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1. Research Review during the final grant period

As described in our original propsal, we have spent the final year of our research
program investigating the physical properties of nanometer-scale magnets. This has
involved several projects and associated experimental techniques, each of which is
described in turn below.

Imaging and Magnetometry of Mesoscopic Magnets

Arrays of nanometer-scale iron particles are grown by local organometallic
deposition with a scanning tunneling microscope. The average magnetic properties are
studied at low temperatures (5 — 100 K) with a two-dimensional hole gas Hall
magnetometer. Rotation of the net array magnetization occurs by both reversible and
irreversible modes, the latter revealed by Barkhausen jumps. Direct spatially-resolved
measurements at room temperature with a magnetic force microscope show that the
discrete jumps are due to the sudden switching of individual single-domain particles.
Particles that appear structurally similar are found to be magnetically distinct.

The present work employs the additive technique of local organometallic
deposition with a scanning tunneling microscope (STM) to produce nanometer-scale iron
particles with control of the shape and orientation. The average magnetic properties of an
array of particles is compared with the properties of individual particles by
complementary low temperature Hall magnetometer and room temperature magnetic
force microscope (MFM) measurements, the latter producing some of the highest
resolution magnetic images of submicron structures to date. Although the particles
formed with the STM are seen to be structurally similar through atomic-scale topographic
studies, they vary magnetically in terms of coercive fields, suggesting that anisotropy on
a length scale smaller than the spatial resolution of our probes (~25 nm) is playing an
important role.

The Hall magnetometer provides a measure of the average magnetic properties of
nanometer-scale particles, but requires care in interpretation since particles are not
weighted equally. Imaging of individual particles with.an MFM explores the current
limits of scanning probe microscopy. Although the STM forms particles that are
ostensibly similar in structure, magnetically there is found to be a distribution of coercive
fields through direct imaging. Magnetic properties may ultimately serve as a more
sensitive characterization of nanometer-scale particles, as demonstrated also by the
identification of a magnetic film formed concomitant with the growth of the STM
particles. However, the effect of the MFM tip on small particles can be significant. One
of the outstanding challenges is the development of magnetic probes which are less
invasive.



Femtosecond Near-field Spin Microscopy in Digital Magnetic Heterostructures

A detailed understanding of spin scattering in mesoscopic electronic systems
remains, for the most part, an open issue in condensed matter physics. To directly
investigate the dynamic behavior of electronic spin, one needs to develop both a host
material in which the fundamental spin interactions are well understood, and techniques
for probing spin scattering on the relevant time and length scales. Extensive research in
recent years has identified II-VI magnetic semiconductor quantum structures as flexible
systems in which to study electronic spin interactions in a well-characterized
environment. In such systems, the strong exchange coupling between electronic states
and paramagnetically aligned magnetic ions results in large effective Landé g-factors at
low temperatures (g,,~400 at T=4 K). Quantum well (QW) confinement enhances by
several orders of magnitude the coupling of excitonic states to visible light, enabling a
wide array of optical techniques to be used. The Zeeman splittings in recently grown
structures can be made much larger than inhomogeneous linewidths, providing model
field-tunable two-level systems ideal for magneto-optical studies of spin-dependent
phenomena.

Conventional time-resolved optical spectroscopies have successfully probed
dynamical spin-dependent phenomena in this class of structures, yielding important
information about exciton spin scattering and magnetic relaxation. However, to examine
directly the role of interfaces, alloy fluctuations, disorder, local magnetic environments,
impurities and defects on excitonic spin transport -- factors which involve spatial
degrees of freedom -- one requires a technique capable of resolving the relevant physical

lengthscales, from exciton diffusion lengths (~1 pwm) to magnetic correlation lengths (>50
nm in antiferromagnetically ordered MnSe), to the exciton Bohr radius (~4 nm for
ZnSe/ZnCdSe). Conventional optical techniques, being diffraction limited, cannot
provide sufficient resolution on the lengthscales of interest. Near-field scanning optical
microscopy (NSOM) circumvents the diffraction limit and, combined with femtosecond-
resolved specroscopies, provides a unique capability of interrogating spatio-temporal
exitonic spin dynamics in magnetic semiconductors.

Static and time-resolved luminescence studies of excitonic spin behavior in
magnetic semiconductor QWs have been performed using a low-temperature
polarization-resolved NSOM. A series of patterned defects, introduced by Ga* focused-
ion-beam implantation, reduces both the QW luminescence intensity and the local g-
factor, creating a magnetic-field-driven, spin-dependent energy landscape for diffusing
excitons. Carrier spin distributions are inferred from the near-field images of the DC
luminescence intensity and polarization. Exciton diffusion is found to have a minimal
effect on the local magnetic interactions which contribute to Zeeman split states. The
incorporation of time resolution, using a luminescence intensity correlation technique,
provides additional evidence for spin-dependent exciton diffusion. Time-resolved
absorption, another powerful tool, provides direct information about the spatiotemporal
evolution of photoexcited excitons. Fundamental limitations on the measurement of
polarized luminescence from semiconductors in the near field are demonstrated and
discussed.

Submicron Ferromagnets in Mn-implanted ITI-V_Semiconductors

Microscopic ferromagnets can be fabricated on semiconductor substrates in a
number of ways, including electron-beam lithographic patterning, scanning tunneling
microscope deposition, and electrochemical etching and electrodeposition . In order to
enhance the effective interaction between electronic carriers and local ferromagnetic




fields, it is desireable to locate ferromagnetic clusters within a semiconductor. This is a
challenge since the solubility of magnetic ions in semiconductors is generally low.
Because Mn ions replace Ga in the GaAs lattice and act as acceptors, it is possible to
incorporate localized ferromagnetic structures inside the GaAs semiconductor while
preserving its electronic and optical properties. This may be achieved by ion
implantation and subsequent heat treatment. Although the solubility of Mn ions in GaAs

is very low under equilibrium conditions, a relatively high concentration (~102! cm-3)
can be obtained by implanting the ions into the semiconductor. During rapid thermal
annealing at T > 600 C, the uniformly implanted Mn ions diffuse and combine with Ga to
form submicron GaMn microcrystallites (150 - 400 nm) which are ferromagnetic at room
temperature. A structure containing an ensemble of particles has a magnetization that can
be reversed at the coercive field H;. ~ 6 kOe, and becomes paramagnetic above the Curie
temperature T > 400 K. These particles are larger than the typical magnetic particles (1

- 10 nm) in granular GMR materials and in fact, large enough that the magnetic moments-

may not be uniform throughout the particle, i.e., the particle consists of magnetic
domains. In this instance, the GaAs host plays an important role in determining the
magnetic properties such as the domain orientation.

The GaMn ferromagnets are formed near the GaAs surface and may be directly
probed by atomic (AFM) and magnetic force microscopy (MFM) at room temperature.
In MFM images, the contrast is caused by spatial variations in the magnetic interaction
between the magnetized probe and the stray magnetic fields of the sample. While the
ferromagnetic particles (~400 nm) produce strong magnetic force contrast, there exist
particles (~50%) which show only weak contrast. The latter particles are likely
ferromagnets with very low coercive fields and moment densities or possibly even
superparamagnets at room temperature.

One can infer the magnetic state of the GaMn precipitates from these MFM
images. To a good approximation, the MFM probe behaves like a localized magnetic
dipole, and the imaging of spherical single-domain particles can be modeled by a dipole-
dipole interaction. We have calculated single particle images based on this approximation
for several different configurations. A more detailed model which integrates dipole
moments over the surface of the tip produces similar node structures. These simulations
show that one can obtain a variety of patterns from a single-domain particle, depending
on the relative orientation between the tip and particle moments. However, with a
perpendicularly magnetized tip, such as is used to produce the data in, the simulations of
single-domain particles do not show the complicated four-component contrast observed.
Thus, these two precipitates must be multi-domain magnetic particles, while the others
are single-domain particles. Such simulations demonstrate the importance of
understanding the interplay between instrumental sensor and sample cluster magnetic
fields for meaningful particle imaging in mesoscopic dimensions.

In an unmagnetized sample, particles within this length scale can be single-
domain or multi-domain. In a field, multi-domain GaMn particles are converted to single-
domain particles; in particular, the single-domain moments are observed to preferentially
align along the three equivalent crystalline axes (<100>, <010>, <001>) of the GaAs
host after the field is removed. The behavior of ferromagnetic particles can also be
studied by continuously applying an in-plane field. For fields stronger than the tip
coercive field (~400 Oe), the tip is forced to align with the in-plane field, thus allowing
simple image interpretation. As the in-plane field is increased, the moments tend to align
with the field direction, displaying two types of motion: discontinuous reversal and
gradual rotation of the magnetization, depending on the relative orientation between the
magnetic easy axis and the applied field.

These processes can be investigated directly by imaging single particles in real
time while ramping the in-plane applied field. A large variation (about a factor of three)
in the switching field is also found among particles with approximately the same easy



axis orientation. As these particles are likely to have the same crystalline structure with
similar strain, this variation may be due to shape anisotropy. Further investigations
should reveal the magnetic anisotropy and micromagnetic behavior of these single-
domain magnets as well as their role in modifying electronic transport.

Mechanical Detection of Magnetism: Microfabricated Cantilevers

The fabrication of very delicate mechanical cantilevers combined with sensitive
displacement detection schemes has resulted in a number of remarkably powerful
experimental techniques, including scanning force microscopies, mechanically detected
magnetic resonance, and a new class of torque magnetometers. In general, the force
sensitivity of these techniques can be improved by lowering the spring constant k of the
cantilever (thereby increasing the displacement per unit force) and increasing the.
resonant frequency n0 (decreasing the necessary averaging time). Since most
semiconductors and metals have mass densities and elastic moduli within an order of
magnitude of each other, the design parameters that afford the greatest opportunities for
improvements are the physical dimensions of the cantilever. Specifically, for a
rectangular cantilever, one can achieve small k and large n0 by simultaneously
decreasing all the dimensions.

Typically, micron-scale cantilevers are fabricated from silicon, silicon oxide, or
silicon nitride. Fabricating cantilevers from the GaAs/AlxGa(1-x)As materials presents
challenges in designing new processes for the III-V chemistry. More importantly, it offers
the advantages of integration with optical devices, magnetic systems, and strain sensing
elements that utilize the piezoelectric properties of the GaAs to detect the cantilever
displacement. Cantilevers fabricated from the III-V semiconductors have usually
contained Al-rich layers (included as part of a laser structure), which simplify the
fabrication of free mechanical structures by allowing the selective etching of the GaAs
substrate out from under the Al-rich layers. During this period we have successfully
designed a process for making cantilevers from a single epilayer of GaAs grown by
molecular beam epitaxy (MBE) on an AlAs etch stop layer on a [100] GaAs single
crystal substrate. We have fabricated cantilevers 100 nm thick, comparable to the thinnest
cantilevers fabricated from silicon and much thinner than cantilevers previously
fabricated from GaAs/AlGaAs. This process allows easy access to both sides of the
cantilever by etching a window through the entire thickness of the GaAs substrate, unlike
previous GaAs/AlGaAs cantilever processes. We have characterized the resonant
frequency, quality factor (Q) and spring constant of a 100 nm thick GaAs cantilever
fabricated in this fashion.

To construct very thin cantilevers made of a single material (as opposed to
GaAs/AlGaAs layers), we use MBE to grow a 100 nm thick GaAs epilayer on a 300 nm
thick AlAs epilayer on a [100] GaAs substrate. The GaAs epilayer will ultimately form
the cantilever, and so its thickness determines that of the cantilever; the AlAs serves as an
etch stop and a sacrificial layer. The lateral shape of the cantilever is defined by optical
lithography in photoresist spun on the epilayers. In the present case, the pattern is of the
form of a window with a cantilever extending into the window. This pattern provides
protection to the cantilever against damage in later fabrication steps as well as in actual
use. This pattern is then etched into the epilayers by a CI2 reactive ion etch.

The cantilevers were mounted on a piezoelectric crystal and driven over a range of
frequencies in order to measure n0, k, and Q. Here we take Q = (Dn / n0), where Dn is
the FWHM of the cantilever response. Their displacement was measured using laser
interferometry. The response of a 135 mm long, 30 mm wide and 100 nm thick cantilever
as a function of the driving frequency at room temperature and pressure shows a resonant
frequency of 4.5 kHz and a Q of ~ 2. Note that this value is expected to increase by
several orders of magnitude in vacuum, as the lever is heavily damped under atmospheric




conditions. In addition, we have measured the absolute magnitude of the Fourier
transform of the (undriven) noise in the interferometer. The technique of measuring the
thermal noise of the cantilever has many advantages over the driving approach, in
particular the fact that the spectral weight of the thermal noise tends to select the "soft"
(small k) modes and reject the large k modes, which include the modes of the mounting
itself, whereas the response of a mode to the piezo driving force is insensitive to the
mode's k. The thermal noise gives values of n0 and Q that are consistent with the piezo-
driven measurement. Because of the cantilevers' large aspect ratio and low mass, air
damping limits the Q. The thermal noise of the same cantilever at a pressure of 250
mTorr shows that n0 has increased to 5.1 kHz and Q to ~ 9. From this value of the
resonance frequency, we find k ~ 10-4 N/m. This spring constant is smaller than for any
other cantilever of which we are aware. Given a DC displacement sensitivity of 1 nm,
this results in a DC force sensitivity of ~ 10-13 N.

We intend on exploiting the sensitivty of these microfabricated detectors to explore
the classical and low temperature quantum spin dynamics in mesoscopic quantum
magnetic spin systems grown through chemical techniques. In particular, new single
crystals of iron-based molecular magnets have been grown in a collaboration between the
physics and chemistry departments at UC-Santa Barbara. Crystals of molecules
containing 8,10, or 12 iron atoms have been grown by crystallization from solution and
characterized by x-ray diffraction and angle-resolved SQUID magnetometry. The iron
atoms within these molecules are arranged in different configurations and are
magnetically coupled to each other by superexchange through organic ligands.
Depending on the geometru of the molecule, the coupling between spins can give rise to a
variety of different ground states. For T>1.7K, there are no inter-molecular interactions in
the crystalline state, and the crystal assembly is an ensemble of identical finite spin
systems with calculable, discrete spectra. We will explore the dynamics of the molecular
magnetization in pulsed magnetic fields, measure the field-driven spin splitting, and
determine the potential for field-tuning coherent tunneling phenomena between energy-
degenerate eigenstates.
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