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Abstract

Many learning systems must confront the problem of run time after
learning being greater than run time before learning. This utility prob-
lem has been a particular focus of research in explanation-based learning
(EBL). This paper shows how the cost increase of a learned rule in an
EBL system can be analyzed by characterizing the learning process as a
sequence of transformations from a problem solving episode to a learned
rule. The analysis of how the cost changes through the transformations
can be a useful tool for revealing the sources of cost increase in the
learning system. Once all of the sources are revealed, by avoiding these
sources, the learned rule will never be expensive. That is, the cost of
the learned rule will be bounded by the problem solving. We performed
such a transformational analysis of chunking in Soar. The chunking
process has been decomposed into a sequence of transformations from
the problem solving to a chunk. By analyzing these transformations,
we have identified a set of sources which can make the output chunk
expensive.




1 Introduction

Many learning systems must confront the problem of run time after learning
being greater than run time before learning. This utility problem has been a
particular focus of research in explanation-based learning (EBL). There have
been approaches which are useful for producing cheaper rules [1, 2, 3, 4, 5, 6]
or filtering out expensive rules [2, 7, 8, 9]. However, these approaches can-
not generally guarantee that the cost of using the learned rules will always be
bounded by the cost of the problem solving from which they are learned, given
the same situation. One way of finding a solution which can guarantee such
cost boundness is to analyze all the sources of cost increase in the learning
process and then eliminate these sources. Here we propose to approach this
task by decomposing the learning process into a sequence of transformations
that go from a problem solving episode, through a sequence of intermediate
problem-solving/rule hybrids, to a learned rule. Analyses of these transforma-
tions then point out where extra cost is being added, and guide the proposal
of alternatives that do not introduce such added costs.

The focus of the analysis in this paper is chunking in Soar[10]. Soar is an
architecture that combines general problem solving abilities with a chunking
mechanism that is a variant of explanation-based learning [11]. In the context
of characterizing learning systems as a sequence of transformations, our prior
work has revealed one source of added expensiveness: in chunking (and other
EBL systems which use search control in the problem solving), eliminating
search control in learning can increase the cost of the learned rules [12]. The
critical consequence of the elimination of search control is that the learned
rules are not constrained by the path actually taken in the problem space,
and thus can perform an exponential amount of search even when the original
problem-space search was highly directed (by the control rules). This analysis
was based on one step (removal of search control) among the whole sequence
of transformations. To reveal all sources of additional cost, we need a complete
analysis of the whole sequence of transformations.

This approach is similar in spirit to [13] in its use of a transformational
analysis of the learning algorithm. However, the focus of their analysis and
resulting algorithm development was on speedup rather than on boundedness,
and on search-control-free EBL rather than on chunking.

Section 2 of this article briefly reviews chunking in Soar. Section 3 then
describes and analyzes the sequence of transformations underlying chunking.
The key results of this analysis — in addition to the identification of the trans-
formational sequence itself — are: (1) the identification of the points in the
transformations at which extra cost is added; and (2) proposed modifications
that may eliminate the identified sources of extra cost. Section 4 presents
preliminary experimental results backing up the analysis in Section 3. Finally,
Section 5 summarizes and discusses issues for future work.
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Figure 1: An example of chunking process.

2 Background

In Soar, productions comprise the domain theory for EBL [14, 15]. Each
production consists of a set of conditions and a set of actions. Conditions test
working memory for the presence or absence of patterns of tuples, where each
tuple consists of an object identifier, an attribute and a value. Actions create
preferences, each of which specifies the relative or absolute worth of a value for
an attribute of a given object. Productions in Soar propose changes to working
memory through these preferences, and do not actually make the changes
themselves. Changes to working memory are made based on a synthesis of the
preferences (by a fixed decision procedure). The cycle of production firings,
creation of preferences, and creation of working memory elements (WMEs)
underlies the problem solving.

When a situation occurs so that a unique decision cannot be made because
of either incomplete or inconsistent preferences, the system reaches an impasse.
It creates a subgoal to deal with the impasse. In the subgoal created for
the impasse, Soar tries to resolve the impasse. Whenever a supergoal object
(called a result) is created in the subgoal, a new chunk is created. The chunk
summarizes the problem solving (rule firings) that produced the result in the
subgoal.

To create chunks, Soar maintains an instantiated trace of the rules which
fired in the subgoal. The operationality criterion in chunking is that the con-
ditions in the chunk should be generated from the supergoal objects. By
extracting the part of the trace which participated in the result creation, the
system collects the supergoal (operational) elements which are connected to
the result. This process is called backtracing, and the instantiated trace is
called a backirace. It corresponds to the proof tree (or ezplanation) in EBL.
The resulting supergoal elements are variabilized and reordered by a heuristic
algorithm, and become the conditions of the chunk. The action of the chunk
is the variabilization of the result. An example of chunking is shown schemat-
ically in Figure 1. The two striped vertical bars mark the beginning and the




Rete network for one production with condition:
C1 : (<state> Aat <loc1>)
C2: (<locl> *next <loc2>) WMEs

C3: (<loc2> Ahas-gold yes) Y

when Working Memory contains ~ constant tests (J (at) ? (next) (has-gold, yes)
WI:(S17atLl)
W2 : (L1 Anext L2) alpha memory [ wt {wa,wi.ws]  [wa,we

W3 : (L1 *nextL3)
W4 : (L2 ~has-gold yes)
W5 : (L2 #next L3)
W6 : (L4 ~has-gold yes)

join on <loc1>%

(W1, W2) (W1,W3)

join on <loc2>"¢)

bete memory

complete match

Figure 2: Rete network of a rule.

end of the subgoal. The WMEs to the left of the first bar exist in the super-
goal (prior to the creation of the subgoal). The objects (WMEs) between the
two bars are internal to the subgoal. The object to the right of the second
bar is the result of the subgoal. T1, T2, T3 and T4 are traces of the rule
firings. For example, T1 records a rule firing which examined WMEs A and
B and generated a preference suggesting WME G. The highlighted rule traces
are those included in the backtrace; T2, T3, and T3 have participated in the
result creation.

The chunking process can also be characterized in a different way — instead
of simply considering it as a procedure which has problem solving episodes as
input and learned rules (chunks) as output, it can be considered as a se-
quence of transformations from problem solving episodes, through intermedi-
ate pseudo-chunks, to chunks. The cost changes through the transformations
can be estimated by analyzing each step.

Note that when we compare the cost of a problem solving episode to the
cost of a chunk, by “cost” we will mean just the match cost of all of the rules
that fired to generate the result (whether this be via multiple rules during the
initial problem solving, or via a single chunk).! Because computing match
cost is dependent on the match algorithm used, we briefly review the Rete
algorithm [16] employed in Soar.

Rete is one of the most efficient rule-match algorithms presently known.
Its efficiency stems primarily from two key optimizations: sharing and state
saving. Sharing of common conditions in a production, or across a set of pro-
ductions, reduces the number of tests performed during match. State saving
preserves the previous (partial) matches for use in the future. Figure 2 illus-
trates a Rete network for a rule. Each WME consists of an object identifier,
an attribute (indicated by an up-arrow(")), and a value. Symbols enclosed

! Actually, the cost of a problem solving episode also includes the costs of firing rules
and of making decisions. However, we will not explicitly focus on these factors here because
they drop out during the transformational process.
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Figure 3: A sequence of transformations from a problem solving to a chunk.

in angle brackets are variables. The conditions of the rule are compiled into
a data flow network. The network has two parts. The alpha part performs
constant tests on WMEs, such as tests for at and yes. The output of these
tests are stored in alpha memories. Each alpha memory contains the set of
WMEs which pass all of the constant tests of a condition (or more than one,
if it is shared). The beta part of the network contains join nodes and beta
memories.? Join nodes perform consistency tests on variables shared between
conditions, such as <locl>, which is shared between C1 and C2. Beta memo-
ries store partial instantiations of productions, that is, instantiations of initial
subsequences of conditions. The partial instantiations are called tokens. Be-
cause match time per token is known to be approximately constant in Rete
[17, 6] — and because counting tokens yields a measure that is independent
of machines, optimizations, and implementation details — we will follow the
standard practice established within the match-algorithm community and use
the number of tokens, rather than time, as our comparative measure of match
cost. ‘

3 Transforming problem solving to a chunk

Figure 3 shows the sequence of transformations that convert a problem solv-

2There also are negative nodes, into which negative conditions are compiled. A negative
node passes a partial instantiation when there are no consistent WMEs.




R1) Given WMEs

1 (goal <gi> Asuper-goal <g2>) W1 : (G2 Asuper-goal G1)

2 (goal <g2> Aimpasse-object <q>) W2 : (G1 Aimpasse-object Q1)

-> W3 :(G1 Aimpasse-object Q2)

(<g1> Aeval-operator <o> CAND) W4 : (Q1 Aransportation car)

(<o0> Aevaluate <g>) WS : (Q2 Mransportation train)

; if <g2> is a subgoal of <g1> because of W6 : (Q2 “transportation car)

; an impasse-object <g>, then create W7 : (Q2 Aransportation bus)

: a candidate evaluation-operator <o> W8 : (Q1 Apriority 1)

; for evaluating <q> W9 : (Q2 Apriority 2)
WI10: (Q1 ~goto L1)

R2) W11: (Q1 ~goto L2)

2 (goal <g> “eval-operator<o> CAND) W12: (Q2 Agoto L3)

2 (<o> “evaluate <g>) W13: (Q2 ~goto L4)

1 (<q> *priority 1) W14: (L1 “next-to goal)

-> W1S5: (L2 “next-to goal)

(<g> "eval-operator <o> BEST)

; if <o> is a candidate evaluation-operator Created WMEs and preferences during

; for evaluating <g>, and <g> has priority 1 problem solving

s then try to evaluate <o> first by making it P16: (G2 Aeval-operator 01 CAND)

; the best alternative among the candidates. P17: (G2 *eval-operator 02 CAND)
W18: (01 Aevaluate Q1)

R3) W19: (02 #evaluate Q2)

1 (goal <g> Aeval-operator <0>) P20 : (G2 ~eval-operator O1 BEST)

1 (<o> *evaluate <q2>) W21: (G1 *eval-operator O1)

1 (<q2> Atransportation <x>) W22: (01 "evaluated-as success)

2 (<q2> ~goto <I1>) P23: (G1 ~object Q1 BEST)

2 (<11> *next-to goal)

-

(<o> "evaluated-as success)

; if <0> is the evaluation-operator for evaluating

3 <92> and <q2> goes to a position next to the goal

; by some transportation, then <o> is evaluated as success

R4)

S (goal <g1> Aeval-operator <0>)

S (<0> evaluate <g>)

1 (goal <g1> Asuper-goal <g3>)

1 (<o0> ~evaluated-as success)

->

(<g2> *object <q> BEST)

; if <0> is the evaluation-operator for evaluating
; <q> and <o> is evaluated as success,

; resolve the impasse by making <g> best

Figure 4: An example Soar task.

ing episode into a chunk. Each transformation (except for the last) creates an
intermediate structure, called a pseudo-chunk. As the sequence progresses, the
pseudo-chunks become more like chunks and less like problem solving. Each
pseudo-chunk can itself be matched and fired (given an appropriate interpreter)
and thus independently create the result. The cost of a pseudo-chunk can be
determined by counting the number of tokens generated during the match to
produce the result. By analyzing how the transformations alter these costs,
the sources of added expensiveness are revealed.

The following subsections discuss each transformation shown in Figure 3,
including their resulting (pseudo-)chunks and their effects on cost. These
discussions are presented in the context of a simple illustrative task — that
of evaluating which mode of transportation is best in particular situations
(Figure 4). There are four rules and fifteen WMEs to begin with in this
task. In the figure, a number in front of a rule condition denotes the number
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%-«Mv : Search-control rule
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o : Sharing of tokens
---------- : Architectural activity

Figure 5: Problem solving episode excluding unnecessary rule firings. This
structure embodies PS-chunk.

of tokens generated by in the problem solving episode shown in Figure 5 by
joining the tokens passed on from the previous conditions with the WMEs
in the condition’s alpha memory. Figure 5 shows how the sequence of rule
firings during the problem solving episode creates the result (G1 “object Q1
BEST)3, given the rules and the WMEs. A connection from one rule to another
rule through a decision means that preferences created by the former rule
participated in the decision for the WME which is matched to a condition of
the latter rule. The trivial decision steps — creation of one candidate and
the following creation of a WME from the candidate — are not shown for
brevity. Actual problem solving normally includes other rule firings which are
not linked to the result creation; however, those are omitted here.

3.1 Filtering out unnecessary rule firings (= PS-chunk)

As a first step toward producing a chunk, we can filter out the unnecessary
rule firings which did not participate in the result creation. For the given
example, this transformation eliminates all other rule firings, if there were
any, beyond those shown in Figure 5. The resulting pseudo-chunk — called
a PS-chunk (Problem-Solving-like chunk) — looks very similar to the original
problem solving, aside from the missing unnecessary parts.* However, its

3This preference means that Q1 is the best alternative among the candidate values, given
the identifier G1 and the attribute object.

“4In addition, architectural actions that occurred during the problem solving episode are
replaced in the PS-rule by dummy rules that have the same effect, much in the way that
architectural axioms are used in Prodigy/EBL[2).




R1) R3) R4)
1 (goal <g1> Asuper-goal <g2>) 2 (goal <g> Aeval-operator <0>) S (goal <gl> Aeval-operator <0>)

2 (goal <g2> Aimpasse-object <g>) 2 (<o> Aevaluate <q2>) S (<0> Aevaluate <g>)

—> 4 (<q2> Atransportation <x>) 2 (goal <gl> ~super-goal <g3>)
(<g!> “eval-operator <0> CAND) 4 (<q2> Agoto <11>) 1 (<0> Aevaluated-as success)
(<o>“evaluate <g>) 2 (<l1> Anext-to goal) ->

- (<g2> “object <q> BEST)

(<o> "evaluated-as success)

w2, W3 P16, P17

W4 .. W7 W18, W19 Resutt

w23
W10 W13
oo

W14, Wi5

(-

Figure 6: E-chunk: results from eliminating search control in the PS-chunk.

processing differs significantly from the initial problem solving by being closed
off from intermediate WMEs generated outside of this structure.® For example,
the link between R3 and R4 through W22 means that no other WMEs except
for those created by R3 are matched to the condition of R4. The only parts
of a PS-chunk that are exposed to the full set of WMEs are the conditions
matched to the supergoal elements, and the result creation. The key difference
between a PS-chunk and a normal chunk is that matching a PS-chunk requires
replaying (part of) problem solving, while matching a normal chunk requires
just one rule match. Either can create the result in a similar circumstance.

The cost (number of tokens) of a PS-chunk is bounded by the cost of
problem solving. If there were unnecessary rule firings in the problem solving
(as is usually the case), the cost of a PS-chunk is strictly less than the cost of
the problem solving. If not, the cost is the same as the problem solving.

3.2 Removing search control (= E-chunk)

PS-chunks contain all rules involved in the result creation. However, chunk-
ing employs only traces from task-definition rules; that is, rules that directly
propose values of WMEs. Search-control rules, as distinguished from task-
definition rules, suggest the relative worth of the proposed values. The search-
control rules are missing in chunking [18, 10] (and other EBL systems [19])
based on the assumption that they only affect the efficiency, not the correct-
ness of learned rules. This omission is intended to increase the generality of
the learned rules — reducing the number of conditions by leaving out search
control rules means less restriction on the test of applicability of the rules,

51t is not different in how it uses such optimizations as sharing and state saving; for
example, the tokens from the first two conditions of R4 are shared with the tokens from the
first two conditions of R3.




RD) R3) R4)

1 (goal <g2> Asuper-goal <gl>) 2 (goal <g2> Aeval-operator <ol>) S (goal <g2> Aeval-operator <01>)
2 (goal <g1> Aimpasse-object <q1>) 2 (<01> Aevaluate <q1>) S (<o01> Aevaluate <q1>)

- 4 (<q1> Atransportation <c1>) 1 (goal <g2> Asuper-goal <g1>)
(<gl> Aeval-operator <o1> CAND) 4 (<q1> Agoto <11>) 1 (<ol1> Aevaluated-as success)
(<01> Aevaluate <q1>) 2 (<I1> Anext-to goal) —>

>

(<g> ~object <q1> BEST)
(<01> Aevaluated-as success)

Figure 7: I-chunk: created by constraining variables (by instantiations) in an
E-chunk. The structure remains the same as in the E-chunk (Figure 6) for
this example.

and thus implies increased generality. An E-chunk (Explanation-structure-like
chunk) is the intermediate structure which is formed by removing search con-
trol from a PS-chunk. Figure 6 shows the E-chunk created from the PS-chunk
in Figure 5. The search-control rule R2 is gone, and all proposed candidates
become WMEs without filtering through the search control in the decision pro-
cess. This structure can be mapped onto the normal backtrace in chunking.
The only difference between an E-chunk and a backtrace is that a backtrace
consists of instantiations while an E-chunk consists of rules. By replacing the
rules in the trace, a backtrace can be directly mapped to an E-chunk. An
E-chunk is similar to an EBL explanation structure.

The consequence of eliminating search control is that the E-chunk is not
constrained by the path actually taken in the problem space, and thus can
perform an exponential amount of search even when the original problem-
space search was highly directed (by the control rules), as analyzed in [12]. In
the above example, without constraining eval-operator to the best candidate —
which has priority 1 — the number of tokens in the match of rule R3 increases
from 7 to 14. Overall, the total number of tokens increases from 17 to 20.
This is thus one of the star-marked (i.e., cost increasing) transformations in
Figure 3.

One promising way of avoiding this problem is to incorporate search control
in chunking[12]. By incorporating search control in the explanation structure,

the match process for the learned rule can focus on the path that was actually
followed.

3.3 Constraining variables by instantiations(=I-chunk)

The variabilization step in chunking is performed by examining the back-
trace (explanation). All constants are left alone; they are never replaced by
variables. All object identifiers in the instantiations are replaced by variables;
and in particular, all occurrences of the same identifiers are replaced by the
same variable. Since E-chunks consist of rules rather than instantiations, we
need to model chunking’s variabilization step as the strengthening of con-
straints on the match rather than as the weakening of them. If a variable
is instantiated as a constant, it is replaced by that constant. If a variable
is instantiated by an identifier, it remains as a variable, but may possibly




RI1) R3) R4)
1 (goal <g2> Asuper-goal <g1>) 2(R1) S (R1)
2 (goal <g1> Aimpasse-object <q1>) 2 (R1) S @RI
4 (<ql1> Mransportation <c1>) 1 (goal <g2> Asuper-goal <gl1>)
4 (<ql> Agoto <11>) 2(R3)
2 (<I1> "next-to goal) ->
(<g> “object <q1> BEST)
W2, W3
O RI1
w1
W4 . W7 R4 Result
0000 -,
W10.W13
anon B
Wi4, W15
Ok

Figure 8: U-chunk: results from eliminating intermediate rule firings in the
I-chunk.

undergo a name change; in particular, all occurrences of variables which are
instantiated by the same identifier are replaced by the same variable. For ex-
ample, the variables in Figure 6 can be constrained as shown in Figure 7. The
pseudo-chunk generated by this step is called an I-chunk (instantiation-based
chunk).

This transformation can overspecialize learned rules when distinct variables
in the original rules accidentally happen to match the same identifier; for
example, although variable <g2> in Rl and variable <g3> in R4 (Figure 6)
is instantiated by same the identifier G1, and changed to the same variable
<gl>, they can correctly be generalized as different variables. However, from
the perspective of cost, this transformation doesn’t increase the number of
tokens. The number of tokens generated should remain the same, or be reduced
by the introduced constraints.

3.4 Eliminating intermediate rule firings (= U-chunk)

This step unifies the separate rules in an I-chunk into a single rule, called
a U-chunk (unified chunk). Figure 8 shows the result of unifying the example
problem I-chunk into the corresponding U-chunk. Although R1, R3, and R4
still have their own identifiable conditions in the U-chunk, there are now no
intermediate rule firings. The boundaries between the rules are eliminated by
removing the intermediate processes of rule firing and WME creation. In lieu
of these processes, the instantiations generated by matching the earlier rules
in the firing sequence (i.e., the tokens produced by their final conditions) are
passed directly to the match of the later rules. In effect, this step replaces the
intermediate WMEs with the instantiations which created the WMEs. For
example, one of R4’s conditions receives the instantiations of R3 directly as
intermediate tokens, rather than receiving WMEs created from the instantia-
tions. Thus, R1, R3, and R4 are no longer (separate) rules.
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Rule WMESs Rule WMEs

(<a> *x <b>) (17x3)(1~x4) E::;: ::; ::23 m
E-<>b> Ay <c>) G%y 5)1 @ry3) (<a3> Ax3 <ad>)

(<a> "z <c>) 3 <> 4 (<an> A <antls) X
3 E;>al> Ay <an+1>)

(2) An example case of increased tokens (b) A potential worst case for U-match

Figure 9: Number of tokens can increase in a U-chunk.

To match U-chunks, an extension is required to the Rete algorithm. The
traditional form of the algorithm, as shown in Figure 2, requires a linear match
network, in the sense that a total ordering must be imposed on the conditions
to be matched; such as C1, then C2, and then C3. In (linear) Rete, each join
node checks the consistency of a token (a partial instantiation) and a WME,
with each token itself being a sequence of WMEs, each of which matches
one condition. However, U-chunks require the ability to perform non-linear
matches, in which conditions are matched hierarchically via join nodes that
compare pairs of tokens, rather than just a single token and a WME. They
also require the ability to create hierarchically structured tokens (when pairs
of incoming tokens are consistent); that is, a token must now be a sequence of
WMEs or tokens (instantiations of a rule).

One benefit of going with U-chunks, rather than I-chunks, is that they
enable equality tests across sub-structures which previously represented sepa-
rate rules. For example, we can now test equality between the instantiations
of <ql> in R1 and R3. However, cost problems are introduced in going to
U-chunks because the number of instantiations of a rule can be greater than
the number of WMEs created from those instantiations. For example, given
the rule and WMEs in Figure 9-(a), two instantiations — (1 *x 3) (3 "y 5) and
(1 *x 4) (4 My 5) — are created. Because these two instantiations generate
the same bindings for variables <a> and <c>, only one tuple (WME) is gen-
erated in the problem solving.® In this case, the number of tokens is increased
after we replace the WMEs with the instantiations. This really happens in our
example. While the two instantiations of R3 are collapsed into one WME and
supplied to the fourth condition of R4 in the I-chunk, the two instantiations
are directly used in the U-chunk, and create one more token. A worst case
can arise when the working memory is structured as in Figure 9-(b). While
the number of instantiations is exponential in the number of conditions, the
number of WMEs is only one.

Our proposed solution to this problem is to preprocess instantiations before
they are used so that the number of tokens passed from a substructure of a
U-chunk is no greater than the number of WMEs passed in the corresponding

®Working memory is a set in Soar (and other Ops-like languages), and does not include
duplicate elements.
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Figure 10: Chunk: results from linearizing the U-chunk.

(al ~x b1) (al Ax b2) (al ~x b3) (al ~x b4)
(b1 Ay c1) (b2 Ay c2) (b3 Ay c3) (b4 Ay c4)
(al #zd1) (al Az d2)(al Azd3)
(d1 Muel) (d2 Mue2) (d3 Auel)

(<a> *x <b>) (<a> ~x <b>) (<a> "z <d>) (<a>*z <d>)

(<b> Ay <c>)
(<a> Az <d>)
3\ (<d>*u<e>)
Linearize
-

R1) R2)
(<a>Ax <b>) (<d>*w <a>)
(<a> Ay <b>) (<a> M <bl>)
-> (<a> At <b2>)
(<a> At <b>) (<bl>Az 1)
(<b2> 72 2)
->
action

(b) Case 2 : loss of sharing

Figure 11: Linearization can increase the number of tokens.

I-chunk. This could potentially be done either be grouping instantiations that
generate the same WME or by selecting one of them as a representative.

3.5 Linearizing (= Chunk)

A U-chunk can be linearized to become a chunk. The hierarchical structure
of U-chunks is flattened into a single layer, and the conditions are totally
ordered. For example, the non-linear structure in Figure 8 can be flattened
to the structure in Figure 10. After the flattening, chunking uses a heuristic
condition-ordering algorithm to further optimize the resulting match.

The linearization transformation turns out to introduce three ways in which
match costs can increase. The first way arises directly from the flattening
of the U-chunk’s hierarchical structure. In a U-chunk, the conditions in a
sub-hierarchy (e.g. the conditions in R1) are matched independently from the
other parts of the structure before its created instantiations are joined with the
others. By combining these sub-hierarchies together — through linearization
— some of the previously independent conditions get joined with other parts
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” Number of tokens

Problem Solving 52
PS-chunk 42
E-chunk 108
I-chunk 108
U-chunk 198
L-chunk 215

Table 1: Number of tokens of each step in a Grid Task.

of the structure before they finish their sub-hierarchy match. This change can
increase the number of tokens. For example, after linearizing the U-chunk
in Figure 11-(a), the number of tokens increases no matter what condition
ordering is used. In the worst case, the increase can be exponential in the
number of hierarchical levels in the U-chunk.

The second way arises from the impact flattening can have on sharing.
As long as the implementation of Rete cannot capture the sharing from the
non-linear structure (of the U-chunk), the number of tokens can increase. For
example, in Figure 11-(b), sharing of sub-tokens from R1 for C2 and C3 in R2
cannot be realized in a linearized structure.

The third way arises because the heuristic condition-ordering algorithm
cannot guarantee optimal orderings. Whenever this algorithm creates a non-
optimal ordering, additional cost may be occurred.

Our proposed solution to this set of problems is to eliminate the lineariza-
tion step. By keeping the hierarchical structure — that is, by replacing chunks
with U-chunks — all three causes of cost increase can be avoided. The key
thing that this requires is an efficient generalization of Rete for non-linear
match.

4 Experimental Results

In order to supplement the abstract analysis provided in the previous sec-
tion with experimental evidence, we have implemented a set of learning algo-
rithms that correspond to the set of initial subsequences of the overall trans-
formation sequence; that is, each learning algorithm in the set starts with the
problem solving episode and generates a distinct type of (pseudo-)chunk. We
have also implemented the extensions to the Rete algorithm necessary to al-
low all of the types of pseudo-chunks to match and fire. At each stage from
problem solving to chunks, match cost is evaluated by counting the number of
tokens required during the match to generate the result.

So far, the resulting experimental system has been applied to a simple Grid-
task problem[6] which creates one subgoal to break a tie (impasse) among the
candidate operators and creates a chunk. The results of this experiment are
shown in table 1. The pattern of cost increases matches the expectations
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generated from the earlier analysis in that a transformation led to increased
cost on this task if and only if it was identified by the analysis as a cost
increasing transformation.

5 Summary and Future Work

We have performed an analysis of the chunking process as a sequence of trans-
formations from a problem solving episode to a chunk. By analyzing these
transformations, we have identified a set of sources which can make the out-
put chunk expensive. We conjecture there are no other sources of cost increase,
but cannot yet prove this.

Based on the above analysis and the proposed potential solutions to the
sources of expensiveness, we are currently working towards the specification
and implementation of a variant of chunking which does not introduce any of
these sources. If it works, the cost of using a chunk should always be bounded
by the cost of the corresponding problem solving.

A similar transformational analysis can also be performed for EBL. As with
the analysis of chunking, this analysis should identify sources of expensiveness
in EBL, and help guide the design of safer EBL mechanisms. In addition,
a parallel analysis of EBL and chunking should further clarify the relation-
ship between the two. An earlier comparison related the four basic structural
components (goal concept, domain theory, training example, operationality
criterion) of the two systems[11]; however, a transformational analysis should
allow us to go beyond this to a deeper analysis of the processes underlying
the two algorithms. A preliminary analysis of EBL shows that the sequence of
transformations underlying EBL is very similar to that in chunking, except for
the regression process, where chunking uses instantiations. In addition, EBL
systems seem to suffer from cost problems similar to those that show up for
chunking.
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Abstract

In past work, chunking in Soar has been analyzed as a variant of
explanation-based learning. The components and processes underly-
ing EBL have been mapped to their corresponding components and
processes in chunking. The cost and generality of the resulting rules
have also been compared. Here we extend that work by analyzing an
implementation of EBL within Soar as a sequence of transformations
from a problem solving episode to a learned rule. The transforma-
tions in this sequence, along with their intermediate products, are
then evaluated for their effects on the generality and expensiveness of
the rules learned, and compared with the results of a similar analysis
previously performed for chunking. The analysis reveals that EBL, as
implemented for Soar, yields the same sources of expensiveness and
overgenerality as does chunking — and that, in fact, these problems
stem more from other aspects of Soar than from the details of either
learning algorithm. (However, some of these aspects may appear in
other AI architectures, even though the analysis is based on Soar.)
Moreover this analysis reveals that the differences between EBL and
chunking are localized within a single transformation, where chunking
overspecializes with respect to EBL.




1 Introduction

Explanation-based learning (EBL)[1, 2] can improve the performance of prob-
lem solving systems by learning new rules. Given the four informational
components (the goal concept, the training example, the domain theory, and
the operationality criterion), EBL generates a new rule through three steps:
(1) use the domain theory to prove that the training example is an instance
of the goal concept; (2) create an explanation structure from the proof, fil-
tering out irrelevant rules and facts; and (3) regress the goal concept through
the explanation structure (until it reaches operational predicates), and create
general conditions under which the explanation structure is valid.

In past work, chunking in Soar[3] has been analyzed as a variant of EBL.
The four components and the three steps of EBL have been mapped to the
components of Soar and to the sub-processes of chunking, respectively [4].
Also, the cost and the generality of the learned rules have been compared [5].
We have recently extended this earlier work by implementing EBL within
Soar (Version 6) — to yield EBL/Soar — and then analyzing this imple-
mentation as a sequence of transformations from a problem solving episode
to a learned rule. Each transformation (except for the last) yields an exe-
cutable intermediate structure called a pseudo-rule, which can be evaluated
with respect to both its generality and cost, and thus directly compared in
terms of generality and cost against both the original problem solving and
the ultimate EBL-rule.

The results of this analysis are then compared with a similar transfor-
mational analysis of chunking. This analysis comparison reveals that EBL,
as implemented for Soar, yields the same sources of expensiveness and over-
generality as does chunking — and that, in fact, these problems stem more
from other aspects of Soar than from the details of either learning algorithm.
This comparison also reveals that the differences between EBL and chunking
are localized within a single transformation, where chunking overspecializes
with respect to EBL. A set of modifications to Soar that have recently been
proposed to eliminate the possibility of a chunk being more expensive than
the problem solving episode from which it was learned, thus look like they
may also be sufficient to provide the same guarantees for EBL.

2 Chunking and EBL/Soar

In Soar, productions comprise the domain theory for EBL. Each production
consists of a set of conditions and a set of actions. Conditions test working




memory for the presence or absence of patterns of tuples, where each tu-
ple consists of an object identifier, an attribute and a value. Actions create
preferences, which specify the relative or absolute worth of values for at-
tributes of objects. Productions in Soar propose changes to working memory
through these preferences, but do not actually make the changes themselves.
Changes to working memory are based on a synthesis of the preferences by
a fixed decision procedure. When a situation occurs in which a unique deci-
sion cannot be made because of either incomplete or inconsistent preferences,
Soar reaches an impasse, and creates a subgoal in which it tries to resolve the
impasse. Whenever a supergoal object (called a result) is created in the sub-
goal, chunking creates a new rule (called a chunk). The chunk summarizes
the problem solving (rule firings) that produced the result. EBL/Soar can
use the same problem solving episode as input for creating a new rule. Its
operationality criterion is that the conditions should be generated from the
supergoal objects. The training ezample is the supergoal situation. The goal
concept is simply the result.

To assist chunking, Soar maintains an instantiated trace of the rules which
fired in the subgoal. By extracting the part of the trace which participated
in the result creation, chunking collects the supergoal (operational) elements
which are connected to the result. This process is called backtracing, and
the instantiated trace is called a backtrace. This backtrace can act as the
proof tree (or explanation) in EBL/Soar. Given the backtrace, chunking
variabilizes and reorders the resulting supergoal elements, and creates the
conditions of the chunk. The action of the chunk is the variabilization of
the result. Given the backtrace (explanation), EBL/Soar can construct an
explanation structure by replacing the instantiations with the general rules.
Application of the regression process to the explanation structure can yield
a set of general conditions under which the explanation structure is valid.

The cup domain, a typical illustrative EBL task, can be represented by
the Soar rules shown in Figure 1-(a). The training example (i.e., the super-
goal situation) is shown in Figure 1-(b), as the WMEs that existed before the
subgoal process. Each WME is represented by a tuple that contains three
items: object identifier, attribute (up-arrow(”) indicates attribute name),
and value. Symbols enclosed in angle brackets are variables. R1 can create
a new problem-space named “cup” and a new state, given the lack of infor-
mation in the supergoal situation about which object is a cup. In R2, R3,
and R4, the training example is accessed through the attribute super-state
which links the cup problem-space state and the supergoal state.
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Figure 1: Cup domain as a Soar task.

3 Transforming problem solving to a rule

Figure 2-(a) shows the two sequences of transformations that represent
chunking and EBL/Soar. (The chunking part is adapted from [6]). Each
transformation (except for the last) creates an intermediate structure which
is called a pseudo-chunk in chunking and pseudo-rule in EBL/Soar. As the
sequences progress, the pseudo-chunks (or pseudo-rules) become more like
chunks (or EBL/Soar rules) and less like problem solving. Each pseudo-
chunk (or pseudo-rule) can itself be matched and fired (given an appropriate
interpreter) and thus independently create the result. By comparing the two
sequences, we can clarify the relationship between the two systems. Also, by
analyzing how the transformations alter cost and generality, a set of sources
of added expensiveness and changes in generality can be contrasted.

Note that when we compare the cost of a problem solving episode to the
cost of a (pseudo-) rule, by “cost” we will mean just the match cost of all of
the rules that fired to generate the result (whether this be via multiple rules
during the initial problem solving, or via a single learned rule).! Soar employs
Rete, one of the most efficient rule-match algorithms presently known, as the
match algorithm. Its efficiency stems primarily from two key optimizations:
sharing and state saving. Sharing of common conditions in a production, or
across a set of productions, reduces the number of tests performed during

The total cost of a problem solving episode also includes the costs of firing rules and
of making decisions. However, we will not explicitly focus on these factors here because
they drop out during the transformational process.
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Figure 2: The transformational sequences underlying chunking and

EBL/Soar.

match. State saving preserves the previous (partial) matches for use in the
future. A partial instantiation of a rule, also called a token, is a consistent
binding of variables in a subset of the conditions. Because match time per
token is known to be approximately constant in Rete[7, 8], we use the number
of tokens as a tool for measuring the complexity.?

The following subsections analyze the transformations underlying EBL/Soar,
along with their resulting (pseudo-) rules and their effects on cost and gen-
erality. This analysis is then compared with the results from analyzing the
corresponding transformations and intermediate results in chunking. Exam-
ples are taken from the cup domain (Figure 1).

3.1 Filtering out unnecessary rule firings (=PS-rule)

The Problem Solving node in Figure 2 represents the problem solving
episode in Soar. Its generation via problem solving corresponds to the EBL
step of “using the domain theory to prove that the training example is an
instance of the goal concept”. The first transformation applies to this episode,
and filters out any rule firings which did not participate in creating the result.
In the cup example, this transformation eliminates all other rule firings, if
there were any, beyond those shown in Figure 3. The resulting pseudo-
rule — called a PS-rule (Problem-Solving-like rule) — looks very similar

2Counting tokens is the standard practice within the match-algorithm community be-
cause it is independent of machines, optimizations, and implementation details.
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Figure 3: Problem solving episode excluding unnecessary rule firings. This
structure embodies both a PS-rule and a PS-chunk.

to the original problem solving episode, aside from the missing unnecessary
parts. Also, its implementation incorporates the same optimizations that
are used in the original problem solving; for example, the tokens from the
first four conditions of R3 and R4 are still shared with the tokens from the
first four conditions of R2 in the match network for the PS-chunk. However,
its execution differs significantly from the initial problem solving episode in
being closed off from intermediate WMEs generated outside of this structure.
For example, the link between R2 and R5 through W23 means that no other
WME:s except for those created by R2 are matched to the condition of RS5.
The only parts of a PS-rule that are exposed to the full set of WMEs are the
conditions matched to the supergoal elements. The key difference between a
PS-rule and a EBL rule is that matching a PS-rule requires replaying (part
of) problem solving, while matching a EBL rule requires just one rule match.
Either can create the result in a similar circumstance. PS-chunks are the
same as PS-rules. As a first step, chunking also filters out unnecessary rule
firings in the given problem solving.

In Soar, some problem solving activities do not involve rule firings. For
example, the acts of signaling that an impasse has occurred and creating a
subgoal are performed by the architecture itself, not by the firing of rules.
Ignoring these activities can leave holes in the backtrace. So Soar implicitly
provides two architectural axioms that model these architectural actions,
much as in [9]. First, if a (architecture created) WME is obviously based
on a supergoal object, a dummy instantiation that links them is created and
added to the backtrace. Second, if it is intractable to compute the linkage
to supergoal objects, the backtrace simply ignores the architectural WME
— just as if it had been created by a rule with no conditions. This may
yield overgeneralization, but in return it helps maintain tractability. The use
of these architectural axioms is driven by the nature of Soar’s architectural




actions, and is independent of whether learning occurs via chunking or EBL.
Thus PS-rules and PS-chunks share the possible source of overgenerality.

Because PS-rules are created by filtering out unnecessary rules in problem
solving, and their implementation preserves match optimizations, the cost
(number of tokens) of a PS-rule (and a PS-chunk) is bounded by the cost of
problem solving. If there were unnecessary rule firings in the problem solving
(as is usually the case), the cost of a PS-rule is strictly less than the cost of
the corresponding problem solving. If not, the cost is identical.

3.2 Removing search control (= E-rule)

PS-rules incorporate all rules which are linked to the result creation. That is,
they include not only task-definition rules (rules that directly propose values
of WMEs), but also search-control rules (rules that suggest the relative worth
of the proposed values). However, in archetypical EBL systems implemented
for Prolog-like languages, the problem solving does not employ search-control
rules. Even in Prodigy/EBL, where the problem solving involves search con-
trol, the explanation ignores search control rules [10].

An E-rule (Explanation-structure-like rule) is the intermediate structure
which is formed by removing search control (if there is any) from a PS-rule.
Because no search control is used in the cup domain, the structure of the
E-rule is the same as the PS-rule shown in Figure 3. The E-rule acts as an
EBL explanation structure.

The search-control rules are also missing in chunking[11, 3], based on the
assumption that they only affect efficiency, and not correctness of learned
rules. The intended purpose of this omission is to increase the generality of
the learned rules, by reducing the number of conditions incorporated into
learned rules. Given that the PS-rule is the same as the PS-chunk, and both
are transformed in the same way, the E-chunk is the same as the E-rule.

Unfortunately, the consequence of eliminating search control (if there was
any) is that the E-rule is not constrained by the path actually taken in
the problem space, and thus can perform an exponential amount of search
even when the original problem-space search was highly directed (by the
control rules), as analyzed in [12]. One possible way of avoiding the problem
is to incorporate search control into the ezplanation structure, so that the
match process for the learned rule focuses on only the path that was actually
followed. This can specialize the learned rule, but in return it enables the
rule’s cost to remain bounded by the cost of the original problem solving [12].
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Figure 4: (a) R-rule: created by regressing the E-rule; (b) I-chunk: created
by constraining variables by instantiations. The structure remains the same
as in the E-rule (E-chunk) for this example.

3.3 Regress (=R-rule)

We can apply the regression process of EBL [13] to the E-rule. Replacing the
variable names with unique names and then unifying each connection between
an action and a condition can create a generalized explanation. EBL/Soar
also needs to introduce some additional constraints on variable names in or-
der to produce legal Soar rules. For example, since one goal cannot have
more than a single supergoal, allowing multiple variable names for the super-
goal leads to superfluous — i.e., unusable — generality, while also possibly
leading to legality problems. The R-rule (regressed rule) resulting from the
combination of regression and these additional variable constraints is shown
in Figure 4-(a). Here, the structure remains the same as in the E-rule.

As shown by the divergence in Figure 2, chunking performs a different
transformation here. The variabilization step in chunking is performed by
examining the backtrace (explanation) instead of the explanation structure.
All constants are left alone; they are never replaced by variables. All object
identifiers in the instantiations are replaced by variables; and in particular, all
occurrences of the same identifiers are replaced by the same variable. Since
E-chunks consist of rules rather than instantiations, we model chunking’s
variabilization step here as a strengthening of constraints on the explanation
structure rather than as a weakening of constraints on the explanation. In
particular, if a variable is instantiated as a constant, it is replaced by that




constant; and if a variable is instantiated by an identifier, it remains as a vari-
able, though possibly with a name change (all occurrences of variables which
are instantiated by the same identifier are replaced by the same variable).
For example, the variables in the E-chunk can be constrained as shown in
Figure 4-(b). The pseudo-chunk generated by this step is called an I-chunk
(instantiation-based chunk). One advantage of this form of instantiation-
based constraining over regression (in Soar) is that it naturally introduces
the required architectural constraints. For example, the value field of the
second condition of R1 and the second condition of R5 are bound to the
same identifier G1, and are replaced by the same variable. As long as the
instantiations reflect the architectural constraints, the I-chunk automatically
preserves them.

However, an I-chunk can be overspecialized when distinct variables in the
original rules accidentally happen to match the same identifier; for exam-
ple, although variable <pr> in R2 and variable <pr> in R3 (Figure 1) are
instantiated by the same identifier Relation-2, and changed to the same vari-
able <p2>, they can correctly be generalized as different variables, as in
Figure 4-(a).2

With respect to cost, regression doesn’t increase the-number of tokens.
The number of tokens should remain the same, or be reduced by the extra
constraints. I-chunk creation also does not increase cost.

3.4 Eliminating intermediate rule firings (= U-rule)

This step unifies the separate rules in a R-chunk into a single rule, called
a U-rule (unified rule). Figure 5 shows the result of unifying the R-rule in
Figure 4-(a) into the corresponding U-rule. Although R1-RS5 still have their
own identifiable conditions in the U-rule, there are now no intermediate rule
firings. The boundaries between the rules are eliminated by removing the
intermediate processes of rule firing and WME creation and testing. In lieu
of these processes, the instantiations generated by matching the earlier rules
in the firing sequence (i.e., the tokens produced by their final conditions) are
passed directly to the match of the later rules.? In effect, this replaces the
intermediate WMEs with the instantiations which created the WMEs. For
example, one of R5’s conditions receives the instantiations of R2 directly as

3Regression maintains relational tests among the variables bound to the constant, where
chunking explicitly replace them by constants. The current implementation of EBL/Soar
only allows inequality tests, but will be extended to cover the full set of relational tests.

4In addition, all variable tests performed on these intermediate WMEs are transformed
into “cross-sub-rule” tests that can be performed on variables in the operational (i.e.,
fringe) conditions.
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Figure 5: U-rule and U-chunk: created by eliminating intermediate rule fir-
ings in the R-rule and I-chunk respectively.

intermediate tokens, rather than receiving WMEs created from the instanti-
ations. Thus, R1-R5 are no longer (separate) rules.> The U-rule corresponds
to a U-chunk, which is an I-chunk that has been unified as a single rule firing.

Cost problems may be introduced in going to U-rules (and U-chunks),
because the number of instantiations of a rule can be greater than the number
of WMESs created from those instantiations, as explained in [6]. For example,
if object O1 has one more handle represented by two more WMEs; (Relation-
1 “part Handle-2) and (Handle-2 “isa handle), two instantiations of R2 (in
Figure 4-(a)) are created instead of one. Because these two instantiations
generate the same bindings for variables <s1> and <ol>, only one tuple
(WME) is generated in the problem solving (working memory is a set in
Soar and other Ops-like languages). In this case, the number of tokens is
increased after the WMEs are replaced with the instantiations.

5To match U-rules, an extension is required to the Rete algorithm. The traditional
form of the algorithm requires a linear match network, in the sense that a total ordering
must be imposed on the conditions to be matched. However, U-rules require the ability
to perform non-linear matches, in which conditions are matched hierarchically. They also
require the ability to create hierarchically structured tokens.
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Figure 6: EBL-rule (U-chunk): results from linearizing the U-rule (U-chunk).

The solution previously proposed for this problem in chunking can be
adopted here; preprocessing instantiations before they are used[6]. By group-
ing instantiations that generate the same WME, or by selecting one of them
as a representative, the number of tokens passed from a substructure of a
U-rule may be no greater than the number of WMEs passed in the corre-
sponding R-rule.

3.5 Linearizing (= EBL rule)

A U-rule can be linearized to become an EBL-rule. The hierarchical
structure of U-rules is flattened into a single layer, and the conditions are
totally ordered. For example, the hierarchical structure in Figure 5 can be
flattened to the structure in Figure 6. The U-chunk can also be flattened
to yield a chunk. After flattening, EBL/Soar and chunking use a heuristic
condition-ordering algorithm to further optimize the resulting match.

Unfortunately, linearization turns out to introduce three ways in which
match costs can increase. The first way arises directly from the flattening
of the U-rule’s hierarchical structure. In a U-rule, the conditions in a sub-
hierarchy (e.g. the conditions in R1) are matched independently from the
other parts of the structure before its created instantiations are joined with
the others. By combining these sub-hierarchies together — through lineariza-
tion — some of the previously independent conditions get joined with other
parts of the structure before they finish their sub-hierarchy match. This
change can increase the number of tokens. The second way arises from the
impact flattening can have on sharing. As long as the implementation of
Rete cannot capture the sharing from the hierarchical structure (of the U-
rule), the number of tokens can increase. The third way arises because the
heuristic condition-ordering algorithm cannot guarantee optimal orderings.
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Figure 7: Results from a grid task.

Whenever this algorithm creates a non-optimal ordering, additional cost may
be occurred. The solution to this set of problems may be to eliminate the
linearization step. By keeping the hierarchical structure — that is, by replac-
ing EBL-rules (or chunks) with U-rules (or U-chunks) — all three causes of
cost increase can be avoided. The key thing that this requires is an efficient
generalization of Rete for the hierarchical structure of U-rules.

4 Experimental Results

In order to supplement the abstract analysis just provided with exper-
imental evidence, we have implemented a set of learning algorithms that
correspond to the set of initial subsequences of the overall transformation
sequence; that is, each learning algorithm in the set starts with the problem
solving episode and generates a distinct type of (pseudo-) rule or (pseudo-)
chunk. At each stage from problem solving to an EBL rule (or chunk), match
cost is evaluated by counting the number of tokens required during the match
to generate the result.

So far, the resulting experimental system has been applied to a sim-
ple grid-task problem[8] which creates one subgoal to break a tie (impasse)
among the candidate operators, and creates a search control rule (or chunk).
The results of this experiment are shown in Figure 7. The pattern of cost
increases matches the expectations generated from the earlier analysis in
that transformations led to increased cost on this task if and only if they
were identified by the analysis as cost increasing transformations. More-
over, the number of tokens in both system is the same for all (pseudo-) rule
and (pseudo-) chunk pairs. However, EBL/Soar creates a more general rule
because of the one difference between the two transformational sequences.
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5 Summary and Discussion

We have performed an analysis of EBL in Soar as a sequence of transfor-
mations from a problem solving episode to a rule. Each step has then been
mapped to a corresponding transformation in chunking, and compared in
terms of cost and generality. These analyses and comparisons reveal that:
(1) the main source of overgeneral learning in Soar stems from the need to
use approximate architectural axioms, and is common to EBL and chunking;
(2) the main source of overspecial learning in Soar stems from the single
transformation that differs between them (chunking does instantiation-based
constraining while EBL does regression); (3) chunking automatically incorpo-
rates some of Soar’s architectural constraints that must be added explicitly
with EBL; and (4) the primary sources of expensiveness in Soar’s learned
rules arise in three transformations that are common between chunking and
EBL, and thus might have common solutions. Result (2) shows that EBL
and chunking are not all that different. Result (4) goes beyond this to show
that the strategies being developed to ensure that chunks are no more costly
to use than was the problem solving from which they were learned, should
allow a similarly “safe” EBL mechanism to also be developed.

Though the cost analysis is based on Soar (and Rete), the identified causes
of expensiveness may crop up in other EBL systems besides EBL/Soar and
chunking. First, the cost increase from removal of search control is indepen-
dent of the match algorithm, and can happen in any system which ignores
search control in learning while its problem solving depends on search con-
trol. Second, the cost increase from replacing WMEs with instantiations (to
unify rules) can occur in any language in which working memory is a set. Fi-
nally, the cost increases caused by linearization can occur in any production
system that uses a linear match algorithm like Rete. Also, comparable prob-
lems may arise in any other system, whenever the original problem solving
structure is transformed during the learning process.
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