing me with the necessary support and
knowledge to get the work done. Administrative support from my sponsors at Wright Labs, Capt
Paul Lawrence and Mr Mike Berarducci, allowed me to ‘get on with the job’ without having to

worry about the paperwork.

Understanding and implementing the federated filter model would have been impossible
without the excellent Kalman filter preparation and expertise provided by Dr Peter Maybeck, and
the tremendous support, both software and moral, provided by Dr Neal Carlson. Gentlemen, my
thanks.

Most of all, I want to thank my boys Benjamin, Simon, and Timothy, and especially my
wife Pauline, and, for standing by me throughout my time at AFIT. Your sacrifices were my gain,
and I hope I may be allowed to repay you someday.

This work is dedicated to the men and women of Canada’s operational sea-going
squadrons, HS 423 and HS 443. May you one day be given the tools, such as those researched in
this thesis, to do your job safely.

it




Table of Contents

PIOEACE. ...ttt s et e et e et sttt ettt e et enenes ii
Table Of COMEEILS .........ocoimiiiiiiieii ettt ettt ettt s st et et e sb e bt et e et eatee st eeeseeneeaes iii
LiSt Of FIBUIES......oiiiiiiiiii ettt b ettt eba st e b e s e a e et e ete s enen vi
LiSt Of TADLES .......vevitieieiiini ettt ettt s ettt e e teese e s et e s e eneeananseenseeteerssteantasae e vii
ADSITACE ...ttt ettt etttk e b et r e ea s e b e s f e Rt eR e ket etaebe b e e ete oAt erebesaaeenrettaneerea viii
L INETOQUCHON ...ttt ettt et et s et eaaesa e e er e s s e ebesbebanseanesn s 1-1
L1 BackgIOUnd.......ccoooiiiiiiiiiiicec ettt ettt eareenean 1-1

1.1.1 Air Navigation SYSIEIMS .......ccccceviririiiinientrnnener et sce e s eane e sba v 1-1

1.1.2 The Kalman Filter .............cccooviiiiiiice e e 1-2

L3 Federated FIlEr.......ccocooiiiiiiiiiii et 1-6

1.1.4 Introduction of EGLL..........ccccoivmiiiiininnecnnee et 1-8

1.1.5 The Problem:; Incorporating an EGI into a Navigation System ...................... 1-9

1.1.6 Possible designs for incorporating EGI into a navigation system.................. 1-10

1.2 Problem Statemenl........c.ccooiiiiiiiiiieeiiiece et ecsre e st naens 1-10

1.3 ReSearch ODJECHIVES .....c..ocviiieeiiiieiiic ettt cee sttt et et e sste e te e teesaeeeaseeeaneans 1-10

1.3.1 Assess performance of both designs ............cccccovvniecenininciccee 1-10

1.3.2 System Reliability .............coviiriciiiiiii e 1-11

1.4 Research APProach ...ttt ee et 1-11

1.4.1 Assess Performance of Both Filter Implementations................c.cccccceveenn.nn. 1-11

1.4.2 System reliability .........cccooooiviiiiiiicieiiccee e 1-11

1.5 Resources Needed ...........cocooriiiiniiiiiiicc ettt 1-12

1.6 ASSUIIPHIONS ......eoviimiieieniiiiniietet et eteste et sae e aresaess e aesbensesanesbesseseesnessestesbbesseensessesreas 1-12

1.7 Overview Of TRESIS ......c.oceveiiiiiiiicieeee ettt er ettt ettt 1-13

2. Navigation Systems and Filter TREOTY ..........cc.ccoviiiiiiiiiiiiiiieccce et 2-1
2.1 INEOQUCHON ..ottt ettt s et b et e s 2-1

2.2 Frames of REfEIENCE...........c.ccoveiiiieiiiiiiriser ettt ettt e b s s e as e 2-2

2.3 Navigation System COMPONENLS............cce.ovierereiriveerererreiseiireorecesesreetesenssssessersessenseses 2-3

2.3.1 Ring Laser Gyro Strapdown INS.............c.oooiiiiiiiiceeee e 2-3

232 GPS ettt bttt ae e b st e abassanas 24

2.3.3 Synthetic Aperture Radar.............cccooeivvieiiinnrniecen e e 2-4

2.3.4 Terrain-aided Navigation............ccccovveeiiiriiviiiinriesaiese e sreseassersseseseseees 2-5

2.4 Kalman FIEIS .......cooviiiiiieiic ettt ettt ettt 2-6

2.4.1 Fundamentals of Kalman Filter Theory...........c.cccoeceeviiiiiiececieec e 2-6

2.4.2 Linearized Kalman Filter.............ccc.ooooiiiiiiiiic e 2-9

iii




2.4.3 Centralized Kalman Filter Navigation System...................c.cocoveveeveeenn.n, 2-11

2.4.4 Cascaded Kalman Filter Navigation System...............c..cocooveioiiireeeienn. 2-11

2.5 Federated FIIErS .......co.ocoiiiiiiii ettt sttt 2-14
2.5.1 Federated Filter THEOTY.......ccoovviiviciieieieice e 2-14

2.5.2 Advantages of Federated Filter................c.cooooiiiiiiiiei et 2-18

_ 2.5.3 Federated Filter Configurations..........c.ccoccoeveiviiiiiiiinicne e 2-19
2.6 EGIRetrofit DESIZN ......c..ooviiiiiiiiieiiiicecieii ettt ettt ettt ae e e 2-22
2.6.1 GENETAL.. ..ottt 2-22

2.6.2 Alternative DESIZNS ........ccvevieiiiiiiieieiii ittt ettt 2-22

2.6.3 Information Sharing with Two INSS ...........ccooooiiiiiiiiii e, 2-24

2.6.4 Federated Filter Design..............occoeviiiiiieniiece et 2-26

2.7 SUININATY ....cviviiiteteriteceteoreseese st e e eesteseeseabebeetessassebe st esssseasentasaasansestasesseaseasesnassassraeas 2-28
3 FIHEE MOMEIS.....ccecieiieicieet ettt st st e et e b st e et e b e ssransebaebsenaeneanis 3-1
S L IMTOAUCHON ..ottt sttt e b et e s tesaseebeesbaesraesteesane e 3-1
3.2 DKF Simulator (DKFSIM) 3.3 ... .ottt ettt se s erane e 3-1
3.2.1 DESCIIPHON .....ccooooeeseeeeeeeeeeeeese s eeeeeeoes s eeseseeseeeees oo eeseseee oo essesmens 3-1

3.2.2 Architecture................. ................................................................................ 3-2

3.2.3 Trajectory GENETALOT.......c.occeeoviveieeetiiesceretese e eteeeeereeae vt esseereessenaeans 34

324 Truth MOMELS ......c.oovmiiiiieieei et e e 3-5

325 INStruthmodel.........oooiviiiieiice e 3-5

3.2.6 GPStruth model .......cooviiiiiir e 3-8

3.27 SAR Truth Model .......coviiiiiiiiiiec et eae 3-10

328 TAN Truth Model.......c.oooooiiiiiiiiicieee e 3-11

3.2.9 Barometric Altimeter (BARALT) Truth Model..........c.cooovvevviviveeiiiennnene. 3-13

3.2.10 Filter MOEIS.......coceriiiiiiicieieie ettt 3-14
33DKFSIM 3.PL...o ettt bttt e b 3-16
3.3 1 INOAUCHON ...ttt 3-16

3.3. 2 DeSCHIPUON .....coutiiiieiiiecer ettt ee e ve e s e eaaesnesaas e e seraeessbaesnnns 3-17

3.4 CompariSOn MOGEIS ..........ccccoiiiiiiiiiiiiceccce ettt ettt et ee e e e e neeaeans 3-21
3.4.1 INtrOAUCHON ....c..ovveieeiriecieieiiere et e et sve e et e e astebe st aeraesressaenes 3-21

3.4 2 DESCTIPLION .....couviiiiiiiiieecnec ettt e e sttt na e eaae s 3-22

3.5 SUIMIMATY ..ottt ettt e aeebe st s et ae s et s e s eeeases et e e enenes 3-23
B RESUIS ...ttt ekttt ettt e e b s e R bt R a e b e s e st e ae e e bt tenes 4-1
4.1 INEPOAUCHON ..ottt et ettt st a et e eenne 4-1
4.2 MOGEL SEIUD. .....cvvceeietiieeieteee st ereee et e et est e s be e s se e s besbesesesssessestessassesessasseerersensesrn 4-1
4.2 1 GENETAL........eoiiiieicieetirce et te ettt et sa e st esae et e st et s beeseabn e 4-1

iv




4.2.2 Runs 1A and 1B - Performance Comparison and Benchmark....................... 4-7

4.2.3 Runs 2A and 2B - GPS OUtages............ccooovveeiiieiiis et 4-10

4.2.4 Runs 3A and 3B - GPS Receiver Clock Failure..............cc.occooooieiiiiennnnne 4-13

4.2.5 Runs 4A, 4B and 4C - Accelerometer Failure....................oc..oovvvee e 4-16

4.3 SUIMIMATY ....oveiuiivveirterieeeeeteestentaseate e stete sttt b asaes s et emeaatensessesaeeasessesseessersansensessessesesnens 4-20

5. Conclusions and ReCOMMENAALIONS ..........c.ccceriereriiiirereiirene sttt v et cre e e eenes 5-1
5.1 INTOAUCHION ..ottt see e e et e e st e aba e ebs et e s 5-1

5.2 CONCIUSIONS .....ovvenrviiiiiriciecer ettt sttt ettt ettt r et seebe bt enaes 5-1

5.2.1 SIMUIALIONS........ooviiieieeeniiiesie ettt ettt ab et et enesbeeeessenbe e e e ereans 5-1
S.2.2DKFSIM....oiiiiiiiieietieinte ettt sttt ettt r et sttt e 5-2

5.3 ReCOMMENAAONS ..........oooviiiierierteee ettt bt s b st sane e essesin s srssrens 5-2

5.4 SUIMINATY .....ooviiieiiirieee ettt et e enbeee e ebee et sa e e e st bbb st esr b sasneas b sras 5-4
BIbLOZIAPIY ..ottt e bbb anas BIB-1
Appendix A: Performance Runs 1A and 1B ... A-1
Appendix B: DKFSIM Run 1A and 1B Input Parameters..............cocooviviiiinininnie e B-1
VL coveeceeetetceie et et evt e saa et e s eb et a e sk et e sa e bbbt e st b s et R et e R e R etk e ae e s bt t e be s V-1




Figure 1 -1
Figure 1 - 2
Figure 1 -3
Figure2 - 1
Figure 2 - 2
Figure2 -3
Figure 2 -4
Figure 2 -5
Figure 2 - 6
Figure2 -7
Figure 2 - 8
Figure 2 - 9
Figure 2 - 10
Figure 3 -1
Figure3 -2
Figure 3 - 3
Figure 3 - 4
Figure 4 - 1
Figure 4 - 2
Figure 4 -3
Figure 4 - 4
Figure 4 - 5
Figure 4 -6
Figure 4 - 7
Figure 4 - 8
Figure 4 -9
Figure 4 - 10
Figure 4 - 11
Figure 4 - 12
Figure 4 - 13
Figure 4 - 14
Figure 4 - 15
Figure 4 - 16
Figure 4 - 17
Figure 4 - 18
Figure 4 - 19

List of Figures

Centralized Kalman Filter Air Navigation System ...........cc.ccoocooviriiiiie et 14
Cascaded FAlteT........ccooieeiiiiieeeieie ettt as ettt et 1-5
Federated Filter.............oooiiiiiiiiiieceec et et ee e e ren e 1-7
ECEF FIAIMNE.......oiiieiiiiiee ettt ettt et et sttt e et e e et e e esaesaeereeoreeeeean 2-2
Geographic Navigation FTame ............cccccooooiiiniiiinicecse et 222
Body Frame ............c.ccveveennene e e e et e et e bt e e R etk bt e et e asbae s beeabeeeeraaenterasnteeares 2-3
Cascaded Filter Navigation SYSteMl.............ccvovveeiiiieiiiiiesc et 2-13
General Federated Filter Architecture ..........ccccoevocveiiviiiiieniceceecceeeeeee e 2-17
Federated FIIer RESELS.........cco.iviiveiiiieieete ettt ettt sr e r e ereete e eaeene e 2-20
Design A (EGI-Based DESIZI) ........cccoooiieiiiieiiiiicecieceese ettt ere e 2-23
Design B (Federated Filter DESIZN) .........covvveriiceiiiniiieirie st vt siese e eae e 2-24
EGI INS to Reference INS Transformation Mechanization ...................cccoevveevevneenvennnnn. 2-26
Federated Filter With EGLL...........ccooiiiiiiiiiecier et ve e e 2-27
DKFSIM General DESCIPtiON...........ccoovecieetrrterienreniiiieeecaeierestesinsrsesesssessessessssssessessnas 3-3
DKF Models Module and DKF Filters Module...............cccoooveiviieiciisieccneerecte e 34
Design A in DKFSIM ..ottt ereeve et ssta s e s et e taensnansraen 3-22
Design B in DKFSIM ......oiiiiiiciiineceine et vece s st sbss st ssesssnesaassanes 3-23
SYSIEIM BITOT ..ottt ettt b ess e ae e s besaneeenesaban 4-5
Run 1, All Sensors, Centralized Filter System ErTor...............cccoovviviiveeiieeeeeen s 4-8
Run 1, All Sensors, Federated Filter System EIror ..........c..cccococeivvieiieieeceice e 4-8
Run 1, All Sensors, Centralized Filter Velocity EITOT.............ccoecvvivveiivriniice e 4-9
Run 1, All Sensors, Federated Filter Velocity Error..............cccooviieiniiininnciiiecanes 49
Run 2, Centralized Filter (GPS jammed) System EITor...........cooccooevvveviiciiiieecreee, 4-11
Run 2, Federated Filter (GPS jammed) System EITOT ............cocvvcvvvevciniirecieceeecsneens 4-11
Run 2, Centralized Filter (GPS jammed) Velocity Error................c.cooovveeviieireeierennn, 4-12
Run 2, Federated Filter (GPS jamming) Velocity Error..........cccoeevvevvienecececieinn, 4-12
Run 3A, Centralized Filter, System EITOT...............ccccoovviiiiieinecccer e 4-14
Run 3B, Federated Filter, System EITOL..............ccccoiiiiiiiiiceece e 4-14
Run 3A, Centralized Filter, VEIOCIty EITOL............oooiviviiii e 4-15
Run 3B, Federated Filter, System EITOT..........cc.cocooviiiiiiiiiiiceiecece e 4-15
Run 4A, Centralized Filter, System EITOT.............cccooooiiimviiiiieiiee e 4-17
Run 4B, Federated Filter, System Error (Ref INS Failure)...............ocvvvvvviveieiieeennn. 4-17
Run 4C, Federated Filter, System Error (EGI INS Failure)...........occooovevvvieoiiniieeenee. 4-18
Run 4A, Centralized Filter, Velocity EITOr ..ot 4-18
Run 4B, Federated Filter, VeloCity EITor..............cooooviiiiiiiciee e 4-19
Run 4C, Federated Filter, Velocity EITOr.............ccccoovvviiiniiieccn e 4-19




List of Tables

Table 3 -1 True Trajectory Variables..............ccoooiiiiieeiiiie e 3-6
Table 3 -2 INS SOIUHON EITOIS. .. ...ooviieieiieiee ettt et e e r s eeteeeeaesereeeesaeeseaeen 3-6
Table 3 -3 INS-Indicated SOIULION.............ooivviiiiiiiiitiee ettt etbe e e etee e s s setaea e e 3-6
Table 3 -4 INS Truth Model Error STAIES .........oooviiiiiiieiiiii e eeeee s et e e eeeeseaeeeas 3-7
Table 3 -5 INS Failure MOGEIS ......ccuooviiiiiiiiiieie ittt e e e e s ettt a e s eare e e eenenees 3-8
Table 3 -6 GPS Truth Model Error STAES. .......ccocvviiieiiiieiie it ee et eeen e 3-9
Table 3 -7 SAR Truth Model ErTor States ..........coc.ooiviiiiiiiiiiiecee et st eraae e 3-12
Table 3 -8 TAN Truth Model EITOT States.........ccoocviiiiiiieeiceeccte et erreevee sttt et e einesrens 3-13
Table 3 -9 BARALT Truth Model ErTOr StateS .......cvvvveriiiiiiiieciee ettt etre e eevee e 3-14
Table 3 - 10 DKF Filter Model E1ror StALES .........cccvviiiiiviiinriieioiieeeeneeeetie s etreeeesetreeeesnrreeeseareeeesenneas 3-16
Table 4 - 1 ATF Trajectory Profile Summary ..., 4-2
Table 4 -2 Simulation Summary Table...........ccccoouiriiiiiniiii et 4-6

vii




Design and Analysis of a

Navigation System using the Federated Filter

1. Introduction

The United States Air Force Wright Laboratories (Avionics Directorate) has a continued
interest in navigation systems, to help maintain a leading position in air vehicle technology, and to
sponsor continuing research in these systems. An interest in new methods of data processing for
navigation systems, especially distributed filters [1], has been motivated by factors such as

distributed sensors in an aircraft, security of classified information, and fault tolerance.

The advent of Global Positioning System (GPS) operational capability makes available
unparalleled accuracy in navigation [2], yet for military aircraft is not suitable for a stand-alone

navigation system. Military aircraft have unique missions and flight profiles in which:

e  GPS signals may be obscured by terrain, jammed, or not viewed by antennae,

rendering the stand-alone GPS receiver unusable; or

e high dynamics of the aircraft may make position and velocity estimates by the GPS

receiver less accurate than required.

For existing aircraft, a retrofit with GPS receiver equipment is highly desirable, but poses

many design problems which must be studied carefully before implementation. One such retrofit

possibility is the insertion of an Inertial Navigation System (INS) containing a GPS receiver into !
an existing navigation system. Wright Labs is interested in research to determine the feasibility and

method for such a retrofit, and has sponsored the author to address this particular design problem.

1.1 Background
1.1.1 Air Navigation Systems

The need for the best navigation system possible for military aircraft is clear. In tasks
such as routine navigation, tactical navigation, airdrop, or weapons delivery, to name but a few,

the success of the military mission is directly tied to the military aircraft’s navigation system.

Initially, INS-based navigation systems consisted of a free-running INS which was not

filtered. Comparison with other navigation systems to make a single navigation solution was done
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by hand. With the advent of powerful onboard digital computers and development of real-time
data processing algorithms such as the Kalman filter, different sources of data could be combined

mathematically in flight to produce an integrated navigation solution.

Modern military aircraft have a multitude of sensor inputs. One aircraft may have
measurements on position, velocity, attitude, and time from a wide variety of sensors such as
Doppler ground radar, synthetic aperture radar, barometric and radar altimeter, a GPS receiver,
and star tracker. These sensors produce many types of data, at different rates, with widely varying
noise types and strengths. The problem facing a data processing algorithm for a navigation system

is to use this data effectively to determine the desired parameters.

1.1.2 The Kalman filter

The Kalman filter, a data processing algorithm which has the capability of combining
different measurements to provide optimal estimates of parameters of interest, is probably the most
widely used data integrator in air navigation, although there are others [3]. It has gained
acceptance due to its optimal performance under certain assumptions, good stability and robustness

in the regime of operation, and reasonable processing throughput.

Typically, the Kalman filter in an air navigation system operates in what is known as the
indirect method. Instead of estimating position, velocity, and attitude of the air vehicle, the Kalman
filter estimates position, velocity, and attitude errors of the INS, as well as compensatory states for
INS components and external sensors [3,4,5]. Since the dynamics of the INS errors are much
slower than the dynamics of the aircraft, update rates can proceed at a lower rate, which is less
burdensome to the on-board processor. The Kalman filter state estimates are summed with the INS

output to yield best estimates of position, velocity, and attitude.

The Kalman filter is an optimal filter; that is, it extracts the maximum possible information
from measurements when forming the conditional mean estimates as a minimum mean square error
(MMSE) solution. The estimates of the Kalman filter are jointly Gaussian [5], and so by most
measures (mean, mode, or median) the estimate is optimal. Additionally, due to the Gaussian
nature of the data, the state estimate (first order statistics) and covariance matrix (second order
statistics) completely define the Gaussian density for states, given the measurements observed up to

a given time.

1-2




Some applications use a single Kalman filter for estimations, where others use a network
of Kalman filters to derive their estimates. Three types of Kalman filter applications are
considered here: the centralized Kalman filter, the cascaded Kalman filter, and the federated filter.
For the purposes of practical implementation, versions of the centralized filter and the federated
filter could be implemented as a retrofit without significant hardware change, and so are two
practical solutions. The cascaded Kalman filter is not considered as an alternative design for

analysis in this thesis, but is discussed for completeness.

1.1.2.1 Centralized Kalman Filter Application

In this thesis, the centralized Kalman filter is defined to be the following. It is essentially
the Kalman filter described in Section 1.1.2, implemented in real-time in a dedicated processor in
an airborne computer. This centralized Kalman filter provides a navigation solution by combining
measurement information from sensors, usually unprocessed. The centralized Kalman filter is able
to combine these measurements to produce, typically, estimates of errors in INS indications of

position, velocity, and attitude [6].

The centralized Kalman filter has many advantages in the navigation application. It
requires only a single processor, will adapt to different measurement rates and accuracies, and is
relatively simple to implement. The estimates of the Kalman filter may be used to correct errors in
the INS, in a feedback configuration. A block diagram showing a centralized Kalman filter in
feedforward configuration (no corrective resets from the Kalman filter to the INS) implemented in

an aircraft navigation system is shown in Figure | - 1.
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Figure 1 - 1 Centralized Kalman Filter Air Navigation System

1.1.2.2 Cascaded Filter

The cascaded Kalman filter, hereafter called the cascaded filter, is a subclass of distributed
Kalman filters, defined as a filter network where estimates are made by at least two filters and
combined using some algorithm to form a single solution. In this thesis, the cascaded Kalman filter
is defined to be the following. Some or all sensors provide measurements to one or more Kalman
filters, which also incorporates measurements from an INS. The output of this (these) local
filter(s) is directed to another Kalman filter termed the master filter, which may or may not have
measurements from other sensors. The master filter treats each of the state estimates of the local
filters as measurements, and uses these measurements to update state estimates of the master filter.

Estimates of the master filter, combined with the INS outputs, are used as system outputs.

The cascaded filter is used in aircraft where a distributed architecture is required [3,7].
For example, a GPS receiver may not allow the direct transmission of pseudorange (PR) and
pseudorange rate (PRR) information due to security reasons. The GPS receiver can contain a local
filter, and send filtered information as measurements to a master filter in the navigation computer,

thus implementing the cascaded filter.

Factors motivating the cascaded filter are :
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e Redundancy. Reliability of the navigation system may be improved by incorporating
multiple filters, each of which may provide a navigation solution in the event of

component failures;

o GPS Receiver Design. Some GPS receivers were designed to have GPS data

processed within the receiver by a Kalman filter and not output raw GPS
measurements. This motivated a cascaded filter implementation in aircraft using a

Kalman filter for a navigation system; and

o Parallel Processing. All processing in the centralized filter is carried out typically in
one processor. In distributed filters, processing for each local filter and the master
filter is carried out in parallel on separate processors. The amount of processing time
for a Kalman filter is dependent on the number of states that the filter maintains. The
overall throughput can be better than the processor running a centralized filter, since
each of the filters in the decentralized approach have fewer states than the centralized

filter.

A block diagram representation of a possible implementation for a cascaded filter is shown

in Figure 1 - 2.
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1.1.3 Federated Filter

The federated filter is considered as a possible solution to the retrofit problem. The
development of the federated filter, a brief description of the federated filter operation, and some

salient characteristics are presented in this section.

1.1.3.1 Description

Recently a new technique in data processing with navigation systems application, called
the federated filter, was developed [4]. This filter is a subclass of the distributed Kalman filter, and
is best generally described as a method of sharing the information available to the navigation
system among the local and master filters. Sensor inputs are sent as measurements to local filters
(typically one measurement per local filter), which operate autonomously. Each of these local
filters, by virtue of the INS and sensor data it receives, holds part of the total system information.
This system information from the local filters is then fused with the master filter information to

form a full solution using all of the system information.

The federated filter shows promise for a multi-input navigation system for a number of

reasons [8]:

o The distributed nature of the federated filter allows parallel processing in the local

filters, possibly allowing faster throughput than the centralized filter does.

o The federated filter allows the ability to detect difficult sensor faults, in particular
slowly-deteriorating sensor data or ‘soft faults’, which may be difficult to do in the

cascaded filter or centralized filter.

e The master filter of the federated filter is not susceptible to problems caused by
correlated outputs from local filters, and may be more robust than the cascaded filter

[4]. This problem is further defined in Section 2.4.5.

A block diagram description of a federated filter navigation system is shown in Figure 1 -
3. Note that each sensor sends measurements to a local Kalman filter which can operate
independently as shown, or with information ‘feedback’ (not shown for simplicity). Although
similar in information flow and distribution of filters, the master filter of the federated filter
works much differently than that of the cascaded filter. The federated filter is explained in
more detail in Chapter 2.

1-6




Aircraft systems

{ | f “1
| I i {
| | .
| INU - ‘ 1 >
| ? * =
i T ! | (
! ! Local ! ! |
' Filter T ‘ Master |
| |
| Sensor 1 i | Filter !
| . :
| ! ! 1
i 9 Local ! I |
| Sensor 2 Filter — — !
| | | |
; i . . !
E : | i Navigation !
1 : l ! Computer l
[ ) { |
| Local | ! |
t | Sensorn Filter : ; :
| I N /
| |
! ?
! |
! I
! |

e —— e —— -

Figure 1 - 3 Federated Filter
1.1.3.2 Literature Review

Dr. Neal Carlson presented the theory of information sharing in the federated filter in a
number of forums [4,8,9]. He demonstrated that certain advantages may be gained by using the

federated filter over the centralized Kalman filter.

Following the introduction of the federated filter, follow-on research was conducted.
Wright Labs sponsored research into usecs of the federated filter as a navigation system, and
independent researchers looked into the characteristics of the federated filter, as well as possible

uses for the federated filter.

The Common Kalman Filter development program, whose objective has been to establish a
basic set of estimation and Fault Detection, Isolation and Reconfiguration (FDIR) system design
techniques, examined different distributed filter designs [10]. In addition, Wright Labs sponsored
Integrity Systems, Inc. to build the Distributed Kalman Filter Simulator (DKFSIM) software
(described in Chapter 3) [11]. Wright Labs also sponsored the construction of a real-time
Integrated Test Bed (I'TB), where combined hardware/software research and development of the

federated filter could be conducted. The ITB is not yet operational [12].

Some research in the federated filter was conducted by Drs. Gao, Krakiwsky, and

McLellan of the University of Calgary Department of Surveying Engineering, to examine the
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suitability of the filter for kinematic GPS positioning [13]. They concluded that a better fault
tolerance performance than a cascaded Kalman filter could be achieved with the federated filter,

and indicated directions for follow-on research.

Captain Paul Lawrence conducted a Master’s thesis researching the federated filter at the
Air Force Institute of Technology at Wright-Patterson AFB [14]. He compared the federated filter
with a centralized Kalman filter in order to examine accuracy and overall performance, operation
under sensor failure conditions, and potential for failure detection and isolation. The federated filter
operation was characterized, with promising results, and great potential for follow-on study was
noted. Capt Lawrence suggested that additional testing under simulated sensor and INS failure

conditions would extend the set of comparisons for the federated and centralized Kalman filters.

1.1.4 Introduction of EGI

GPS information, used in the formation of a navigation solution, is highly complementary
to INS information [6,3,15]. GPS data is highly accurate in low frequency, but subject to high-
frequency noise and to short-term outages. INS systems, on the other hand, are subject to long-
term drift, but will provide a solution almost continuously, even if all external sensor information,
such as GPS, is unavailable. The GPS/INS combination provides a very good, consistent, reliable

navigation solution.

Early research in the GPS system [6] showed that an integration of a GPS receiver and an
INS, especially at a low level (raw data may be passed from one system to the other) would result
in a synergistic relationship between the two, with information from each unit aiding the operation

of the other.

Technology development has allowed the miniaturization of the GPS receiver down to a
single circuit board. It has become possible to embed the GPS receiver into the INS electronics
unit. Now, the low-level integration is implemented within the confines of a single electronics unit
enclosure. This embedded GPS/INS (EGI) has a number of attractive features that allow it to

operate as a complete navigation system;

o Reliability. The INS is able to provide accurate position data when the GPS receiver
has insufficient data to provide a full navigation solution. Thus a high-accuracy
solution is available when a stand-alone GPS system would be unable to provide a

solution.




Use of Partial GPS data. Partial GPS data (for example, reception of data from only

1,2 or 3 satellites) may be incorporated into the Kalman filter, and used to update INS
error states, even if there is insufficient information for a full GPS solution. Thus, all
available GPS information is used to maintain a high-quality navigation solution. The
stand-alone GPS receiver must have four-satellite reception (or three with altitude

data) in order to form a solution.

Ease of data exchange. With both INS and GPS electronics in a single housing, low-
level information may be passed through digital or analog data lines or databusses,
shared memory, or other specialized signal transfer techniques such as optical links.
This can be implemented with relative ease as compared to data transfer between a

stand-alone GPS receiver and INS.

Small size and weight. Incorporating both INS and GPS in one housing eliminates the

need for two sets of power and signal wiring, shock mounting, and housing that would

be required with separate GPS receiver and INS.

Security of GPS information. Since GPS pseudorange and pseudorange rate

information for military users is classified, data transfer of this information from the
stand-alone GPS receiver to another device would require a classified bus. With the
EGI, pseudorange and pseudorange rate are passed within the confines of the EGI, and

security of the information is retained.

Firms which develop avionics, such as Litton Systems and Honeywell, have been working

to develop the EGI. One such EGI is the Honeywell H-764G, which combines a high-accuracy

INS and P-code GPS receiver in one self-contained unit measuring 18 x 18 x 25 cm, and weighing

8.4 kg [16]. The Honeywell system provides a filtcred GPS/INS solution of 16 meters Spherical

Error Probable (SEP), meaning 50% of the solutions are within a sphere of this radius centered at

the true position, and velocity with maximum velocity error of 0.01 m/sec rms. It can also provide

a navigation solution from GPS-only or INS-only information.

1.1.5 The Problem: Incorporating an EGI into a Navigation System

A number of air vehicles currently have navigation systems which incorporate INS

information as well as data from a number of other sensors. These systems use a centralized

Kalman filter or cascaded Kalman filter to provide a navigation solution. Since many of these




systems were designed and built prior to GPS operational capability, GPS receivers were not
incorporated in the initial design. Adding a GPS receiver to an existing navigation system, to

increase system accuracy, is desirable.

With the advent of the EGI, a retrofit could incorporate not just a GPS receiver, but for the
same mechanical effort, a fully integrated GPS/INS navigation system. This system would rctain
all of the previously installed sensors, as well as the instalicd INS, and so would be equipped with
two INS after EGI retrofit. The EGI may be able to provide a number of desirable features such
as high-accuracy navigation data, higher reliability, and fault detection into a larger overall

navigation system, if the navigation system is properly designed.

One design approach is the application of Kalman filter theory to create a single solution,
incorporating information from all sources available in such a manner that best satisfies the criteria
for the navigation system. These criteria (stated broadly for now) are navigation solution accuracy

and system reliability.

1.1.6 Possible Designs for Incorporating an EGI into a Navigation System

There are three groupings of designs to be considered using the filtering methods listed in
Section 1.1.4. These are the centralized Kalman filter, the cascaded Kalman filter and the
federated filter. The cascaded Kalman filter is not considered further in this thesis, due to modeling

constraints and implementation problems.

1.2 Problem Statement
This effort will research, model, and evaluate the federated filter design against the
centralized filter design for a multi-sensor navigation system incorporating an embedded GPS/INS

system.

1.3 Research Objectives

1.3.1 Assess Performance of Both Designs

This research will assess the performance of the centralized Kalman filter design and the
federated filter design, in a high-dynamics environment of a military aircraft. The criteria for
comparison will be accuracy of position, velocity and attitude information from the system, with all

sensor information and with some sensor information absent. The flight profile of the vehicle will
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contain both low-dynamic and high-dynamic portions to challenge the navigation systems in

different regimes of flight.

It is worth noting from the outset that the centralized filter design receives information
from one INS and the federated filter design rcceives information from two INSs. Also, the

federated filter design does not strictly follow the theory of the federated filter as described in

Section 2.5. The comparison in this thesis, then, is between two possible system designs that use
the centralized filter and federated filter, not between the centralized Kalman filter and federated

filter methodologies.

1.3.2 System Reliability

System reliability is an important consideration for a military navigation system, as
successful completion of the mission may depend on a functioning navigation system. Both the
cascaded Kalman filter and the federated filter will be assessed for fault tolerance and continued

operation in the face of sensor outages and failed navigation system subcomponents.

1.4 Research Approach
1.4.1 Assess Performance of Both Filter Implementations

A set of computer models, incorporating an EGI in a larger navigation system, will be
developed in the simulation software DKF Simulator (DKFSIM) [11,22]. Models of the
centralized filter and the federated filter will be simulated in Monte Carlo runs, using identical
input data, to produce side-by-side comparisons. Input data of flight profiles will be used to
simulate a variety of military tasks such as routine flight, low-level tactical flight and weapons
delivery. These comparisons will provide insight into the performance characteristics of the

compared models.

1.4.2 System Reliability

System reliability will be examined using the simulation software DKF Simulator

(DKFSIM). Reliability aspects to be examined are:
e Degraded/failed sensor input

e System internal failures; and




® Fault detection and isolation.

1.5 Resources Needed

In order to conduct the research, the following resources have been required:

® A 486-based PC with 487 co-processor, necessary for use of the FORTRAN

installation;

® The simulation software DKFSIM, including manuals, and permission to modify

source code from the author; and

® Lahey FORTRAN 77 installation. The Lahey FORTRAN is used due to Lahey-
specific routines in DKFSIM.

1.6 Assumptions
A number of assumptions are required to proceed with the research. These are listed

below.

¢ The DKFSIM filter models are correct and adequate for the simulation of the EGI as
well as the remainder of the navigation system. This is a fair assumption based on
comparison of the DKFSIM model proposed for use and the Kalman filter used in the
Honeywell H-764G.

¢ The EGI can output state estimates and covariances. This is reasonable based on a
study of the Honeywell H-764G [16,17], indicating the H-764G or similar EGI may be
configured to make information such as the state estimates and covariances available

on a 1553B bus.

® The EGI can have state estimates and covariances reset by the navigation system.
Again, a study of the Honeywell H-764G indicates this information may be passed to
the EGI via 1553B bus. This access to the EGI Kalman filter would be required for

federated filter operation in some modes.




1.7 Overview of Thesis

Chapter 1 gives a chronological development of navigation systems up to the present time
and provides motivation for the research. Chapter 2 explains basic Kalman filter theory and
federated filter theory applicd to navigation systems. Chapter 3 presents the filter models and
computer simulations used in the analysis. Chapter 4 presents the findings and results of the

simulations, and Chapter 5 presents conclusions based on the research and gives recommendations

based on these conclusions.




2. Navigation Systems and Filter Theory

2.1 Introduction

This chapter is comprised of three parts. First, navigation system components, sensors,
and related information are presented. Next, Kalman filter theory and federated filter theory is
developed to show how these navigation system component outputs are used. Last, two alternative

designs are described for the EGI retrofit problem presented in Chapter 1.

2.2 Frames of Reference
Before proceeding with further implementation, some discussion of the frame of reference
for the data is necessary. There are a number of different frames of reference that are relevant to

this discussion. They are:
¢ the Earth Centered, Earth Fixed (ECEF) frame;
o the Geographic frame; and
e the Body frame

A short description of each follows.

The ECEF frame of reference is an orthogonal, right-hand coordinate system, with origin
at the earth’s center of mass. The z. axis is aligned with the Greenwich meridian, the y. axis
projects through the North Pole, and the x. axis projects through the equator at 90° E latitude. Note
that the entire frame rotates with and is fixed with respect to the carth. Figure 2 - 1 shows the
ECEF frame.

The geographic frame is also an orthogonal, right-hand coordinate system, but with origin
at the INS location. The east-north plane of the frame is parallel to a plane tangent to the earth’s
surface directly beneath the aircraft. The north axis lies in the intersection of this plane and a plane

in which the local meridian lies. Figure 2 - 2 illustrates the geographic frame.

2-1




Ty,

Prime Meridian

Equator

Figurc 2 -1 ECEF Frame

Prime Meridian N U

Equator
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The body frame is an orthogonal right-hand system, with origin at the aircraft center of
mass. The body frame axes are the same as the pitch, roll and yaw axes of the aircraft. Figure 2 -

3 describes the body frame (view of aircraft is from below).
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Figure2-3 Body Frame

2.3 Navigation System Components

Navigation system components of a typical high-performance military aircraft are
described in this section. The heart of the navigation system, the strapdown Ring Laser Gyro
(RLG) INS is described first, followed by the sensors that provide measurements to the navigation
system - GPS, Synthetic Aperture Radar High Resolution Mapping (SAR-HRM) and Synthetic
Aperture Radar Precision Velocity Updating (SAR-PVU), as well as a Terrain-Aided Navigation
(TAN) system.

2.3.1 Ring Laser Gyro Strapdown INS

The strapdown RLG INS consists of sensing devices, an INS computer, and associated
supporting hardware. It is able to provide rapidly updated real-time solutions for position,
velocity, and attitude. The sensing devices consist of at least three accelerometers and three RLGs.
The accelerometers provide a measure of acceleration, whereas the RLGs provide a measure of
angular motion. Since these devices are fixed with respect to the body axes of the airframe (or
strapped down), the INS is referred to as a strapdown INS. The measurements of acceleration are
integrated twice to determine aircraft position. The RLG information is used to determine the
orientation of the aircraft. Together, these devices provide all the information required for an
inertial solution of position and velocity. The INS solution is determined without external

measurements, just its own measurements of aircraft motion and a model of gravity.
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However, due to errors in the INS (measurement errors in the sensing devices, computing
errors, etc.), the INS solution tends to drift from the actual values of position and velocity. Typical
drift rates for an aircraft range from a few nautical miles per hour to a small fraction of a nautical

mile per hour, depending on the quality of the INS.

2.3.2 GPS

GPS is a space-based positioning, velocity and time system that has three segments: Space

Segment, Control Segment, and User Segment [18].

The Space Segment consists of 24 satellites in six orbital planes. The satellites operate in
nearly circular orbits at an altitude of 20,200 km. The satcllites circle the earth at an inclination
angle of 55 degrees with approximately a 12 hour period. The spacing of satellites is carefully
designed to provide adequate coverage over the entire surface of the earth to allow accurate

position fixing.

The Control segment consists of the support infrastructure required to keep the satellites
flying and keep them updated with the latest information they require for transmission of

navigation signals. The Master Control Station is located at Falcon AFB, Colorado.

The User Segment refers to the GPS receiver units. These units may be fixed in location,

in vehicles such as ships and aircraft, or hand-held.

Two types of GPS service are available: Standard Positioning Service and Precise
Positioning Service (PPS). The PPS is designed for military use, and provides to the user a
position solution with accuracy on the order of 10 meters SEP. The SPS is designed for civilian

use, and provides a solution on the order of 30 meters SEP.

2.3.3 Synthetic Aperture Radar

Synthetic Aperture Radar is a radar system in which radar return signals are digitized and
mapped to geographic space by summing the position of the vehicle with the position information
of the returned radar signal [19]. Precisely measured Doppler shift in return signals can also be

used to provide highly accurate relative velocities between the aircraft and the ground.

In addition to other tactical uses of SAR, navigation information can be derived from

landmark ranging using the ‘map’ constructed from radar returns, as well as velocity
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measurements of the aircraft using relative velocity information. A more detailed explanation is

contained in Section 3.2.7.

2.3.3.1 High Resolution Mapping

In synthetic aperture radar high-resolution mapping, (SAR-HRM), the SAR generates a
high-resolution map of the terrain features generated by the radar from a two-dimensional array of
range and range-rate returns [11]. The operator (i.e. pilot or navigator) designates a known target
on the map by moving a cursor to the associated location on the map. This process provides a
range and range rate measurement to that target. If the aircraft velocity is known, the range-rate
measurement provides a measure of the angle between the velocity vector and the line-of-sight to
the target. A three-dimensional position fix may be obtained by using two such fixes, or by using

an independent source of altitude.

2.3.3.2 Precision Velocity Updating

In the SAR-PVU mode, the SAR makes a series of range-rate measurements in different
directions according to a pre-set geometric pattern. If taken simuitaneously, each set of four range-
rate measurement would be sufficient to provide a velocity fix for the aircraft in all three
dimensions. In reality, a finite period of time is needed to slew the antenna across the different
pointing directions. The navigation system can process these measurements one at a time, and use

the INS outputs to extrapolate the velocity measurements from one time to the next.

2.3.4 Terrain-aided Navigation

The terrain aided navigation (TAN) system uses a radar altimeter to make measurements
of height above ground. This data is subtracted from the altitude from the INS to give terrain
height. The time-referenced sequence of terrain height data results in a profile of terrain elevations
and slopes along the aircraft track. This data is compared to a stored database of Digital Terrain
Elevation Data (DTED). The DTED data is stored in two-dimensional array form as a function of
latitude and longitude. The comparison results in measurements of the aircraft altitude and aircraft

horizontal position.
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2.4 Kalman Filters
This section addresses Kalman filters, the data processing algorithm on which all the

considered navigation systems are based. First, operation of the Kalman filter is discussed. Next.
the linearization of the Kalman filter is developed. Applications of the Kalman filter in a

centralized filter and federated filter are then presented.

2.4.1 Fundamentals of Kalman Filter Theory

The Kalman filter is an optimal recursive data processing algorithm. The algorithm
estimates the value of a condition or number of conditions of a system, called system state(s). The

state space formulation of the dynamics model takes the following form:

x(t) = F(t)x(t) + B(t)u(t) + G()w(t) @2-1)

where:

x is the state vector of dimension n

x is the first-order time derivatives of the state vector
F is the homogeneous state dynamics matrix (n x n)

B is the control input matrix (n x r)

u is the control input vector of dimension r

G is the driving noise input matrix

w is the noise inputs to the system

Since there are no control inputs related to our system of interest, the B(t)u(t) term is

dropped. The expected value of the white Gaussian driving noise vector, w(t) is:

E[w(t)] =0 (2-2)




and:
E{w(t)w' (t+ 1)} = Q(1)8(1) (2-3)

where:
Q(t) is the process noise strength

&(t) is the Dirac delta function

For an air navigation system, the actual output parameters of the navigation system such
as pitch, roll, position, etc. have high dynamics, i.e. rapidly changing positions, velocities, and
attitudes. The preferred method of operation is to estimate the error states of the INS (plus other
required states). These error states have low dynamics, by comparison, e.g. north position INS
error changes much more slowly than north position. Because they change relatively slowly, error
states are more casily estimated and propagated from one time to the next in the filter. Restated in

the error state variables, Equation 2-1 is rewritten as:

8x(t) = F(£)5x(t) + B(t)ou(t) + G(H)w(t) (2-4)

The Kalman filter incorporates sampled-data measurements from external sensors. The

equation used to describe linear measurements is:
z(t;) = H(t;)ox(t;) + v(t;) (2-5)

where:
H is the observation matrix

v is the discrete-time measurement noise vector

The noise vector v has zero mean and is white Gaussian noise, with covariance




R(t,) fort, =t

Evit)vi(t)i = {0 fort. #t. (2-6)

The vector of state estimates and covariance matrix of those estimates are propagated from

one time to a later time, without outside measurements. The discrete-time propagation equations

for the Kalman filter are:
OxX(ti,,) = @(t,,,,t;,)0%(t;) + B,(t)du(t,) (2-7)
P(t;+1) = (D(tiﬂﬂti)P(tiJr)(DT(tiHvti) + Gd(ti)Qd(ti)GdT(ti) (2"8)
where:

P is the covariance matrix
@ is the state transition matrix
G4 is the discrete-time noise distribution matrix

Qu 1s the discrete-time process noise covariance matrix

The state transition matrix ® is used to propagate the state vector and covariance matrix
forward in time. The minus sign superscript indicates prior to measurement update, the plus sign
superscript indicates after measurcment update, and the subscript d indicates discrete-time

formulation.

When measurements are available, the system state and covariance estimates are updated

with the new information. The Kalman filter measurement update cquations are:

K(t,) =P(t;)H(, {H(t P(t; )H" (t,) + R(t,)}" (2-9)

X(t7) = X(t;) + K(,) [z(t;) - H(t)x(;)] (2-10)
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P(t/) = P(t;) - K(t,)H(,)P(t)) 2-11)

where:

K is the Kalman filter gain

The new updated estimates may then be propagated to a later time by the Kalman filter.
The Kalman filter theory assumes a number of conditions [5]. These are:
e The system can be described as a linear system.

e Process noises are have a flat spectral density, 1.€. are ‘white’, and measurement noises

are discrete-time white noises, i.e., independent in time.

e The probability density function describing measurement and process noise amplitude

is Gaussian.

Estimation of systems which do not meet these criteria must use a technique of implementing the

Kalman filter (or use another means of estimation).

2.4.2 Linearized Kalman Filter

One such technique is the linearized Kalman filter. It is used where the system is nonlinear,

such as in the model for INS error states. The system is then described by [20]:
x(®) = fx(t), u(t), t] + G()w(t) (2-12)

The state dynamics vector f]x(t),u(t),t] is a nonlinear function of the state variable x(t), time t, and
the control input (assumed zero in this case). For clarity in the derivation, the state vector x(t) in
this section represents the error state vector 8x(t) used in the previous section. In addition, the

measurement equation may be a nonlinear function:

z(t;) = h{x(t,),t, ]+ v(t,) (2-13)
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Since the Kalman filter depends on having a linear model, the nonlinear system shown must be

linearized for Kalman filter operation.

Assume that a nominal state trajectory x,(t) may be generated which satisfies:

x,(ty) =x, (2-14)

and

x, (1) = fx, (), u(t),t] (2-15)
The nominal measurements which accompany the nominal trajectory are

z,(t;) = h(x,(t),t;] (2-16)

The perturbation of the state derivative is obtained by subtracting the nominal trajectory from the

original nonlinear equation:
[x(t) - x, (0] = fLx(t), u(t),t]- f{x, (1), u(t), t] + G()w(t) @-17
The equation aboye may be approximated to first order by a Taylor series expansion:
Ox(t) = F[t;x_(t)]ox(t) + G(t)w(t) (2-18)

where 8x(t) represents a first-order approximation of the process [x(t)-x,(t)], and F{t:x,(t)] is a

matrix of partial derivatives of f with respect to its states, evaluated along the nominal trajectory

Flt,x, ()] = ?—‘—Ea”“—‘l 2-19)

X=X, (1)

The perturbation measurement equation is similarly derived and is given as:
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oz(t,) = H[t;x_(t,)ox(t,) + v(t,) (2-20)
where:

M x, (0] = S @-21)

x=x,(t)

The linearized filter is driven by [z(t;) - z(t;)] and produces best estimates of dx(t), denoted as

Ox(t). An estimate of the whole-valued quantities of interest is given by the equation:
x(t) = x_(t) +8x(t) (2-22)

The expression for the linearized Kalman filter is useful, provided that the linearization assumption
is not violated. However, if the nominal and actual trajectories differ by too much, unacceptable
errors may result. Thus, care must be used not to exceed the acceptable range of the linearized

Kalman filter.

2.4.3 Centralized Kalman Filter Navigation System

The centralized Kalman filter navigation system implements the equations shown in the |
previous section. The hardware implementation for the filter is usually carried out on a single
processor using memory available to that processor. A typical centralized Kalman filter for an air
navigation system has nine error states for the INS (three positions, three velocities, and three tilts),
plus other INS and sensor states. Processing time is a challenge, and speed increases are usually
sought through reducing the number of states to the minimum required to fulfill operational system

accuracy requirements.

2.4.4 Cascaded Kalman Filter Navigation System

In the cascaded Kalman filter navigation system, one or more local filters operate by using
sensor and INS data for measurement updates. State estimates from the local filters are then sent

to a master Kalman filter (master filter), as measurements for the master filter. Estimates provided
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by the master filter are then the system output. This is sometimes called “filter driving filter” or

“loose integration”.

Processing of the raw information by the local Kalman filter causes the output data to
contain time-correlated noise. The master filter uses this processed data as measurements for
updating. This violates the assumptions of white Gaussian noise in the operation of the Kalman
filter, and has the effect of creating falsely low covariances in the master filter. A number of
problems arise from this data.

e The solution provided by this system is sub-optimal, where the level of suboptimality

may be small or may constitute serious degradations.

e The time-correlated error in the measurements may cause stability problems in the

master filter.

This problem of correlated noise is effectively avoided by spacing measurements
sufficiently far apart in time to the master filter. For example, with a GPS/INS local filter,
measurements are typically spaced 5-15 seconds to the master filter in a cascaded system. This

allows the measurement errors to decorrelate in time and permit stable filter operation.

For optimal performance, the local filter would pass the state estimates and covariance
métrix values to the master filter. However, some implementations are constrained by the type of
data available to the master filter from the local filter(s), or by high computational loading. For
example, in a common implemehtation the covariance matrix P is not passed on to the master filter.
The covariance matrix contains information on the covariance of each state, as well as cross-
covaria.ﬁces between states. The master filter attempts to account for P through the measurement
noise covariance matrix R (Equation 2-6, 2-9). Usually, the terms of R in the master filter are
given a fixed value, adjusted to account for P over the dynamic range of the aircraft, through an
iterative ‘tuning’ process. Figure 2 - 4 describes the information flow for the cascaded filter.
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Figure 2 -4 Cascaded Filter Navigation System

An important consideration in distributed filters is internal fault tolerance. Consider a
cascaded system consisting of four local filters providing input to a master filter. Examining the
reliability of the system based on component reliability gives insight into performance with filter
internal failures. If each filter has a reliability probability p; (probability of not failing) over a
given time period, the reliability of the system is denoted r(p), where p is the vector of component
probabilities made up of py, p»,..,Pn, local filter reliabilities, and the reliability of the master filter,
Pm [21]. The probability of failure of the system will depend on the network structure. This could
be grouped into 3 cases of distributed Kalman filter systems:

Case 1: All filters are required for continued operation. Mathematically, this is the same as the
reliability of a system composed of a series of components, the failure of any which will make the

system fail. In this case:
r(p) =[[1p;Fp. (2-23)
i=]

For example, if pim = .9500 and n = 4, then r(p) = 0.7738.

Case 2: One local filter plus the master filter are required for continued operation. The
reliability function is structured as a parallel system for the local filters, in series with the master

filter, and is computed as follows:




r(p) = [1 - lj(l - pi)]* P (2-24)

For example, if p;, = 9500 and n = 4, then r(p) = 0.9499. Due to the high reliability of parallel

local filters, this turns out to be approximately the reliability of the master filter.

Case 3: Any one filter is required for continued operation. The reliability function in this case is

computed as the reliability of a system of parallel components, defined as:
rp)=1- [H (1-p)*(1- pm)} (2-25)
i=1

For example, if p; , = .9500 and n = 4, then r(p) = 0.9999.

Thus, internal fault tolerance may be enhanced or reduced, depending on the requirements of the

distributed filter design. Note that this applies to cascaded filters as well as federated filters.

2.5 Federated Filters

2.5.1 Federated Filter Theory

The foundation of the federated filter is an information sharing method used to build a total
solution from subcomponent filters. Each sensor in the navigation system has a dedicated local
filter to which it provides information at a rate which may be different than the other sensors. As
well, INS information is directed to each local filter and the master filter. The information-sharing

methodology is [8]:
e Divide the total system information among several component filters.

e Perform local time propagation and measurement processing, updating with local

sensor information when available.
e Recombine the updated local information into a new total sum.

Suppose there is a federated filter consisting of n local filters and a master filter, totaling k
= n+] filters. Let the full, centralized filter solution be represented by the covariance matrix Pr and

state vector X, and the kth local filter solution by Py and X, , and the master filter solution by Py,
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and X _ . If the measurement errors from each of the sensors are statistically independent, they can

be optimally combined as follows [9]:

P, =P +P +P '+ 4P (2-26)

P'%, =P 'k _+P % +P, %, +. . +P 'k, 2-27)

m

where P, ' is the information matrix for the k" filter. Now, if we start with the full solution matrix
P;, if , this solution can be divided so that the local filters and the master filter each receive

fractions 3, of the total information:

P, =P ' +P 7 +P, . 4P =P, B_+P, B, +P B, +. 4P B, (2-28)

To maintain constant total information across the sum in Equation 2-33, the share-fraction values

must sum to unity:

8

.n n

Bk = Bm + Bk =1 (2-29)

i k=1

el
o

So the LF and MF fractions can be recombined to yield the total correct solution P, , X, .

Propagation of the covariance matrix for each filter is performed by each component filter

independently, in parallel, with the covariance propagation equation (from Equation 2-8):
P (t.) = @ (t. t)P )Pt 1) + G (t)Q, ()G (1) (2-30)
Assume that the local filters and master filter are all of the same size. The state transition matrices

@, are equal to @y, and the noise distribution matrices Gy equal Gr. The process noise covariance

matrices Q are governed by the information-sharing rule:
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Q. "'=Q,.'+Q,"+Q, ' +.+Q " (2-31)

e =Q, B, or Q =Q.B (2-32)

Now, if we have all the components Py and Qy, we can propagate the solution component-wise and

form the solution Ps:
_ m,n B B _ -1
P (t) = 2B (4) = @R (8B @ + G, QB;'G,] (2-33)
k=1 k
Regrouping terms, we can derive the following equation:

P () = ['Z B, ][cbfrf (t)®," +GQ,G,"| (234)

where Z B, =1
. k=1
For measurement updates, each local filter incorporates discrete measurements Z, from
the kth local filter. Measurement information is added to local filter k using the Kalman filter

Equations 2-9 to 2-11:

P/ =P +HRH{ (2-35)

P/'V%; =P ', +H,R;'Z, (2-36)

This employs Equations 2-9 to 2-11, where the superscript + refers to post-measurement values.
The fusion algorithm (Equations 2-31 and 2-32) can then be used to find the total solution. A
representative federated filter navigation system is shown in Figure 2 - 5.
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Figure 2 -5 General Federated Filter Architecture

Thus, the federated filter solution will provide the same estimates as that of a single,
centralized Kalman filter, and is globally optimal, when certain assumptions are satisfied:

o Each filter employs a single By value for all of the full-system states and process

noises.
e Equations 2 - 28 and 2 - 32 are valid.

¢ The information fusion and reset (dividing) operations are performed after every

measurement cycle (to be explained more fully in Section 2.5.3).
o All filters have the same state-space formulation for the INS states.

Some deviations from these assumptions can be made, with small loss of optimality [9]. First, the
federated filter can be implemented such that the local filters are of minimum size, each local filter
(filter k) containing only the common INS states and the states unique to the kth sensor. Also, the
matrices Py, @y, Qy, and Gy contain only the common INS state and k™ sensor bias state partitions
of the full matrices. The Py fraction values are presumed to apply only to the common INS states,
since only those states are shared among the local filters and the master filter.

2-17




2.5.2 Advantages of the Federated Filter

The federated filter is designed to provide a weighted least-squares solution to the

estimation problem [22]. It is intended to overcome the following problems of the centralized filter:
o Heavy cdmputation loads due to a large number of states.
¢ Poor fault tolerance in terms of detecting gradual sensor faults.
e Slow regeﬁeration a solution after a failure.

The federated filter also does not violate the white Gaussian noise assumption for measurement
noise, as does the simplest form of the cascaded filter. In addition, the federated filter retains

covariance information, unlike the cascaded filter.

With a centralized filter, the number of states can grow large, since all INS plus sensor-
specific states are required. An approximation for computation time for the Kalman filter [5] is
given by:

Load = 7»[n3 +(Z m)nZ] (2-37)

where n is the total number of states, 2. m is the total number of measurements, and A is a
proportionality factor. For example, if there were a navigation system with 9 INS states, and three
sensor measurements, each sensor adding two bias states (and letting A = 1), the total
computational load for a centralized filter would be:

Load = 15° + (3)15% = 4050 (2-38)
Compare this to the computational load of any of the local filters (9+2 states):

Load =11° +()I1* = 1452 (2-39)
Thus, the additional states required in the centralized filter causes about a threefold increase in

computational load. Generally, the computations required by the centralized filter are decreased by
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a factor equal to the number of local filters in the design. Note, however, that the federated filter

will require additional processors, one for each filter.

The centralized filter may have difficulty detecting slow-onset or “soft” failures. In
addition, if faulty sensor information is incorporated into the filter, the full solution (means and
covariances) may be corrupted. The federated filter’s distributed nature makes it able to compare
solutions from each local filter, and sensor failures are more easily detected. Also, the errors will

not corrupt the master filter solution, if detected [14].

The federated master filter is not susceptible to stability problems caused by filter driving
filters as in the cascaded Kalman filter. The master filter does not treat the inputs from the local
filters as measurements, but as fractional components of a whole solution, so the federated filter

does not violate the assumptions of the Kalman filter.

2.5.3 Federated Filter Configurations

There are currently four primary federated filter implementations, each using a different
information sharing method. In each case the local filters receive sensor measurement and
reference system information from the INS. The master filter provides the INS corrections and the
reset information to the local filters, while combining the information provided by the filters into a
globally optimal navigation solution.

For each of the reset modes, the time propagation and measurement update steps
are essentially the same. During the propagation cycles, each of the local filters multiplies its
common process noise variances by the information sharing fractions in order to split up the whole
pfocess noise information between them. During measurement update cycles, the local filters
perform normal processing of the data from their independent sensors. Figure 2 - 6 shows a generic
federated filter, describing information flow among filters. The federated filter modes of operation
are: zero reset mode, partial reset mode, no reset mode, and full reset mode.

2-19




INS i

——¥ Sensor 1 Local Filter 1 |

Master Filter >

—» Sensor 2 Local Filter 2 ~
X, B,
O BeE
Sensor N Local Filter N ~
Xy Py
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2.5.3.1 Zero reset mode

In this mode, the master filter retains all of the system long-term memory and the local
filters act as data compression filters with short-term memory only. There is no feedback of the
fused solutions to the local filters. Instead, the local filter is given the command to reset to zero
information after each fusion update, resulting in an infinite covariance matrix, or a zero

information matrix for each local filter.

The local filters can be based upon relatively low order INS and sensor models.
Consequently, data bus loads are reduced.

2.5.3.2 Partial reset mode

The master filter and the local filters share the system long-term memory. This design
involves feedback of only a fractional component (8, Py) bf the full-fused solution to the local filter.
The master filter would benefit from having higher order system models than the local filters,
thereby allowing for improved fault detection (as compared to zero reset mode) because the sensor

data is treated independently.
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2.5.3.3 No Reset mode

The local filters collectively retain all of the local information, which is passed to the
master filter at fusion. The master filter retains the fused solution to propagate forward in time, to
provide estimates when required, but this fused solution is discarded at the next fusion. This
method is similar to the partial-reset mode, except that the master filter solution may be propagated
but does not participate in the next fusion update. This no-reset design is highly fault tolerant,
since poor measurement information from one sensor would not affect any of the other local filters.
The no reset mode also provides the best overall performance for FDI because the local filters
operate independently of each other, and so individual solutions may be compared, giving an
opportunity for fault detection and an indication of which sensor is faulty. Theoretically, however,
it is sub-optimal, since the fused solution information is not fed back to the local filters, and so

correlation information between filters 1s lost.

2.5.3.4 Full-reset mode

In full-reset mode, feedback of the fused solutions to the local filters is accomplished. The
long-term memory resides wholly in the local filters. The master filter solution is propagated in the
master filter from time of fusion until the next fusion time, when it is discarded, and the new fused

solution is formed and fed back to the local filters.

2-21




2.6 EGI Retrofit Design

2.6.1 General

A design to retrofit the EGI into the navigation system would have the following

characteristics:
o High reliability and accuracy.
‘e Ease of implementation.

Design alternatives to satisfy these characteristics are presented in this section, along with
supporting theory.

2.6.2 Alternative Designs

A number of designs were formulated. From these designs, two were selected that satisfied
the requirements. These two designs were constructed in simulation and compared in terms of
performance and fault tolerance. Both designs are indirect feedforward configurations, but also
could have been configured as feedback configurations. A problem with the feedforward
configuration is that the INS is free to drift. When this happens, assumptions of small errors in the
INS, used in dynamics calculations, are violated. This problem is circumvented by monitoring the
magnitude of the INS errors and resetting them to zero, based on the Kalman filter state estimates,
when the estimates exceed a designated threshold.

Design A: EGl-based Navigation System

In this design, the existing navigation computer and reference INS is replaced by the EGI.
Sensor data is routed to the EGI, and the EGI Kalman filter is augmented with the required states
to operate as a centralized filter. Figure 2 - 7 shows this design.

Design B: EGI Transformation Navigation System

In this implementation, the theory of the federated filter is invoked. The output of the EGI
(both state estimates and covariance matrix) is considered the output of a local filter, as defined in
federated filter parlance. Other sensor information is directed to individual local filters, one per

sensor, and the master filter is implemented in the original navigation computer. In this way, the
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reference INS and the navigation computer need not be removed to add in the EGI. Figure 2 - 8
shows this design.
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Figure 2 -7 Design A (EGI-Based Design)

Again, note that Design A uses one INS, while Design B uses two INS, and so both
designs are fed different information. Also, Design B’s use of the federated filter technique is a
departure from the federated filter theory stated in Section 2.5. For these reasons, the design
comparison should not be considered one of centralized filter versus federated filter, but simply a
comparison between possible navigation system designs. For a better, ‘apples versus apples’
comparison, Design B would have to be compared to a reduced-order centralized Kalman filter

design, containing error states for both INS plus the additional states for sensor biases.
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Figure 2 -8 Design B (Federated Filter Design)

2.6.3 Information Sharing with Two INSs

A problem with information transfer between the EGI local filter and the master filter
becomes obvious. INS error state estimates created by the EGI Kalman filter are error states for
the EGI INS, not the reference INS. Second, the covariance matrix in the EGI Kalman filter
contains the second-order statistics for the EGI INS error-state covariances, the GPS covariances,
and the cross-covariances. In the cascaded filter approach, estimates of position and velocity (and
possibly others) from the EGI filter could be passed to the navigation computer as measurements,
but much of the information contained in the EGI Kalman filter is not passed. How can the full

information of states and covariances in the EGI be used in a larger navigation system?

One technique incorporating the federated filter is to transform the EGI filter information
contained in X, P from using the EGI INS as a reference to using the existing navigation system

INS as a reference.

Start with the basic equation:

x(t) = x  (t) +8x (1) (2-40)
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where:
x(t) is the position, velocity and tilt (PVT) of the aircraft as a function of time
Xrf(t) is the reference INS-determined values of PVT

Ox,(t) is the error in the reference INS PVT

Equation 2-45 would be valid for the EGI INS in the same aircraft:

X(t) = X5 (1) + 6% (1) (2-41)

where:
Xegi(t) is the EGI INS-determined values of PVT

OXc,i(t) is the error in the EGI INS PVT

To convert from one position error to another, the RHS of Equations 2-45 and 2-46 are equated, to
yield:

Ox (1) = axegi t+ [xegi M -xM]= Sxegi D+y() (2-42)

where:
y(t) is the vector difference between the two INS outputs as a function of time

During the operation of the filter, the values of x.(t) (current reference INS position) and
Xegi(t) (current EGI INS position) are available, but the actual reference errors are not available.
Since the realizations of y(t) are available for all required calculations, y(t) can be considered to

be a constant for any time t.
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The Kalman filter estimates are considered to be distributed as jointly Gaussian random
variables. Since a linear relationship exists between 0x.i(t) and dx..(t), the state estimate (first

moment) is shifted by y(t), but the covariance matrix (second moment) remains the same:

O (1) = 8% (1) +y(1) (2-43)

P (1) = Py (1) (2-44)

The result is a transformation for position, velocity and tilt information from the EGI INS
to the reference INS, which may then be used as local filter information in the federated filter
design. Note that this is not strictly in accordance with the federated filter theory. However, it
presents a workable method of using the EGI information in a larger navigation system.

2.6.4 Federated Filter Design

The mechanics of this transformation as given in Equation 2-43 is shown in Figure 2 - 9.
Note that part of the differencing operation [use of y(t)] is already conducted within the EGL
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Figure 2-9 EGIINS to Reference INS Transformation Mechanization

The full implementation is shown in Figure 2 - 10.




Ref INS z
S
"\ Reset 7

Local

SAR Filter 1 55, P
) S —

r——s——===\ Reset Master
Local Filter

TAN Filter 2 $xP
—

8x

GPS %

be
............. | Ny

Figure 2 - 10 Federated Filter with EGI

Although this provides a method of using EGI information in the federated filter, it does
not form a type of federated filter that is optimal, since some information is lost. This lost
information can be shown by comparison between the proposed federated filter implementation and
a full-order (states for both INS and all sensors) centralized Kalman filter. Although the full-order
centralized filter is not used as a comparison design for this problem, it serves as a benchmark for

optimal estimation and gives insight into the proposed design.

The ceﬁtralized Kalman filter for the total suite of sensors would include separate states
for two INSs, plus sensor-specific bias states. The covariance matrix for the centralized Kalman
filter would contain covariances of all these states plus cross-covariances. Comparing this to the
federated filter design, there is a major structure difference in that the cross-covariance information
between the two INS states is not generated in the federated filter design. If the two INS have
uncorrelated errors, then these cross-covariances would be zero, and there would be no loss of
information by the transformation to a single set of INS states as calculated in the federated filter.
On the other hand, if the two INS measurements are somehow correlated, then there would be a

loss of information.

The question is: are the INS output errors uncorrelated? One way to show
uncorrelatedness would be to show independence. It is not clear whether or not the errors in two
INSs in the same aircraft would be independent or not. Similar sensors, in proximity to one

another, subject to the same vibrations, etc. may very well show error correlation. It would be
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difficult to tell whether or not meaningful cross-correlations between INS error states existed, and
how much information would be lost if these cross-correlations were neglected. Due to the
independent truth models in DKFSIM, this could only be modelled by building a dual-INS full-
order truth model, and is beyond the scope of this thesis.

2.7 Summary

In this chapter, the necessary theory for design of the federated filter navigation system
was developed. This included navigation subsystems explanations, presentation of the existing
Kalman filter and federated filter theory. Following this, a new transformation for dual-INS

integration in a navigation system, and a new navigation system design, were developed.
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3. Filter Models

3.1 Introduction

This chapter deals with the modeling process used to compare the two configurations: the
centralized filter design and the federated filter design. The first section describes the modeling
package used, the Distributed Kalman Filter Simulator (DKFSIM 3.3). The next section highlights
the modifications made to DKFSIM in the version used (DKFSIM 3.P1). The last section explains

the centralized filter and federated filter models used in the simulations.

3.2 DKF Simulator (DKFSIM) 3.3

3.2.1 Description

The Distributed Kalman Filter Simulator (DKFSIM) Version 3.3 [11,22] is a computer
simulation package written by Dr. Neal Carlson of Integrity Systems Inc., under contract for
Wright Laboratories. It was developed “to support performance evaluation of Distributed Kalman
Filter (DKF) techniques for multisensor navigation systems in a simulated flight hardware/software
environment”. All computer programs, data, and manuals for the installation and operation of
DKFSIM are available from the Avionics Directorate (WL/AAAI), Wright Laboratories, 2185
Avionics Circle, Wright-Patterson AFB OH 45433, for appropriate users.

DKFSIM will allow the user to model and run in Monte Carlo simulation a navigation
system comprised of a number of separate and independent Kalman filters. The current
implementation allows three local filters and one master filter for a maximum of four filters in the
navigation system. These filters may be ‘networked’ in a number of ways, and can be used to

model:

e A centralized Kalman filter, with a selectable number of INS and sensor-specific
states. This may be done by using only one of the local filter models and directing all
INS and sensor information to that model; or

e A federated filter in any one of the modes outlined previously in Chapter 2. From two
to four filter models may be used to build the desired federated filter.

DKFSIM will provide outputs of all filter states and covariances, plus other variables, in a digital
file format. DKFSIM is written to provide a ready-made, easily reconfigurable package to
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evaluate many types of systems. In addition, since the source code is provided, with detailed
comments, additional configurations are available through modification of the existing source code.

DKFSIM will allow the user to incorporate flight profiles generated by PROFGEN, a
trajectory generation system developed by Mr. Stanton Musick at Wright Laboratories [23], with
user control of the operation of truth and filter models through the use of input data files. It
incorporates the ability to simulate the sensor measurements of a strapdown INS, a GPS receiver
which can provide data from up to four satellites, a synthetic aperture radar providing landmark
ranging and precision velocity information, radar altimeter information, barometric altimeter

information, and terrain-map matching information.

DKFSIM contains the software to accomplish the two major operations for simulation:
generate the simulated sensor and INS, or ‘truth’ data, and operate the navigation filter or fiiter
network.

The operation of the filters portion of DKFSIM is purposely designed to resemble the
operation of a modern navigation computer. Sensor data are sent as messages on a data bus to the
filter or system of filters. This bus structure, resembling a MIL-STD 1553B databus, allows the
user to control data exchange between the simulated sensors and the navigation system. Overall
filter operation is controlled by a navigation computer. Data from the filter model is sent, if
required, on a data bus to the sensors. Figure 3 - 1 shows a general description of information flow

in DKFSIM.

3.2.2 Architecture

DKFSIM is implemented in FORTRAN 77, including some code unique to Lahey
FORTRAN. The FORTRAN code is divided functionally into programs and subroutines; for
example, each truth model is implemented as a separate program. To run DKFSIM, all programs
and subroutines must be compiled separately to produce object code files for each source code file.
All object code files, as well as the required libraries, must then be linked to form an executable
program. The executable program may then be run, with the appropriate input data and

parameters.

3-2




[ fe—— ~ ‘/ \l
| \ .
i
t Truth model : X Filter Model :
' ' ' Controller |
| Controller l : :
f ]
: l ' Local :
| | : Filter I
: INS Model i | ] - :
1 | | :
| { { l
l : | Master | ’
: Voo : } Local Filter {
1 t g :
Input | e | ; Fiiter |
|
: : ‘ ’ - ! Output
| ) ! l d
fles | : | L files
| I
I Sensor n I i Local J |
I ' ' Filter |
| Model | | |
\ J | 3 !
_____ — \ ;
Truth models e
Filter models

Figure 3-1 DKFSIM General Description

To modify DKFSIM beyond the range of built-in configurations and constraints, the
source code file may be changed. Only that source code file need be recompiled to produce a
modified object code file. The modified object code file may then be linked with the existing object
code files to produce an executable program. Thus, the entire DKFSIM source code need not be

recompiled at every source code change.

DKFSIM emulates real-time system operation while running in non-real time. This is
accomplished by maintaining an appropriate time variable and stepping through all the relevant

sequences in the program corresponding to actions occurring in a real-time system.

~ DKFSIM contains two major functional modules, the DKF Models module and the DKF
Filter module. The DKF Models module operates truth models for the simulations, which in tum
provide sensor data for the DKF Filter module. DKFSIM can be operated either in an integrated
operation or in a separated operation. In the integrated operation, data created by the DKF Models
module is passed as time-tagged bus messages to the DKF Filter module during the operation of
the program. In the separated operation, the two modules are operated independently. The DKF
Models module produces a data file of the sensor data created by the truth models, and the DKF
Filters module may then be run, using as input the data file created by DKF Models module. The
only limitation in operation is that reset of the INS, involving data return from the DKF Filters
module to the DKF Models module, is not possible during separated mode operation. Figure 3 - 2



shows the DKFSIM structure. Each block represents a major FORTRAN program. The
descriptive name for each program is given, as well as the computer filename. If running in
separated mode, the program DKFMOD controls the operation of thc DKF Models module, and
the program DKFFIL controls the operation of the DKF Filters module. In the combined mode of
operation, the program DKFSIM controls the operation of both the DKF Models and DKF Filters
modules, and both DKFMOD and DKFFIL are inactive.

DKFSIM 3.3
[ [ 1
DKF Models Simulation Controlier DKF Full Simulation Controller DKF Filters Simulation Controlier
DKFMOD DKFSIM DKFFIL
Models Bus-Message Controiler Navigation Computer Emulator
MSGMOD (in) NAVCOM
Trajectory Generator Filter Bus-Message Controller
TRAJDT MSGFIL
Barometric Altimeter Truth Model Sensor Controilers
BARMOD SENCON
INU Truth Model DKF Controlter
INUMOD DKFCON
GPS Truth Model " Master Filter
GPSMOD MFILTR
Synthetic Aperture Radar Truth Model Local Filter #1
SARMOD LFILTR1
Radar Altimeter Truth Model Local Filter #2
RADMOD LFILTR2
Terrain-Aided Navigation Truth Model Local Filter #3
TERMOD . LFILTR3

Figure 3-2 DKF Models Module and DKF Filters Module
3.2.3 Trajectory Generator

In order for the DKF Models module to produce outputs simulating aircraft flight, data
regarding the flight trajectory of an aircraft is required [11]. Trajectory gencration in DKFSIM is

accomplished as a two-part process: first, the flight profile is generated using a profile generator
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program; then the program TRAJDT in DKFSIM uses this flight profile to generate the required

data. These steps are explained in further detail.

The Flight Profile Generator (PROFGEN) program developed produces a six degree-of-
freedom flight profile with user-defined dynamic characteristics that can be tuned to represent an
advanced tactical fighter, bomber, missile, or other air vehicle. Inputs to PROFGEN consist of an
input file containing information on the desired profile as a sequence of segments, where each

segment corresponds to a flight maneuver.

The primary output from PROFGEN is a data file containing sequential, time-tagged
records of user-specified dynamic variables, and is called a flight file. The frequency of data
output is also user-specified, except during highly dynamic maneuvers, when additional points are

output to ensure adequate information is available for modeling.

The flight file produced by PROFGEN is then read into DKFSIM using the program
TRAJIDT. The program TRAJDT is called when dynamic variables from a particular time are
needed for modeling. TRAJDT reads in the appropriate segment of data, using records with times
before and after the time of interest, and interpolates the records to provide the variables required

at the time of interest. These variables are then passed to the DKFSIM truth models.

3.2.4 Truth models

The DKF Models module incorporates six truth models: the INS, GPS, SAR. TAN,
Barometric Altimeter (BARALT) aﬁd Radar Altimeter (RADALT) truth models. Each of these six
modules produces different data, but share a common purpose - to provide the DKF Filters module
with high-quality, realistic data, in order that high fidelity simulations of real-world missions may

be accomplished.

3.2.5 INS truth model

The INS truth model is designed to simulate the outputs of a medium accuracy strapdown
RLG INS. It incorporates the dominant instrument and environmental error sources of such a
system. The parameter values of the model can be selected to represent strapdown INSs of

different accuracy levels.




3.2.5.1 Description

The INS truth model implements an error-state formulation of the strapdown inertial
navigation equations, mechanized with the ECEF frame as the computational reference frame. The
ECEF frame was selected for internal computations rather than the more commonly-used wander-

navigation frame for the following reasons:
o The linearized error-state propagation equations are far simpler in the ECEF frame.
o There are no singularities in the ECEF frame.

The basic computation procedure involves propagation of the true whole-valued solution x (true
trajectory), parallel propagation of the INS solution error 6x, and generation of the INS -indicated

whole-value solution as the sum x+3x as indicated in Tables 3 - 1to 3 - 3;

p(t) true position vector

v(t) true velocity vector

C(t) true attitude direction cosine matrix
f(t) true specific force vector

w(t) true angular velocity vector

Table 3-1 True Trajectory Variables

op(t) truc position error vector

dv(t) true velocity error vector

30(1) true attitude error vector

of (t) true specific force error vector
Sw(t) true angular velocity error vector

Table 3 -2 INS Solution Errors

p...(t) = p(t) + 6p(t) INS indicated position vector

v, (1) = v(t) +dv(t) INS indicated velocity vector

C..(t) =[I1+30(t)x]C(t) INS indicated attitude direction cosine matrix
f . (1) =f()+3f(t) INS indicated measured force vector

w, (1) = w(t) +dw(t) INS indicated angular velocity vector

Table 3-3 INS-Indicated Solution

The operation of the model is summarized by the following steps:

1. The true solution is computed as a function of time by the trajectory program TRAJDT.
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2. The INS truth model generates the INS errors 3x(t). by integration of the corresponding error

differential equations.

3. The INS model then outputs the INS-indicated solution x; (t) = x(t) + 6x(t).

A 438-state truth model to propagate error dynamics was developed for DKFSIM [11].

This model has been used in a number of programs, and refined over time to provide a high-fidelity

reproduction of an actual strapdown RLG INS. Error states are represented by the mathematical

processes of random constants, first-order Markov processes, or second-order Markov processes,

as required (refer to [5] for a description of Markov processes).

Table 3 - 4 describes the 48 states for the INS truth model. Along with the states are listed

the mathematical representation of each state.

INS Truth Model States

INS Truth Model Representation

Model Parameters

3 Position drifts

Linearized propagation driven by
velocity drifts

Started from initial errors

3 Velocity drifis

Linearized propagation driven by
acceleration drifts

Started from initial errors

3 Attitude drifts

Linearized propagation driven by
angular rate errors

Started from initial errors

3 Body (case) misalignment errors Random constants (independent) Body frame

3 Gravity perturbations First-order Markov (independent, Body frame
spatially correlated)

3 Accelerometer Biases First-order Markov (independent, Body frame
time-correlated)

3 Accelerometer Scale Factor Errors | Random constants (independent) Body frame

3 Accelerometer misalignments Random constants (independent) Body frame

3 Accelerometer wideband noises Random walk (independent) Body frame

3 Gyro bias drift rates First-order Markov (independent, Body frame
time-correlated)

3 Gyro scale factor errors Random constants (independent) Body frame

6 Gyro input-axis misalignments Random constants (independent) Body frame

6 Gyro acceleration-sensitive drift Random constants (independent) Body frame

coefficients

3 Gyro wideband noises Random walk (independent) Body frame

48 States

Table 3-4 INS Truth Model Error States

3.2.5.2 Failure Models

In addition to simulating the normal operation of an INU, the INU model incorporates a

failure model into the INU model software, allowing the user to use predetermined failures in
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simulation and study the results. These failures are controlled by simple changes to the model
input file in DKFSIM. The strapdown RLG INS failure model augments the INS truth model by
adding abnormal errors to the calculated error state 8x(t). The types of INS failures that can be

modeled are listed in Table 3 - 5.

Failure Type INS Truth Model Representation Coordinatc Frame
Accelerometer Failure Types
Accelerometer bias failure Bias shift plus ramp Body frame
(1 of 3 axes)
Accelerometer noise Random noise sigma shift Body Frame
failure plus ramp
Rate Gyro Failure Types
Gyro rate bias failure Bias shift plus ramp Body frame
Gyro rate noise failure Random noise sigma shift Body frame
plus ramp

Table 3-5 INS Failure Models

An example of a failure is given for illustration. Suppose a gradual failure of one of the
accelerometers occurs, characterized by a slowly increasing bias. To simulate the failure, the user
supplies a scalar value to set the ‘slope’ of the ramp, i.e. how quickly the ramp will increase or
decrease in time. The accelerometer bias failure model calculates, based on user-supplied

parameters, a bias as a function of time. Note that a bias shift is also available for use, but since a

shift is not desired, the input value is set to zero. The failure model-calculated accelerometer bias
(see Table 3 - 5) is added to the truth model-calculated accelerometer bias to produce the failure

value for accelerometer bias.

3.2.6 GPS truth model

3.2.6.1 Introduction

The model for the GPS satellites consists of a sct of 24 satellites in circular orbits with the
nominal parameters of the actual satellite orbits [11]. There are three orbital planes, with
ascending nodes separated by 120 degree intervals (ascending node is where the orbit passes
upward through the earth’s orbital plane). Each orbital plane has an inclination of 63 degrees, and
contains eight satellites in essentially the same orbit, spaced at 45 degree intervals. All of the
satellite orbits are nominally circular, with an orbital radius of 4.2 earth radii, and a 12 hour

period.
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3.2.6.2 Description

The GPS truth model implements an error-state formulation of the receiver pseudorange

and pseudorange-rate, for four satellites only. The measured pseudorange is computed as the sum

of the true geometric range, receiver clock phase error, and other range measurement errors. Table

3 - 6 shows the error states formulated in the GPS truth model.

GPS Truth Model States

Representation

Referred to

1 User clock phase bias error

Integral of user clock frequency bias error

All channels

4 Satellite range errors due to satellite

State 1 of second-order Markov errors

Each channel

position and clock phase drifts (independent)
4 lonospheric delay errors after differential | State ! of second-order Markov errors Each channel
frequency correction (independent)

4 Tropospheric delay errors after
compensation

State 1 of second-order Markov with
1/sin(e;) scale factor

Each channel

4 Receiver phase noise

Random sequence

Each channel

1 User clock frequency bias error

First-order Markov

All channels

1 User clock acceleration-sensitive
frequency error

Random constant coefficients times
specific force

All channels

4 Satellite range-rate errors due to satellite

State 2 of second-order Markov

Each channel

velocity and clock frequency drifts (independent)

4 Tonospheric delay-rate errors State 2 of second-order Markov Each channel
(independent)

4 Tropospheric delay-rate error State 2 of second-order Markov Each channel
(independent)

4 Receiver frequency noise

Random sequence

Each channel

35 Total States

Table3-6 GPS Truth Model Error States

3.2.6.3 Failure Models

The following failure modes can be simulated with the DKFSIM GPS truth model:

1. Satellite clock failures

s Frequency bias shift (constant)

e Frequency bias ramp (growing with constant rate)

¢ Frequency random noise shift (constant noise o)

e Frequency random noise ramp (growing o)

2. Satellite ephemeris faults
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¢ Radial position and velocity errors (initial values of sinusoidal oscillation)
3. Receiver clock failures

e Frequency bias shift (constant)

¢ Frequency bias ramp (growing with constant ratc)

¢ Frequency random noise shift (constant )

o Frequency random noise ramp (growing o)

This range of failure modes covers many GPS failures, such as bad ephemeris uploads,
receiver clock frequency shifts, and satellite clock frequency shifts. In addition, the user has the
option of turning off any number of satellites to provide a reduced set (<4) of satellite data,

simulating terrain obstruction, or eliminating satellite reception altogether to simulate jamming.

3.2.7 SAR Truth Model

3.2.7.1 Introduction

The total SAR system uses two subsystems, the SAR Position Velocity Updating (PVU)
and the SAR High Resolution Mapping (HRM) truth models. Each state is listed, along with the
mathematical representation and the application. The SAR PVU and SAR HRM subsystems may
operate independently in the DKF filter implementation of the SAR dedicated local filter. These
two systems complement each other such that PVU measurements taken just prior to HRM
measurements improve the update accuracy. The SAR HRM capability is useful because it
bounds the growth of the INS position errors when GPS is not available, while the SAR PVU

capability provides measurements for aircraft velocity.

3.2.7.2 Description

The SAR-PVU model operates in the following manner:

e Eight range-rate measurements are calculated simultaneously. In reality there would
be some time lag between measurements, but this is a simplifying assumption and does

not significantly impact operation of the truth model [11].
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» The SAR-PVU error model generates measurement errors, based on user input

parameters.

e The measurement errors are summed with the true values to create measurements,

which are then passed to the DKF Filters module.

To generate measurement data for use by the DKF Filters module, the SAR-HRM truth

model uses the following procedure:

o The user specifies in an input file how often the SAR-HRM will generate landmark
positions, where these position are relative to the aircraft, and how long each landmark :
is in view.

¢ A math routine in the truth model, using this landmark, generates true values of range,

range-rate, azimuth, and elevation.

e The true values are summed with the truth model error-state output, to create SAR-

HRM measurements.
e The measurements are then passed to the DKF Filters module.

The error model states for both the SAR-PVU and SAR-HRM parts of the SAR truth

model are listed in Table 3 - 7.

3.2.7.3 Failure Models

There is no separate failure model for the SAR truth model. However, the user can direct
the model to limit the number of landmark positions available, or corrupt the measurements with

very high noise values.

3.2.8 TAN Truth Model

3.2.8.1 Introduction

The TAN truth model generates altitude and horizontal position measurements through the
use of two error models: a radar altimeter truth model and a terrain/map generator truth model.

These are described in the following section, along with a description of error states in each model.




SAR Truth Model States

Representation

Application

SAR PVU

3 Velocity measurement bias

First-order markovs

All components

errors (independent)

3 Velocity scale factor errors First-order markovs All components
(independent)

6 Mounting misalignment Random constants All components

SITOIS (independent)

3 Velocity measurement noises

Random sequences

All components

SAR HRM

3 Landmark position bias First-order markovs, Each landmark

components spatially correlated

1 Target designation crror Random sequence Each landmark

down-range component

1 Target designation error Random sequence Each landmark

Cross-range component

1 Range bias error First-order Markov All range
measurements

1 Range scale factor error Random constant All range
measurements

1 Range measurement noise Random sequence All range
measurements

1 Range-rate bias error First-order Markov All range-rate
measurements

1 Range-rate measurement Random sequence All range-rate

noise measurements

1 Elevation bias error First-order Markov All elevation
measurements

1 Elevation measurement noise Random sequence All elevation
measurements

1 Azimuth bias error First-order Markov All azimuth
measurements

1 Azimuth measurement noise Random sequence All azimuth
measurements

29 Total States

Table 3-7 SAR Truth Model Error States

3.2.8.2 Description

The terrain/map generator truth model consists of a terrain profile generator and a terrain

elevation-map generator. Measurement data is generated as follows:




o The terrain profile generator produces a profile of terrain elevations and slopes. as

well as points in an n x n planar grid centered below the aircraft.

o The terrain elevation-map generator adds errors to the truc elevations in the n x n grid

to obtain the map elevation valucs.

o The elevation values are used by the RADALT truth model to produce height above

ground measurements. In addition, horizontal position can be measured by

comparison of RADALT profile with the terrain-map profile.

The RADALT and terrain/map error model states are listed in Table 3 - 8. The states are

listed with their mathematical representations and their parameters, for a 5-by-5 planar grid (the 5-

by-5 grid provides a good compromise between accuracy and model size).

TAN Truth model states

Representation

Radar Altimeter

1 Radar altimeter bias error

First-order Markov

1 Radar altimeter scale factor error

Random constant

1 Radar height measurement noise

Random sequence

Terrain-Map

3 Map sector location errors

First-order Markov, spatially correlated

25 (1 Local elevation error at each grid
point i,j)

Random sequence

31 Total States

Table 3-8 TAN Truth Model Error States

3.2.9 Barometric Altimeter (BARALT) Truth Model

3.2.9.1 Introduction

Atmospheric pressure is a well-defined function of altitude. The Barometric Altimeter
(BARALT) obtains altitude measurements by measuring the output of a pressure transducer. This

measurement is subject to errors due to variations in pressure versus altitude. The BARALT truth

model generates data which reproduces these noisy measurements.

3.2.9.2 Description

The BARALT truth model works. in the following manner:
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¢ True altitude data is obtained from the trajectory generator.

o  Errors from the BARALT error model are added to the true altitude data, to create a
BARALT measurement.

¢ The measurement is then sent to the DKF filters module.

If the INS truth model has a baro-damped vertical channel, measurements from the BARALT truth

model are also sent to the INS truth model for vertical channel damping. Error states are listed in

Table 3 - 9.

BARALT Truth Model States Representation

1 Pressure altitude bias error First-order Markov
1 BARALT scale factor error due to non-standard temperature | First-order Markov
1 Static pressure coefficient error Random constant

1 BARALT time delay Random constant
4 Total States

Table 3-9 BARALT Truth Model Error States

3.2.10 Filter models

3.2.10.1 Introduction

The filter models used in DKFSIM for the centralized and federated filter designs are
reduced-order implementations of the truth models for each system. The reduced order model still
provides reasonable accuracy, and the order reduction keeps the computational requirement low as

compared to a full-order model.

DKFSIM models t‘he parallel operation of the federated filter by controlling operation of
each filter individually by use of a program to simulate a navigation computer (NAVCOM). Filter
operations which would be done in parallel on a number of processors are carried out in a
sequential fashion, controlled by NAVCOM. For example, if propagation of the federated filter to
the next measurement is required, NAVCOM ensures that all filters are propagated forward in time
to the next measurement time. Careful time-tagging and task management allows this to be done in

an efficient and realistic manner.
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3.2.10.2 Description

"Each filter model in the DKF Filters module has common features. For each sensor,
except the INS, there is a measurement model describing the characteristics of each of the discrete
measurements output by the sensor. For each sensor including the INS, there is a propagation
model describing how the sensor states propagate from one time to the next. In addition, for some
of the sensors, there are also measurement source models, describing how the position and velocity

of the measurement source are determined.

There are a number of different sizes for INS states in each Kalman filter. In DKFSIM
3.3, the largest available is the so-called ABIAS model, which consists of 9 INS basic error states
(east, north, and up states of position, velocity, and attitude), and three accelerometer bias states,
plus other sensor bias states. Since the INS modelled is a RLG INS, the absence of gyro drift
states does not significantly affect the accuracy of the reduced order model. The state vector x;

then, is [11]:

X, INS error state

X, |Sensor A measurement - bias states
Xe =] . (-1

x. [ Sensor S measurement - bias states

Sensor information may be directed to any of the local filters and/or the master filter, and
those filters are increased in size to accommodate the sensor biases. For example, if GPS data is
directed to Local Filter 1, then DKFSIM configures local filter 1 for 15 states - 9 PVT error states,

1 baro error state, 3 accelerometer bias error states, and two GPS error states.

The filter model states, representations and parameters are listed in Table 3 - 10. Note
that if a filter were configured for all available INS error states, plus all measurements, it would be

a 26-state filter.

FILTER MODEL STATE REPRESENTATION PARAMETERS
INS States - ABIAS Model
3 Position drifts Linearized propagation driven by ECEF
velocity drifts
3 Velocity drifts Linearized propagation driven by ECEF
acceleration errors
3 Attitude drifts Linearized propagation driven by ECEF
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angu]ar rate errors

1 Barometric altimeter bias error

First-order Markov (independent)

3 Accelerometer biases

First-order markovs (independent)

Body framc

13 Total INS Filter States

GPS States

1 User clock phase bias plus average
satellite range error

random process

All channels

1 User clock frequency bias drift

random process

All channels

2 Total GPS Filter States

SAR-PVU States

1 X-axis tilt towardy -

Random constant (indcpendent)

1 Y-velocity scale

First-order Markov (independent)

1 Z-axis tilt toward y

Random constant (independent)

3 Total SAR-PVU Filter States

SAR-HRM States

1 Range measurement bias error

First-order Markov

All measurements

1 Range-rate measurement bias error

First-order Markov

All measurements

1 Elevation measurement bias error

First-order Markov

All measurements

1 Azimuth measurement bias error

First-order Markov

All measurements

4 Total SAR-HRM Filter States

7 Total SAR Filter States

TAN States

1 Radar altimeter bias error

First-order Markov

1 Total TAN Filter State

Table 3 - 10 DKF Filter Model Error States

3.3 DKFSIM 3.P1

3.3.1 Introduction

During the course of this thesis work, the author worked to develop a dual-INS

implementation of DKFSIM to analyze the problem presented in this thesis. This proved to be

quite difficult and time-consuming. The DKFSIM sofiware is quite complicated and a good deal of

information sharing and nested operations (one routine calling another, which in turn will call

another, etc.) is carried out. The author did in fact implement a dual-INS DKF Models module
and was working on modifying the DKF Filters module, when in October 1995, DKFSIM 3.P1

upgrades were released for use. The author ceased development work on his DKFSIM

development model in favor of the DKFSIM 3.P1 upgrade.




~ 3.3.2 Description

The DKFSIM 3.P1 upgrade contained the following modifications:

DKF Models module

e A second INS truth model was added for both separated mode and integrated mode of

operation; and

¢ Modifications to random number generators, data blocks, and input/output messages

were incorporated to accommodate data from a second INS.

DKEF Filters module

e Navigation computer sofiware (NAVCOM) was modified to use dual-INS data;
e Message handling routines were modified to accommodate data from two INS; and

e Local filter and master filter input parameters were modified to accept, individually,

either reference INS or EGI INS data.

This modification allowed the author to carry on with modeling of the dual-INS EGI
retrofit problem. Following issue, the author modified the source code of DKFSIM 3 .P1 to
accommodate the desired dual-INS integration of Design B of Section 2.6.2, on a PC 486. The

changes were as follows:
o The software was installed on the PC 486.

o All compilation batch files were modified to allow compilation with the Lahey
FORTRAN F77L-EM/32 compiler.

e A program error caused by compiler differences was tracked down and corrected by

modifying a GPS control routine in the DKF Filters module.

e The master filter program MFILTR was modified to achieve the estimator conversion

via Equations 2-63 and 2-64.

A subroutine was added to provide change of variable names for the EGI INS values, to allow use

of dual-INS data in the same program block. To carry out the state estimate conversion process of




Equations 2-63 and 2-64, data from both INSs was read into the master filter program MFILTR

just prior to fusion (which is the only time the conversion is required). The equations were:

8iiref(ti): 8-isegi(ti)-‘l_yp(ti) (3'2)
O, (t)= &V, (t)+y,(t) (3-3)
0. ()= 6,,(t)+yo(t,) (3-4)

where:

3P, (t,) are state estimates of the reference INS position error at time t;

8P, (t;) are state estimates of the EGI INS position error at time t;
Y, (t;) are realizations of the EGI INS/reference INS difference in position error at time t;

and likewise for velocity and tilt state estimates.

Equations 3-2 to 3-4 were implemented as follows:

e Common data blocks of both the reference INS and the EGI were included in the
MFILTR program. These data blocks contained the INS realizations in double
precision real format, to provide the necessary accuracy for position, velocity and tilt
information,; the error estimate values were in single precision real format (only single

precision required due to small magnitude of the error estimates).

o Keeping in mind that the realizations of y(t;) were whole-state values from the INSs,
compared with error state values from the estimators (e.g. millions of feet vs. 15-20

feet values), an effort was made to minimize problems due to scale. Realizations of
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y(t)) were computed in double precision, then converted to single precision prior to

being added to Py (t;), V., (t;)and éegi (t,).

egi

e Values for y, (t;) and y, (t,) were computed in state-to-state subtraction of INS

values, and values for y,(t,) had to be computed from body to ECEF direction

cosine matrices (DCMs) from both INSs.

Values for y4(t;) were computed based on the following derivation [25]:
C:. =(I-E")C (3-5)

where:

Cgi is the INS-indicated angular differences between the body frame and ECEF frame in DCM
form from INS #i

E"; is the error in the INS-indicated angular differences
C: is the true angular differences between the body frame and ECEF frame in DCM form

E"; is the skew-symmetric form of the error vector 0 :

0 -8, 9,
E°=[06, 0 -8, (3-6)
-6, 6, 0

where:

0,.,0,, 6, are the errors in the INS-indicated angles, expressed in ECEF coordinates

For both INSs, we obtain the following pairs (for easy notation in this derivation, INS1 is the
reference INS and INS2 is the EGI INS):
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C: =(I-E")C! (3-7)

C., =(I-E™)C; (3-8)
The difference between the INS1 and INS2 errors can be extracted:

C(C)' =CI =(I-E")C(CH)'(I-E)T (3-9)

C2=(I-E")(I-E")" (3-10)
Multiplying out the two matrices results in the following direction cosine matrix:

1 66122 _6912y
Ci=[-80,, 1 80,,, |+ Higher Order Terms (3-11)

where:

00,,,, 80,,,, 68 ,, are the differences in the errors of the INS-indicated angles (80 . -80 ;)

Higher Order terms are the products of the error terms. Since the angular errors are
typically quite small, the higher order terms are negligible and are dropped. From C¢7, the

redundant ¢lements are extracted and averaged to obtain the angle differences:

e2 _e?
5 = C(23) 2 C:(3,2)

(3-12)
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_ CE6D-Ci()

88,,, 5 (3-13)
C3(1,2)-C (2.1

66122 — cl( ) el( ) (3_14)

2
These error angle differences comprise yel(t):

60]2x (t|)

Yolty) = 6912y(ti) (3-15)
69122(ti)

This modification allows for the operation of the federated filter in the No Reset and Zero
Reset modes. With additional coding to perform estimate conversions for resets (not done in this

research), Partial Reset and Full Reset modes could be implemented.

3.4 Comparison Models

3.4.1 Introduction

Both the federated filter and centralized filter designs were modeled in the modified version
of DKFSIM 3.P1, to ensure that identical DKF Models modules were used. Identical input data
sets, with the exception of the filter configuration input files, ensured that the same noise values,

data output times, etc. were used in the simulations.

From the four possible federated filter modes, the No Reset mode was chosen for the

design, for the following reasons:

o The No Reset mode federated filter has a high degree of fault tolerance. Since there is
no feedback to local filters from the master filter, the local filters cannot be corrupted
by bad measurement data from a faulty sensor (other than the one local filter using the

sensor measurements).
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® A developmental approach was taken. Due to the EGl-to-reference INS state
conversion requirement, the No Reset mode was the logical first step for implementing
this new theory. If it worked, further development could add in reference-to-EGI

conversion to implement reset to the EGI filter.

e Ease of implementation was essential. The latest DKFSIM versions were only
acquired in October, and the DKFSIM code was quite complex. The author had the
best chance of succeeding with an implementation of the federated filter in the time

available by using the simplest mode to code, the No Reset mode.

3.4.2 Description
Design A

Figure 3 - 3 shows the Design A implementation. Local Filter 1 represents an EGI, with
its Kalman filter augmented with states for the additional sensors, SAR and TAN. Thus, it

operates as a centralized filter.

Reference INU
Truth model

GPS
Truth model

Local
Filter 1

|

SAR
Truth model

DKEF Filters
Module

e

TAN
Truth model

DKF Models
Module ;

—_————— e e

I S S,

Figure 3 -3 Design A in DKFSIM
Design B

This model emulates the federated filter design by using Local Filter 1 in the DKF Filters
module as the EGI filter. As the actual EGI filter has an INS and GPS receiver for sensor inputs,
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the Local Filter 1 inputs are from the GPS truth model from the DKF MODELS module, plus a
second INS truth model, separate and independent from the navigation system reference INS (truth
model). Local Filter 2 has as inputs measurements from the reference INS (truth model) and
measurements from the SAR (truth model). Local Filter 3 has as inputs measurements from the

reference INS (truth model) and TAN system (truth model), respectively.

For master filter fusion, the state estimates from Local Filter 1 are converted from EGI
INS errors to system INS errors in a time-synchronized fashion, in the master filter. Then, fusion
of the covariance matrices and state estimates may proceed. Outputs from the master filter are used

as system output. Figure 3 - 4 shows the federated filter in block-diagram form.

7 N
i ________________________________________________ R /"‘ EGI Model
| | e ———— e ——— — —
' 2nd INU | [ ) N
| | | .. DKF Filters i
i Truth model i i .. Module E
I | f 4
I ! | Local !
I GPS ! : Filter 1 Master !
|| Truth model ! ! Filter !
i S ———— i o !

| t
| ! ! Local 3 |
| 1
| SAR | } Filter 2 ‘
: Truth model | i i
: o E
: s |
! TAN : : Local !
|| Truth model | | Filter 3 i
| o |
! | Reference INU t & i
! ] Truth model ! N /
i |
1 |
I DKF Models
' Module )

Figure 3-4 Design B in DKFSIM
3.5 Summary

Chapter 3 explained the models used for simulation studies. First, the simulation software
DKFSIM was described, including truth and filter models. Next, modifications to DKFSIM were
explained. Finally, the DKFSIM configurations for the centralized and federated filter designs

were given.
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4. Results

4.1 Introduction
This chapter shows the results of computer simulations for both the centralized filter and
the federated filter. The model setup (input information and initial conditions) is first described in
Section 4.2. Following this, data and analysis of the computer simulations are presented in Section
43.

4.2 Model Setup
4.2.1 General

Model setup for all simulations is presented in this section. Strict control of input data
files and model versions were used to ensure that all input parameters, except for commanded
changes, were identical. All input files were initially set up for simulation of the federated filter
and centralized filter with all sensors operating correctly. When configuration changes were
required for simulations with failures, copies of these files were created and modified with the

required changes, but the original versions of the input files were kept.

4.2.1.1 Flight Profile

A flight trajectory file produced by PROFGEN was used for the flight trajectory input data
file. The trajectory was called the Advanced Tactical Fighter (ATF) profile, and was written by
Mr. Stanton Musick. It was intended to provide representative dynamics of a multi-mission
fighter/attack aircraft.

An excellent description of the ATF profile is contained in [11]. A detailed description of
the input parameters to the profile and the output maneuvers in a segment-by-segment basis is
contained in an output file produced by PROFGEN called PROF.OUT. From [11], the first four

thousand seconds (about one hour and six minutes) of this profile are summarized in Table 4 - 1.
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Start | End Maneuver

(sec) | (sec)

0 230 Take-off and climb to cruise altitude

230 1790 | Outbound cruise at 40,000 ft and 500 knots, including surface-to-air missile evasion at
about 1700 sec, using a 6 G “roll and pull” maneuver

1790 | 2100 | Descent to 200 ft. , S00 knots, same heading

2100 ([ 2300 | Low altitude (200 ft) penetration run including 90 sec period of 6 G jinking (rapid-
succession S-turns) representing surface-to-air missile site evasions

2300 | 3250 [ Heading change of 90 degrees for final run toward target (same altitude and airspeed)

3250 | 3300 | “Pop-up” maneuver involving 4 G pull-up, roll to inverted flight, pull-down (inverted),

: roll-back to normal attitude, and simulated weapons release
3300 | 3600 | Climbing turn (6 G) to escape route heading, including 50 sec period of high-dynamic
: air-to-air combat
3600 | 4000 | Straight and level cruise outbound flight at 27,000 ft

Table 4 - 1 ATF Trajectory Profile Summary

This profile was selected for the following reasons:

o The profile provide the required high- and low-dynamics situations required to assess

the navigation system performance. This is provided by the run in portion (0 - 2050

sec, low dynamics) and attack portion ( 2050 - 3600 sec, high dynamics). The final

portion (3600 - 4000 sec, low dynamics) was used to assess the two design’s ability to

resume what should be the more accurate low-dynamics navigation after the simulated

combat situation.

o It was available for use in DKFSIM.

e It was familiar to the author and had been used at AFIT for navigation systems

simulation [25].

4.2.1.2 Sensor and Noise Parameters

All sensors were established with typical noise values for a navigation system. Both the

reference INS and EGI INS truth models were established with values allowing them to operate as
0.8 NM/hr drift strapdown RLG INSs. Both INS models were started in simulation as if they had

been aligned prior to flight; fine-align covariance values for filter INS errors were the initial

conditions for the simulation, Parameters for all of the truth models were contained in the

DKFSIM input files; these files are included as Appendix B.
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The GPS truth model was configured for four satellite coverage, with sensor measurements
of PR and PRR passed to the DKF Filters module at 4 second intervals. There is no wait time for
commencement of measurements; GPS measurements are available from the beginning of flight. In
addition, the GPS truth model determines whether or not satellites are visible based on satellite
position and aircraft attitude. If a satellite line-of-sight is not part of the upper hemisphere of
body-frame coordinates, simulating upper-aircraft antenna siting, the satellite measurement is not

available.

The SAR truth model is configured to provide a landmark measurement every 100
seconds, commencing 300 seconds after take-off. A SAR precision velocity update occurs just

before the landmark measurement.

The radar altimeter truth model provides altimeter measurements every 2 seconds,
commencing 300 seconds after take-off. If the aircraft attitude is more than 30 degrees in pitch,
roll, or some combination of pitch and roll from the horizontal, radar altimeter measurements are

disabled. This simulates the directional beam pattern effects of the radar altimeter.

4.2.1.3 Filter Tuning

Filter models in DKFSIM were provided with pre-tuned values [22,26], for initial
conditions and noise values. To ensure the filters involved were in fact tuned properly, outputs
from the centralized filter and outputs from all local filters and master filter were examined. State
estimates and filter-predicted covariances were examined for stability and expected accuracy, and
covariances calculated from the Monte Carlo simulations were compared to all filter-predicted
covariances. Twenty Monte Carlo runs were conducted for each simulation run, where twenty
provided a good compromise between statistical confidence in the results and manageable size of
output files. These comparisons for the centralized filter and federated filter (master filter only) are
shown in Appendix A.

After tuning for best performance, all filter states performed conservatively, with the
exception of the East Position and North Position states in Local Filter 1 (GPS-fed filter), and in
the Master Filter when Local Filter 1 information was fused in the solution. Although these states
are non-conservatively tuned, best overall performance of the filter was attained with this tuning.
This is due to the noise characteristics of the GPS pseudorange measurements [26]. The filter

4-3




could have been more conservatively tuned for these states by increasing process noise strength

values, but this would not have been appropriate to tuning for the GPS measurements.

4.2.1.4 Performance meirics

The mean and standard deviation of state estimates for 20 Monte Carlo runs for both
designs are contained in Appendix A. Another set of performance metrics, other than state-by-
state comparison, are RSS errors of position and velocity. called system error and velocity error.

System error is defined in this thesis as the total position error, calculated in the following manner:

E,.(t;,mc;) = [E, (t,,me))" + [E, (t,, mc )]’ + [E,(t,, mc )]’ 1)

ZEws(ti,mcj)
E, (t)=2 . (4-2)

where:

E_.(t;,mc;) is the RSS error calculated for time t;and Monte Carlo run mc;

E.,.(t;,mc;) are the East, North, and Up state estimate errors in filter-predicted values for time
t; and Monte Carlo run mg;

E_,(t,) is the system error calculated for time t;, averaged over n Monte Carlo runs

The system error and velocity error plots show error in three dimensions. with only onc

plot. These plots give a good indication of system performance, and do not inundate the reader

with multiple graphs.




Figure 4 - 1 describes the system error vector (note that only the magnitude of the vector is

calculated).

>

True INS error

Filter-predicted INS errer

 —

System error

Figure4 -1 System Error

Velocity error E (t,) is a scalar value yielding the magnitude of the velocity error vector.

1t is calculated in the same manner as system error.

Thus, there are two diagrams (system error and velocity error) which are used to
summarize the performance of the navigation systems for each simulation, along with explanation
of the initial conditions, changes during the simulation, failures, ctc. Where applicable, other data

and diagrams are introduced for explanation and emphasis

The simulations carried out are summarized in Table 4 - 2. First, Runs 1A and 1B
provide the necessary benchmarks for performance under normal operating conditions, defined here
as all sensors operating correctly, with the aircraft undergoing both high and low dynamic
conditions of flight. Following this, Runs 2A and 2B allow the analysis of both designs’
performance with GPS outages. Runs 3A and 3B simulate a receiver clock failure early in the
flight to examine the effects on system performance. Finally, Runs 4A, 4B and 4C simulate

accelerometer failure of steadily increasing noise (noise ramp), and the resulting operation.
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Run # | Filter Design Sensors Failures
Used
Sensor Start (t=) End (t=) Device Start (=) | End (t=)
1A centralized GPS 0 4000 No
filter SAR 300 4000 failures
TAN 300 4000
1B federated GPS 0 4000 No
filter SAR 300 4000 failures
TAN 300 4000
2A centralized GPS 0 3100 GPS
filter 3600 4000 outage
SAR 300 4000 simulates
TAN 300 4000 _jamming
2B federated GPS 0 3000 GPS
filter 3600 4000 outage
SAR 300 4000 simulates
TAN 300 4000 jamming
3A centralized GPS 0 4000 GPS Revr | 300 4000
filter SAR 300 4000 clock
TAN 300 4000 frequency
3B federated GPS 0 4000 GPS Revr | 300 4000
filter SAR 300 4000 clock
TAN 300 4000 frequency
4A centralized GPS 0 4000 Long. 500 4000
filter SAR 300 4000 accel
TAN 300 4000 noise
ramp
4B federated GPS 0 4000 Long. 500 4000
filter SAR 300 4000 accel
TAN 300 4000 noise
ramp in
Ref INS
4C federated GPS 0 4000 Long. 500 4000
filter SAR 300 4000 accel
TAN 300 4000 noise
ramp in
EGI INS

Table4 -2 Simulation Summary Table




4.2.2 Runs 1A and 1B - Performance Comparison and Benchmark

4.2.2.1 Conditions

For performance comparison, all simulations were conducted with all sensor measurements
available for the entire flight profile (except where conditions of flight prevented sensor

measurements). All input information is contained in the input files contained in Appendix C.

4.2.2.2 Analysis

The purpose of Runs 1A and 1B was to provide direct comparison between the designs
when both were working perfectly, and to provide benchmarks for further simulations involving
sensor outages and failures. Graphs showing filter-predicted state estimates and covariances for all
nine INS error states for both designs, as well as one-sigma values calculated from the data, are

presented in Appendix A.

Figures 4 - 2 and 4 - 3 show the system error and Figures 4 - 4 and 4-5 show the veloctiy
error for the centralized filter and federated filter, using inputs of GPS, SAR, and TAN. By
studying the output of each of the local filters, it is apparent that the GPS measurements dominate
the statistics of the filter, and system error can be seen to be approximately 25 -35 feet, after
reaching steady-state operation. Some loss of accuracy can be seen approximately centered at
times 1700 sec, 2300 sec and 3400 sec in the velocity error plots. These times correspond to highly
dynamic maneuvers as detailed in Section 4.2.1.1, where some measurement data is lost, and

possibly due to the dynamics effects in the covariance matrix P.

From the diagrams shown, the position error for both designs. after reaching steady state,
varies between an average of 30 to 35 fect. The federated filter shows more variability in this
error, where the centralized filter tends to be somewhat more consistent. This is probably due to
the master filter solution being calculated only once every ten seconds, and then propagated for ten
seconds, as compared to a propagate/measurement update cycle of two seconds in the centralized
filter. The velocity error is better for the centralized filter, averaging 0.05 - 0.06 ft/sec error,

compared with the federated filter, averaging about 0.1 ft/sec error.
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4.2.3 Runs 24 and 2B - GPS Outages

4.2.3.1 Conditions

This run simulates GPS jamming conditions at the weapons release site. GPS data is not
available from 3000 - 3600 sec ( 400 sec prior to weapons delivery at 3400 through 200 sec after),
simulating a jammer located close to the weapons release site. All other sensors are available as in

Run 1A and 1B.

4.2.3.2 Analysis

Figures 4 - 6 and 4 - 7 show the centralized and federated filter system error, and Figures
4 - 8 and 4 - 9 display the centralized and federated filter velocity error. Comparison of system
error for both designs at the time of interest shows that the solution quickly degrades after t = 3000
due to lack of GPS information. The SAR measurements then become the dominant (most
accurate) sensor data. Note the filter updates every 100 seconds using SAR measurements, and
these filter updates are quite noticeable. When GPS jamming ceases (at t = 3600 sec), the aircraft
is maneuvering, and it is not until about t = 3700 that the aircraft is sufficiently stable to receive

GPS measurements.

Again, filter accuracy in position is almost the same in the centralized and federated filter,
and velocity accuracy is somewhat better in the centralized filter as compared to the federated

filter.
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4.3.1 Runs 34 and 3B - GPS Receiver Clock Failure

4.3.1.1 Conditions

These runs simulated a failure of the GPS receiver clock. The failure commenced at t =
300 sec, with the clock frequency error growing linearly with time at a rate of 0.004 ft/sec’.
Because the receiver clock is used to make all PR measurements, an error was seen in all PR and

PRR measurements.

4.3.1.2 Analysis

System error for the centralized filter is shown in Figure 4 - 10, and the corresponding
velocity error in Figure 4 - 12. The centralized filter was configured to reject residuals greater than
5 times the value of a weighted moving average filter incorporating 10 measurements. From the
log file, measurement rejections did not occur to any great extent until t = 1500. Since the failure is
a gradual one, the state estimates and covariances were corrupted. Errors accumulated rapidly,

since the poor measurements were not rejected by the moving average filter.

System error for the federated filter is shown in Figure 4 - 11, and velocity error in Figure
4 - 13. The federated filter was configured for measurement residual rejection in each of the local

filters in the same manner as the centralized filter.

Although the federated filter design could distinguish the difference between the local filter
solutions, it could not discern which local filter was in error. Fusion starts by bringing in the Local
Filter 1 solution, then adding the other local filter solutions to it. During this fusion process, a
residual is formed for the Local Filter 2 and 3 solutions . If a certain threshold is passed, the local

filter solution is rejected.

For Run 3B, the federated filter was reconfigured so that the master filter would begin
fusion with Local Filter 2, which has SAR measurements, then Local Filter 3, with TAN
measurements, and lastly, Local Filter 1. According to the log file created during this run,
rejection of local filter solutions through fusion residual monitoring started almost immediately
after Local Filter 1 started to recetve bad measurements. MF fusion was from then on
accomplished with Local Filter 2 and 3 only, which provided consistent solutions for the remainder

of the flight.
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4.3.2 Runs 4A, 4B and 4C - Accelerometer Failure

4.3.2.1 Cownditions

Three sets of conditions were set for this run; all involve failure of the longitudinal
accelerometer in either the reference INS or the EGI INS. The longitudinal accelerometer was
chosen to provide a significant effect, although any accelerometer failure could have been chosen.
The accelerometer, commencing at t = 500 sec and continuing to the end of flight, has noise
strength increasing linearly. The noise strength one-sigma value increases at a rate of 0.005 ft/sec’
every second. In Runs 4A and 4B, the failurc occurs in the reference INS. In Run 4C, the failure

occurs in the EGI INS.

4.3.2.2 Analysis

Figures 4 - 14 and 4 - 17 showed that the centralized filter had rapidly increasing error
due to the accelerometer failure. The filter was partially aided on regaining GPS measurements at
about t = 3400 sec, but the accelerometer noise quickly dominated the filter operation and the filter
performed poorly in the latter part of flight. There was no error detection scheme or algorithm for

coping with an accelerometer failure built into the centralized filter design.

Figures 4 - 15 and 4 - 18, the federated filter with a reference INS accelerometer failure,
showed much better performance. There is still quite a degradation in solution, which is due to the
nature of the Kalman filter estimate conversion. Since it uses information from the reference INS
to do the conversion, and this information is corrupt, the fused solution is corrupted. A more
accurate solution at this point is Local Filter 1, the EGI filter. However, there is no way currently
implemented to determine the problem with the INS, and the conversion/fusion process does not

take advantage of this high-accuracy solution.

Figures 4 - 16 and 4 - 19, the federated filter with an EGI INS accelerometer failure, show
a straightforward operation. When solutions from the EGI started to show large errors, this error
was detected in the fusion residuals. The Local Filter 1 solution was rejected in the fusion process,
and the master filter contained solutions fused from Local Filters 2 and 3. Thus, the high-accuracy
GPS information was not used in the solution, but the solution was not corrupted by any erroneous

data.
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4.4 Summary

This chapter set out conditions for the computer simulations of the centralized and
federated filter in performance comparisons for all-sensor conditions, GPS measurement outages,
and GPS and INS failure conditions. Data from the computer simulations were presented, and

these data were analysed to characterize the federated filter design.
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5. Conclusions and Recommendations

5.1 Introduction
This chapter concludes the research into the EGI retrofit problem by presenting
conclusions based on the results of simulations, as well as other aspects of the research such as the

use of DKFSIM. Recommendations for future research and development are then presented.

5.2 Conclusions

5.2.1 Simulations

The federated filter model worked. The dual-INS federated filter model operated as
predicted in theory. The state estimates and covariances from Local Filter 1 were converted from
EGI INS to reference INS and fused with the master filter without any fusion residual rejection or
any other processing problem. The conversion was not difficult, computationally speaking, and did

not appreciably add to the computation time.

| The federated filter model performed as well as the centralized filter model under normal
operating conditions. The federated filter performed as well as the centralized filter model under
low and high dynamic conditions when no faults were introduced. Figures 4 - 2 and 4 - 3 show that
RSS accuracy of the position states was identical for both filters at 35-40 feet. Figures 4 - 4 and 4
- 5 show that the RSS velocity accuracy was somewhat better in the centralized filter, but both

were quite accurate.

The federated filter model was comparable to the centralized filter model without GPS
inputs. Figures 4- 6 through to 4 - 9 show that the federated filter adapted as well as the
centralized filter to the loss of measurement information. The solution provided while GPS

measurements were lost was the same for both filters.

The federated filter design provided some failure protection. When configured for the
best monitoring for fusion residual rejection (EGI filter fused in last), GPS receiver clock excessive
drift and excessive accelerometer noise was detected and dealt with by rejecting EGI filter
information. Also, Figures 4 - 10 through 4 - 13 demonstrate that the federated filter solution

degraded gracefully to a lower accuracy solution, unlike the centralized filter.




The federated filter design fusion residual rejection scheme could not detect faulty
solutions without assistance. Some fault detection was accomplished using the fusion residual
rejection algorithm in the master filter, but this only worked when the faulty solution was fused in
last. The fusion process works by starting with a local filter solution and adding the other local
filter solutions, one at a time. When fusion was done starting with the EGI filter, the good
solutions from the other two local filters were rejected. Clearly, this is an inadequate error-

detection and isolation scheme.

When the reference INS had an accelerometer failure, there was no way to provide a non-
drifting master filter solution. Although the EGI local filter alone operated with a high-accuracy

solution, the federated filter was unable to detect the failure and provide the EGI solution.

Measurement residual monitoring, and exploration of residual monitoring techniques
applied to this filter type, might increase its error-detection capability. This is an area well worthy

of further research.

The federated filter model was an effective method for dual-INS integration. The
federated filter design allowed information from two INSs to be integrated into a single solution.
This aspect alone of the federated filter design is interesting, and worth further examination and

development.

5.2.2 DKFSIM

DKFSIM is a mature, comprehensive and flexible simulation tool. DKFSIM was found
to be a well-developed, extensive simulation tool. It has a great deal of capability in simulating
both centralized and distributed navigation systems, incorporating extensive flexibility in INS and

sensor configurations, as well as failure simulation.

The executable DKFSIM program was easy to operate. The user’s manual was
straightforward to use, and the installation instructions and software were easy to carry out. All
the necessary information and software programs to conduct simulations, from input file

descriptions and choices to output data formatting, was provided.

DKFSIM source code was difficult to modify. Although DKFSIM is built in a modular
fashion, there is by necessity a great deal of data sharing in a number of ways. This heavy




interdependency made even simple code changes difficult to implement, due to a code change’s

impact on all other code modules. Code changes were, therefore, complicated and time-consuming.

DKFSIM documentation does not explain how DKFSIM operates, nor what models it
uses. The User’s Manual is good for operation of the given run-time version. For modification,
the code is well-formatted and extensively commented. Unfortunately, there is no manual for users
that expands on the models used, algorithms developed, etc. The Distributed Kalman Filter
Architectures Phase II report [10] contains a lot of the required information for further DKFSIM

development, but is not generally available to users.

DKFSIM was, and will continue to be, well supported. DKFSIM has improved since
initial implementation, and newer iterations have expanded the scope of systems modeled. Wright
Laboratories continues to be interested in distributed filters, and will likely continue to encourage
development in DKFSIM through contract work and sponsorship of AFIT research such as this

thesis.

5.3 Recommendations

Additional simulations using the federated filter design of this thesis should be
conducted to further characterize the design. Only some representative failures were carried out
in the author’s research, due to time constraints. Additional work with the run-time version,
simulating different conditions of operation and failures, would help to further determine the design
characteristics.

Fault detection algorithms added to the federated filter should be explored, for failure
detection and isolation. For the fusion residual monitoring, it was suggested [22] that a more
robust residual fault detection system could be designed, where the order of fusion was varied in
order to isolate faults. This type of algorithm would be relatively simple to design and implement,
and may greatly improve fault detection capability of the federated filter.

In addition, measurement residual monitoring algorithms could be implemented to increase
the failure detection capability of the federated filter design. ’

DKFSIM should continue to be used for distributed filter research. DKFSIM is an

excellent tool, and provides a flexible enough environment to accommodate future growth.
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5.4 Summary

This thesis presented the problem of retrofitting an EGI into an existing navigation system.
A federated filter was designed to work in the problem, and using simulations the filter
characteristics were explored. The federated filter design worked in nearly optimal fashion, and

was shown to have some attractive fault detection and isolation features.

The creation of a workable filter for the EGI retrofit problem indicates the potential of the
federated filter in air navigation systems. Hopefully, research will continue into federated filter
design, eventually leading to testing in an aircraft. Leadership in research of this nature will ensure

a strong future defense capability for the USAF.
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Appendix A: Performance Runs 1A and 1B

This appendix shows data outputs from DKFSIM for Runs 1A and 1B (no faults)
performance run. The first nine plots are the three position. three velocity and three tilt states from
simulation of the centfalized filter design. The second nine plots are the corresponding states from

simulation of the federated filter design.

Each plot has the same format. The solid line centered roughly around zero is the mean of
20 Monte Carlo simulations. The outer solid black lines are the one-sigma values of the 20 Monte
Carlo simulations, derived from the output state estimates. The dashed black lines are the plus and

minus values of the means of the filter-predicted one-sigma value.
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Appendix B: DKFSIM Run 14 and 1B Input Parameters

The FORTRAN input files used to define operation of the truth models in DKFSIM are
contained in this appendix. In each file, a title, datc, and author is given, followed by values for
input variables. The title is INXXX, where XXX corresponds to the first three characters of the truth
model name, eg. ININU, INGPS, etc. Finally, the input variables are defined for each file. The file
ININU was used to control the reference INU truth model, and the file INJNU was used to control
the EGI INU truth model.
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TH MODEL INPUT PARAMETERS 06/22/94 NAC
ARD ERRORS, 2ND-ORD * :

- (DER-NAV FRAME OUTPUT FLAG
_ INUTILT NOISE POWER DENISTY. RW
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. INUVELOCITY NOISE POWER DENISTY, RW
_QUTPYT SWITCH FOR INU ERRORS

- OUTPUT SWITCH FOR INU VARIABLES
SIGMA INU ACCELR BIAS ERRORS, RW.

: NU ACCELR SCALE E ACTOR ERRS R y

GMA INU GYRO BIAS DRIFT RATES. RW
 STGMA INU GRAV PERTURBNS NAV, RW
_‘:GMA INU GYRO INPUT-AXIS MISALMTS

YRO RAT, fMSMT FAH,URE INITL VALUE
GYRORATE MSMT FAILURE GROWTH RATE
INDEX OF FAILED ACCELR. AXIS -

INDEX OF FAILED. GYRO AXIS -

_SIGMA INU ACCELR MISALIGNMENT ERRS, RW =~

06/22/94 NAC i i
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D INU COARSE ALIGN LNTER :A
SIMUL ED INU FINE ALIGN INTERVAL
DEFAULT TIME INTERVAL TO INU TURN-ON
 TIME INTERVAL FOR INU DATAFILE OUTPUTS
INPUT SEED FOR INU RANDOM NO: GENR

BARO DAMPING GAIN #1, FOR POSITION. RW.
BARO DAMPING GAIN #2: FOR VELOCITY, RW |
TNU WANDER-NAY FRAME OUTPUT FLAG |

U TILT NOISE POWER DENISTY, RW -
NU VELOCITY NOISE POWER DENISTY RW :

OUTPUT SWITCH FOR INU ERRORS
OUTPUT SWITCH FOR INU VARIABLES
SIGMA INU ACCELR BIASERRORS.RW

1GMA INU ACCELR MIS_ALIGNMENT ERRS. R
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METER TRUTH MODEL INPUT PARAMETERS A8 NAC

CORR DIST BARO ATMOS VARIATIONS, RW
DEFAULT TIME INTERVAL TO BARO TURN-ON

_TIME INTERVAL FOR BARO DATAFILE OUTPUTS

, .mPUT SEED FOR BARO RANDOM NO.GENR




: ME, INTERVAL FOR GPS MODEL.ACT IVAT[ON
TIME INTERVAL FOR GPS DATAFILE OUTPUTS
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NO. OF GPS MSMT ON/OFF SEGMENTS. .~
QUTPUT SWITCH FOR GPS MSMT ERRORS -+ =
'OUTPUT SWITCH FOR GPS MSMT VARIABLES

, 'OUTP ’SWITCH FOR GPS SATELLITE DATA -

;SIGMA GPS SAT EQUIV RANGE ERROR RW
. SIGM : GPS "mopo RANGE ERROR, RW

| e GPS SATELLF'FE ORBIT SEMI AXIS MAJOR

_ GPS SATELLITE MIN ELEVN ABOVE HORIZON
INPUT SEED EOR GPS RANDOM NO. GENERATOR
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. SATELLITE PLANE REF TIME (NOMINALLY 0y
SATELLITE ENABLE COMMAND (NOMINALLY "T").

QIMETER TRU’IH MODEL INPUT PARAMETERS 04/18/94 NAC
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\ ":",'PARAMETERS: 5

T USERNG"' T,. USERRT = T,

TSRRBR 600

20, SELVMX m WSMAX
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C RR TIME SAREQ RANGE BEAS RW
CORR TIME SAREO RRATE BIAS-'RW

o -SE SAREO AZIMUTH MSMT FLAG
USE SAREO ELEVATION MSMT L,

. CORR DIST TERRMNELEV CROSS-TRACK. RW.

B-10




[IMESTEP FOR TRUE TERRAIN. DATA OUTPUT
RRAIN BASE ELEVATION 1 :
ITIAL RANDOM NO. SEED FOR TERRAIN:

(9 U’IPUT SWITCH FOR TERRAIN VARIABLES

e 'SIGMA TERRAIN SLOPE CROSS TRACK RW
AG; TERRAlN VARIES RUN~TO~RUN i
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