AD

TECHNICAL REPORT ARCCB-TR-96010

MATLAB® MODELING OF NON-UNIFORM
BEAMS USING THE FINITE ELEMENT METHOD
FOR DYNAMIC DESIGN AND ANALYSIS

ERIC L. KATHE

APRIL 1996

US ARMY ARMAMENT RESEARCH,

DEVELOPMENT AND ENGINEERING CENTER
CLOSE COMBAT ARMAMENTS CENTER
BENET LABORATORIES
WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

19960513 070 o s s

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

DISCLAIMER
The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other authorized
documents. |
The use of trade name(s) and/or manufacturer(s) does not constitute

an offi:ial indorsement or approval.

DESTRUCTION NOTICE
For classified documents, follow the p*ccedurcs in DoD 5200.22-M,
Industrial Security Manual, Section II.19 or DoD $200.1-R, Information
Security Program'Regulation, Chapter IX.
For unclassified, limited documents, destroy by a1y method that will
prevent disclosure of contents or reconstruction of the document,
For unclassified, unlimited documents, destroy when the Teport is

no longer needed. Do not retumn it to the originator.

e —

form Approved

REPORT DOCUMENTATION PAGE S

meorzen T0r this colection 3 mTormation s estimated 10 average ! hour per resporse, inciuding the time for resmairy £y

RN
mamtaining the data needed, and completing and reviewing the collecton of information. Send comments 'e?ar

i xedv .nformation, -rciuding suggestions for reducing this burden, to Washington Headguarters Services, Directarate 1or
Davis Higheay, Suite 1204, arington, VA 22202-4302. and to the Office of Management and Budget, Paperwers Radul o : 3
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1996 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
MATLAB® MODELING OF NON-UNIFORM BEAMS USING THE AMCMS No. 6226.24.H191.1

FINITE ELEMENT METHOD FOR DYNAMIC DESIGN AND ANALYSIS

6. AUTHOR(S)

Eric L. Kathe

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Us. Army ARDEC REPORT NUMBER

Benet Laboratories, AMSTA-AR-CCB-O ARCCB-TR-96010

Watervliet, NY 12189-4050

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
U.S. Army ARDEC :

Close Combat Armaments Center
Picatinny Arsenal, NJ 07806-5000

11. SUPPLEMENTARY NOTES

) 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The purpose of this report is to develop a model of non-uniform beams within a software environment that lends itself to design, simulation,
and analysis of dynamic systems. The beam is modeled by the Euler-Bernoulli approximation using the finite element method.
Reformulation of the second-order symmetric beam equations into the first-order state-space domain enables dynamic analysis and design
from within the modem control paradigm. The MATLAB® software package is chosen as it is the current state-of-the-art modeling
environment for control engineering. This report will present the development of the modeling software, develop some of the underlying
theory and limitations of the analysis, demonstrate its use in the dynamic modeling and analysis of an XM291 gun system, and validate
its results against known analytic results.

N 14. SUBJECT TERMS 15. NUMBER OF PAGES
MATLAB?®, Non-Uniform Beam Dynamics, Frequency Response, 91
Eigen Analysis, State-Space 16. PRICE CODE
17. SECURTY CLASSIFICATION 1 18. SELuRITY CLASSIFICATION }18. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF RERPTRT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

VEN T5s0-03-282-5500

MATLAB® Modeling of Non-Uniform Beams
Using the Finite Element Method for Dynamic
Design and Analysis

ABSTRACT

The purpose of this report is to develop a model of non-uniform beams within a software environment that
lends itself to design, simulation, and analysis of dynamic systems. The beam is modeled by the Euler-
Bernoulli approximation using the finite element method. Reformulation of the second-order symmetric
beam equations into the first-order state-space domain enables dynamic analysis and design from within
the modern control paradigm. The MATLAB® software package is chosen as it is the current state-of-the
art modeling environment for control engineering. This report will present the development of the
modeling software, develop some of the underlying theory and limitations of the analysis, demonstrate its

. use in the dynamic modeling and analysis of an XM291 gun system, and validate its results against known
analytic results.

by

Eric L. Kathe

US Army Tank and Automotive Command
Benét Laboratories, AMSTA-AR-CCB-TC
Watervliet, NY 12189

ACKNOWLEDGEMENTSo i i vi
PINTRODUCTION ... e e 1
2 THEDYNAMICMODELcouuiiiiiniiiiieiiin i 1
2.1 THE FINITE ELEMENT BEAM MODELINGMETHODo0vooiien . 1
2.1.1 LIMITATIONS OF THE FINITE ELEMENT MODELING METHOD 2

2.1.2 EQUATION OF MOTION FOR A SINGLE FINITEELEMENT 2

2.1.3 COMBINED MOTION OF MULTIPLE FINITE ELEMENTS 4

2.2 MATLAB® REALIZATION OF THE FINITE ELEMENT BEAM MODEL, 6
221 UNITS o e 6

2.2.2 INPUT BEAM GEOMETRY AND MATERIAL PROPERTIES 6

2.2.3 GENERATION OF A FINITEELEMENTMESHovveoin . 7

2.2.4 ELEMENTAL MASS AND STIFFNESS MATRIX FORMULATION 8

2.2.5 SYSTEM MASS AND STIFFNESS MATRIX FORMULATION 9

2.2.6 EQUIVALENT NODAL FORCE VECTOR FORMULATION 9

2.3 CONSTRAINT OF THE FINITE ELEMENT BEAMMODEL0oooo. .. 10
2.3.1 IMPOSED ESSENTIAL AND NATURAL BOUNDARY CONDITIONS 10

2.32 COUPLEDRIGID BODY MASS\t 11

2.3.3 COUPLED EXTERNAL SPRINGSoovviniinininni, 12

2.3.4 COUPLED EXTERNAL VIBRATION ABSORBERScoovoon. .. 12

24 SYSTEMDAMPING ..ottt e 14
2.4.1 COUPLED EXTERNALDASHPOTSo.ooooiiii 15

2.4.2 VIBRATION ABSORBERDAMPINGooovuiinos 15

2.5 MATLAB® COUPLING OF EXTERNAL LUMPED PARAMETER ELEMENTS........ 15
2.6 STATE-SPACE FORMULATION FROM THE SECOND ORDER SYSTEM 16
2.7 MATLAB® REALIZATION OF THE STATE-SPACE FORMULATION 17
BEIGEN ANALYSIS ..o e 17
3.1 UNDAMPED SECOND-ORDER EIGENVALUES AND EIGENVECTORS 17
3.1.1 EIGENVECTORS OF REPEATED EIGENVALUESoovvvn .. 19

3.1.2 ORTHOGONALITY OF THEEIGENVECTORS\ 19

3.1.3 MASS NORMALIZATION OF THE EIGENVECTORSovvoonn. .. 20

3.14 MODAL TRANSFORMATIONooviniiiniesieii 21

3.2 DAMPED SECOND-ORDER SYMMETRIC EIGENVALUES AND EIGENVECTORS .. 21
3.3 FIRST-ORDER STATE-SPACE EIGENVALUES AND EIGENVECTORS 24
34 RIGIDBODY MODESouiiiiii i 24
3.4.1 THE SINGULARITY OF THE FINITE ELEMENT STIFFNESS MATRIX 25

3.5 MATLAB® REALIZATION OF EIGEN ANALYSISovoii . 26
3.5.1 UNDAMPED MODE SHAPES AND FREQUENCIES 26

3.5.2 DAMPED MODE SHAPES AND FREQUENCIESoooovuii.. 27

3.5.3 IDENTIFICATION OF RIGID BODY MODEScoouviini 28

3.5.4 CYCLICFREQUENCYuviuiiniiiiiinie e 28

3.5.5 NORMALIZATION OF THE MODE-SHAPES0'ooeeii, 28

3.5.6 SORTING OF MODES IN ORDER OF INCREASING FREQUENCY 28

3.5.7 EVALUATION OF ORTHONORMALITY OFTHEMODE 28

ii

3.5.4 PLOTTING OF BEAM DEFORMATION AND MODE-SHAPES 29

4 MATLAB® DYNAMIC ANALYSIS CASE STUDIESttt iinens 30
4.1 THERIGIDBODY XM20T CASEottt ittt ianaaass 30
4.1.1 PRELIMINARIES . ..ottt tiiie e iiiiiin e eriaanasanne 30

412 BEAM GEOMETRY . .iitttiiiie e eiiiian i iiiiinne et annanaaanns 31

4.1.3 FINITE ELEMENT MESH GENERATION P 32

4.14 COMPUTATION OF THE SYSTEMMATRICEScciiiiiiiinnnnn, 32

4.1.5 UNDAMPED EIGENVECTOR AND FREQUENCY DETERMINATION 33

4.1.6 DAMPED MODE-SHAPE AND FREQUENCY DETERMINATION 34

4,17 CONVERSION TO FIRST-ORDER STATE-SPACEcoiiien 35

4.1.8 POLE-ZERO MAP ...ttt ittt itiiiinteereannnnassnns 36

4.1.9 FREQUENCY RESPONSE BODEDIAGRAMcoiiiiiiiininenenn 37

4.1.10 IMPULSE RESPONSE OF UNCONSTRAINED BARREL 39

4.2 FULLY CONSTRAINED XM291 ... iiiiiiitittiiiiinn i iinnnaanaeneeannossss 39
4.2.1 DAMPED MODE-SHAPE AND FREQUENCY DETERMINATION 39

422 BODE DIAGRAM i i i i et 40

423 IMPULSE RESPONSE ... ittt ittt inniaanaanes 41

424 STEP RESPONSEttt ittt ittt e iiiananaenes 42

425 STATICGRAVITY DEFLECTIONttt iieiinees 43

43 HYBRID 6OMM TEST GUNottt esaaannas 44
43.1 BEAMGEOMETRY ittt ittt iiiiiiee e iiiiinan e 44

4.3.2 UNDAMPED MODE-SHAPE COMPARISONccoviiiiiiinenennns 45

4.3.3 GRAVITY DEFLECTION OF HYBRID GUN AS SUSPENDED 46

4.4 VALIDATION VIA COMPARISON WITH ANALYTICCASEScoeent 46
. 4.4.1 NICHOLSON SOLUTION TO SPECIAL NON-UNIFORM BEAMS 46
442 UNIFORM BEAM SOLUTIONottt 48

. S CONCLUSIONS ottt ettt et ettt i e 51
6 APPEN DX ..ttt e e e 52
<NICROISOMLI> oo e e 52
XM 2O L N > .« ittt it e e e 52
B €. 17 05 33 4= 55
<DEAM_PIOLITI> Lottt ettt ettt i 58
DT (P Lo 1 R R R R R RREE 59
B (5 10 WSRO IS 61
B L 10 T3 1) IR 1. > T 62
B 1S T ()L <30 5 63
DL 4T {00 1.4 1013 > 64
D L T 1113+ 0 1 D 65
<FemM_ UMD .ttt ittt e e 65
<fem_lumpm_checkm> 66
D1 VTR 10 T3c) 4 18 5 =S S 67
<fem _node_CheCK Mt i i i i i i i et e e e e 69
D (=10 P 8 11 R PR R 69
<EOM_CHECK.ITI> ..ottt et i e n i 70
<EEOM_NDSEE.III> ...ttt iitee e tiaanncee ettt 70
D (0] 1 T <301 > R EER R 71

<geomf XM29T.m> 71

<geomf_hybrid.m> 75
<hybrid60.m> 78
<mode_shape.m> 79
<rank KiLIM> Lo 80
<UDCAMCIZIII> ..o 81
UMMM L. 81
7 BIBLIOGRAPHY ... e e 84

iv

Figure 1
Figure 2
Figure 3
Figure 4
Figure §
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

LIST OF FIGURES
Output Plot of M-File, <geomf_XM291.m>.c. i iiiiiiiiiinnnnnn. 31
Output Plot of M-File, <fem_mesh.m>.o, 32
Image of System Matrices as Plotted by the M-File, <XM291rb.m>, Section 5. 33
Depiction of Undamped Eigenvectors Computed by <XM291rb.m>, Section 6. 34
Depiction of Damped Mode Shapes Computed by <XM291rb.m>, Section 7. 35
First-Order System Matrix Population Computed by <XM291rb.m>, Section 8. 36
Pole-Zero Map Generated by the M-File, <XM291rb.m>, Section9. 37
Bode Diagram Generated by the M-File, <XM291rb.m>, Section 10. 38
Impulse Response Generated by the M-File, XM291rb.m, Section 11. 39
Depiction of Mode Shapes for Fully Constrained XM291.............ot 40
Bode Diagram Generated by the M-file, <XM291fc.m>, Section8. 41
Impulse Response Generated by the M-file, <XM291fc.m>, Section9. 41
Step Response Generated by <XM291fc.m>, Section 10.covviiinn... 42
Gravity Deflection Computed in Sections 11 to 14 of <XM291fc.m>. 43
Output Plot of the M-file, <geomf_hybridm>. 44
Hybrid Barrel Mode Shape Comparison Computed by <hybrid60.m>, Section 7. 45
Gravity Droop Computed in Section 12 of <hybrid60.m>. 46
Comparison of Fundamental Frequencies to Analytic Solution. 47
Finite Element Convergence to Analytic Frequencies.oove. 50
Juxtaposition of FEM Approximations and the Analytic Mode-Shapes. 51

ACKNOWLEDGEMENTS

The author would like to acknowledge Dr. Andrew Lemnios —Rensselaer Polytechnic Institute, Troy,
NY— Dr. Ronald Gast, Michael Gully, John Higgins Jr., Martin Leach, G. Peter O'Hara, Lawrence Rusch,
Michael Soja, and Dr. Patrick Vottis —U. S. Army, Benét Laboratories, Watervliet Arsenal, NY— and
Michael Mattice —U. S. Army, Fire Support Armaments Center, Picatinny Arsenal, NJ— for their
assistance and insightful suggestions throughout this effort.

vi

1 INTRODUCTION

The purpose of this report is to develop a dynamic model of non-uniform beams within the MATLAB®
software environment (The MathWorks, Inc. / 24 Prime Park Way / Natick, MA 01760-1500). This will
leverage MATLAB®'s capability in dynamic system design, analysis, simulation, and control formulation.
The current application for this modeling is the dynamic analysis of the XM291 gun system, exclusive of
the firing event. However, the formulation of the modeling was executed in a generic form to facilitate
broad applicability to non-uniform beam dynamics.

Modeling of gun systems using the Euler-Bernoulli finite element technique to generate the second-order
symmetric equations of motion with subsequent conversion to the first-order state-space domain has been
accomplished by at least two previous authors. [1, 2] This approach does not lend itself to the analysis of
the firing event due to the dependence of the ballistic loading on spatial derivatives of the mode-shape and
continuity of load application. For this reason custom modeling techniques have been developed to
address these issues. [3, 4] Lagrangian formulation of the second-order equations of motion with
subsequent conversion to state-space has been accomplished for beams of uniform cross-section to
promote analytic investigation of dynamic control issues without the burden of non-uniform beam
approximation. [5]

This report will document the detailed development of the dynamic modeling approach and conduct
several case studies including two of the XM291 gun system as an elastic beam. The computer files
described in this report are listed in their entirety in the appendix.

2 THE DYNAMIC MODEL
2.1 THE FINITE ELEMENT BEAM MODELING METHOD

The means chosen to dynamically model non-uniform beams is the finite element method. This route has
been chosen to provide a well known formulation that affords the opportunity to increase or decrease the
complexity and subsequent accuracy of the discrete model approximation in a robust and predictable
manner. This allows the analyst to conduct preliminary studies using low-order models to gain a
perspective of gross dynamic properties that efficiently provides a focus to later conduct high accuracy
analysis using larger models. ‘

The finite element method employed in this report utilizes the Euler-Bernoulli beam approximation and
the Hermite-cubic interpolation functions to form the inertial and stiffness matrices of the undamped
second-order symmeltric equations of motion. [6, 7] This is achieved by approximating the continuous
non-uniform beam as an assemblage of a finite number of discrete elements. Within each discrete element,
the interpolation functions are used to approximate the interior deformation. At the boundary between two
adjacent elements, called a node, continuity of lateral displacement and slope are imposed. When
assembled, the resulting finite element model dynamics, governed solely by the node states, closely
approximates the dynamics of the non-uniform beam. In the limit, Simpson's hypothesis states that if a
sufficient number of permissible finite elements are employed, the finite element modeling and the
continuum modeling become equivalent. [8]

2.1.1 LIMITATIONS OF THE FINITE ELEMENT MODELING METHOD

The Euler-Bemoulli beam element used does not model shear effects, nor the cross-sectional rotational
inertia of individual elements that are included in the more advanced —Timoshenko— beam equation. [6]
These un-modeled dynamics play an increasing role as the beam's being modeled become less slender, and
as the frequency response of interest increases. For gun geometries, it has been shown that these effects
are relatively small in the dynamic region of interest, and may be neglected for most analysis. [9] This
method also neglects to model axial mode dynamics such as would be experienced by the barrel, as a rod,
in axial tension and compression. This effect could readily be added, and is outlined in the references
given.

Finally, the Euler-Bernoulli formulation only models transverse vibrations in one plane, such as the
vertical or horizontal planes of motion. Implicit in this assumption, is that the transverse motion of the
beam in its two orthogonal planes will be decoupled, allowing the analyst to consider the dynamics in the
two separate planes independently.

2.1.2 EQUATION OF MOTION FOR A SINGLE FINITE ELEMENT

The equation of motion for a single finite element will require the formation of two matrices to represent
the inertial and stiffness parameters in a form that is a function of the elements nodal lateral displacement
and slope and their second temporal derivatives. Since a single Euler-Bernoulli beam element has two
nodes, one at each end, the inertial and stiffness matrices will be four-by-four in size. In order to facilitate
the modeling of non-uniform beams, the formation of these matrices will explicitly use the Hermite-cubic
interpolation functions as listed below where x is the linear position along the element and h is its total
length: [6, 7]

2 3 2 3
) =1 - 3(%) + 2(1) (@) & = 3(%) - 2(1) (¢)

h h

d,(x) Zh(")2 h(")3 ® b, h(")2 h(")3 (d) @
=X - _— + —_— X)) = - —_— + —
2% I h 4 h h

The mass matrix can then be evaluated by integrating the linear density, p(x), with the interpolation
functions as follows: [6, 7]

[B h B |
[p@d,00,0dx (e, ,Wdx [pHId (s dx [p()d(x)b,(x)dx
0 0 0 0
h h h h
[p00,00,0dx (oMb, x)dx [p(Ib,(Rdsx)dx [p(ID, ()P, (x)dx
0 0 0 0
h h h h
[pe)bs0)b, () dx [pbsb,()dx [p)by(xbs(x)dx [p(xIby(x)by(x)dx
0 0 0 0

h h h h
f PP, (x), (x) dx f P)d, ()P, (x)dx f PO, ()b, (x) dx f PP, (x)d,(x)dx
K 0 0 0 J

@

Similarly the stiffness matrix may be formed from the material's elasticity, E(x), its second areal moment,
I(x), and the second spatial derivative of the interpolation functions: [6, 7]

h h h h]
[E@I 0 0 dx [E@I@S ;0 dx [EDIGS S @dr [ECIx); (x)bs(x)dx
0 0 0 0
h h h h
[EQID$ 0 @dr [EDI (b0 dx [EQI@S s dr [E@Ix)(x)bq(x)dx
0 0 0 0
h h h h
[E@I;00¢{0dx [EQI@S @@ dr [EDI@S @S @dx [ECIx)bsx)by(x)dx
0 0 0 0

A h h h
[EI@$; 001 dx [E@I0)b; 0 dx [EH@)50 dx [B@ICx)b, ()% () dx
Lo 0 0 Y j

The generalized coordinate vector and its second temporal derivative are: [6, 7]

[)’!X=0-).;II'O
8| | liuo

4= a=1 .)
Yeen Yen
L eix’h. élx-h

The generalized forces may be found in one of two ways. First, the distributed force, p(x), can be

where

1

y Denotes Lateral Displacement.
O Denotes Slope, ﬂj
dx

0 Denotes Left Node.

h Denotes Right Node.
. d*n
7 Denotes —.

dt?

3

C))

explicitly integrated with the interpolation polynomials. [6, 7] Second, it can be inferred by reversing the
reaction forces that would be experienced by a simply supported beam element subjected to the loading

along its span. [10, 11] we have chosen to implement the later approach in the m-file, <fem_force.m>, but
we will display the former approach below:

[h
[PendGdx
0
h
[POend 0 dx
£=]7 ®)
[POcddydx
0

h
[penbdx
L 0 <

The equation of motion for the undamped, Euler-Bernoulli beam element can now be written by
combining equations (2) - (5): [6, 7]

Mg +Kq =f 6)

The approximate interior deflections may be determined by evaluating the interpolation functions of (1),
augmented by the generalized coordinate vector of (4) as follows: [11]

YO = G0 Y| + G0 0] + Gy, + G, 6], ™

2.1.3 COMBINED MOTION OF MULTIPLE FINITE ELEMENTS

The equations of motion of adjacent finite elements are coupled together by the imposed continuity of
lateral displacement and slope at the intersecting nodes. Consider a simple two element system composed
of element one of length h, and element two of length h, joined in the middle. Inspection of the
generalized coordinate vectors reveals that the later two generalized coordinates of element one, and the
first two generalized coordinates of element two, represent the same boundary condition. Thus the number
of generalized coordinates required to represent the two element structure has been reduced from eight to
six, with a total of three nodes. Numbering the left-free node, one, the middle node, two, and the right free
node, three, and superscripting the elemental matrices with the element number, we can combine the mass
and stiffness matrices and the force and generalized coordinate vectors as follows: [6, 7]

'Mll,l My, M'ys My, 0 0
M'ay M'as M'ys My 0 0
M- My Mlsp (M13,3+M21,1) (M13,4+M21,1) M?5 M4 @)
My My (M14,3 +M22,1) (M14.4 +M22,1) M?%5 M?y4
0 0 M?3, M?3, M?33 M?34
| O 0 M2, M2, M?%5 M%4 |
k' Kz Kl Kb 0 0
K's1 K'ap K'23 Kl 0 0
K - K31 K'sz (K]3,3+K21,1) (K13,4+K21,1) K*13 K*14)
K41 Klaz (K14,3 +K22,1) (K14,4+K22‘1) K*33 K%34
0 0 K3 K?3 K33 K234
| 0 0 K%, K%, K243 K%44]
Yxeo 37 - 2 [F,
6[x=0 91 11, M,
Y- 1,42
i o |la| @ £ Ej:f:;’; - ;2 (b) (10)
x=h 2 4 2 2
y]x-:(h1+h2) Y3 123 Fy
_ 6|x=(hl+h2)- | 63_ L th]

Note that we have adopted a more convenient subscripted naming convention for the generalized
coordinates and generalized force vector from the nodal reference. The equation of motion (6) is still valid
for this larger, six-by-six, system of linear equations.

An indefinite number of additional elements can be combined in the same manner. The number of
generalized coordinates will be twice the number of nodes, which equals the total number of elements plus
one for a free-free beam model.

It is important to note that the inertial and stiffness matrices are symmeiric. This has important
implications, on the complex form of the roots of the differential equations, that cancels any possible
imaginary content in the generalized coordinates. Thus, the symmetry of these matrices prevents the
modeling from becoming non-physically realizable. This will be elaborated on in section 3.5.2 in the
context of section 3.2.

2.2 MATLAB® REALIZATION OF THE FINITE ELEMENT BEAM MODEL

MATLAB® m-files were written to implement the finite element beam model of the previous section. M-
files are user written program code in the MATLAB® language that provide extensibility to MATLAB®,
[12] All of the m-files written are function files. Function files provide for the passing of arguments from
other work-spaces to the local function file work-space and back again. This prevents the over use of one
work-space, thus reducing confusion of the available variables and the available variable names. Function
files are also said to be compiled within MATLAB®, thus increasing efficiency. Finally, this format
provides for the development of on-line documentation describing the function file and its operation. All
explicit MATLAB® functions in addition to the m-files and variables are enclosed by angle brackets to
distinguish them from regular text.

2.2.1 UNITS

Any consistent system of units may be used by this software. Automatic label generations assume that the
linear frequencies computed are in units of Hertz. The meter-kilogram-second or international system of
units (SI) is used in the input m-files. The poundal or slug consistent English systems, or the centimeter-
gram-second (CGS) system could also be used.

2.2.2 INPUT BEAM GEOMETRY AND MATERIAL PROPERTIES

The first requirement to realizing the finite element model of a beam is to input the geometry and material
properties. The required form of this data will consist of four vectors, of equal length, representing values
of the beam associated with a fine-resolution and equidistant sampling of the axial position, and the
respective linear density, stiffness, and non-beam linear density values. (The non-beam density values
provide for the incorporation of extraneous masses whose elasticity is supposed to play a negligible role in
the beam dynamics, but whose inertia can not be ignored.) For the case of the XM291 gun barrel, the
geometric information (inner and outer radii) was available off of a finish-machine drawing in a format
that lent itself to sampling every millimeter from an axial position of one millimeter to the length of the
barrel. From the geometric information, the cross-sectional stiffness of the barrel at each axial position
could readily be computed using MATLAB®'s array multiplication feature, and Young's modulus for the
gun steel. The non-beam masses, such as the muzzle reference mount could then be included. An effort
was made to distribute the non-beam masses over a significant axial length to prevent large fictitious
spikes in the linear density values. In the absence of a non-beam linear density at a given axial location,
this data vector contains zeros to maintain a one-to-one correspondence with the axial position vector.

The function file written to generate the four matrices for the XM291 gun system is named
<geomf_XM291.m>. The names of the four data vectors are <spatial>, <lden>, <IEI>, and <Inbden>
respectively. The length of the vectors is 6,750 which provides ample resolution of the geometry.

In addition to the four data vectors the file also produces a pair of two-by-two matrices formulated to
allow for external rigid masses to be constrained to the free node's generalized coordinates at either end of
the beam. This was required to allow for the incorporation of masses beyond the ends of the beam, such as
the breech, which will be discussed in section 2.3.2.

An additional output of <geomf_XM291.m> is a matrix, <gm>, whose two columns consist of the inner
and outer radii respectively. This is useful for later plotting and animation.

A final output of <geomf_XM291.m> is an option for automatic plot generation, with an input title label,
that depicts the geometry, non-beam mass location, total beam mass, total non-beam mass, and the linear
density and stiffness as a function of the axial position vector. This output is particularly useful for input
data validation. Its use is demonstrated for the XM291 in section 4.1.2 and for a sixty-millimeter hybrid

gun in section 4.3.1.

In an effort to reduce input errors, and facilitate future input file generation, three support function files
were written. The first, <geom_seg.m>, converts the measurements of radii at two axial locations into
uniform tapers that correspond to the axial position vector. The second, <geom_nbseg.m>, distributes the
non-beam mass over a specified portion of the axial position vector. The third, <geom_check.m>, verifies
the one-to-one correspondence between the axial position vector and any of the three other data vectors. It
also checks to be sure that the axial position vector is evenly spaced from the first increment to the final
length. Finally, it checks to be sure all data values are positive, and it imposes column structure on the
vectors. This third file is used throughout the modeling software to check the validity of input data.

2.2.3 GENERATION OF A FINITE ELEMENT MESH

Once the four data vectors are available for finite element formulation, they must be broken up into the
desired number of elements. Further, it will become extremely important, as the modeling effort
continues, to place nodes at specific locations where external forces may interact with the beam model.
This is particularly true of the trunnion location, about which the gun barrel pivots as it is elevated. The
function file <fem_mesh.m> was written to perform the function of automatic node location.

The <fem_mesh.m> file uses the four input data vectors, a vector of imposed node locations, and the
desired number of finite elements to formulate a meshing vector. Like the function <geomf_XM291.m>,
an optional argument automatically generates a plot of the final mesh, as a function of the axial position
vector and the metric used to divide up the elements that is discussed below. The use of this option is
demonstrated in section 4.1.3. It also utilizes the <geom_check.m> file to validate the input data.

In order to automate the process, a metric had to be identified that would provide a measure of desired
uniformity between elements. In other words, a quantitative measure to be used to evenly space the node
locations. Axial position was not chosen because it would not compensate for differences in stiffness and
density between elements. The ratio of stiffness to linear density —along the data vectors— was chosen
to increase the meshing density along portions of the beam where the stiffness was low, and the inertia was
high, which would lead to increased dynamic activity in the lower modes of interest. Formulation of this
metric was greatly facilitated by the buili-in MATLAB® command, <cumsum>. [12]

Once a metric is identified, the meshing becomes a four stage process. First, the imposed node, locations
must be determined. Second, the imposed nodes form an integer number of super elements between them.
Thus, the number of finite elements that remain after the imposing the nodes must be determined. These
are called free elements, because they are the elements that may be placed by the metric. Third, the ideal
integer number of free elements allotted to each super segment must be determined from the metric.
Finally, each super element must be broken up by the metric to include its allotted number of free
elements.

In addition to the above routine, three checks are executed to ensure that the number of nodes assigned to
any span of the beam does not exceed the spatial resolution of the axial position vector. (To do so would
result in collocated nodes.) If this situation is detected, <while> loops [12] are employed to identify spans
of the beam that could support additional nodes, and redistribute the collocated nodes as necessary. Since
these loops are dangerous in the sense that a small programming error could result in an infinite loop, a
warning is written o the screen that the loop has been entered. In general, this situation is only
encountered when a non-uniform beam tapers down to a point, which often leads to the stiffness going to
zero faster than the density as in the case presented in section 4.4.1.

2.2.4 ELEMENTAL MASS AND STIFFNESS MATRIX FORMULATION

Realization of the elemental mass and stiffness matrices requires the computation of equations (1), (2), and
(3) for a given element. This was achieved using the two files, <fem_interp.m> and <fem_beamel.m>, to
numerically compute the interpolation functions and execute the matrix element integrations respectively.
Both files use the <geom_check.m> file, discussed in section 2.2.2, to validate input data format which
consists of three data vectors: axial position, combined beam and non-beam linear density, and cross-
sectional stiffness. Like the axial position vector of the entire beam, the elemental position vector begins
at the first increment of measure (near zero), and continues to the total length of the element, h.

The interpolation function of equation (1) and their second spatial derivatives as required by equation (3)

were explicitly generated using the Symbolic Math TOOLBOX [13] although they can readily be

evaluated by hand. These symbolic equations are then numerically evaluated at each axial position along ‘
the element using MATLAB® 's array operators and the <eval> command. [12] The output of \
<fem_interp.m> consists of two matrices consisting of four columns, one for each interpolation function,

with the row elements forming a one-to-one correspondence with the axial position vector. The first

matrix includes the interpolation functions, while the second matrix contains their second spatial .
derivatives.

The file, <fem_beamel.m>, numerically evaluates the integrals of equations (2) and (3) as a simple
matrix/inner product scaled by the sampling resolution. (This is equivalent to a Riemann sum of the
multiplied sampled data vectors.) This works well as long as the length of the interpolation vectors are
long enough for the integration errors to become small. This accuracy issue is enforced by expanding the
input vectors, using a zero-order-hold approach while increasing the spatial resolution, if the length of
interpolation functions would otherwise fall below a set value. We have chosen to set the value at fifty.
For pragmatic reasons, if the data expansion is required, the new data vector length is the minimum integer
multiple of the former length that will meet or exceed the set minimum length. (Note that this condition
may be an indication that a finer resolution of the input data is required. This is not addressed by the zero-
order-hold data expansion. This is especially true if it is occurring with a relatively small number of finite
elements.)

The complete output of these two files are numerical approximations of the four-by-four inertial and
stiffness matrices of equations (2) and (3).

2.2.5 SYSTEM MASS AND STIFFNESS MATRIX FORMULATION

Once the elemental mass and stiffness matrices have been formed, they must be combined as in equations
(8) and (9) to form the integrated system model. This is achieved by the <fem_form.m> file. The inputs
to this file consist of the four raw data vectors of axial position and corresponding linear density, cross-
sectional stiffness, and non-beam density. Further, this file requires the node location vector (mesh)
generated by the file <fem_mesh.m>. Finally, a provision is made for the automatic generation of images
of the matrices for qualitative model validation if an optional argument is passed. The use of this feature
is demonstrated in section 4.1.4.

In addition to the usc of the m-file <geom_check.m>, discussed in section 2.2.2, to validate the four data
vectors, a separate file, <fem_node_check.m>, was written to validate the node vector with respect to the
axial position vector prior to finite element formulation. This file insures that the node locations fall
within the beam geometry, and that no node locations are repeated. Finally, it imposes a sorted column
structure on the vector. This file also uses the <geom_check.m> file to insure that the axial position vector
is valid.

The m-file <fem_form.m> first adds the beam, and non-beam mass vectors into a single combined linear
density vector. It then sequentially breaks up the beam into the finite elements specified by the node
coordinate vector. The elemental mass and stiffness matrices are formulated using the <fem_beamel.m>
and <fem_interp.m> files described in section 2.2.4.

For efficiency, the system mass and stiffness matrices are initialized as square matrices, filled with zeros,
of their final n-by-n size where n is the number of generalized coordinates. (The number of generalize
coordinates is twice the number of nodes, including the free ends. Also note that the total number of
nodes is equal to one plus the number of elements for the free-free beam model.) The system matrices are
sequentially filled by the elemental matrices,. The intersections of the elemental matrices, as shown in the
middle two-by-two sub-matrices of M and K of equations (8) and (9), are achieved by adding each new
elemental matrix to the system matrix as it is being formed. This implementation cascades the addition of
the elemental matrices down the main diagonal of the system matrices.

2.2.6 EQUIVALENT NODAL FORCE VECTOR FORMULATION

The system force vector of equation (10) is computed in a manner similar to the formulation of the system
matrices from the elemental matrices. The file, <fem_force.m>, that realizes the system force vector
requires four input vectors. The first vector consists of the axial position vector. The second two vectors
consist of the point lateral force and point moment vectors that correspond one-to-one with the axial
position vector in complete analogy with linear density vector. Distributed loads are represented by a
series of equivalent point loads, down the force vector in a straight forward manner. The final required
vector is the meshing vector of node index locations generated by <fem_mesh.m>. An optional input
provides for explicit printing of the resulting system vector.

First the file computes the generalize forces and moments for the arbitrary loading of individual elements.
As stated in section 2.1.2, the method used is to compute and sum the reverse reaction forces that would be
experienced by a simply supported beam element subjected to the point loads apphed by each input force
value at its associated axial position.

The file then overlaps the generalized forces of adjacent elements at mutual node locations, in a manner
similar to the cascading of the elemental matrices down the system matrices as described in section 2.2.5.
This creates the generalize force vector as shown in equation (10).

This completes the numerical formulation of the finite element beam model governed by the dynamics of
equation (6) with the full system inertial and stiffness matrices.

2.3 CONSTRAINT OF THE FINITE ELEMENT BEAM MODEL

The finite element model developed by equations (1) through (10) results in the free-free configuration.
This means that the beam is not constrained to an inertial reference in any way. Most beams are
constrained to an inertial reference in some manner. For the case of the XM291 gun barrel, one
approximation would be to constrain its vertical beam vibrations at the gun trunnions (horizontally
opposed pivot points), and at the elevation mechanism (the linear actuator that applies vertical forces to
the breech end of the barrel, behind the trunnions). Unless otherwise stated, we will assume that the
elevation mechanism is secured near the rear of the barrel by a stiff rod coupled to the inertial reference
frame and the barrel by pin joints. (Inclusion of the elevation mechanism dynamics can later be included,
but are not a part of this modeling effort. [1])

A related issue to the inclusion of constraints to the nodes of the finite element model is the inclusion of
external inertias that are not adequately modeled by merely adding linear density to the beam model. This
will be discussed later, in section 2.3.2.

Note that as stated in section 2.2.3, imposing node locations at the points of constraint is critical to the
analysis of the system dynamics. If the external forces imposed on the beam were to occur between node
locations, equations (5) and (10) would have to be employed to achieve the equivalent constraint. This
extra step would complicate later dynamic analysis.

2.3.1 IMPOSED ESSENTIAL AND NATURAL BOUNDARY CONDITIONS

Two constraints may prevent the two rigid body modes associated with a beam element; translation and
rotation. (This will be discussed in greater detail in section 3.4.1.) They may be imposed in one of three
ways. The first two approaches assume that the points of constraint (the trunnion and elevation locations
in the case of a gun barrel) are rigid, thus forming geometric constraints (essential boundary conditions).
In the case of a gun system, lateral motion of the beam at the trunnion mechanism would be eliminated,
while rotational motion (slope) at this point would be allowed.

The first approach is to algebraically eliminate the constrained generalized coordinate and its associated
rows and columns from the mass and stiffness matrices. [2, 6] This reduces the size of the system equation
(6) by one for each coordinate eliminated.

The second approach is to set the rows and columns of the mass and stiffness matrices associated with the
constraint generalized coordinate to zero, with the exception of the diagonal term which is set to one. [1 1]
In addition, the corresponding force vector element is set to zero. This method maintains a constancy of
the generalized coordinate structure, (alternating y's and 6's) thus reducing confusion.

10

The third approach is to treat the locations as imposing constraint via elastic restoring forces (natural
boundary conditions). This is the method adopted by Benét's uniform segment modeling (USM) code. {3,
9] The simplest restoring force is a constraint in the form of a linear elastic spring.

The third approach is the one adopted for the remainder of this modeling effort and is developed further in
section 2.3.3.

2.3.2 COUPLED RIGID BODY MASS

Rigid body masses may be directly coupled to the generalized coordinates at node locations. This is
particularly useful to incorporate point masses whose center of gravity does not lie within the geometry of
the beam. It may also be used to incorporate non-beam elements with a significant rotary inertia that
would be poorly approximated by a thin linear density.

The effect of an over-hanging mass is an increased system inertia, at the associated node. Due to the
separation of the center of gravity of the rigid body mass from the node, the lateral deflection of the center
of the rigid body mass will be a function of both the deflection and slope of the node. Rotational inertia
will be formed by the offset, as could be predicted by the parallel axis theorem. Denoting the offset asr,
which is positive when the rigid body of offset to the right of the associated node number, denoted by the
subscript nn, and denoting the motion of the rigid mass about its center of gravity with the subscript, cg,
we can write:

Xeg = Xpn * 7 Xeg = Xm =7 = 0{ Small angle aproximation.
Yeg = Vm * 70 where Yog =Vm +10m > Vg =Vm +10m (11)
ecg =6nn 6cg=6rm > ecg'—‘énn

The equation of motion for the rigid mass about its own center of gravity is:
F, = Massp,y e

Mcg = "RBe 24

(12)

Combining equations (11) and (12), the rigid body forces at the center of mass can be expressed in terms
of the nodal generalized coordinates. In addition, the reaction forces (opposite to the direction of the rigid
body mass acceleration) experienced by the node location may be expressed, noting that the offset creates
an additional term for the nodal moment:

ch = Mass,w()"'nn + re rm) (a) FMRm’ = - FCg (C)
Mcg = JRBe nn (b) MMRW’ =T Mcg - rF (d)

cg

(13)

11

Combining terms, the reaction force that would emulate the rigid body inertia can be formulated as a two-
by-two matrix (Note that the parallel axis theorem is incorporated into the lower right matrix element);

Vo
14
]

React
F nn MRB rMRB

M, Reec IMyy (g + Mgy)

These force terms can be directly combined with the force vector of equation (10b). Finally, by placing
the additional force vector terms into the perspective of equation (6) it is clear that by moving the
components of equation (14) to the left side of equation (6), the two-by-two matrix of (14) can be directly
added to the corresponding two-by-two sub-matrix of the system mass matrix. (Note that the minus sign
in front of the rigid body inertia matrix of (14) is negated by moving to the left side of equation (6).)

2.3.3 COUPLED EXTERNAL SPRINGS

External springs, that provide natural constraints upon the beam model, may be integrated into the finite
element formulation in much the same way as the external rigid body mass. Springs, however, are easier
to envision because they are collocated with the node. (The node location must be imposed in the problem
formulation.)

The effect of a linear translational or rotational spring is that they opposes lateral or rotational deflections
respectively, about the equilibrium location of the nodal coordinates. This opposition is in the form of a
force or moment, opposite in direction, and proportional in magnitude to the deflection. Denoting lateral
springs as K, and rotational springs as K, where either K must be positive, and using the same convention
of denoting the node number by the subscript nn, we can write the equivalent reaction forces as:

Ffe = - Ky, (@)

nn

MnnReac’ =" Keenn (b) (15)

As before, either of these force terms can be directly combined with the force vector of equation (10). By
placing the additional force vector terms into the perspective of equation (6) it is clear that by moving the
reaction forces of (15) to the left side of equation (6), the positive scaler spring constants of (15) can be
directly added to the corresponding diagonal element of the system stiffness matrix.

2.3.4 COUPLED EXTERNAL VIBRATION ABSORBERS

A very interesting dynamic effect can be achieved by coupling an external lumped mass-spring-dashpot
system to dynamic systems. Often called a vibration absorber [14, 15] (or a mass-tuned-damper [16] in
the civil engineering domain), the effect of the external system is to attenuate combined system vibration
in a narrow band near the operating frequency of the absorber for sharp transients, and to dissipate steady-
state energy across a wider band, if the damping coefficient is significant. They also present the
possibility of additional, undesirable resonances. For the sake of simplicity, only the development of a
lateral vibration absorber will be presented, although the rotational absorber is completely analogous.

12

Asin the earlier coupling cases, it is critical for the point of coupling to coincide with a node location.
This must be done during the formulation of the finite element model. As stated, the vibration absorber
consists of a mass, a spring, and a dashpot. Since damping has not yet been introduced to the finite
element beam model, the damping effect of the absorber will be ignored for now and set to zero. It will be
incorporated later in section 2.4.2.

With the addition of the new mass, a new energy storing device has been added to the total system. This
will require the inclusion of a new generalized coordinate to represent the deflection of this mass, and its
time derivatives, from its equilibrium position. A convenient position to place the new coordinate, yy,, is
at the base of the generalized coordinate vector of (10a). The equation of motion for the absorber
constrained to node, nn, is:

My, Yy, + KVA(yVA_yM} =0 (16)

Clearly, the absorber will also cause a reactive force to be exerted on the associated node via the spring
coupling. If placed on the right side of equation (6), in analogy with previous formulations, the lateral
reaction force acting on node, nn, is:

FngaCt = KVA(ynn - yVA) (17)

To incorporate equations (16) and (17) into the syétem matrices of (8) and (9) will require the expansion of
each system matrix by a new row of zeros at the bottom and a new column of zeros on the right side to
match the new element, yy,, at the base of the generalized coordinate vector of (10a).

The inclusion of the inertia of the absorber can be completed by adding its mass, My,, to the zero in the
lower right hand comer of the expanded system mass matrix.

The inclusion of the elasticity of the absorber will require four additions to the expanded system matrix.
For clarity, the matrix row that corresponds to y,, is denoted by index,, and the new row that corresponds
10 yya is denoted by indexy,. (Since we are restricted to the lateral coordinate, one can reason that index,
is equal to twice its node number minus one. Also, for one absorber, indexy, is equal to twice the total
number of nodes plus one.)

The bottom rows of the expanded system matrices can clearly be set using (16). The nodal row of the
expanded stiffness matrix, corresponding to lateral deflection, can be modified using the right side of (17)
by dropping the minus sign and adding in the new values to the existing values from the finite element
formulation.

The single scaler inertial operation is represented below followed by all four scaler operations on the
stiffness matrix that are condensed into a single two-by-two matrix representation. In both cases, the
addition of the new scalars to the zeros of the new rows and columns is not explicitly shown. Only one
case of an interior element modification occurs, and that is the interior element of the finite element

13

stiffness matrix, due to (17). For increased clarification, the previous value of this interior element is
superscripted with the letters FEM to indicate that it is the value prior to the absorber modification:

M(index,,, index,,) = M, (18)
K(index,,index,) K(index,,index,,) (K FEM(index ,index,) + K, A) -Ky, 19)
K(indexy,,index,) K(index,,,index,,)) -K,, Ky

Once again, it is important to note that all of the above modifications maintain symmetry of the system
matrices as was discussed in section 2.1.3.

2.4 SYSTEM DAMPING

All mechanical systems dissipate energy through motion. Inclusion of this effect within the matrix
modeling paradigm is centered around formulating the damping in a matrix form compatible with (6)
where the new damping matrix, Cp, is multiplied by the first time derivative of the generalized
coordinates. [14, 17]

Mg+ Cpg +Kg=f 20)

The formulation of Cy, is most commonly achieved via the Rayleigh damping approximation below. [14,
17]

C, = M + BK (1)

An important property of Rayleigh damping is that increases in « increase the damping due to inertia and
thus effect greater damping in the lower frequencies. Conversely, increases in B effect greater damping in
the higher frequencies. [15]

The coefficients, « and f3, can be defined by choosing the critical damping ration, ¢, for two modes, j and
k, as shown in (22). [1, 18] Complete control of the assignment of damping values for each vibratory
mode can be achieve through modal transformation. [19]

| |t @ 22)
p 1w’

0, ¢,

14

Rayleigh damiping, as shown in (21) will be used for the remainder of this modeling effort with the
excepuion of external damping sources as outline below. When external damping sources are include, they
will be added after the damping matrix formed by (21) is computed.

2.4.1 COUPLED EXTERNAL DASHPOTS

The effect of an external dashpot is completely analogous to the coupling of external springs. Linear
translational or rotational dashpots oppose the relative lateral or rotational velocities respectively, between
the inertial reference frame and the location of the nodal coordinates. This opposition is in the form of a
force or moment, opposite in direction, and proportional in magnitude to the relative velocity. Denoting
lateral dashpots as C, and rotational dashpots as Cq, where either C must be positive, and using the same
convention of denoting the node number by the subscript nn, we can write the equivalent reaction forces
as:

FMReact = - ny nn (a)

M R = — CoB))

As before, the positive scaler damping constant of (23) can be directly added to the corresponding
diagonal element of the system damping matrix in (20).

2.4.2 VIBRATION ABSORBER DAMPING

Explicit inclusion of the damping of vibration absorber damping is shown below. It follows in complete
analogy with the stiffness matrix modifications of (19) in light of the distinctions demonstrated in section
2.4.1.

Cp(index ,index,) C(index,,index,,) (CE¥(index,, index,) + Cyy) ~Cy -
Cp(index,,,index,) C,(index,,,index,,) B -Cy4

2.5 MATLAB® COUPLING OF EXTERNAL LUMPED PARAMETER ELEMENTS

The file <fem_lump.m> and an ancillary support file, <fem_lumpm_check.m>, were written to integrate
external lumped elements and Rayleigh damping with the finite element model of the beam.

The files first add the two-by-two coupled rigid body terms to the finite element mass matrix. (No current
provision exists for inclusion of rigid body elements at interior node locations, although this would be a
simple programming exercise.) As stated in section 2.3.2, the main intention of this provision is to include
the inertial effects of elements that are coupled to the beam, but whose centers of gravity lay beyond the
axial beam geometry. This is required to model the inertia of the breech in the case of the XM291 gun
system.

Rayleigh damping is then computed using the input parameters, « and {3, as developed in (21) and the

finite element matrices augmented by the rigid body inertia. This results in the three system matrices of
equation (20).

15

External springs and dashpots are then integrated with the three system matrices as developed in (15) and
(23). This is accomplished by passing a matrix of constraint parameters. Each row of the constraint
parameter matrix contains the explicit generalized coordinate number, index,, to which the constraints are
coupled, the lumped spring constant, (force/displacement), and the damping constant, (force/velocity).
(Note the generalized coordinate index is found using the convention of equation (10): index, = 2xnn - 1
for translational motion and index, = 2xnn for rotational motion, where nn is the node number.) The
number of rows indicates the number of external couplings. Note that these damping constants are
conveniently computed using the same Rayleigh damping parameters as the matrices. It is implemented
separately to provide the flexibility to incorporate non-Rayleigh damped external constraints such as
hydraulic shock-absorbers. (Also note, MATLAB® matrices must be fully populated. Therefore, if a pure
damping constraint is o be coupled, a spring constant of zero must be included in the row of the constraint
parameter matrix.)

Finally, an optional input matrix will couple any lumped vibration absorbers with the three system
matrices. This is the only operation that will change the size of the original finite element matrices. The
absorber is accomplished by passing an absorber parameter matrix, that is identical to the external spring
and dashpot matrix, with the addition of a fourth column that includes the inertia of the coupled devise
(mass). This is done to effect the modifications of equations (18), (19), and (24). (Note: the terminology
in the m-files refers to the vibration absorbers as mass tuned dampers, or MTD's, for reasons discussed in
section 2.3.4.)

The final output of the files are the three system matrices that form equation (20).

2.6 STATE-SPACE FORMULATION FROM THE SECOND ORDER SYSTEM |

Many of the powerful MATLAB® tools for dynamic analysis and design require the dynamic equations to
be in linear, time-invariant, firsi-order state-space form. Equation (20) is in the second-order symmetric
form. This representation of the system dynamics may be converted to the first-order state-space form by
the following method: [2, 20]

First, define the state-vector, x, and its first time derivative as the combined generalized coordinates of
(10a), possibly modified by the inclusion of vibration absorbers, and their first temporal derivatives:

g 4
x=| . | -~ = (25)
q q
Second, define the system dynamics of (20) in terms of the gcnéralized coordinate vector's time
derivatives:
g=1qg (a) 2
d=-MKg -M7Cpg + MY (b) (26)

16

Note that the form of equation (26b) presumes that the mass matrix is invertible. This is always the case
for beam finite element formulations. (A singular mass matrix would imply that at least one beam element
had zero mass.) Using (25) and (26), the state-space representation with the generalized coordinates as the
output is:

X =Ax + By

y=Cx +Du 27)

Where the state-space matrices are constructed in terms of the second order system matrices, and the zero
and identity matrices of compatible size. (Note, the state-space matrices have twice the number of rows
and columns of the second-order system matrices.):

0 I s.| 0 ,
A=\ (mk) (Mc,) @ Cim)
c=[1 0] ¢y D=[0] (d)
Y=g (e) p=f €3] (28)

2.7 MATLAB® REALIZATION OF THE STATE-SPACE FORMULATION

The m-file, <fem2ss.m>, computes the state-space matrices using the second-order matrices of (20) as
shown in (28).

3 EIGEN ANALYSIS

3.1 UNDAMPED SECOND-ORDER EIGENVALUES AND EIGENVECTORS

A powerful perspective system dynamics can be attained by converting the dynamic representation of the
vibrating system to the frequency or modal domain. It has been shown that the free vibrations of the
homogencous form of the differential equation of (6) (provided M and K are symmetric) can be solved
using the separation of variables technique. [6] This method separates the spatial and temporal domains of
the generalized coordinate vector.

g = Y. dig,(0 = o) (29)

i=0

This achieves a pairing of spatial shapes, the columns of ®@, with the dynamic amplitudes of the elements
of @(t). Equation (29) has decoupled the system into a series of single degree of freedom vibrating modes,
where each associated mode shape represents the single degree of freedom. From this perspective, the
dynamic amplitudes of @(t) that form the solution of the differential equation can be formulated as:

17

{Alcos(colt +&,). r—Alcolsin(mlt +¢,)' (‘AIGJ%COS(OJJ +¢,)-
Ajcos(wyt +¢,) -A,w,sin(w,t + ¢,) —Azwgcos(mzt +,)

Qo) = ' = Q) = ' > Q) = ‘ 30)
[A,008(@, 1+, A0, sin(@+ ¢,) -A,07cos(@,t +,)

The modal frequencies are, o, through w,. The amplitudes A, through A, are redundant to the scaling of
the mode shapes; thus the mode shapes may be normalized (scaled) as desired. Finally, the phase angles,
¢, through ¢,, complete the solution to the modal vibrations. For the homogeneous initial value problem,
all modes begin with the maximum amplitudes —derived from the initial conditions— implying ¢,
through ¢, equal zero. For the homogeneous impact problem (instantaneous velocity), all modes begin
with zero amplitude and a phase of +7/2. (Note that the phase angle ¢'s are scaler values that are unrelated
to the modal matrix, ®, or its columns ¢, through ¢,.)

The solution of (6), as formulated in (29) and (30) is found by solving the eigen equation. A convenient
means to achieve this is to solve the homogeneous form of equation (6) one mode at a time. (Later it will
be shown that the mode shapes of @ are mutually orthogonal, thus a homogeneous solution of (6) will
require each modal contribution to independently and simultaneously be homogeneous.)

Mo, (1) + Kb, = 0 (a)
(-(D?M + K)S‘_)‘(P‘(t) =0 (b) Vie {1,2,...1’1}
(31)
M7Kd, = -’} (c)

For non-trivial solution, the mode shape, ¢, must not be composed entirely of zeros. Thus the modal
frequencies are solved from the characteristic equation that would drive the determinate of (31b), det(-w?
M +K), to zero. This will yield the n, natural frequencies. Once these are known, the respective non-
trivial eigenvectors can be solved from (31) by substituting in each w;, to form n algebraic equations, and
finding a solution for each element of ¢;. Note that as stated earlier, the scale of ¢, is a free parameter, as a
matter of convenience, the first non-zero element may be set to one. Then the remaining elements are
completely determinate. A more convenient normalization will be developed in section 3.1.3.

Note that for the assumed solution form of (30) to be valid, the modal frequencies must be real valued. If
any of the roots of (31) imply that w, has any imaginary component, then the assumed form is invalid.

,

Generally, this event will imply instability that will prevent an oscillating solution. This instability is
avoided if both of the matrices M and K are positive semi-definite. (A sufficient condition for a real
symmetric matrix to be positive semi-definite is for none of its eigenvalues to be negative. [21]) Further
note for the formulation of (31c) that the inertial matrix is presumed invertible. This is not required for the
eigen equation of (31b), but it is always true for the finite element beam formulation, and it is a convenient
algebraic form to work with. (Note that if the stiffness matrix is invertible, K'Mg, =-0,%p, isalso a
valid form of the equation.)

3.1.1 EIGENVECTORS OF REPEATED EIGENVALUES

The eigen problem of (31) becomes more challenging if their are repeated fundamental frequencies. If the
j® frequency is repeated k times this would imply that wj“ is a component of the characteristic equation of
(31). The first eigenvector can be found as for non-repeated solutions. However, the remaining k-1
solutions can not be found as directly, but orthogonal eigenvectors may be constructed as follows: [6, 7,
14, 15]

Ko, = oM;
Kdgon = /M) + M,
: (32)

Kd(js-1y = (*)J?Mg?(j*—k—l)"’Mg?(ﬁk—Z)

3.1.2 ORTHOGONALITY OF THE EIGENVECTORS

The orthogonality of the eigenvectors is the key that mathematically allows the dynamic problem,
formulated using the finite element approach, to be broken down into a frequency domain perspective. As
shown in (29) the dynamic problem has been decomposed into a finite number of spatial modes, directly
coupled to a temporal component. It has been shown that the temporal solution is of the form of (30).
Thus, the homogeneous response is a composed of a finite number of oscillating temporal frequencies.
The orthogonality of the eigenvectors completes the decoupling of the problem by demonstrating that the
contribution of each frequency is independent of the other frequencies. Thus, the eigenvectors form an
orthogonal basis for the generalized coordinates.

To demonstrate the orthogonality of the eigenvectors of (31), provided that M and K are symmetric,
consider any two solutions, and multiply them by the transpose of the other eigenvector: [14]

Wi Md; = Kb: (a) W M = Kb, (b)

33
W Md: = O] Kd: () G OTMb; = bk, (d) G3)

19

Now, transpose (33d), and note the symmetry of M and K:

(w?oT My - CHTY S
W OM™S: = STKTO: (b
Wb Mbi = dTKD; ()

Finally, subtract (34c) from (33c¢):

(oF - o Mepi = 0

(34)

(35)

From (35) it is clear that: for I = j, ¢jT M ¢;=0. This is a definition of orthogonality. Since M is both
invertible and positive semi-definite it is positive definite (all roots greater than zero). [21] Also, since ¢,
isnon-zero VI € (1,2,..n}, &," M ¢, # 0. This relationship is critical in the basis transform that follows

in section 3.1.4.

3.1.3 MASS NORMALIZATION OF THE EIGENVECTORS

As stated, the scale of the eigenvectors is a free parameter. In the derivation of the eigenvectors in section
3.1, they were normalized such that the first non-zero entry was set to one for algebraic simplicity. At this
point, it will prove convenient to normalize the vectors such that the orthogonality relationship of (33 c,d)
takes on a particularly useful form. (For convenience, we will subscript the mass normalized vectors with
an N. This subscript will later be dropped, as mass normalization will be assumed for the remainder of this

report.)

The desired orthogonality relationship is: [14, 15]

g)ﬂfMg?ﬂ' = 6:‘,,'

_Ilifi=j
Where 6"»1_{01']‘1'#1'

The orthogonality has already assured the zero value for I » j. What remains is to divide the un-
normalized eigenvectors by the square root of the scaler product of ;" M b,

-cbiTMgzizmi
a8,

20

(36)

37

. .

Thus, the mass normalized eigenvector can be obtained from any scale by the following relationship:

[o};

Sy 6

Mass normalized eigenvectors will be assumed for the remainder of this report, unless otherwise stated,
therefore the subscripted N, will be dropped.

3.1.4 MODAL TRANSFORMATION

The result of generating n, orthogonal, mass normalized, eigenvectors has been the development of the
most simplified basis to represent the dynamics of (6). [22] A change of basis, or linear transformation
may be accomplished that maintains the same system dynamics from the eigen perspective. This is termed
modal transformation. This may be achieve by collecting the mass normalized eigenvectors into the
modal matrix, @, of equation (29): [14, 15, 19]

MO + K®o() = £() (a)
O'MBQ(1) + DKDQ() = DF(H) (b) (39)
1900 + Ap(® = ®TF@®) (c)

Two major simplifications occurred in (39). First, the mass normalization transformed the mass matrix
into the identity matrix, I. Second, as can be seen from (34b), the stiffness matrix, K, has been
transformed into a diagonal matrix of squared fundamental frequencies. In general, the modal matrix is
sorted so that the resulting modally transformed stiffness matrix, A, is composed of the squared
frequencies in order of increasing frequency down the diagonal.

The result of equation (39¢) is that the complicated solution of (6) has been transformed into a series of
decoupled first-order differential equations. The vector, Q(t), is called the modal coordinate vector. [19]
3.2 DAMPED SECOND-ORDER SYMMETRIC EIGENVALUES AND EIGENVECTORS
The homogeneous damped vibration problem of (19) can also be examined in from the eigen perspective,
provided M, Cp, and K are symmetric, as follows. [23] First, in a similar approach to equations (26) and

(27), convert the second order equations to first order form without inverting the inertial matrix while
maintaining symmetry by implementing the trivial equality of (40):

Mg - Mg =0 (40)

21

An +Bn =0 (a)

Where:
. 41)
o A XM e MO (d)
= = c =
o 4 M C, 0 K
Note that the state space forms, (26) and (41), are different realizations of the same linear operator.,
Assume a solution to (41) using the separation of variables similar to (29) of the form:
n® = Ex (a)
Where:
3:[;1_@2...;] (b)
(42)
X =[Kle“" Kze“" .. Kne“"' }T (c)
The first time derivative of the exponential temporal terms result in:
A0 = Y ol ke (43)

i=1

Substituting (42) and (43) back into (41) one mode at a time and noting the relationship between the upper
and lower halves of §; as a result of (41b) in particular:

Ani+Bni=0 (a)‘
(ocl.A'+l§)£,-Kie“"=Q (b)
r Vie{1,2..n}
M oM]| g e
(«iM (6 + K) g.-w] - * @

g‘,Upper = aigil.awer (d)

22

Recoguizing ¢t by including (44d) in (44c), and dropping the eigen index subscript, results in the form:

(@M + acy, + K) g2 = 0 45)

Clearly, we may expect complex eigenvalues. Therefore, examining real and imaginary components of the

eigen value, o, and o, of the characteristic equation, (45) without the eigenvector, separately:
ey k0 @ (46)
~20,0,M + o)Cpy = o, (-20,M + Cp) =0 (b)

This demonstrates that the solution for one root, ¢, is also the solution of its complex conjugate, a*, since
the sign of the imaginary component factors out of both equations.

This relationship can be reiterated in the first order form of (44c), and further demonstrate that the
eigenvectors of the complex conjugate eigenvalues are conjugate provided that the elements of A and B
are real. (This provision guarantees that the complex conjugate of the product of a real matrix and a -
complex vector is equivalent to the product of a real matrix and the complex conjugate of the vector.)

(e + () = 0°
«ALi + BEi =0 > o (AE)" + BE; = 0 47)
o« AE; + BE] = 0

From this development, we can expect the first-order eigen solutions to contain twice as many eigenvalues
as the original second-order form, but we anticipate that they will come in complex conjugate pairs, as
demonstrated by (46) and (47).

The relationships between the eigenvectors is shown below for a sorted modal matrix, with subscripted ¢'s
in licu of subscripted £°*s. (The ¢ notation is consistent with the undamped eigenvectors of (29)):

_ | adr adr ardy . .. @, ba 0 b)

¢ b b b .. b

23

3.3 FIRST-ORDER STATE-SPACE EIGENVALUES AND EIGENVECTORS

The first-order homogeneous state-space system of (25) through (28) can be related to the first-order state-
space system of (41) as follows:

01 @
= a
=, 0B
1=-A"Bq (b)
49
o I/{_II;OI'I © @
£ 0 ro| % ¢

A " can be evaluated from its partitioned definition of (41b) using the Schur matrix inversion formula.
[24] Also note that the inverse of the permutation matrix (skewed identity matrix) is itself. The result of
combining the four matrices of (49¢) follow:

RIS

M! 0 0 K I0
As expected, this result is identical to the state-space formulation of (28a). As a result of this equivalence,
the eigenvectors of the first-order state-space formulation of (25) through (28) are the same as E of (37)
with the bottom half partition and top half partition swapped as indicated by the simple transformation of
(49a).

0 §
) [(MK} (Micy) (50)

3.4 RIGID BODY MODES

Rigid body (degenerate) modes of vibration occur when a system is not fully constrained to an inertial
reference frame. [14, 15, 18] In the case of transverse beam dynamics, two rigid body modes are possible:
rotation and translation. The system matrices of the finite element formulation (8) and (9) are an example
of an unconstrained structure. This implies that the system stiffness matrix is singular. Insight can be
gained into the cause of this by investigating the singularity of the elemental stiffness matrix formulation
of (3), and examining its implications on (9).

24

3.4.1 THE SINGULARITY OF THE FINITE ELEMENT STIFFNESS MATRIX

Close inspection of the second spatial derivatives of (1) used in (3) reveals that the third function is
negative of the first. Further inspection reveals a relationship between all but three of the multiplied pairs
of polynomials and the elemental length, h, prior to the integration. (The demonstration of this is included
in the m-file, <rank_ki.m>.) Defining:

h b
4 = [E@LO W = [E@i@| | 22 -| x| 2Ha @
6 5 4
0 0 \ \ hi hi hi
h "- (\
B, - [EQL@OWNwa = [E@i@l| 2|2 - x| Zlla @
0 0 \ \ his \ hi4 \ hi3)
¥ . [36 48
v, = [E@Loémsims = [Eorwl | 22 - 2l Blla @
0 0 h; h; h;
The elemental stiffness matrix (3) of an element, I, can be simplified to:
. o B; % (ot = By)
; ﬁi Yi _Bi (ﬁihi - Y') (52)
ks & -B; & ’(“ihi - Bi)
i (aihi - ﬁ;) (Bihi - Yi) '(“ihi - B;) (aihiz - 2Bh; + Yi)]

In this simplified form it is clear that the third row is the negative of the first, and the forth row is the first
minus the second (or the negative of the third minus the second). The same is also true of the columns due
to the symmetry of the matrix. Thus rank(K’) is two and we can expect zero eigenvalues that result in rigid
body modes of the single element. We can also notice, that by adding positive stiffness values to the main
diagonal we may constraint the element. Clearly, at least two stiffness will have to be added to raise the
rank by two, which raises the question: Will any two stiffness suffice? The intuitive answer is, of course,
no. At least one stiffness will have to lateral. (Recall that the first and third rows and columns relate to
lateral motion while the second and forth relate to rotational motion.)

To demonstrate that two rotational stiffness do not impose full rank on K, add a constant to the diagonal

elements of rows two and four. Notice that row three is still the negative of row one; thus the element is
not fully constrained. The lateral modes are not coupled with the rotational modes.

25

The converse is true. Two lateral stiffness do constrain the element. In fact, one lateral stiffness,
combined with any other stiffness, will achieve full constraint. This is due to the dependence of the
second rotational mode (the fourth row) on the lateral modes, prior to external constraint. (Note that we
have arbitrarily decided to define the fourth row in terms of the first and second. We could also have
defined the second in terms of the first and the fourth. Thus, it is not just the fourth row that is dependent
on the lateral modes, both rotational modes may be formulated as a function of the other rotational mode,
and either lateral mode.)

The lack of full rank of each elemental matrix results in a lack of full rank for the system stiffness of the
finite element beam model. Because of the cascading combination of elemental matrices in (9), the rank of
the full system matrix remain deficient by two. (For nn nodes, we combine (nn- 1) elemental matrices,
each of rank two. Thus the rank of the full system matrix, size 2xnn, is 2xnn-2.)

An analogous interdependence between rows and columns of the system stiffness matrix, K, occurs that
allows external stiffness constraints at interior nodes to successfully constrain the integrated finite element
model. In analogy with (9):

o, 8, -a, (oclh1 - [31) 0 0
ﬁl Y1 "Bl (B1h1 - Yl) 0 0
—0y -B, [“1 * “z] ["(a1h1 - Bl) +Bz] ~0y (O‘zhz - Bz)
K=) (53)
(“1}71 - ﬁl) (Blhl - Yl) [_(“1}’1 - Bl) + Bz] [(“1}‘1 “ 2Bk + Yl) +Yz] -8, (ﬁzhz - Yz)
0 0 -a, -B, o, ‘(“zhz - [32)
0 0 (azhz - Bz) (ﬁzhz - Yz) —(a2h._, - ﬁz) (‘7L2hz2 -2k, + Yz)

Note that row five of (53) is a linear combination of the first and third rows. Thus, the addition of an
external stiffness on the diagonal of row five, will in turn break-up the interdependence between the first
and third rows. In general, the interdependence between rows cascades down the system matrix, and
external constraints break-up the chains of interdependence. The independence of the lateral modes from
the rotation modes persists. The odd rows are only interdependent with other odd rows.

3.5 MATLAB® REALIZATION OF EIGEN ANALYSIS
3.5.1 UNDAMPED MODE SHAPES AND FREQUENCIES

The file <eigen_20.m> was written to compute the mode shapes and frequencies of both undamped,
equation (6), and damped, equation (20), second-order equations of motion. In either case, the input
matrices are first checked to be sure that they are square and of compatible size. The undamped
eigenvalues and eigenvectors are then computed using equation (31b) and the generalized eigenvalue
problem variation of MATLAB®'s <eig> command [12] in a straight forward manner. The circular
frequency (radians per second) is then computed as the square root of the eigenvalues. Real frequencies

26

are guaranteed, provided that the mass and stiffness matrices are real valued, positive definite, and
symumelric as was discussed in section 3.1. (Rigid body modes, corresponding to zero valued eigenvalues,
sometimes resuit in a small imaginary content for the resulting zero frequency mode. This is presumed to
be harmless numerical imprecision, but it does trigger warning messages.) Issues regarding repeated
eigenvalues and rigid body modes are resolved by the MATLAB® <eig> command. [12]

3.5.2 DAMPED MODE SHAPES AND FREQUENCIES

Damped mode shapes and frequencies are computed if the optional damping matrix is included as an input
variable to the file. Numeric accuracy limitations require the use of an imposed cut-off frequency to
discriminate under-damped vibratory modes and rigid body modes. (Note that over-damped modes may
exist.) The cut-off frequency chosen was five percent of the fundamental mode of the undamped system,
which is computed first. This value may easily be changed if the need presents itself.

If the damping matrix was included, the conversion to the first-order form of equation (41) precedes the
call to MATLAB®'s <eig> command [12] to implement equation (44b). Extraction of the mode
frequencies is accomplished by taking the absolute value of the imaginary component of each pair of
complex conjugate cigenvalues. The unit of the frequency is radians per second, as can be seen from
equation (42c¢) in light of Euler's equation (polar form [21]):

clweai e“ﬂ‘(cos(ocit) + isin(ot)) &9

Note also from Euler's equation that since the eigenvalues that contain imaginary components come in
conjugate pairs —due to the symmetry of the system matrices— the imaginary content of the time domain
response cancels out: I sin(w;) + I sin(-a,;)) = 0.

Extraction of the second-order damped mode-shapes from the first-order eigenvectors is achieved by
identifying the eigenvalues with positive imaginary content. (Thus neglecting the corresponding negative
conjugate.) The mode-shapes are extracted by taking the real part of the upper half of the eigenvectors
that correspond to the identified eigenvalues. Note that the first-order eigenvectors identified by
MATLAB® are normalized to a Euclidian length of one. Since the eigenvectors include imaginary content,
MATLAB® must, in general, multiply each eigenvector by a complex scaling coefficient. This may mask
the underlying structure identified in (48). The structure of (48) may be partially recovered by identifying
anew complex coefficient for each independent eigenvector that cancels the imaginary content of the
lower half of (48). Further, the columns corresponding to conjugate eigenvectors may be normalized by a
real-valued scaler value to obtain a one-to-one match between the lower halves of conjugate eigenvectors.
Once these steps are taken, the relationships indicated by (44d) and (47) are revealed.

27

3.5.3 IDENTIFICATION OF RIGID BODY MODES

Rigid body modes correspond to eigenvalues of zero in either case of damped or undamped systems.
MATLAB® 's numerical approximation of the damped eigenvalues makes the identification of the zero
eigenvalues more challenging. The cut-off frequency that was used to discriminate flexible modes from
over damped modes is employed to identify eigenvalues that are close enough to the origin to be
considered as rigid body modes. This identification is not robust; it is susceptible to errors. For this
reason, the expected number of rigid body modes is computed from the rank deficiency of the stiffness
matrix (see section 3.4.1). If a discrepancy is found between the computed and identified number of rigid
body modes, a warning is written to the screen.

3.5.4 CYCLIC FREQUENCY

The cyclic frequency is obtained by dividing the circular frequency, radians per second, by 2x7 radians
per cycle. The resultant frequency is in units of cycles per second or Hertz.

3.5.5 NORMALIZATION OF THE MODE-SHAPES

The undamped eigenvectors, or the damped mode-shapes extracted from the first-order eigenvectors, are
mass normalized using the relationship of (38). In addition, a consistent sign convention is imposed that
results in a positive initial rotation of the beam (left end pointing down). This reduces confusion that may
be caused by the sign ambiguity of (38) that results in seemingly random orientations of the mode-shapes
about the undeformed axial axis.

3.5.6 SORTING OF MODES IN ORDER OF INCREASING FREQUENCY

The cyclic frequencies are sorted in order of increasing frequency. The columns of the mode-shape matrix
are rearranged to maintain a one-to-one correspondence with the sorted mode frequencies.

3.5.7 EVALUATION OF ORTHONORMALITY OF THE MODE-SHAPES

The orthogonality and mass normalization of the mode-shapes imposed by (38) is validated by computing
the norm of the following matrix:

O™® -1+~ 0 (85)

As indicated by (55), the result would ideally be a matrix the same size as the mass matrix and full of
zeros. Thus, a small value was sclected as a criteria to compare against the resulting norm to validate, or
call into question, the orthonormality of the mode-shapes. If the test is failed, a warning is written to the
screen.,

28

This test has revealed that MATLAB® does not generally produce orthogonal mode-shapes corresponding
to repeated rigid body modes (as one could expect). For the other cases, one rigid body mode or a fully
constrained system, MATLAB® produces nearly orthogonal mode-shapes in most cases.

3.5.8 PLOTTING OF BEAM DEFORMATION AND MODE-SHAPES

An m-file, <beam_plot.m>, was written to plot the beam deformations as a function of the generalized
coordinates. The input information required includes the node coordinates, the axial position vector, the
generalized coordinate vector, a scaled geometry matrix, the constraint vector, and if an external vibration
absorbers are included, an input vector of the generalized coordinates to which the absorbers are coupled.
(Note that the mode-shapes evaluated above consist of a vector of generalized coordinates values.)

After several validation checks of the input arguments, the deflections of the centerline of each finite
element of the beam are computed using (7). This requires the use of the file, <fem_interp.m>, discussed
in section 2.2.4. The deflections of each element are combined into a total beam deflection vector, that
maintains a one-to-one correspondence with the axial position vector.

Once the centerline deflection vector is computed, an exaggerated plot of the actual distorted beam shape
may be obtained adding the centerline deflection to a scaled form of the geometry matrix that was
computed when the input beam geometry was formulated. (See section 2.2.2.) The geometry matrix is
scaled prior to calling the plotting routine, to achieve an aesthetically pleasing plot of the deformed beam
geometry. (If the scaled geometry dimensions are much greater than the deflections of the center line, the
deflection will be obscured. Conversely, if the scaled geometry dimensions are much smaller than the
deflections, the geometry will be obscured resulting in a plot that approaches as narrow line as the
difference is exaggerated.) For clarity the centerline is plotted with the finite element node locations
explicitly tagged by x's.

External constraints are depicted by a thick line connecting the beam's generalize coordinate location to its
undeformed location. Thus they may create the impression of an elastic member, tying the beam to the
inertial reference frame at the nodal constraint location.

If an external absorber is coupled to the barrel, the axial position of the external center of mass is directly
indicated by the location of its generalized coordinate. The position of the external mass is directly
plotted as a character, * or o, using its lateral deflection explicitly. In addition, a line coupling the external
mass to its beam generalized coordinate is included. It is important to note that provisions to correctly
depict rotational absorbers has not been included. To do so would require explicit information on the plot
aspect ratio and scaling, and could still lead to confusion due to the exaggerated slopes of the beam itself.
Thus far, provisions to better represent them have not been warranted. For now, the rotational absorbers
are indicated by the, *, character, and lateral absorbers by the, o, character. The angular deflections of the
rotational absorbers are simply plotted as lateral deflections that still convey the relative phase and motion
of these coupled inertias.

29

4 MATLAB® DYNAMIC ANALYSIS CASE STUDIES

MATLAB® script m-files [12] were written to demonstrate some of the analysis that is possible with the
collection of function files documented in this report to conduct dynamic analysis of non-uniform beams.
It is the purpose of this section to conduct a step-by-step case studies of a nonuniform, partially
constrained and fully constrained beams. In the process, a pole-zero map will be constructed, a Bode
frequency response plot will be developed, a time domain simulation of the dynamic response of the beam
to an input vector will be computed, and the modeling will be validated.

4.1 THE RIGID BODY XM291 CASE

This first case study section will examine the behavior of an XM291 gun system, that is not coupled to an
elevation mechanism. Thus, it is only partially constrained by the trunnion mount and exhibits rigid body
motion manifest in angular deflections. This model could be used as the open-loop plant for the
formulation of an elevation feedback control.

4.1.1 PRELIMINARIES

The script file, <XM291rb.m>, that implements this first part of the case study is broken up into sections
that execute commands to achieve one or more closely related modeling goals. At the beginning of each
section, the variables to be defined in the section are indicated, along with the variables to be altered and
used in the section. Further, a brief description of the section is provided. Interim variables that are
defined within a section, but not used by later sections, are sometimes set to null values at the end of the
section to maintain clarity, and keep the variable work-space manageable.

Prior to reading in the beam geometry to be studied, we have found it convenient to establish two flags to
indicate whether or not plots should be displayed, and if so, whether or not they should be printed. For the
remainder of this case study, it is assumed that the plot flag is on.

Finally, a plot label is set to automatically annotate several of the plots that are generated. In this case, the
label is set to: XM291rb. The subject will be the analysis of the XM291, laterally constrained by a stiff
spring approximation o a frictionless pair of trunnion bearings in the vertical plane. This will result in
one rigid body rotational mode, and set the stage for analysis of the beam dynamics, subjected to force
input at the elevation mechanism location.

30

4.1.2 BEAM GEOMETRY

XM291rb Profile & Non beam Masses Versus Length in Meters, (Total Non beam Mass of 1442 Kg, or 3178 1bm)

400 5
g . X
b :
X200 ;
L : ; ; ; i i ;
0 1 2 3 4 5 6 7

x 107 EI from Profile

10 T T T T | T T T

I t . r—— |

N ; | ;

0 1 2 3 4 5 6 7
Axial Position (m)
Figure 1 Output Plot of M-File, <geomf_XM291.m>.

The geometry of the XM291 gun barrel is read in using the function file, <geomf_XM291.m> as described
in section 2.2.2. The plot of Figure 1 is automatically included by calling the file with the plot label as an
input variable. '

Some of the features of Figure 1 are worthy of comment. The top plot indicates the inner and outer radii
reflected about the centerline. This is particularly useful for debugging the input geometry file, especially
for a geometry file with as many detailed entries as the file for the XM291. Also notice in this top plot
that the black region towards the rear of the barrel indicates the distribution of the extraneous mass, and
that the title includes the total non-beam mass for validation. This mass is kept separate from the beam
linear density depicted in the second plot with the total beam mass indicated in its title. By segregating
the two densities, the non-beam masses do not obscure the validation of the beam density. (If the two
densities were combined, the second plot would not lend as much qualitative or visual validation of the
computed linear densities.) Finally, the third plot indicates the linear distribution of beam stiffness.

31

4.1.3 FINITE ELEMENT MESH GENERATION

The first requirement to generate the finite XM291rb Meshing Metric & Node Locations Vs Position
element mesh is to specify the locations

where external constraints or forces are
expected to interact with the beam. In the
case at hand, the barrel is to be constrained at
the trunnion location and forced from the
elevation mechanism location. Therefore,
these locations need to be finite element node
locations and are included as imposed node
locations for the meshing m-file,
<fem_mesh.m>. In addition, the desired
number of elements has been chosen to be
seven. A relatively small number was
selected to facilitate dynamic analysis, and to
keep the system matrices and generalized
coordinate vectors small enough for simple
inspection and plot labeling. This
information is combined with the four data
vectors generated earlier results in the
meshing of Figure 2.

w S w (=)} ~J
T Y T T
; : . : i
1 1 A 2 *

N
4
2

—
T
1

Figure 2 depicts the meshing metric that was
developed in section 2.2.3. The purpose of
the metric was to evenly divide the super
elements, between the imposed node
locations, into the allotted number of
elements. The imposed node locations are
indicated by a filled circle in the plot, while the free node locations are indicated by an empty circle.
(Beam boundaries —by default— are imposed node locations.) In this rather simple example, only the
super segment after the clevation mechanism is allotted any free elements. The five elements within the
super element are then evenly spaced with respect to the metric.

Normalized Metric {0’s—>nodes, * ’s—>imposed nodes, :—>metric}

(=]
—
8]

3 4 5 6 7
Position Along Beam

Figure 2 Output Plot of M-File, <fem_mesh.m>.

4.1.4 COMPUTATION OF THE SYSTEM MATRICES

The mass and stiffness matrices of the free-free beam are computed from the raw data vectors, and the
coordinates of the mesh nodes using the m-file, <fem_form.m> as described in section 2.2.5 The
constraint of the trunnion bearings is modeled as a stiff lateral spring (750,000 1b,/in) with no rotational
resistance and a damping value equivalent to the Rayleigh stiffness proportional damping given below.
The generalize coordinate to which the constraint is coupled is identified, and all three values are
integrated into a one-by-three external constraint data matrix.

The free-free beam matrices are then modified to incorporate the lumped effects of the coupled rigid body
masses discussed in sections 2.2.2 and 2.3.2. The Rayleigh damping is then computed for the modified
system matrices using values of zero for & and 10 for f. Finally, the external constraint is added. This is
done in the m-file, <fem_lump.m> as described in section 2.5. The final result is depicted in the images of
the mass and stiffness matrices in Figure 3.

32

Image of Mass Matrix, M Spy Image of Nonzero Mass Matrix Elements
.0

0000
0000
900000
000000
5 000000
...z:.
000000
0000 .'.
10 44111
:0.0
5 10 15 .“.“
44111
15 0000
0000
Color Scale 0 5 10 15
' nz = 88

Zero High Spy Image of Nonzero Stiffness Matrix Elements
0000
2000
000000
Image of Stiffness Matrix, K 5 ..8888.'
_ '.:..i o
. i
5 of S
000
0000
’ s
15 13 ..3.
5 10 15 0 5 10 15
nz = 88
Figure 3 Image of System Matrices as Plotted by the M-File, <XM291rb.m>, Section 5.

Figure 3 depicts the image of the completed system mass and stiffness matrices. The shaded images
indicate the locations of relatively large inertias and stiffness (near the breech). Since many non-uniform
beams are tapered, and since inadvertent dimensional scaling of rotational versus lateral parameters
occurs, the color scale of the images may obscure the distinction between zero elements, and small
elements. To address this issue, the non-zero cells of the matrix, regardless of their magnitude, are
illustrated to the right using MATLAB®'s <spy> command. [12] This verifies the cascading construction
of both system matrices from four-by-four elemental matrices.

4.1.5 UNDAMPED EIGENVECTOR AND FREQUENCY DETERMINATION

The undamped second-order eigenvectors and frequencies are computed using the m-file, <eigen_2o.m>.
This file conducts the eigen analysis as described in section 3.5.1. The resulting eigenvectors are then
plotted using the m-file, <beam_plot.m>, as described in section 3.5.8. The results of the first six modes
are depicted in Figure 4.

33

XM291rb Undamped Mass—Normalized Eigenvectors and Frequencies

Rigid_Body_Mode Bend_Mode_3, 61.64Hz
0.1 - T ' 0.1

0 b
-0.1b
Axial Position (m) Axial Position (m)
Figure 4 Depiction of Undamped Eigenvectors Computed by <XM291rb.m>, Section 6.

4.1.6 DAMPED MODE-SHAPE AND FREQUENCY DETERMINATION

The damped mode-shapes and frequencies are also computed using the m-file, <eigen_20.m>. This file
conducts the damped eigen analysis with the inclusion of the damping matrix as an input variable. The
results of the first six bending modes are depicted in Figure 5. (The rigid body mode is not redisplayed,
although it is computed.) The last mode-shape appears to be out of order. Insight as to the cause of this
will be made later in section 4.1.8. Note that it is a good practice to conduct the same analysis with more
elements to examine if the mode shapes, within the frequency band of interest, change in character. Finite
element modeling of higher modes improves with more elements (as discussed in section 2.1.1 and
demonstrated in section 4.4.2) thus providing a good check of reduced element models.

34

XM291rb Damped Mass—Normalized Bending Mode—-Shapes and Frequencies
Bend_Mode_1, 19.11Hz Bend_Mode_4, 106.9Hz

Axial Position (m) Axial Position (m)
Figure § Depiction of Damped Mode Shapes Computed by <XM291rb.m>, Section 7.

4.1.7 CONVERSION TO FIRST-ORDER STATE-SPACE

Conversion of the second-order equations of motion to the first-order state-space form enables the use of
MATLAB®'s library of dynamic analysis tools. The conversion is executed by the m-file, <fem2ss.m>,
which implements equation (28) for the state-space equations of motion of equation (27). The resulting
matrices contain some zero and identity sub-matrices that are revealed in figure 6, which was generated
using the <spy> command. [12]

Once converted to state-space, the inclusion of irrelevant input and output variables may be removed using
MATLAB®'s <ssselect> command. [25] 1t is particularly helpful to reduce the multi-input, multi-output
(MIMO) system to a single input, single output (SISO) system. In the case of gun dynamics, a relevant
choice for a SISO system would be the elevation mechanism as the sole input, and the muzzle pointing
angle as the sole output. This is executed in section eight of the m-file, <XM291rb.m>,

35

4.1.8 POLE-ZERO MAP First—Order, Non—Zero, System Matrix Entries
Once the first-order matrix representation of A matrix B matrix

the system is in the MATLAB® work-space,a © D
pole-zero map may be constructed to provide
graphical insight into the behavior of the
system using MATLAB®'s <pzmap>
command. [25]

Figure 7 depicts a region of the pole-zero map
of the system. The poles are indicated by x's, =
and the zeros by 0's. MATLAB®'s <sgrid> 0 10 20 30
command [25] was used to generate the lines of nz =528 nz =256
constant natural frequency, and critical

damping ratios in increments of twenty C matrix D matrix
percent. (The zero damping ratio is collocated 9w, 0
with the positive and negative imaginary axes, %o,
while the unity ratio is collocated with the 10 "%, 10 0
negative real axis.) The map reveals several ‘%,
important properties of the damped system. 0 10 20 130 0 10

First, the zeros in the right hand plan nz =16 nz=0
demonstrate that system is a non-minimum Figure 6 First-Order System Matrix Population

phase system. [26, 27] Second, the effect of Computed by <XM291rb.m>, Section 8.
stiffness proportional damping is more

pronounced in the higher frequencies as can be seen by the higher damping ratio's of the higher natural
frequency modes. Third, flexible modes beyond the sixth undamped flexible mode are now over damped,
and their poles have migrated along the negative real axis. Fourth, the single rigid body mode is
represented by the pole on the origin. Fifth, the effect of the damping, is to slide the flexible poles down
the constant radii of natural damping. This allows the correlation of damped mode-shapes to their
undamped eigenvectors. (This explains the unusual sequence of damped mode-shapes in Figure 5.)
Finally, notice that the flexible poles all lay on the locus of a circle, centered on the negative real axis at
the point to which the zeros, and over damped poles seem to be migrating towards. This is very
reminiscent of root locus construction and could provide valuable insight.

36

XM291rb Open-Loop Eigenvalues

T T T T T T T

. 280.1 Hz

; ks

. Q

: £

; 2

...... G e e e s 518781'12—

y ' : i

R : =

1516 Hzb - rveven- T RRRREREEE e ‘ g

133.0Hzf - X T T 2 .
1069 HzF -+ ,'f ; X -

.
ped

-
-
R
(9]
=
N

1

1€8

05Hz -+« ,..' RETRRTERRS . , o '_ :

6
PA4HZ - e PR . 3
191Hz -+ R EEERRIPRRRRRY SRR SRR 19.1 Hz

0.0Hz f----n-- e X SOMED O -~ B ===+ 1D -+ oo O rerene
: : : L
o

P
Ui
T

\
X
w
13
W
&I
~N
!

T

Damped Frequenc

Imaginary Axis,

1 - L L 1 1 !
—-2000 -1500 -1000 -500 0 500 1000
Real Axis, Exponential Decay Rate (1/sec)

Figure 7 Pole-Zero Map Generated by the M-File, <XM291rb.m>, Section 9.

4.1.9 FREQUENCY RESPONSE BODE DIAGRAM

The frequency response of a dynamic system indicates the steady-state response, y(t), of the system to a
sinusoidal input, u(t): [25]

u(t) = Asin(wt)

() = kAsin(@t +) (56)

37

Classical control techniques relied heavily on these techniques because the Laplace domain was the best
available means to conduct dynamic analysis prior to the introduction of state-space techniques in the
nineteen-sixties. Frequency response analysis complements the state-space and eigen analysis by
providing indications of stability, in addition to a quantitative and qualitative perspective.

Gain dB

XM291rb Elevation Mechanism to Muzzle Pointing Angle Bode Plot

1262571 -+ -

-165.1799 - - - - -

-219.8431
5.0

i i i
19.1Hz 324Hz 60.5Hz 1069 Hz 500.0 Hz

180

0

Phase deg

Sasof b
B0

Figure 8
Figure 8 is a Bode Diagram of the SISO response of the muzzle pointing angle to the elevation
mechanism. It consists of two plots, the upper relates the gain of the system, k in equation (56), to the
excitation frequency, w, and the lower plots the phase lag, ¢, to the frequency. The gain is represented in
decibels. (A decibel is related to the gain as: dB = 20 log,o(k).)

Freauencv (Hz)

Bode Diagram Generated by the M-File, <XM291rb.m>, Section 10.

Examination of the upper plot indicates that the response is greatest at the first mode, followed by the
second mode, and then tapers off to a very small response. This information may be used to argue that the
system is most susceptible to disturbances in the frequency range near the first two modes. If any
modifications are contemplated for the system, it would be highly desirable shift this frequency response
band away from known disturbance sources. In the case of tank cannon, disturbances from terrain induced
vibration are concenirated at the low end of the spectrum. (A 63,000 Kg M1A2 tank [28] with any viable
suspension makes an impressive low-pass filter.) Therefore, it is very desirable to keep the fundamental
modal frequencies as high as possible.

38

4.1.10 TMPULSE RESPONSE x 107 SISO Unit Impulse Response
OF UNCONSTRAINED BARREL T T :

The response of the muzzle pointing
angle to a Newton Second impulse at the
elevation mechanism may be obtained
using MATLAB®'s <impulse> command
[25]. Since this system contains a rigid
body mode, the net motion of the barrel

|
—
v

|
[
T

x 107 Initial Response Close-Up

Muzzle Deflection (rad)

drifts away from the initial state while 3l 3

the flexible modes are vibrating about 2

this drift. The important thing to notice 1

in Figure 9, is the initial transient in the -4t T 0 "\ """"""""

response before the gross motion of the -1

lower frequency modes is established. st 0.000 0.005 0.010

This is the non-minimum phase effect) (sec) .

discussed in section 4.1.8. 0 0.05 0.1 0.15 0.2
Time After Newton—Second Impulse at Elevation Mechanism (sec)

4.2 FULLY CONSTRAINED Figure 9 Impulse Response Generated by the M-File,

XM291 XM291rb.m, Section 11.

It is important to realize that all of the analysis thus far has been conducted on a barrel, that is not fully
constrained. This analysis lends itself to the design of the elevation mechanism feedback control, where
the unconstrained barrel is the open-loop plant. In reality, the feedback controlled elevation mechanism is
used to point the barrel to the desired elevation. In the lab, the barrel is mounted in a stand with a near
rigid bar constraining the motion of the barrel. This laboratory bar, may be modeled as a stiff lateral
spring with no rotational restoring force. (This model also emulates a high gain proportional feedback
controller.)

Analysis of the fully constrained XM291 is executed by the m-file <XM291fc.m>. This file mimics the
analysis of the file <XM291rb.m> discussed in section 4.1 until a second lateral constraint is added at the
location of the elevation mechanism. The constraint value assigned to it is two-thirds the spring constant
of the trunnion constraint. This added constraint eliminates the rigid body motion of the barrel, thus
providing the opportunity to examine the response of the stable structure.

4.2.1 DAMPED MODE-SHAPE AND FREQUENCY DETERMINATION
The damped mode-shapes are again computed using the m-file <eigen_20.m> in section 6 of the script file

<XM291rb.m>. The first modes are depicted in figure 10. The change in the modes from figure 5 are
worthy of a couple comments.

39

The first bending mode of the constrained model exhibits
the classic, quarter wave cantilevered deflection. This
demonstrates that the elastic constraints are quite stiff
relative to the barrel, and have successfully introduced a
new mode of vibration.

It is also interesting to note that the other modes appear to
be only slight modifications of the unconstrained modes;
with the differences becoming less pronounced at the higher

frequencies. 0.1
4.2.2 BODE DIAGRAM 01

After the computation of the new finite element matrices, 0.} L

the first-order state space conversion is effected as in
section 4.1.7. The frequency response of the new system is
computed in section § of the m-file <XM291fc.m> and
displayed in figure 11. It has been altered appreciably from
the unconstrained case to reflect the introduction of the new
—Ilow frequency— mode. Unlike the Bode plot of figure 8
this plot was computed for input forcing at the trunnion.
This provides a model of the gun subject to disturbances

introduced at the trunnion, and controlled by the restoration 0.1~

force at the elevation mechanism. In this case, the

restoration force merely models a linear spring. 0hgs

-0.1

0.1

0.1

XM291fc Damped Mode—Shapes
Bend Mode 1,7.244Hz

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Axial Position (m)

Figure 10 Depiction of Mode Shapes for
Fully Constrained XM291.

40

-126.9651F ---- ' '

£ _154.4316

Gain

—213.0468 i :
25.1 Hz

46.6 Hz 60.7 Hz

-180 —
B Y1) T

Phase deg

_540;.

Freauencv (H7)

Figure 11
4.2.3 IMPULSE RESPONSE

The impulse response of the constrained barrel is
depicted in figure 12. The lack of a rigid body
mode prevents the response from drifting off to
infinity as occurred in figure 9. Examination of
figure 12 reveals that several modes, of different
frequencies, are oscillating about the equilibrium
point of zero. The higher frequencies,
distinguishable by their short periods, clearly
dissipate more quickly than the low frequency
fundamental mode. The fundamental mode, near
seven Hertz, dominates the response after a
quarter of a second. This illustrates the effect of
the stiffness proportional damping employed as
discussed in sections 2.4 and 4.1.4; the higher
frequencies are penalized more than the lower
frequencies.

Also note that the non-minimum phase effect
discussed in sections 4.1.8 and 4.1.10 is clearly
present in the constrained barrel.

Bode Diagram Generated by the M-file, <XM291fc.m>, Section 8.

x 1078 SISO Fully Constrained Impulse Response
2 -
7
N
&
=]
g -2
é x 10”7 Initial Response Close-Up
@
2
N
2
-6}
0
0.000 0.005 0.010
-8t
. _ (sec)
0 0.1 0.2 03 0.4
Time After Newton-Second Impulse at Trunion (sec)
Figure 12 Impulse Response Generated by the M-

file, <XM291fc.m>, Section 9.

41

4.2.4 STEP RESPONSE x 1078 SISO Fully Constrained Step Response

Since the barrel is now fully constrained, a 33055}
step response simulation may be executed as
is done in section 10 of <XM291fc.m>.

The step response simulates the effect of a
sudden, but constant, application of a one
Newton vertical force at the trunnion
location. This is very similar to the effect of
an impulse, with two major differences.

<o
N~J
3
[\%3

o

x 107 Initial Response Close-Up

First, the step response results in a static
offset. In the case of the impulse response
of a fully constrained system, the system
eventually returns 1o its equilibrium state -4
which is the same as the initial state. 0.000 0.005 0.010
However, the step response, invokes a ‘ (sec)

constant loading that results in a new 0 01 02 03 04 0.5
equilibrium state, that may be calculated via Time After Newton Applied at Trunion (sec)

the final value theorem. [26, 27] This Figure 13 Step Response Generated by <XM291fc.m>,
method was used to plot the dot-dashed line Section 10.

of the new equilibrium deflection. It was

evaluated in section 10 of the m-file, <XM291fc.m>, by first converting the truncated state-space system
to its transfer function equivalent using MATLAB®'s <ss2tf> command [25]. The Laplace “s” operator
was then effectively set to zero by only taking the constant coefficients of the numerator and denominator.
(This method does not solve for limits, so it will fail when the denominator coefficient is zero. A <while>

loop [12] could be invoked to seck the first non-zero denominator coefficient, and then compute the limit
more reliably.)

Muzzle Deflection (rad)

-1.8354}

Second, relative to the impulse response of figure 12, the higher frequency content is low. The reason for
this is that a time domain impulse results in a flat frequency response. (A cut off does occur in physical
systems that is a function of the impact mass, and the effective resilience of the impactor. [29]) However,
the frequency content of the step input is: [30]

& is the Fourier Transform
H is the Heaviside Unit Step Function

1 i . O is the Dirac Impulse Function
FLH®)) = Eé(f) - nf Wh t is the Time Domain Variable &7
fis the Frequency Domain Variable

iis /-1

Clearly, the step input excites less response in the higher frequencies.

42

4.2.5 STATIC GRAVITY DEFLECTION

Gravity loading exerts a distributed force along the span of the XM291 barrel that is proportional to its
linear density. In fact, the gravity force vector, to the resolution of the beam geometry, is the acceleration
of gravity multiplied by the total linear density of the barrel and any extraneous mass that is attached to it
(assuming that the undeformed barrel is horizontal). This input vector is computed in section 11 of
<XM291fc.m>, and used by the m-file, <fem_force.m>, developed in sections 2.1.2 and 2.2.6. The result
is a system force vector that is compatible with the finite element formulation that approximates the
distributed lateral force of gravity by equivalent lateral forces at the nodes, and moments at the nodes to
approximate the interior loading of the beam elements.

This loading provides the opportunity to validate the equivalence of the state-space model of (27) with the
second order model of (6) and (20). It further provides for a demonstration of the convergence of the time
simulation provided by MATLAB®'s <lsim> command [25] . Finally, the validity of the final value
theorem approximation using MATLAB®'s <ss2tf> command [25], as was done in section 4.2.4, may be
‘demonstrated in a more complicated context.

<107 XM291fc Static Gravity Deflection Figure (14) is the juxtaposition of the solution
T . ' l T . . of the static deflection problem arrived at from
: : : : : ‘ three wholly different principles. No
E ok | perceptible difference occurs in the plots,
g validating their similarity. Numerically, small
3 —but not insignificant— differences do exist.
=
L
A -3 | The first method used was a direct simulation
5 of the response of the system to the
3 instantaneous application of gravity loading
-10 : . : : : : : 1 for a relatively long period of time. A period
(‘) 1 2 3 4 5 6 sufficient for the mption to essent.ially cease
Axial Position (m) (four secgnds). This motion prov1ded‘ the
Figure 14 Gravity Deflection Computed in Sections :ggﬁ ;ttlil:;tz ft(:hierrg:;s:lrsz:?nﬁ;z (ﬂ?inilzalo?oéw
11 to 14 of <XM291fc.m>. m-file <XM291fc.m>.

The second method was to invoke the final value theorem by assembling a matrix of each input/output pair
combination using two nested loops. At each pair, the MIMO state-space system was truncated to SISO
system of the input/output pair. This system was converted to its transfer function equivalent using
MATLAB®'s <ss2tf> command [25], and then evaluated with the Laplace *s” operator set to zero as was
done in the previous section. This results in a matrix that transforms the generalized force vector, to the
equilibrium generalized coordinate vector. This operation was executed in section 13 of the m-file
<XM291fc.m>.

The third method used was to recognize that at equilibrium, the time derivatives of the generalized
coordinates are zero. Thus, the second-order equations of motion, (6) and (20), can be simplified. The
resulting solution for the deflection is the inverse of the stiffness matrix multiplied by the generalized
force vector. This provides some insight into the relationship between the invertibility of the stiffness
matrix, and the constraint of the beam that was elaborated on in section 3.4.1.

43

4.3 HYBRID 60MM TEST GUN

A 60mm test gun is currently being modified to support an electromagnetic accelerator at its muzzle end.
[31] The accelerator unit is quite massive relative to the gun, and the dynamic effects of the
electromagnetic reactive loading on such systems is a concern from the perspective of accuracy. [32]
Finite element analysis of the barrel was conducted with, and without the muzzle accelerator, to reveal the
mode-shapes of the system. These mode-shapes were compared with mode-shapes computed using the
Uniform Segment Method (USM) discussed in section 1. [33]

4.3.1 BEAM GEOMETRY

The geometry of the 60mm test gun, with the extrancous muzzle accelerator masses is read in using the
function file <geomf_hybrid.m> in a manner analogous to section 4.1.2. The plot of figure 15 reveals the
simplified geometry of the test barrel, and the rather large extraneous mass that the muzzle accelerator
imposes on the muzzle end of the barrel. Since the muzzle accelerator is both relatively short and stiff, it
was not modeled as a beam element but rather as a series of rigid body masses applied at the muzzle end
using the technique developed in section 2.3.2.

Hybrid 60mm Profile & Non beam Masses Versus Length in Meters, (Total Non beam Mass of 87.17 Kg, or 192.2 ibm)

1] T

I i I I J 1 J

i i i i i i i i i
0 0.5 1 15 2 25 3 35 4 45
Linear Density from Profile, (Total Mass of Beam 119.8 Kg, or 264.2 Ibm)

1.5 2 25 3 35 4 4.5
EI from Profile
4 ; , I 1 , ' ' | | ‘ e
o :
< .
% 2 -
z :
0 ; ; i } t i i
1.5 2 2.5 3 3.5 4 4.5
Axial Position (m)

Figure 15 Output Plot of the M-file, <geomf_hybrid.m>.

44

432 UNDAMPED MODE-SHAPE COMPARISON

The mode-shapes of the free-free beam with out the accelerator and breech attached is shown in figure 16,
juxtaposed against the mode-shapes computed using the USM. [33] For reasons of clarity and
compatibility with the available USM eigenvectors, the mode-shapes are normalized to a maximum
absolute value of one, and plotted against a normalized axis from zero to one. The similarity of eigen
analysis of the two methods validates them.

It is worth noting that one of the key issues to using the USM is to reduce the model to a minimum number
of elements that are analytically treated as uniform beam segments. Only three elements were employed
by the USM to generate the eigenvectors of figure 16. Since the barrel essentially consists of a prismatic
section beyond the taper at one meter, the USM and high density finite element eigenvectors very closely
match beyond the taper. The discrepancies in the higher modes behind the taper may largely be attributed
to the over simplification of the USM's first two elements.

60mm Barrel Eigenvectors and Frequencies (:FEM:, ~USM-)
Bend_Mode_1, ;FEM 27.48Hz:, -USM 26.4 Hz— Bend_Mode_4, :FEM 338.2Hz:, ~USM 329.5 Hz-

17 " 17
-+ FEM
ol —USM ol
-1k J -1k
0 02 04 06 08 1 0 02 04 06 08 1
Bend_Mode_2, :FEM 84.5Hz:, -USM 83.1 Hz— Bend_Mode_5, :FEM 519.3Hz:, -USM 478.2 Hz-
1 T T T T c 1 T T T T T T
-+ FEM
-1k -1 ke]
0 02 04 06 08 1 0 02 04 06 038 1
Bend_Mode_3, :FEM 188Hz:, -USM 187.4 Hz—~ Bend_Mode_6, :FEM 699Hz:, -USM 656.4 Hz—
1 —r T r T T — 1 r T T T *
-+ FEM
ot ~ 1 |—USM 0
-1 -1
0 02 04 06 08 1 0 02 04 06 08 1
Normalized Axial Position Normalized Axial Position
Figure 16 Hybrid Barrel Mode Shape Comparison Computed by <hybrid60.m>, Section 7.

45

4.3.3 GRAVITY DEFLECTION OF HYBRID GUN AS SUSPENDED

The deflections of the hybrid gun, as suspended x10° Hybrid 60mm Static Gravity Deflection

in the firing range, is of interest and shown in T T T T T
figure 17. For the sake of clarity, the stiffness ' : : : :
of the hangers was intentionally reduced to
better depict the curvature of the barrel in
relation to its suspension points.

o

This plot also reveals that many elements were
used to generate the finite element model. (74
elements in total.) This is inferred from the x's
plotted along the deformed centerline of the

Lateral Deflection (m)
|
S

beam. -15
The deflection was computed using the third Fi 17 Gravi gmal chmon (mii in Section 12 of
method of section 4.2.5; inversion of the lgure ravity Droop Computed in Section 12 o

stiffness matrix multiplied by the force vector. <bybrid60.m>.

4.4 VALIDATION VIA COMPARISON WITH ANALYTIC CASES
4.4.1 NICHOLSON SOLUTION TO SPECIAL NON-UNIFORM BEAMS

Further validation of the modeling method developed in this report may be achieved by comparing the
finite element approximations to the fundamental frequency of non-uniform beams of special cross-
sections that have been analytically investigated with their analytic counterpart.

46

Free—Free Beam, First Half: y = xA(1/4) FEM Convergence to f = 0.5536

- 5

@ 1 " /’—‘Ax 5
=
g 0) g 0 Pooocccssssssssssssd
o —1 (. N " A - @ _5 " . .

0 0.5 1 1.5 2 0 5 10 15 20

Axial Position Number of Elements
Free—Free Beam, First Half: y = xA(1/2) FEM Convergence to f = 0.6528

Radius
Lo w
% Error

_1 i A i
0 0.5 1 1.5 2 0 5 10 15 20
Axial Position Number of Elements '
Free—Free Beam, First Half: y = xA(3/4) FEM Convergence to f = 0.7401
— . . . — .S . . .
£ I
g 0r 1 m 0 D
~ -1t . " .] &D _5 . N .
0 0.5 1 1.5 2 0 5 10 15 20
Axial Position Number of Elements
Free—Free Beam, First Half: y = x FEM Convergence to f = 0.8095
1 . . . — .20 . . .
% o
= =
3 0 <> 1 &0
e —1 Cs s " .] &Q 0
0 0.5 1 1.5 2 0 5 10 15 20
Axial Position Number of Elements
Figure 18 Comparison of Fundamental Frequencies to Analytic Solution.

Such analytic computations werc computed by J. W. Nicholson (in the Proc. Roy. Soc. (London), 93,
1917, p. 506). [34] Figure 18 depicts the geometry of the beams analyzed, lists the analytic solution for
unity values of densily and elasticity, and plots the relative finite element error in the computation of
fundamental frequencies versus the number of finite elements. The computations were executed in the m-
file <Nicholson.m>. (Note: due to the zero taper of the beams at either end, numerical accuracy is
decreased due to the extreme variation in the inertial and stiffness matrix diagonal elements. Use of the
meshing file <fem_mesh.m> only exacerbated the problem, so it was not used.)

47

4.4.2 UNIFORM BEAM SOLUTION

The solution of the transverse bending beam equation using the Euler-Bernoulli approximation results in
the following homogeneous differential equation of motion: [6, 15]

62

ox? ot

El(x)—az—;%’—t)} - p(x)@@ 0O<x<L (58)
X

This can be simplified using the separation of variables technique as in (29) and (43) by assuming a
sinusoidal form of the solution for F(t): [6, 15]
Y0 = Y)F@
. Py _

v - Y(X)F() where w is the frequency of F(f) (59)
t

Finally, in the case of uniform beams, EI(x) and p(x) are constants:

2
e EI()a YO | . @?p(x) Y(x)
Ox? x 2
Y@ _ Dy g 60)
x4 c?
where: c? = EL

The spatial solution admits functions of the form, Y(x) = €. This leads to the general solution: [15]

Y(x) = C\(cos(kx) + cosh(kx)) + C,(cos(kx) - cosh(kx))
+ Cy(sin(kx) + sinh(kx)) + C,(sin(kx) - sinh(kx)) 6

where k = | £

c

Where k, C,, C,, C;, and C, are undetermined constants. The boundary conditions for a free-free beam
imply that both the moment and shear forces vanish at the ends of the beam (x=0and x =L). This further
implies that the second and third spatial derivatives of Y(x) are zero at the ends of the beam respectively.
Using the assumed form for the spatial solution of (61), the following four boundary conditions may be
applied:

48

Y (%)
ox?
%Y (x)
ax?

*Y(x) |

= 22C,4% = 0
ox3

x=0

Lo = —2Ck% = 0

| ... = Cy(-cos(kL) +cosh(kL))k* + C,(-cos(kL) -cosh(kL))k?

(62)

I
<

(
Cy(-sin(kL) + sinh(kL))k* + C,(-sin(kL) - sinh(kL))k* =
a3Y(;c)1x,L = C,(sin(kL) +sinh(kL))k> + C,(sin(kL) - sinh(kL))k*
X
Cy))

+

)

it
[

+ Cy(-cos(kL) +cosh(kL))k> + Cd(—cos(kL)—cosh(kL) k3

From (62) it is clear that C, and C, are zero. Solving for C, and C;:

(-cos(kL) +cosh(kL)) (-sin(kL) +sinh(kL))
(sin(kL) +sinh(kL)) (-cos(kL) +cosh(kL))

¢
G,

0 63)
0 (

(63) is an eigenvalue equation. The valid set of eigenvalues satisfies the equation formed by setting the
determinate to zero. (The trigonometry identities of sin> + cos = 1 and sinh® + cosh? = 1 are required for
the simplified form below that was evaluated using the <simple> and <determ> commands. [13]):

(-cos(kL) +cosh(kL)) (-sin(kL)+sinh(kL))

=2(1 - h(kL)) = 64
(sin(kL) +sinh(kL)) (-cos(kL)+cosh(kL))l 2(1 - cos(kL)cosh(eL)} = 0 (64)

An infinity of solutions exist to (64), these correspond to the modal frequencies. In the context of finite
element analysis, this infinity of solutions may be thought of as the limit of breaking the beam up into an
infinite number of infinitesimal segments as was expressed by Simpson's hypothesis in section 2.1. [8] As
in the spatially discretized case, the higher modes are physically subject to disproportionately higher
damping ratios, and are difficult to excite via mechanical systems. For these reasons, at some
—application specific— cut-off frequency, the higher modes may be determined to have a negligible
affect on the dynamic response of the system in the operating range of interest. (In the case of gun
systems, it has been argued that this cut-off would occur at the sixth flexible mode. [3])

The mode-shape of any modal frequency may be determined by solving (63) using the frequency solution
of (64). This could be done assuming a value of unity for C,, and solving for C, using the second row of
(63). This completes all four unknown constants in (61). For the non-dimensional case, E, I, p, and L are
all unity, with 0 <x < 1. This results in the following mode shape solution:

YO = —(~c0s(y) + cosh(y®) | (00 T + cosh(yox) + (sin(y@x) + sinh(y@x) (65)
sin(yw) + sinh(yw)

49

Finite Element Convergence to Mode Frequencies

2 66.37 Hz}

B

=

11

€ 47.52 Hz }

5

=]

_Q

£.31.81 Hz}

- W
<

K 1924 Hzf - D
v

E 9.816 Hz %%GOW)

3.561 Hz | : :
0 5 10 15 20
Number of Finite Elements

Figure 19
Frequencies.

The results of equations (64) and (65) were
implemented in <uniform.m>. The formation of
a function file <ubeameig.m> was required to
define the eigenvalue function of (64) to
facilitate the use of MATLAB®'s <fzero> [12]
root finding function. The eigenvalues were then
used to define the mode-shapes of (65). The
analytic results were then compared with finite
element modeling of a normalized beam. The
convergence depicted by figure 19 demonstrates
that the lower modes converge faster than the
higher modes.

Figure 20 is a plot of the estimated mode-shapes
versus the analytic solution. Two finite element
approximations are shown. The first employed a
mere three elements in its approximation of the
beam. (Note from figure 19, that the three
element approximation is the lowest number of
elements that will approximate the first six
bending modes.)

Finite Element Convergence to Analytic The second approximation used twenty finite

elements. At this resolution, the dotted line that
represents the high resolution finite element

approximation is coincident and indistinguishable from the solid line that represents the analytic solution

for all six modes displayed.

50

Uniform Beam Eigenvectors and Frequencies

Bending Mode 1, Analytic 3.561 Hz Bending Mode 4, Analytic 31.81 Hz

— Analytic
- =3 Element
.+ 20 Element | O

-1 -1t . . . : -
0 02 04 06 0S8 1 0 02 04 06 08 1
Bending Mode 2, Analytic 9.816 Hz ‘ Bending Mode 5, Analytic 47.52 Hz
l = T T T T c 1 T T T v T ™3
o ot
.__.1 3 s N N " . _1 . N N N J
0 02 04 06 08 1 0 02 04 06 08 1
Bending Mode 3, Analytic 19.24 Hz Bending Mode 6, Analytic 66.37 Hz
1 - T T T 3 1 Er T T T T 3
Or ot
-1 4 -1 N
0 02 04 06 0S8 1 0 02 04 06 08 1
Normalized Axial Position Normalized Axial Position
Figure 20 Juxtaposition of FEM Approximations and the Analytic Mode-Shapes.
5 CONCLUSIONS

This report has documented the development of finite element modeling of non-uniform beam dynamics
within the MATLAB® software environment. Several objectives have been achieved. First, the report may
serve as a detailed users guide for others who may wish to use the software developed within this report.
Second, the principles behind the mathematical modeling have largely been laid down in detail, so that the
reader may understand why the modeling approach works. A large variety of references are cited to allow
the interested reader to dig deeper in this regard. Third, several demonstrations of the utility of working
within MATLAB® arc provided to illustrate some of the powerful analysis tools that have been enabled.
Fourth, several case-studies have been conducted to demonstrate how the software is used, and to
document some of the results of the analysis that justified the development of this code. Finally, the
results of the modeling developed has been compared with the results of analytic methods, validating the
accuracy of the approach developed in this effort.

51

<Nicholson.m> 82 'y = x' mstr])

1 % Nicholsanam -> A working script M-file to execute analyses of non- 83 xlabel('Axial Position’)

2 % uniform beams as investigated by J. W. Nichal 84 ylabel(Radius')

3 % (in the Proc. Roy. Soc. (Landan), 93, 1917, p. 506) and communicated by 85 axix{-0.12.1-1.251.25))

4 % Timoshenko, Vibration Problems in Engincering, p 393 of 3rd, and p 473 86 shrink =0.5;

5 % of Sthedition. 87 pos = got(gca,'position’); % This is in normalized coardinates

6 % o Created 09 January 1996 by Eric Kathe. 88 pas(2)=pos(2) + pos(4)*(shrink/2);% Raise the subplot by the saved height,
7 % BenctLabs, Warvliet Arsenal, NY 12189-4050 <ckathe@pica.army.mil> 89 pos(4)=pos(4)*(1-shrink); % Shrink the height by a shrink factor.

8 % AMAMAAMAMMMAMMAMAAMMAMAMAMMMAMAMAAAMAAAMAMAMAAMAMMAMAAAAARA. 90 set{ges, position’ pos);

9 91 %

10 % 92 forj=1:20

11 % Scction (1) 93 neard = (1:§)'fj;

12 % Compute approximations of the beam geametry for the five cases listed 94 ncord = [1; round(2001 *ncord);

13 % in Timoshenko. y = a*xAm where m = 0, 1/4, %, 34, 1. Also 95 {Mfem, Kfem) = fem_form(spatial JdenJEL Inbden,ncord);

14 % compute analytic fund; 1 freq i 96 {phi,fvn flab] = eigen_20o(Mfem,Kfem);% Computz, undamped cigen frequencies.
15 % DEFINE: plot_an, print_on, tlabel, spatial, Iden, IE], Inbden, Mextl, 97 ffem(i j) = abe(fvn(3));% Because of the poarly conditioned ends, small
16 % Mextr, gm, 98 % imaginary content is common.

17 % 99 end

18 % Setplot and print flags to 1 to enable, zcro to disable. 100 perror = (fiem(l,:) - RD)/HN*100:% Campute percent errar.

19 plot on=1; 101 subplot(nm,2,(2*D))

20 print_on=0; 102 plot(perrar)

2l % 103 holdon

22 ifprinton==1 104 stem(perror)

23 plot.on=1; % Clearly, to prin, the plot flag must be enabled. 105 bold off

224 end 106 tite([FEM Convergence to f = ' mum2st(K1))})

25 % 107 xlabel(Number of Elements')

26 % Define the sampled radius vectors as the function of a, x, and m, 108 ylabel('% Emor)

27

28

29

42

45

52

6 APPENDIX

109 pos = get(gea, position’); % This is in normalized coordinates
110 pas(2)=pos(2) + pos(4)*(shrink/2);% Raise the subplot by the saved height,

1 111 pos(4)=pos(4)*(1-shrink); % Shrink the height by a shrink factar,
m=[14%3/41), 112 set(gca, position’,pas);
nm = length{m); 113 end
x =(1:1001)71001; 114 subtite('C of Fund; J Mode to Analytic Solution’)
r = zeros(2001,nm); 115 end
forI=1lmm 116 %
y =a*xAm(l); 117 ifprint_on==1
(1:1001,)) =y; 118 print -deps figl8.ps
1(1002:2001,i) = Dipud(y(2:1001));% Leaves one max value @ 1. 119 end
end 120 %
% 121 % Completed:
% Set material propertics to unity. 12 %
:7:10 =1 <XM291fcn>
E=1; 1 % XM291fcan -> A working script M-file to execute enslyses of a fully
9 2 % canstrained XM291 using the finite cl formulation and d i
% Read in alpha values for the five cases and compute 3 % analysis functions defined within the subdirectory, beam_fem/.
% the analytic frequencics. 4 % o Creaicd 24 October 1995 - 08 January 1996 by Eric Kathe.
% S % BonetLabs, Watervlict Arscnal, NY 12189-4050 <ckatho@pica.army.mil>
alpha = [6.957 8.203 9.300 10.173]; 6 %
{ = alpha*max(y)/(4*pi*1A2)*sqri(E/rho); 7
% 8 %
a, 9 % Section (1)
% Section (2) 10 % Sct the plot and print flags an or off, run the geometry
% 11 % m-file, and create a plot label,
ifplot_on==1 12 % DEFINE: plot_on, print_on, tlabel, spatial, 1den, 1EI, Inbden, Mextl,
figare(1) 13 % Mextr, gm.
de 4%
set(gef, PaperOricntation!, ‘portrait’); % This scries of commands configures 15 %) i
set(gef, PaperUnits' inches"); % the plot window to effectively 16 % Set plot and print flags to 1 to enable, zero to disablc.
sei(gef, PaperPasition'[1 1 6.5 6.5]); % be incorporated into a repart. 17 ploton=1;
set(gef, Units','inches’, position’,get(gef, PaperPosition’)); 18 print on=0;
set(gef, Default AxesFontSize',10); 19 %
a, 20 ifprint en==1
for I =1:nm 21 plot_on=1; % Clearly, to print, the plot flag must be enabled.
spatial = [x; 1+x(1:1000)]; 2 end
1den = tho*pi*(z(:1).A2); B % .
1EI = EX(x(:)).A4)*pi/4; 24 tlabel = "XM291fc';% dabel -> Enables plotting,
Inbden = zeros(size(lden)); 25 % 3
gm =) 26 % Load in geometry data as in XM291rb.m:
subplot(nm,2,(1+2*(I-1))) 27 [spatial, lden, IEI, Inbden, Mext), Mextr, gm] = geamf_XM291;
plot(spatial,gm, k' spatial,-gm, k') 28 %
[num,den] = rai(m(D); n %
ifden>1 30 % Section (2)
mstr = A" int2strtnum) '/ int2str(den) Y} 31 % Define barrel constraint locations, number of elements, and create
else 32 % clement mesh vector.
foum==1 33 % DEFINE: sulv, ncord.
mswr =(}; 34 % USE: spatial, 1den, 1E], Inbden, snlv, tlabel.
clse 35 %
mstr = [int2str(num)}; 36 %
end 37 elmechloc = 0.220;% (m) Mid-span of breech ring threads on barrel.
end 38 trurmionloc = 38.9%(0.0254);% in(m/in) Yoke position as in geomf_XM?291
39 % line 462,

title([Free-Free Beam, First Half: * ...

4 salv = |glnmchion; trardnnioch % (= inposed nodx Location vector.
4] %

42 el =7 A wlatiweiy small number of FEM elements to keep the

43 % problem quick & geable for initial ls wark,

4 %

45 %

46 % Generate meshing vector as in XM291rbam:

47 [ncord] = fem_mesh(spatial Iden JEl Inbden snlv.nel);

%
49 clmechloc = [1; trunnionloc = [J; nel = [];
%

51 %

52 % Section (3)

53 % Generate the mass and stiffncss matrices via FEM.

54 % DEFINE: Mfem, Kfem.

55 % USE: spatial, 1den, IEl, Inbden, ncord, tlabel

56 %
%
{Mfem,Kfom] = fem_form(spatial lden JELInbden ncord);
%

57
58
59
60 % Section (4)
61 % Gerorate the constraint matrix for fully constrained XM291.
62 % (This will include the clevation mechanism and the trurmion, with
63 % the elovation mechanism stiffness estimated at 2/3's the valus of the
64 % trunnion constraints.)
65 % Also predefine the alpha and beta for Rayleigh
66 % damping. (Shames & Dyn, pp. 646.)
67 9 DEFINE: alphs, beta, constraintm.
68 %
69 %
70 alpha = 0.000; % Mass proportional damping factor.
71 beta = 0.001; % Stiffuess proportional damping factor.
2 %
73 kenst = [(2/3);1]*750000*(4.4482)/(0.0254);% (1bf/in)(N/1bf)Xm/in)
74 % Estimated lateral clasticity of the Elevation and Trunnion constraints.
5 %
76 cdenst = beta*kenst; % Stiffness proportional damping of constraints.
77 %
78 [y, klcl] = min(abs(slv(1) - spatial(ncord))); % Identification of

% comstraint node number.
80 [y, k1tr] = min(abs(snlv(2) - spatial(ncord)));% Identification of

%

81 canstraint node number,

82 geindk = 2*[klel;klu] - 1;% Identification of constraint generalized
83 % coordinate number.

84 %

85 constraintm = [gcindk kenst cdenst];

86 %

87 kenst = [J; cdeast = {l;y = (}; kltr =[]; geindk = [;

88 %

89 % Section (5)

90 % Lump in the external masscs and constraints into the Mass and Stiffness
91 % matrices. Also generate the Rayleigh damping matrix.

92 % DEFINE: M, K, Cd, n2.

93 9% USE: Mfem, Kfem, Mextl, Mextr, alpha, beta, constraintm.

94 %
95 %
96 [M,K,Cd] = fern_Jump(Mfem,Kfem, Mext Mexir,alphia beta, constraintm);
97 % M, K, Cd-> Mass, stiffncss, and Rayleigh damping matrices of

98 % generalized coordinates that include the constraint and
9 % externally coupled dynamics.
100 %

101 n2 = size(M,1);% The number of gencralized coordinates.
102 %

103 % Section (6)

104 % Generate the second order, danped eigen modes.
105 9% DEFINE: phi, fv, fvn, rlab.

106 % USE: author supplied data.

107 %
108 %
109 [phi,fvnslab] = eigen_20(M,K);% Compute, undamped eigen frequencies,
110 [phi,fv,rlab] = eigen_20(M,K,Cd);% Compute, normalize, sort, and identify
11 % the modcs of vibration.

112 ifplot_on==1

113 figure(10)

114 clg

115 set(gef, PaperOrientation', portrait’); % This series of commands configures
116 sex(gef, PaperUnits','inches’); % the plot window to effectively

117 set(gef, PaperPosition',[1 1 3.25 5.5)); % be incorporated into a report.

118 sect{gcf, Units','inches’, ‘position’, get(gef, PaperPosition’));

119 set{gef, DefaultAxesFontSize',9);

120 forn=14

121 subplot(4,1,n)

122 beam_plot(ncord,spatial phi(: n),gm/5 constraintm(:,1));

123 mlabe} = rlab(n, find(abs(rlab(n,:)) ~= 32));

124 if stremp(rlab(n,1),'B) % Check to see if bending mode.

125 title{{mlabel ', num2str{fv(n)) 'Hz'})

126 clse % Else -> Rigid body with near-zero frequency not displayed.
127 title([mlabel])

128 ond

129 axis(-0.27-1.13)

130 grid

131 ifn=4

132 xlabelCAxial Positian (m))
133 end

134 pos = get{gca,'position’); % This is in narmalized coordinates

135 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85

136 pos(2)=pos(2) + pos(4)*.15;% Raise the subplot by the saved height.
137 mi(gea, position’,pos);

138 end

139 subtide([tlabel * Damped Mode-Shapes'])

140 end

141 %

142 if print_on==1

143 print -deps fig10.ps; % Print the filc as an encapsulated Post-Script file,
144 end

145 %

146 n={); k= {}; 1= []; miabel = [];

147 %

148 %

149 % Section (7)

150 % Convert to first-order state-space and truncate to muzzle, trunnion SISO.
151 % DEFINE: A, B, C, D, nq, states, outputs, inputs, ae, be, ce, de.

152 % USE: M, K, Cd.

153 %
154 %
155 {A,B,C,D] = fem2ss(M,K,Cd);% This form assumes F1 through Mn inputs
156 % and all generalized coardinates as outputs,

157 [ae,be,ce,de] = ssselect(A,B,C,D,512);% F3 -> g(5).

158 %
159 %

160 % Section (8)

161 % Bode Piot.

162 % USE: &, be, ¢z, de.
163 %
164 %
165 [mag,phase,w] = bode(ac,be,ce,de,1 logspace(log] 0(5*2*pi) Jog1 (500*2*pi),500));
166 ifplot_an==1

167 figure(11)

168 clg

169 set(gef, PaperQOricntation', partrait’); % This series of cammands configures

170 set{gef, PaperUnits’'inches’); % the plot window to effectively

171 set(gef, PaperPosition',j1 1 63 3]); % be incorporated into a report.

172 set(gef, Units','inches, ‘position’, get(gcf, PaperPositicn’));

173 seygef, DefaultAxesFantSize',9);

174 whichg(gef,K)

175 subplot(211), semilogx(w/(2*pi),20*log1 0(mag))

176 title({tlabe] * Trunnion Disturbance to Muzzle Pointing Angle Bode Plot])

177 ylabel(Gain dB")

178 av = [min(w) max(w)]/(2*pi) min(20*log1 Xmag)) 0.95*max(20*log10(mag))};
179 axis(av)

180 fabsissa = saet([fv(1:4); 500]);

181 flabel =(];

182 for I =1:length{fabsissa)

183 ifl==4

184 flabel = str2mat(flabel,[' ' freq2su(fabsissa(l),1)]);

185 else

186 flabel = str2mat(flabel, freq2stx(fabsissa(l),1));

187 end

188 end

189 flabel(1,) =[];

190 se(gca,'XTick',fabsissa)

191 set(gea, XTickLabels' flabel)

192 sct(gea,'YTick' [min{20*logl (mag)), median(20*log1Xmag)), max(20*logl O(mag))])
193 grid

194 subplot(212), semilogx(w/(2*pi) phase)

195 xlabel('Frequency (Hz)'), ylabel('Phase deg’)

196 av = [[min(w) max(w)}/(2*pi) min(phasc) (max(phase)+180)};

197 axis(av)

198 set(gea,' YTick' [180:-180:-600])

199 grid

200 end

0 %

202 ifprint cn=1

203 set{gef, TnvertHardCopy','on)

204 print -deps figl.ps; % Print the file as an encapsulated Post-Script file.

205 end

206 %

207 %

208 % Section (9)

209 % Impulse Respanse.
210 % USE: ae, be, ce, de.
2011 %

53

212
213

%
{yx,t] = impulse(ae,be,ce,de,1,{0:0.000005:0.4]);

214 %

s

216.

27
218
219

B

221

BENBBERE

230
21
232
233
234
235
236
237
238
239
240
21
22
243
244
85
246
w1
248
49
250
251
252
253
254
255
256
257
258
259

260 %

261
262
263

270
271
2n
273
274
275
276
rag)
28
279
280
281
22
283
284
25
286
287
28
289
290
291
292
293
2%4
295
26
297

ifplot_on==1
figure(12)
clg
set(gef, PaperOrientation','portrait’); % This series of commands configures
set(gef, PaperUnits','inches'); % the plot window to cffectively
set(gef, PaperPosition',(1 1 3.8 3.5]); % be incorporated into a report.
se(gef, Units','inches',‘position’, gew(gef, PaperPosition’));
set(gef, DefaultAxesPontSize' 9);
pPlot(ty, ¥, [min(t) max(t)],[0 0}, 'k:)
av =axis;
av(3) = 2.2*%av(3);
axis(av)
pos = got{gcs, 'positian’); % This is in normalized coordinates
Ppox2)=pos(2) + (1-0.85)*pos(4)/2; % Raise the subplot but keep it centered.
Ppos(4)= 0.85*pos(4); % Shrink the height by a factor of .85
set{ges, ‘position’,pos);
title(' SISO Fully Canstrained Impulse Response')
ylabel(Muzzle Deflection (rad))
xlabel(Time Afier Newton-Second Impulse at Trunnion (sec)’)
newpos = [(pos(1)+pos(3)3) (pos(2)+pos(4)/7) (pos(3)/2) (postd)/3)];
axes('position’,newpos)
ttrunk = 1(1:1500);
plot(ttrunk, y(1:length(ttrunk)),'k',{0 0.010),[0 0], %"
av =[00.01 1.1*[min([0;y(1:length(tirunk))]) max(y(1:length(xrunk)))]];
axis{av)
title(' Initial Response Close-Up')
ylabel((rad))
set(gea, XTick',{Q 0.005 0.010])
set(gea, XTickLabels',str2mat('0.000','0.005''0.010")
xlabel('(sec))
end
%
ifprint_on==1
print -deps figl2.ps; % Print the file as an encapsulated Post-Script file.
end
%
%

298 %

299 % Section (11)

300 % Force due to gravity.
301 % USE: A, B,C,D.
302 %
303 g =-9.8067; % Earth Surface Gravity (m/(s*2)).

304 weight = g*(iden + Inbden)*diff(spatial(1:2));

305 %

306 % [F] = fun__foree(spalial,weigln,zcms(siu(lden)),mord,ﬂabcl);% Prints P,
307 [F]= fem_force(spatial, weight,zeros(size(lden)),neord);

308 %

309 % Now incorporate the two 2x2 rigid body mass matrices afier checking to
310 % avoid divide by zero:

311 %

312 if abe(Mexd(1,1)) > 0

313 R1)=R1)+ g*Mextl(1,1); % g*Kg.

314 K2)=F(2) + g*Mextl(1,2/2/Mextl(1,1)); % g*((m*Kg2/Kg).

315 end

316 %

317 if abs(Mextr(1,1)) > 0

318 Rn2-1)=Rn21)+ g*Mextr(1,1);

318 F(n2) = F(n2) + g*Mextr(1,2/2/Mextr(1,1)); % g% (m*KgP2Kp).

320 end

321 %

322 % Sectin (12)

323 % Time simulation of deflection due to gravity.
324 % USE: A,B,C,D,F,M,K, n2.

3285 %
3% %
327 t=(0:0.005:4); % Generate a time vector for the simulation.

328 u = anes(size(t))*F; % Apply the same force vector at each time slice,
329 [yx}=1sim(A,BCDuY; % Compute response.

330 tim =length(t);

331 xgs =x(tim,:);% X due to g at near infinity from simulation.

332 %

333 animate_on = 0;% Flag to excculc animation of step response of gravity.
34 %

335 if animate_on ==1

336 xlat=x(:,{1:2m2]); % Identify the greatest lateral deflection,

337 maxlat = max(max(xlat));

% Section (10)

% Unit Step Response.
% USE: e, be, cc, de.
%
%
[y.x,1] = step(ae,be,ce,de, 1,[0:0.00005:0.5)); % Compule sep respanse.
[num,den) = ss2uf(ae,be,ce,de); % Compute Transfer Function Polynomials.
fvy = num(length(num))/den(length(den)); % Final Value Thearem of TF.
Effectively scts s to 2ero.

ifplot_an==
figure(13)
clg
set(gef, PaperOricntation’, portrait’); % This series of cammands configures
set{gef,' PaperUnits','inches’); % the plot window 1o effectively
set(gef, PaperPosition',[1 1 3.8 3.5]); % be incorporated into a repart.
set(gef, Units', inches’, position’, get(gef, PaperPosition’));
set(gef, DefaultAxesFoniSize' 9);
plot(t,y, k', fmin(t) max(1)],[0 0], 'k:',[min(t) max(t)],fvy*(1 1], 'k-.")
set(gea, YTick',[max(y) O fvy min(y)])
av = axis;
av(3) = 2.2*av(3);
axis(av)
pos = get(gea,'positian'); % This is in normalized coordinates
pos(2)=pos(2)+(1-0.95y*pos(4)/2; % Raisc the subplot & keep it centered.
pos(4)=0.95*pos(4); % Shrink the height by a factor of .95
pos(1)=pos(1)+(1-0.85)*pos(4)/2; % Shifl to the right.
set(gca, ‘positian’,pos);
titde(* SISO Fully Constrained Step Responsc’)
ylabel('Muzzle Deflection (rad))
xlabel('Time Afizr Newton Applied at Trumnion (sec)')
newpos = [(pos(1)+pos(3)/3) (pos(2)+pos(4)/8) (pos(3)/3)*1.5 (pos(4)/4));
axes('position’ newpos)
ttrunk = t(1:200);
plot(ttrunk y(1:length(ttrunk)),'k',[0 0.015],{0 0],'%:")
av = {0 0.01 1.1* [min({0;y(1:length(nrunk))]) max(y(1:length(trunk))));
axis{av)
tide(' Initial Response Close-Up')
ylabel((rad))
sci(gea, XTick’,[0 0.005 0.010 0.015))
set(gea, XTickLabels' str2mat('0.000,'0.005',0.010','0.015'))
xlabel('(sec))
end
%
if print_on==1
print -deps figl3.ps; % Print the file as an encapsulated Post-Script file.
end

338 minlat = min{min(xlat));

339 scale = max(abs({maxiat minlet]))/(5*max(max(gm)));% Scale the beam plot.
340 av={ (min(spatial)- 0.1*max(spatial)) 1.1 *max(spatial} ...

341 (minlat - scale*min{min(gm))) (rmaxlat + scale*max{max(gm)))];

M2 %

343 figure(14)

344 clg

345 set(gef, PaperOrientation’ portrait’); % This serics of commands configurcs
346 set(gcf, PaperUnits', 'inches’); % the plot window to effectively

347 set(gef, PaperPosition’,[1.75 3.75 5 3.5]); % be incorparated into a report.
348 set(gef,Units', inches, \‘position’, get(gef, PaperPosition'));

349 ser(gef, DefaultAxesPantSize’,12);

350 forl=1:1:100

351 g
352 beam _plot(ncord,spatial x(i,1:size(M, 1)),gm*scale,constraintm(:, 1));
353 tide(]’ Step Gravity Response Animation])

354 xlabel('Axial Position (m))

355 ylabel('Lateral Deflection (m)')

356 holdon

357 plot{{min{spatial) max(spetial)],[0 0}, k)

358 holdoff

359 axis{av)

360 pos = get(gca, position’); % This is in normalized coordinates
361 nowpos = [(pos(1)+pos(3)/7) (pos(2)+pas(4)/7) (pos(3)/2) (post4)/3));
362 axes('position’,newpos)

363 plot{t(1:tim),y(1:timn2), k')

364 nde(! t="numf2str(t(D)+104(-7),3,1) 'sec’])

365 % num2fstrm is 8 modified form of num2str.m that imposes the format
366 % notation of %5.3 to keep the time from bouncing. (Its casy todo.)
367 ylabell' Muzzle Deflection (rad))

368 xlabel(Time (s))

369 axis((min(t) max(t) round(min(y(1:tim,n2)*(10A4))/10A4 ..

370 round(max(y(1:tim,n2)) *(10Ad) /1 0\d])
371 hold on

372 ployD),y(in2),'bo’)

373 bold off

374 % Create box sround entire plot region:

375 exterir=[0011];

376 axes(position', exterior)

377 set(gea,'Box','cn)

378 =:t(gea, XTick' [])

379 set(gea, YTick'[])

380 %

381 % Uncomment to save images as sequential gif files to be read into
382 % standard movic maker package. (This is the best way to go.)
383 %

54

384 %oval{Vprint -dp% anirgic’ int2st(l) '.gif]) 8 %

K pasal) 9 % Section (1)

L emd 10 % Set the plot and print flags on or off, nin the geometry

387 end 11 % m-file, and create a plot label.

388 % 12 % DEFINE: plot_an, prim_on, tlabel, spatial, iden, 1EI, lnbden, Mexd,

411 % Scction (14)

412 % Second arder inverted stiffness approximation 1o static gravity loading.
413 % USE: KandI%.

414 %
415 xinvk = K\F;% Ic, since x ddot -> zeros, K*x =F -> x = inv(K)*F.

set{gef, DefaultAxesFantSize'9);
%

[spatial, 1den, 1Bl, Inbden, Mexd, Mextr, gm] = geomf{_XM291(tlabel);
clse

[spatial, Iden, IE], lnbden, Mext, Mextr, gm] = geomf_XM201;
end

389 % Section (13) 13 % Mextr, gm.
390 % Final Value Theorem Prediction of static deflection due to gravity. 14 %
391 % USE: ac, be, ce, de. 15 %
392 % 16 % Set plot and print flags to 1 to ensble, zero to disable,
393 % 17 ploton=1;
394 FVTm = zeros(size(M));% Initialize matrix to zeros. 18 print_on=0;
395 % 19 %
396 % Loop through all of the indices to evaluate the final value theorem 20 ifprint on==1
397 % of the transfer functicn. 21 plot_on=1; % Clearly, to print, the plot flag must be enabled.
398 % 22 end
399 for I = l:size(M,1) B %
400 for j = L:size(M,1) 24 tlabel = XM291rb';% tlsbel -> Enables plotting.
401 [abc,d] = ssseloct(A,B,CD,ij); 25 %
402 [num,den] =ss2tfa,b,c,d); % Compute Transfer Function Polynomials. 26 ifplot on=1
403 fvy = num{length(num))/den(length(den)); % Final Value Theorem of TR, 27 figure(l)
404 % Effectively sets s to zero. 28 clg
405 FVTm{,i) = fvy; 29 % Definc the figure options for desired output.
406 end 30 set(gef, PaporOricntation’, portrait); % This serics of commands configures
407 end 31 set(gef, PaperUnits','inches’); % the plot window to effectively
408 % 32 sot{gcf, PaperPosition',[1 1 6.5 4.5]); % be incorporated into a repart.
409 xfvt =FVTm?*F; 33 set(gef, Units',inches’,'position’,get(gef, PaperPosition’));
410 % 34
35
36
37
38
39
40

416 %

417 % Section (15)

418 % Juxtapose three methods to determine static gravity deflection on one
419 % plot.

420 % USE: xgs, xfvt, xinvk, gm, spatial, M.

421 %
422 sm = 2*floor(size(M,1)/2);

423 xtemp = xfvi(1:2:sm);

424 scale = max(abs(xtemp))/(5* max (max(gm)));

425 av = [(min(spatial}- 0.1*max(spatial}) 1.1*max(spatial) ...

426 min(xtemp) max(xtemp)];

421 %

428 ifplot_on==1

429 figurc(14)

430 g

431 set(gcf, PaperOricntation’, portrait); % This serics of commands configures
432 seifgef, PaperUnits','inches’); % the plot window to effectively

433 set(gef, PaperPosition',[1.75 3.75 4 2.5]); % be mcorporated into a report.
434 set(gef, Units', inches’, ‘position', get(gef, PaperPosition’));

435 set(gef, DefaultAxesFontSize',10);

436 beam_plot(ncord,spatial x fvt,gm*scale,constraintm(:,1));

437 holdon

438 beam_plot(ncord,spatial xinvk,gm*scale,constrainun(:,1));

439 beam_plot(ncord,spatial x(length(1),1:size(M,1)), gm* scale,constraintm(;,1));
440 hold off

441 av = axis;

442 av(l) =-av(N10;

443 axis(av)

444 g

445
446
447
448

grid

title([' ' tiabel ' Static Gravity Deflection'])

xlabel(‘Axizl Position (m))

ylabel('Lateral Deflection (m)')

pos = get(gea, position’); % This is in normalized coordinates

449 pos(2)=pos(2)+(1-0.85)*pos(4)/2; % Raisc the subplot & keep it centered.
450 pos(4)=0.85*pos(d); 4 Shrink the height by a factor of .85
451 pos(})=pos(1)+(1-0.85)*pos(4)/2; % Shift to the right.

452 set(gea,'position’,pos);

453 end

454 %o

455 ifprint_on==1

456 print -deps figl4.ps; % Print the file as an encapsulaied Post-Script file.

spatial -> Axial position vector.

1den -> Beam lincar density vector.

1BI -> Similar to lden except for lincar EI cross-section proporties.
Inbden -> The inertia of non-beam masses attached to the beam.
Mextl, Mextr -> 2x2 sub matrices of loft and right extrems rigid body
gm -> The calumns of this matrix record the inner and outer radii.

S
SRIRIIRR

48 ifprint an==1
49 print -deps fig.ps; % Print the filc as an encapsulated Post-Script file.
end

51 %
52 %

53 % Section (2)
54 9% Define barrel constraint locations, number of elements, and create
55 % element mesh vector.
56 % DEFINE: snlv, ncord.
57 % USE: spatial, lden, IEI, Inbden, snlv, tlabel.
%

59 %
60 elmechloc = 0.220;% (m) Mid-span of breech ring threads on barre].
61 trunnionloc = 38.9*%(0.0254);% in{m/in) Yoke position as in geomf_XM291
62 % line 462.

smlv = {elmechl jonloc):% (m) Imp

dnode vectar,

63

64 %

65 nel =7;% A relatively small number of FEM ¢lements to keep the
6 % problem quick & ble for initial Is work.
67
68
69
70

%
ifplot_on==1
figure(2)
clg
71 % Define the figure options for desired output.
72 set(gef, PaperOrientation', portrait’); % This scries of commands configures
73 set(gef,PaperUnits', inches'); % the plot window to effectively
74 set{gef, PaperPosition',(1 1 44.5]); % be incorporated into a report.
75 set{gef, Units', inches', position’,get{ gcf, PaperPosition’));
76 set(gef, DefaultAxesFontSize',9);
7 %
78 [ncord} = fem_mesh(spatial 1den,IE] Inbden sulv,nel dabel);
79 else
80 {ncord) = fom_mesh{spatial lden IE] Inbden snlv.nel);

% Benet Labs, Watervliet Arsenal, NY 12189-4050 <ekathe@pica.army.mil>

AMAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA

% AAAA

91 % Section (3)
92 % Generate the mass and stiffness matrices via FEM.

457 end 81 end
458 % 82 % <ncard> is the vector of node indices.
459 % Campleted: 83 %
460 % 84 ifprint on==1
D - i 2 .
e o cﬁdnm deps fig2.ps; % Print the file as an encapsulated Post-Script file
1 % XM291rban -> A working script M-file to execute analysis of an XM291, with 87 %
2 % one rigid body mode, using the finite element formulation and dynarnics 88 elmechloc = [} trunnionloc = [}; nel =[J;
3 % analysis functions defined within the subdirectory, beam_fem/. 89 %
4 % o Created 24 October 1995 - 08 January 1996 by Eric Kathe. 90 %
5
6
7

93 % DEFINE: Mfem, Kfem.

94 % USE: spatial, lden, IE], Inbden, ncord, tabel
95 %
96 %
97 [Mfem,Kfem] = fem_form(spatial,|den,IE] Inbden,ncord);% Mfem & Kfem are
98 % out-put mass and stiffness matrices of the second-order self-adjoint

99 % system. Note tlabel is not included so that a plot is not presented.

100 %

101 % Section (4)

102 % Generate the constraint matrix for elevation cantrol problem. (This will
103 % just be the trummion.) Also predefine the alpha and beta for Rayleigh
104 % damping. (Shames & Dyn, pp. 646.)

105 % DEFINE: alpha, beta,canstraintm.

106 % USE: author supplied data.

107 %
108 %
109 alpha = 0.000; % Mass proportional damping factor.
110 betz =0.001; % Stiffncss propartional damping factor,

nm%

112 kenst = 750000%(4.4482)/(0.0254);% {1b{/in)(NAbE/(ry/in)

113 % Estimated lateral elasticity of the Trunnion canstaint.

14 %

115 cdenst = beta*kenst; % Stiffness proportional damping of constraint.
116 %

117 [y, kitr] = min(abs(snlv(2) - spatial(ncord))); % Identification of
118 % constraint node number.

119 geindk = 2*[k1tr] - 1;% Identification of constraint generalized
120 % coordinate number.

121 %

122 constraintm = [geindk kenst cdenst];

123 %

124 kenst={); edanst = [J; y = [}; kltr = {); geindk =[]

125 %

180 %

181 [phi,fvn,rlab] =cigen_20(M,K);% Compute, normalize, scrt, and identify

182 % the modes of vibration.

183 % phi ->n2xn2 matrix whose columns consist of the mass narmalized cigen-
184 % veclors with each column ponds ive fr
185 % clement of fv.

186 % fvn ->n2x1 vector of lincar modal frequencies (Hz) sorted in arder of
187 % ncreasing frequency.

188 % 1lab -> String matrix of row labels identifying the mode’s by

189 % bending mode number or Rigid body mode.

190 if plot_on ==1

191 figure(d)

192 «lg

193 % Define the figure options for desired output.

194 sot(gcf, PaperOrientation', portrait’); % This scries of commands configures
195 sot(gef, PaperUnits’, inches’); % the plot window 1o effectively

156 set(gef, PaporPosition’,[1 1 6.5 4.5]); % be incorporated into a ropart.

197 sot(gef,Units', inches’, position', get(gef, Paper Positian’));
198 set(gef, DefaultAxesFantSize' 9);

199 n=(;

200 forj=1:3
201
202
203

g P 4 o4

fork =0:3:3

I=j+k;

n=n+l;
204 subplot(3,21)
2085 bcam_plm(m:ard.spuﬁd,phi(:,l),pn/S,cmminnn(:,l »
206 miabel = rlab(i,find(abs(rlab(l,:)) ~= 32));
207 if stromp(ddat(i,1),'B") % Check to sec if bending mode.
208 titlel{mlabel *, ' mum2str(fvr(D)) Hz')
209 else % Elsc -> Rigid body with near-zero frequency not displayed.
210 tite([mlabel])

126 % Section (5)

127 % Lump in the external masses and constraint into the Mass and Stiffness
128 % matrices. Also gencrate the Rayleigh damping matrix.

129 % DEFINE: M, K, Cd, n2.

130 % USE: Miem, Kfem, Mext], Mextr, alpha, beta, constraintm,

131 %
132 %
133 [MK,Cd] = fern_Jump(Mfem, K fern,Mext Mextr, alpha,beta, intm);
134 % M, K, Cd -> Mass, stiffness, and Rayleigh damping matrices of

135 % generalized coordinates that include the constraint and

136 % extemally coupled dynarnics.

137 %

138 n2 =size(M,1);% The number of generalized coordinates,

133 %

140 if plot_on ==

141 figure(3);

142 cig

143 % Define the figure options for desired output.

144 set(gc!, PaperOrientationt portrait’); % This series of commands configures
145 set(gef, PaperUnits','inches'); % the plot window to effectively

146 set(gef, PaperPosition',[1 1 6.5 4.5]); % be incorporated into & repart.

147 set(gef, Units', inches',‘position’, get(ge!, PaperPosition’));

148 set(gef,'DefaultAxesFontSize',9);

149 %

150 colormap(flipud(hot));% Assign non-default color map for better gray scale.
151 subploy(321), image(64*M/max(max(M))): % Nornalize M to 0 to 64.

152 title(['Image of Mass Matrix, M'})

153 set(gea,'aspect’,[1,1]); % This aspect ratio makes the matrix images square.
154 subplot(11,2,11), image(1:64); % This plots the color bar ar image scale.

155 title('Color Scale')

156 alabel = [Zero''High'];

157 set(gea,XTick'[1,64])

158 set(gea, XTickLabels' alabel)

159 sci(ges,'YTick'[])

160 subplot(325), image(64*K/max(max(K))) % Nomulize K 10 0 to 64.

161 tite(['Lmage of Stiffncss Matrix, K'l)

162 set(gea,'aspect,[1,1])

163 subplot(222), spy(M)

164 1itie('Spy Image of Nonzero Mass Mawix Elements')

165 subplot(224), spy(K)

166 title('Spy Image of Norzero Stiffness Marrix Elements')

167 subtide([tlabel * Constrained Mass & Siiffness Matrices'])

168 end

169 %

170 if print_on==1

171 print -deps fig3.ps; % Print the filc as an encapsulated Post-Seript file.

172 end

173 %
174 %

175 % Section (6)

176 % Generate the second order, undamped eigen-modes.
177 % DEFINE: phi, fvn, rlab.

178 % USE: M, K.

179 %

211 end

212 axis((-0.27-.1.1))

213 grid

214 ifn>4

215 xlabel(Axial Position (m)')
216 end

217 pos = get(gea,'pasition’); % This is in normalized coordinates
218 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85
219 pos(2)=pos(2) + pos(4)*.15;% Raise the subplot by the saved height.
20 =t{gca,'position',pos);
end

222 end

223 subtide({tlabe] ' Undamped Mass-N lized Eig sand F ies'])
224 end

25 %

226 if print_an==1

227 print -deps figd.ps; % Print the file as an encapsulated Post-Script file.

228 end

229 %

230 o=();k=[J;1=[]; miabel ={J;

21 %

2832 %

233 % Section (7)

234 % Generate the sccond arder, damped eigen-modes.
235 % DEFINE: phi, fv, riab.

236 % USE: M, K, Cd.

27%

238 %

239 [phi,fv,rlab) =eigen_20(M,K,Cd):% Compute, normalize, sort, and identify
240 % the modes of vibration.

241 % phi->n2xn2 matrix whose columns consist of the mass normalized eigen-
%2 % vectors with each column ponding the respective frequency
23 % clement of fv.

244 % fv->n2x1 vector of linear modal frequencies (Hz) sorted in order of
845 % increasing frequency.

246 % rlab -> String matrix of row labels identifying the mode's by

%47 % bending mode number or Rigid body mode.

248 ifplot_an==1

249 figure(5)

250 clg

251 % Define the figure options for desired output.

252 set(gef, PaperOrientation', portrait’); % This serics of commands configures
253 set(gef, PaperUnits),inches’); % the plot window to effectively
254 set(gef, PaperPosition’,[1 1 6.5 4.5]); % be incorporated into a report.
255 sct(gef, Units','inches’, position’, get(gcf, PaperPosition’));

256 set(gef, DefaultAxesPontSize' 9);

257 n=0;

258 forj=1:3

259 fork=0:3:3

260 I=jek+l;

261 1 =n+1; % By adding one, the rigid body mode is skipped.

262 subplo(3,2.n)

263 beam_plot(nicord spatial phi(:,1),gm/S,constraintm(:,1));

264 misbel = rlab(i,find(abs(rab(l,:)) ~= 32));

265 if stremp(rab(i,1),'B") % Check to sce if bending mode.

56

w8 tde(fmizbel |, nurianivy) He') 352 %

267 alse % Lise -> Rigid body with near-zero frequency not displayed. 353 % Sclect system for elevation mechanism input, F2 -> gc3, and
268 Tleimlabel]) 354 % muzzle pointing angle output, theta(nel+1) -> finsal ge -> ge(n2).
269 end 355 %

210 exis([-0.27-.1.1)) 356 {ac,be,ce,de] =ssselect{A,B,C,D,3,n2);

2711 grid 357 %

272 ifn>4 358 % printsys(ac,be,ce,de, F-clmech'/Muzzle_Pointing Angle' statcs)
273 xlabel(‘Axial Position (m)) 350 %

274 end 360 %

275 Ppos = get{gea,'position'); % This is in normalized coordinates 361 % Section (9)

276 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85 362 % Polo Zero Map.

77 pox(2)=pos(2) + pos(4)*.15;% Raisc the subplot by the saved height. 363 % USE: ae, be, s, do, fvn.

278 ct(gea, position',pos); 34 %

279 end 365 %

280 end 366 [p.z] = pzmap(ac,be,ce,de);

281 subtitle([tabel ' Damped Mess-Normalized Bending Mode-Shapes and Frequencics']) 367 wv = imag(p{find(imag(p) > .1)));% Find imaginary part of positive conjugates.
282 end . 368 wv = [0; sort(wv(:))];

283 % 369 %

284 ifprint_on==1 370 if plot_on

285 print -deps fig5.ps; % Print the filc a5 an encapsulatcd Post-Script file. 371 figure(7)

286 end 372 g

287 % 373 set{gef, PaperOricutation’, portrait); % This serics of commands configures
288 n=[}; k=[}; I={); mlabel =[]; 374 set(gef, PaperUnits,'inches”); % the plot window to effectively
289 % 375 set(gef, PaperPosition',1.4°[(1 1 44*4.4/3.3]); % be incorporated into a report.
290 % 376 set(gef, Units','inches’, position’, get(gef, PaperPositian));

291 % Scction (8) 377 setgef, DefaultAxesFontSize' 9);

292 % Convert to first-arder state-space and truncate to muzzle, elmech SISO, 378 whitebg(gef k")

293 % DEFINE: A, B, C, D, ng, states, outputs, inputs, a¢, be, ce, de. 379 pamap(ac,be,ce,de)

294 % USE: M, K, Cd. 380 title([tlabel ' Open-Loop Eigenvalues'ly

295 % 381 axis({-2.2*max(wv) 1.1*max(wv) -2.2*max(wv) 2.2*max(wv)])
296 % 382 flabel ={};

297 [A,B.C.D} = fem2ss(M,K,Cd);% This form assunes F1 through Mn inputs 383 for I=lilength(wv);

298 % and all gencralized coordinates as outputs. 384 flabel = str2mat(flabel, freq2st{wv(1)/(2%pi),1));

299 % A, B, C,D -> State-Space Matrices as in: 385 end

300 % dgv/di=A*qv + B*uv 386 flabel(1,:)=();

301 % yv =C*qv +D*uv ... where qv = state vector ({gc's; dgc's/dt]). 387 ser{gea,'YTick',wv)

302 % uv = input vector F(1) through M(n2/2). 388 set(gca, YTickLabels' flabel)

303 % yv = output of generalized coords. 389 sex(gea,'YGrid''on')

304 nq = size(A,1),% The number of state variables. 390 % Usec natural frequency (undamped), fvn, for sgrid command.
305 % 391 waxisn = sort{fva{find(real(fvn) < 2.2*max(wv)/(2*pi)))*2*pi);
306 ifplot_on==1 392 waxisn(1)=[};

307 figure(6) 393 sgrid(.2:.2:1,waxisn)

308 clg 394 ylabel('lmaginary Axis, Damped Froquencies’)

309 set(gef, PaperOrientation', portrait’); % This serics of cummands configures 395 xlabel('Real Axis, Exponential Decay Rate (1/5¢c))

310 sct{gef, PaperUnits,'inches’); % the plot window to effectively 396 holdon

311 set{gef,'PaperPosition’ [1 14 4]); % be incorporated into & report. 397 % Mask out horizontal grid lines to the right of the poles.

312 set(gef, Units', inches’, ‘position’, get(gef, PaperPosition’)); 398 for] = liength(wv);

313 set(gef, DefaultAxesPontSize’,9); 399 " ifwv()>.1

314 subplot(221), spy(A) 400 plofrosl(p(find(imag(p) == wv(D))) 1.09*max(wv)], wv(D*[1 11X}
315 title('A matrix’) 401 end

316 subplot(222), spy(B) 402 ond

317 title(’'B matrix’) 403 % Replot the Imaginary axis.

318 subplot(223), spy@ 404 plor([0 0],2.2*max(wv)*[-1 1],'w:)

319 title('C matrix') 405 % Plot natural frequency manual grid-lines to the left.

320 subplot(224), spy(D) 406 for I = 1length(waxisn)

321 pos = get(gea, position’); % This is in normalized coordinates 407 plo{{1 0.5%max(wv)],waxisn*{I 1},'w:)

322 pos(4)=pos(4)/2; % Shrink the height by e factor of .85 408 end

323 pos(2)=pos(2) + pos(4)/2; % Raise the subplot but keep it centered. 409 % ylabel('Imaginary Axis')

324 sct{gea,'position’ pos); 410 set{gea,'AspectRatio’ [3.34.4 1])

325 ude('D marix') 411 pos = gei(ges, position’); % This is in normalized coordinates
326 subtite([First-Order, Non-Zero, System Matrix Entries'’]) 412 pos(1)=pos(1) + 0.05*pos(3);% + pos(3)*0.10; % Raise the subplot but keop it centered.
327 end 413 set(gea,'position’ pos);

38 % 414 nfpos =pos;

329 ifprint_on== 415 nfpos(l) = pox(1) + pos(3);

330 print -deps fig6.ps; % Print the file as an encapsulated Post-Script file. 416 nfpos(4) = 0.95*nfpos(4);

331 end 417 nfpos(2) = pos(2) + 0.025*pos(4);

332 % 418 axes('position’, nfpos)

333 % To print the system using the printsys d this sub 419 axis({~2.2*max(wv) 1.1 *¥max(wv) -2.2*max(wv) 2.2*max(wv)])
334 Go AMMAAAMAA 420 set(gea,XColor, k)

335 %ges=(l; % Declare null initial variable description strings. 421 sei(ges, XColor, 'k}

336 %dges=[l; % 422 flabel =[];

337 %inputs=(); % 423 for 1 = 1:length(waxi=n);

338 % forI=1mn272 424 flabel = str2mat(flabel, freq2str(real(waxist{DA2*pi)}, 1))

339 % ges=[ges'x' int2str(l) ' theta' in2si(])}; % Loop through & 425 end

340 % dges =[dges' dx’ int2su(l) ' dtheta' int2str(1));% define each 426 flabel(1,)={];

341 % inputs =[inputs'F im2st() ' M’ in2stx(1)]; % beam variable. 427 set{gea,'YTick!, waxisn)

342 %end 428 sct(gea, YTickLabels' flabel)

U3 % states = [ges dges); % Siate vector ([ge's; dge's/di]) 429 ylabel(['

344 9% outputs = {ges); % Output of generalized coords. 430 ' e

U5 % 431 ‘Undamped Natural Frequencies'])

M6 %impus)=[); % 432 holdoff

347 %ostaes(1)={}; % Eliminate initia} blanks. 433 end

348 %oupus(l)=[; % 434 %

349 % 435 if prict_on==1

350 % printsys(A,B,C,D,inputs,outputs statcs) 436 set(gef, InvertHardCopy','on’)

351 Go AMAAAAAMAA 437 print -deps fig?.ps

57

438 end 524 xlabel(‘(sec))
439 % 525 end

440 % Section (10) 526 %

441 % Bode Plot. 527 if privt_on==1

442 % USE: =, be, ce, de. 528 print -deps fig9.ps; % Print the file as an encapsulated Post-Script file.
43 % 529 end

44 % 530 %

445 % 531 av=[); pos = []; trunk = [};

446 [mag,phase,w] = bode(ace,be,ce,de, 1 logspace(logl O(5* 2*pi) logl ({S00*2*pi),500)); 532 %

447 ifplot_on==1 533 % Completed:

448 figurc(8) 534 %

49 clg

450 ser(gef, PaperOricntation', partrait); % This serics of commands configures <beam_plot.m>

451 set(gef, PaperUnits', inches'); % the plot window to effectively 1 function (] = beam,_plot(ncord spatial,y sgm,constraintge,extge)

452 set(gef, PaperPasition’,[11 63 3]); % be incorporated into a repart. 2 % beam_plotm .

453 set(gef, Units','inches’, position’, get(gcf, PaperPosition')); 3 %[l= beam_plot{ncord spatisl,y,sgm,extge);

454 set(gef, DefeultAxesFontSize' 9); 4 % o This mfile generates & plot of the output state of a beam system.
455 whitebg(gef,k') 5 % o This file uses: .)

456 subploy(211), scmilogx(w/(2*pi),20*l0g1 0(mag)) 6 % fem node_checkm insection 1.

457 titte({dabel ' Elevation Mechanisin to Muzzle Pointing Angle Bode Plot]) 7% grom checkm

458 ylabel('Gain dB') 8 % fomnerpm insection 2.)

459 av = [[min(w) max(w)}{(2*pi) min(20*log] X(mag)) 0.95*max(20*10g] O(mag))]; 9 % o Extemal goneralized coordinates may be include via extge.

460 axis(av) 10 % o Specific input/output variable definitions are:

461 fabsissa = sart([S; wv(2:5)/(2*pi); 500));

flabel =[];

463 for [= 1:length(fabsissa)

464 flabel = str2may(flabel, freq2stir(fabsissa(1),1));

11 % ncord -> The vector of indices such that spatial(ncord) is the position
12 % ofeach pair of beam generalized coordinates. (Also known a8 nodes.)
13 % spatial -> Axial position vectar, curreatly limited to equally spaced

14 % position vectors with position data of every dx*n point such that

15 %

465 end 1 = L:length(spatial) and length(spatial)*dx cquals max(spatial).
466 flabel(l,) =[] 16 % y->Output vector. Contains the gnitudes of the displ
467 setgea, XTick fabsissa) 17 % ions of the g lized di It is a vector of the form:
468 set(gea, XTickLabels' flabel) 18 % {x(1) theta(1) x(2)..x(n2) theta(n2) extge(1) extge(2)...extge{nxge)})'.
469 sei(gea, YTick' [min(20*l0g] ®mag)), median(20*l0g1(mag)), max(20*0glO(mag))) 19 % sgm->sgm, scaled geometry matrix to describe the beam.
470 grid N % intge -> Inertial generalized coordinate vector.
471 subplow(212), semilogx(w/(2*pi),phasc) 2l % Contzins the index oflAl‘t g'cmralizcd coordinate that is
472 xlabel(Frequency (Hz)), ylabel('Phase deg’) 2 % coupled to the ground incrtial referenco frame. Use [] in
473 av = [[min(w) max(w)}/(2*pi) min(phasc) (max(phasc)+180)]; B % the ovent of free-free.
474 axis(av) 24 % extge->External generalized coardinate vector. Contains the index of
475 set(gea, YTick' [180:-180:-600]) 25 % the generalized coordinate to which it is coupled.
476 grd 26 % o Created 3 October - 1995 12 January 1996 by Eric Kathe.
477 end 27 % Beoet Labs, Wawervlict Arscnal, NY 12189-4050 <ckathe@pica.army.mil>
478 % 28 % Version 1
479 i pring_on =1 29 G AMAAAAAMAAMAAAMAAAAAAAAAAAAAAA AAAAAAAMAAAAAAAAAAAAAAAAAAAAAA
480 set(gef, InventHardCopy','on’) 30
481 print -deps fig8.ps; % Print the file as an encapsulated Post-Script file. 31 %
482 end 32 % Section (1)
483 9 33 % A fow cheeks 1o be surc input varisbles are the right size, et cetera.
484 9 34 % This section uses geom_check.m 1o validate the input geametry vectors.
485 % Section (11) 35 % Also define the number of indices of spatial, ns, the mumber of gencralized
486 % Unit Impulse Responsc. 36 % coordinates nge, et cetera.
487 % USE: &, be, ce, de. 37 % DEFINE: nel, nge, o, ns, nxge.
488 % 38 % USE: extge, constraintgc, nargin, ncord, gpatial, y,
489 9, 39 % author provided defsult value.
490 % 40 % POSSIBLY ALTER: constraintgc, extge, ncord, spatial, y.
491 [yx,1] = impulseac,be,ce,de, 1,[0:0.00001:0.2]); 41 %
492 % 42 % (A) Check spatial & ncord & define their kength's, ns.
43 %

493 ifplot_an==1

484 figure(9)

495 «clg

496 set(gcf, PaperOrientation', portrait’); % This series of commands configurcs
497 set(gef, PaperUnits’,'inches'); % the plot window to effectively

498 set(gef, PaperPosition’,[1 1 3.8 3.5]); % be incorporaled into a repart.

499 sel(gcf,'l.lnjls',’im:bes‘,‘posiﬁun‘.ge!(gcf.‘Papchosition‘));

500 ser(gef,'DefaultAxcsFontSize',9);

501 plot(ty,’,[min(t) max(1)},[0 0], k")

502 av =axis;

503 av(3)=22*av(3);

504 axis{av)

505 pos = get(gea, 'position'); % This is in narmalized coordinates

506 pos(2)= pos(2) + (1-0.85)*pos(4)/2; % Raise the subplot but keep it centered.
507 pos(4)= 0.85*pos(4); % Shrink the height by a factor of .85

508 set(gea, position’,pos);

509 title(*SISO Unit Impulse Response')

510 ylabel('Muzzle Deflection (rad)’)

511 xlabel(Time Afier Newtan-Second Impulse at Elevation Mechanism (scc)')
512 newpos = [(pos(1)+pos(3)/6) (pos(2)+pas(4)/7) (pos(3)/2) (pos(d)3)];

513 axes('positian',newpos)

514 trunk = t(1:(length(t)/30));

515 plof(urunk,y(1:length(ttrunk)), k{0 101,[0 0] 'k:")

516 av =axis;

517 av([34]) =av((34])/3;

518 av([12])=[00.010};

519 axis(av)

520 titde(’ Initial Response Close-Up')
521 ylabel('(rady)

522 set{gea, XTick',[0 0.005 0.010))

523 sei(gea, XTickLabels',str2mat('0.000",0.005',/0.010)

44 [ncord spatial] = fem_node_check(ncord,spatial);
45 ps =length(spatial); % Number of indices of spatial.
46 mn =length(ncord); % Number of nodes of ncord.
47 nel =nn - 1;% Number of elements of the beam.
48 %
49 %
50 % (B) Check & modify inertial constraint vector.

%

52 if constraintge ~ (];
53 constraintge = constraintge(:);
54 aintge = sort() intg

\.
§5 if sum(oeil(intgc) -

g intge) >0
56 gc = round(intgc);
57 waming = ‘Constraintgc must be of integer valucs. It has been rounded.’

61 warning = ['‘Constraintgc values must match a generalized coordinate number, ...

62 ‘Negative values i Co intge has been nullified.']

63 end

64 if max(constraintgc) > 2*mn

65 constraintge = {};

66 waming = [‘Constraintge values must match a generalized coordinate number, *...
67 ‘Values that exceed the number of generalized coardinates ...

68 ‘are i C intgc has been nullified.'}

69 end

70 end

71 %

72 % © Check to see if extge included. If so, check it
73 % & define its length, nxgc; else set nxge = 0.

78 extgc = sort{extge);

79 if sum(ceil(extge) - extge) > 0

80 extge = round{extgc);

81 waming = 'Extgc must be of integer values, It has been rounded.
82 end

83 if min{extge) <1

84 extge=[); .

85 waming = [Extgc values must match & generalized coordinste number. ...
86 Negative values inconstant. Extge has been nullified.’)

87 end

88 if max(extgc) > 2*m

89 exge=[};

90 waming = |'Extgc values must match a generalized coordinate mumber. °...
91 'Values that exceed the number of generalized coordinates ...

92 ! are inconstant. Extge has been nullified.']

93 end

94 nxge = lengthlextgc);

95 end

96 %

97 % (D) Impose column structure on 'y, and check constancy of number of
98 % generalized coordinates.

9 %

100 y =y(:);

101 ngc =length(y);

102 if nge ~= (2*nn + nxge)

103 ifngc<2*mn
104 warning = ['More generalized coordinates than the number of outputs.'...
105 ‘No carrective action has been taken.'}

106 elseif pargin=35

107 zgext =ones((nge - 2*nn),1);

108 zgexi(l:nxgc) = extge;

109 extge = zgext(1:(nge - 2*nn));

110 warning = ['Mismatched number of generalized & or external *...

111 ‘couplings. extgc padded or truncated to fit. ...
112 ‘Further errors are very likely.]
113 else

114 waming = ['Fewer generalized coordinates than the number of outputs.”...

115 ‘No corrective action has been taken.']
116 end

117 end

118 %

119 default = [}; warning = (];

120 %

121 % Section (2)

122 % Compute the beam deflection vectors far each finite element using
123 % fem_interp.m, and combine into one beam deflection vectar.

124 % DEFINE: deflectv.

125 % USE: ncord, nn, ns, spatial, y,

126 %
127 %
128 % (A) Initialize deflection vector.

128 %

130 deflectv = zeros(size(spatial));

131 %

132 % (B) For the first element of the beam.

133 %

134 lengvseg = spatial(ncard(1)incord(2)); % Length of fite element.

135 [zphi, zddphi) = fem_interp(lengvseg);% Zphi contains the shape functions.

136 %

137 xv =y(1:4);% The deflection of clement one is & function of the
138 % state of both adjacent nodes. In this casc
139 % {x1, thetal, x2, theta2}.

140 %

141 deflectv(ncord(1 y:incord(2)) = zphi*xv;

142 %

143 % @ For remaining elements:

144 %

145 for I=2:nel;

146 %

147 lengvseg = spatial((ncord(I)+1):ncord(I+1)) - spatial(ncord(});
148 {zphi, 2ddphi] = fem_interp(lengvseg);

149 mdl.=2+*1-1;

150 indR =indL +3;

151 deflectv((ncord(I)+1):ncord(1+1)) = zphi*y(indL:indR);

152 end

153 %

154 1=[); indL =[]; indR = []; xv =[]; lengvseg ={]; zphi ={];

155 zddphi = (};

156 %

157 % Section (3)
158 % Plot the deflected geometry, and external general coordinates in
159 % the current figure window. Note: labels and axis may be sct after

160 % the function call. Alsonote that their is room for improvement with
161 % rotational extemnal absorbers.

162 % USE: spatial, deflectv, ncord, nxge sgm, smperk, y, extge, constraintge.
163 %
164 %
165 % (A) Computo & plot the plotting g y matrix. It is camposed of the
166 % scaled geometry matrix and its reflection about the axis, offset

167 % by the defloction vector computed in scction 2. Hold the plot.

168 %

169 pgm = [sgm -sgm} + deflectv*ones(l,2*size(sgm,2));

170 plot(spatial pgm, k')

171 hald an

172 %

173 % (B) Include a conterline and mark off the deflected node locations.

174 %

175 plot(spatial,deflectv,b:)

176 plospatial{ncard) deflectv{ncard),kx)

1717 %

178 % © Plot inertial constraint locations separately.

179 %

180 if length(constraintgc) > 0

181 for I = L:length{constraintgc)

182 xspat = spatial(K(ceil(intge(1)/2)));
183 xdeflect = [0; deflectv(ncard(ceil(constramtgc(Iy/2)))];
184 if((intgc(1)/2) - mtgc({ly/2)) >0;

185 % Odd g.c. is translation.

186 lwidth = got(gea, LincWidth');

187 % Plot a wide line carmection:

188 line(xspat*[1 1],xdefloct,LineWidth',5*lwidth,'Color,'b’)
189 % plot(xspat*{1 1],xdefloct,’k-")

190 plot(xspatxdeflect(2),ko")

191 else

192 plot(xspat*[1 1] xdeflect,'g-)

193 plot(xspatxdeflect(2),'g*)

194 end

195 end

196 end

197 %

198 % (D) If 1 absorbers arc included, plot them sep ly.
199 %

200 if nargin==6

201 for I=1l:mnxgc

202 xspat = spatial(ncord(ceil(extge(I)/2)));

203 xdeflect = [y(2*mn+I); deflectv(ncard(ceil(extge()/2)))];
204 if ((extge(I)/2) - Soor(extge(l)/2)) > 0; % Odd g.c. is translatian.
205 plot(xspat*[1 1],xdeflect,r)

206 plot(xspat xdeflect(1},'ro)

207 else

208 plot(xspat*[1 1] xdeflect,'g’)
209 plot(xspatxdeflect(1),'g*)
210 end

214 hold off
215 %

216 % Completed:

217 % OUTPUT: Nore.
218 %
219 %

<eigen_2oam>
1 function [phi,fv rlab] = eigen_20(M,K,Cd)
% cigen_20,
% [phi,fv,rlab] = eigen_20(M,K,Cd);
% o This m-file computes the modal matrix phi whose columns consist of
% eigen vectors in arder of i ing ponding frequency, omega.
% o The cigen vectars are mass normalized.
% o The relationships between upper and lower halves of the first-order
eigenvectors, used for damped mode shape d inaticn, is di d
in a commented portion of section four of this m-file.
o This file uses:
M, K ->n2xn2 mass and stiffness matrices where n2 = number
of gencralized coordinates.
Cd -> Optional n2xn2 damping matrix where n2 = mumber
of generalized coordinates.
phi -> n2xn2 matrix whose columns consist of the mass normalized eigon-
vectors with each column ding the ive fi

P . {3 T 24

WAL EWN

10
11
12
13
14
15
16
17
18
19
20
21
2
23
24 % Vemionl.

element of omega.
fv ->n2xl1 vector of linear modal frequencics (Hz) sorted in arder of
increasing frequency.
rlsb -> Optional string matrix of row labels identifying the mode's by
bending mode number or Rigid body mode.
o Created 16 October - 28 November 1995 by Eric Kathe.

PRRRIRRERIRKS| SIS

59

Benet Labs, Watervlict Arsenal, NY 12189-4050 <ckatho@pica.army.mil>

25 A AAAAAAAAA AAAAAAAAAA AMAAAAAAAAAAAAA M

2%
27 %

111 % Section (3)
112 % Compute the undamped cigen system.
113 % M*ddx + K*x =0

28 % Scction (1)

29 % Check the mass and stiffncss matrices arc real and square, the
30 % same size, and symmetsic.

31 % DEFINE: n2.

32 %USE:M, K.

33 % POSSIBLY ALTER: M, K.

4 %
3B %
36 [mm,nm] = size(M);

37 [mknk] = size(K);

38 %

39 n2 = min{[mm nm mk nk});% The number of generalized coordinates.
40 %

41 if mm ~= nm | mk ~=nk | mm ~= mk

42 M=M(m2,1m2);

43 K=K(I:n2,1m2);

44 warning = ['Mass and stiffness matrices must be same size and ' ...

45 ‘square. They have boen truncated 10 int2su(n2) ...
46 *elements square.'}

47 end

48 %

49 if ~isreal(M)

50 M=abs(M)

51 warning = ‘Mass matrix must be real. It has been st to abs(M).'
52 end

53 if ~isreal(K)

54 K=abs(K)

55 warning ="'Stiffness matrix must be real. It has been set to abs(K).'
56 end

57 %

58 if sun{sum(M ~= M")) ~= 0

59 waming ='M not symmetric, crrors are possible.’

114 % (WwA2SM +K)*x =0

115 % K*x = wA2*M*x

116 % A®x =lambda*B*x The generalized eigenvalue problem.
117 % DEFINE: phi, wv.

118 % USE: M, K.

119 %
120 [philambds] = eig(K M);

121 %

122 wv = sqri{diag(lambda));% Circular frequency is the square root of lambda.
123 %

124 lambda =[};

125 %

126 % Section (4)

127 % If damping is included:

128 % Compute the sy ic first-order sy ic state ions,
129 % Find the first-arder eigen values and vectors,

130 % Extract the relevant cigen values and eigen vectors, and

131 % convert the eigen values to radial frequency.

132 % DEFINE: phi, lambda.

133 % USE: M, K, Author supplicd cutoff fxequc'ncy

134 %
135 if damp flag==1

136

137 % Identify the expected number of rigid body modes:

138 %

139 nrb=size(K,1) - rank(K); % It is well know that the mumber of rigid
140 % body modes of a beam matches the rank

141 % deficiency of the stiffness matrix.

142 %

143 % Identify the fundamental, undamped, flexible mode frequency:
144 %

145 wv =sart(wv); % Sort the undamped frequencies.

60 end 146 fmwv = wv(nrb + 1); % The fundamental flexible mode frequency is the
61 if sum{(sum(K ~=K")) ~=0 147 % lowest frequency following the rigid body ‘zero’

62 ing ='K not s; ic, errors are possible.’ 148 % frequencies.

63 end 149 %

64 % 150 % Define & cut-off frequency below which the

65 mm = []; nm = (]; mk = [J; nk = []; waming = []; 151 %modnuwerdunpcdorngxdbodyw:ﬂnnnmnccrmn

66 % 152 % 5% of the und ! seems a bl

67 % Section (2) 153 % cut-off. (Note: xfh:avy s of mass pmpommal damping is

68 % Check if the damping matrix has been included. If so, check it as was 154 % employed, low freq: may be damped, and confuse this
69 % done for the mass and stiffness matrices in section 1. 155 % scheme. Generally, mass pmpcmaml damping is amnll relative
70 % DEFINE: damp_flag. 156 % to the stiffness damping, g the p ial for prot)
71 % USE: Cd, n2. 157

72 % POSSIBLY ALTER: Cd. 158 fcu.! fmwv/20;

B % 159 %

% % 160 % Symmetric hamogenous statc cquations: At qdot + Btg =0

75 damp_flag = 0; % Initialize the damping flag o off. 161 %

76 % 162 %[0 M][xddot] [-M O][xdot] [0]

77 ifnargin==3 % Check 1o scc if the damping matrix was included. 163 %[M Cd}[xdot] +[0 K][x]={0]

78 damp_flag=1; 14 %

79 [me,nc] = size(Cd); 165 At = [zeros(n2,n2) M; M Cd);

80 % 166 Bt =[-M zeros(n2,n2); zeros(n2,n2) KJ;

81 ifmc~=nc % Check to see if the damping matrix is square

82 nc=min(fmecnc]); % If it isn't square, runcate it to be square

83 Cd=Cd(linc,linc); % and warn of the problem.

84 waming = Damping matrix was not squarc. It has been truncated.'
85 end

8 %

87 ifnc<n2 % Check 1o see if the damping mawix is the

88 Zd=zeros(n2,n2); % same size as Mand K. Ifnot, pad or

89 Zd(linc,linc) =Cd; % or truncate to the same size and wam of the

90 Cd=Zg; % problem.
91 wamning = [Damping matrix size smaller thanM & K. ...
92 ‘It has been zero padded to match the size.']

93 eleifnc>n2
94 Cd=Cd(1m2,1:n2);
95 wumng'-[DnmpmgxmtrusucxslargcnhmM&K g

96 "It has been truncaicd to match the size.']
97 end

98 %

99 if ~igreal{Cd)

100 Cd = abs(Cd)

101 warning = ‘Damping matrix must be real. It has been set to abs(Cd).
102 end

103 %

104 if sum(sun{Cd ~= Cd')) ~= 0

105 warning = 'Cd not symmetric, errors arc likely.

106 end

107 me = (); nc = []; Zd = }; waming = [};

108 %

109 end

110 %

167 %
168 % First arder generalized eigen problem:
169 % lambds Atq +Btq=0->-Biq=lambda At q
170 % - - -
171 %
172 [ssphilambxda] = eig(-Bt,At);
173 %
174 sslamv = diag(lambdzs); % Convert diagonal cigenvaluc matrix to vectar.
175 %
176 %
177 % ldentify flexible modes, by finding values with significant imaginary
178 % components. Isalate only one half ofthe conjugste pairs by only
179 % keeping the roots with positi Y
180 %
181 [indflex] = find(imag(sslamv) >< fcut);
182 indflex = mdflex(:);
183 %
184 % Identify rigid body modes by their lack of imaginary content, and their
185 % close praximity to the origin.
%

186

187 [indrigid) = find(imag(sslamv) >= 0 & imag(sslamv) < feut & ...
188 sbs{real(salamv)) < 100*fcut);

189 indrigid = indrigid(:);

190 %

191 if size(indrigid) ~= nrb

192 waming = ['The number of rigid body eigenvalues found does not*...
193 ‘match the rank defici of K. The cige: or labels ‘...
194 ‘may not properly indicate the rigid body modes.']

195 end

196 %

60

197 wv = imagsslano(findflex; mdrigid))); e Asserable medlal frequencies end
298 phic= ceal{ssphill a2 firdlex; ndrigid)iida mspeauve eigenvectars,

9% %

BWE % NOTE: Maifah mit normalizes each eigenvector independently. Due tothe

201 % imaginary content of the eigen vectors, the normalization introduces
202 % anew camplex cantent to the cigenvectors. To investigate the

203 % relationship belween the upper and lower halves of the elgcnvccton,
204 % and the relationshipt the cig of comp

205 % ecigenvalues, the complex normalization must first be removed. This
206 % may be accomplished as follows:

207 % 1) Identify the camplex conjugate pairs of under damped eigenvalues. This
208 % may be donc visually using: printmat([roal(sslamv), imag(sslamv)]), or
208 % it may be accomplished using:

210 % cplxpair(sslamv, lw‘cps‘umx(nbc(nbu(ulunv)))) {Qioarly, My expericnce
211 % indi that the L isn't very pxccxse Different

212 % tol may be requi ‘dumgdn d.)

213 %2)D ine the l ion scale used. This may be done as
214 % follows for the 122h and 13th cigenvectors as an example if

215 % their eigenvalues are complex conjugates. (Substitute the indices of

216 % the conjugar pairs identified in step one in licu of 12 & 13.)

217 % scalel2 =ssphi(n2+1,12)/real(ssphi(n2+1,12))

218 % scalel3 = ssphi(n2+1,13)/real(ssphi(n2+1,13))

219 % This uses the relationship that the lower half of the simplified eigen-

220 % vectors will be real. The first such value is chosen for convenience.

221 % (ssphi(n2+1:2*n2,12)/real(ssphi(n2+1:2*n2,12)) demonstrates each value.)

222 % 3) Renormalize the eigenvectars 1o impose the lower half of the vectors to
223 % bereal. Again, using the 12th & 13th eigenvectors as an example:

224 % ev12 =ssphi(;,12)/scalel2;

225 9 ev13 =ssphi(:,13)/scalel3;

226 % (Note the very small remaining imaginary content of the lower half.)

227 % 4) The desired relationship that the upper half of the eigen vectars equals
228 % the lower half multiplicd by the eigenvalue may be seen by comparing the

229 % amay division of the two halves with the eigenvalue:
230 % eviAlin2)/evi2An2+1:2*u2)

231 % sslamv(12)

232 % ev13(1mn2)/ev13(n2+1:2*n2)

233 % sslamv(13)

234 % S5)NOTE that it is legitimate to take just the real part of the first half
235 % ofthe eigen vectar, and scale it later, gs | have done. (All four

236 % quadrants of the cigenvector -- upperflower & imaginary/real -- differ
237 % only by generally complex constants.)

238 %

239 feut =[]; At =[]; Bt ={); ssphi = []; lambda =}; sslamv = []; fimwv = [];
240 sslamreal ={]; wamning = [; inflex = {); indrigid = [}; tb = [];

AUl %

242 end

243 %

B3 %

284 % Test orthonormality of phi:

285 %

286 test = norm((phi'*M*phi - eye(size(phi,2))), fro'Vnorm(phi*M*phi,'fro’);

287 if test > J0X-4);

288 warning = ['Orthonormality of phi is in question. The narm of phi"*M*phi"...

289 ‘over (phi**M*phi - I) is ' num2str(test) . A significant ...

290 ‘value indicates discrepancies. This often occurs with two'...

21 'rigid body modes since the cigenvector extraction docsn't ensure'...
292 ‘orthogonality of the two rigid eigenvectors.’)

293 end

294 %

295 y=(); I=(]; wst = []; waming =[];

296 %

297 % Section(S)

298 % Labal froquencies as rigid body ar bonding mode.
299 % DEFINE: tlab.

300 % USE: fv, n2.

301 %
302 %
303 if nargout == 3;% Check to soc if rlab is roquested.

304 rlab ={];% Define s null row label.

305 nrb =0;% Initiglize the mumber of rigid body modes.

306 ifn2>=3

307 if abs(fv(3))/aba(fv(1)) > 5000; % A reasonabic numeric zero.
308 rlab = str2mat(rlab, Rigid_Body_Mode');

309 mb=1;

310 %

311 if abs(fv(3))/abs(fv(2)) > 5000; % A reascmable numeric zero.
312 rlab = str2mat(rlab, Rigid_Body_Mode');

313 wb=2;
314 end
315 end

316 el % If fewer than 3 modes, identifying the r-body mode is skipped.
317 forl=1mn2

318 riab = str2mat(rlab, [Mode_' int2str(1)]);

319 end

320 nrb=n2;% This p
321 % row labels.

32 end

323 %

324 forl=1:(n2-nrb)

325 rlab = str2mat(rlab, ['Bend_Mode_' im2str(D)]);
326 end

327 end

328 %

329 rlaX1,?) = ;% Nullify initial empty string.

the redund i of bending mode

244 % Scction (5)

245 % Check and convert the eigen values to

246 % lincar frequencies (Hz)and mass normalize the eigen vectors.
247 % Mass normalized -> phi'"*M*phi = 1.

248 % DEFINE: fv.

249 % USE: phi, lambda, ngc.

250 % Alter phi.

251 %
252 %
253 if ~isreal(wv)

254 waming = ['Imaginary frequencies found. System is likely to'...

255 ‘be unstable.']

256 end

%7 %

258 fv = wv/(2*pi);% Lincar (Hz) frequency is the circular frequency/(2*pi).

259 %

260 narms = diag(phi'*M*phi);% For mass normalization, detcrmine the norm-scale.
261 nphi = zeros(size(phi));

262 for I =1:size(phi,2)

263 mphi(:,I) = phi(: I)/sqrinorms(1));% Independently scale each vector.

24 ifophi(2,i) <0

265 nphi(:,I) = - nphi(:,I); % Impose consisent sign conventian.

266 end % In this case. Initial angle always up.

267 end

268 %

269 phi = nphi;
210 %

271 wv=][]; norms
212 %

=[linphi=[;I=[];

213 % Section (4)

274 % Sort frequencies and eigen vectors in order of increasing frequency, and
215 % validate orthonormality of cigenvectors.

276 % USE: fv, phi.

277 % Aler fv, phi.

218 %
219 %
280 [y,i] = sort(fv);
281 fv=1(l);

282 phi = phi(:,1);

330 %
331 wb=[LI=(};
332 %

333 % Completed:

334 % OUTPUT: fv, phi, rlab.
335 %
336 %

<fem2ss.m>
function [A,B,C,D] = fem2ss(M,K,Cd,iabel)
% fem?2ss.
% [A,B,C,D] = fem?2ss(M,K,Cd,tabel)
% o This m-file generates the first order state-space model from the
% mass, stiffoess, and damping matrices.
% o Specific variable definitions arc:
% M, K, Cd->n2xn2 mass and stiffness and damping matrices where n2 = number
n2 = number of generalized coordinates.
A, B, C,D -> State-Space Matrices as in:
dqv = A*qv + B*uv
yv =C*qv + D*uv ... where qv = state vector
uv = input vector
YV = output vectar
dabel -> Optional string to enable, and label, matrix printing.
Note: labels only valid for beam generalized coordinates.
% o Created 14 September - 05 October 1995 by Eric Kathe.
% Benet Labs, Watervlict Arsenal, NY 12189-4050 <ckathe@pica.army.mil>

G AAMAAAAAA AAAAAMAAAAAAA

EERE LR

%

% Section (1)

% Define the number of state variables and generalized coordinates.

% DEFINE: n2, nq.

% USE: alpha, beta, M, K.

%

%

02 = 9i2e(M, 1);% # of generalized coordinates.
=2*n2;% # of state variablcs.

%

%

CRRRRRRRREEE S SRR EEoEEYRNanruL -

% Section (2)

=)
—

31 % Compute the first order matrices as in: 22 % o The integration technique used here to form the inertial and
32 %{ax]={ O 1)J[x]1+{ 0] 23 % stiffncss matrices of cach 'finite’ element of the beam is drawn
33 % [ddx] = [-inv(M)*K -inv(M)*C] [dx] + [inv(M)][F] 24 % from: Junkins, “Introduction to Dynamics and Contral of Flexible
34 % 25 % Structures,” equations 4.101 and 4.102.
35 % dq = A * q+ B*u 26 % o Created 31 August - 6 October 1995 by Eric Kathe.
36 % . 27 % Beoot Labs, Warrvliet Arsenal, NY 12189-4050 <ckatho@pica.army.mil>
37 % & y=C¥q+D*; Where Il usc the convention [y] = (1], 28 G AMMAAAMAMAMAAAAAAAAAAAMAANAAAAAAAAAAAAAAAAMAAAAAAAMAAAAAAAMAAAAAAAAA
8% 29 %
39 % DEFINE: A, B,C,D. 30 % Section(1)
40 % USE: Cd, M, K. 31 % A few checks to be sure input variables are the right size, et cetera.
41 % 32 % This section uses geom_check.m to validate the input geametry vectors.
42 %% 33 % USE: lengv,lrho,IEI.
43 A =[zeros(n2,n2) eye(n2); -M\K -M\Cd}; % Marrix division preferred to 34 % POSSIBLY ALTER: kengv trho IEI.
44 B = [zeros(n2,n2); inv(M)}; % explicit inversion.(Ref. Guide) 5 %
45 C=[eye(n2) zeros(n2n2)); 36 %
46 D = zeros(n2,02); 37 [lengvirho JEI} = goom_check(lengv irho,IED);%
47 % 38 %
48 % 39 % Section(2)
49 % Section (4) 40 % Bxtract scveral values from the dats, including the spatis! resolution.
50 % If tlabel is sct, print the state-space matrices. 41 % DEFINE: deltal, b, nl.
51 % USB: C, K, M, n2, nargin, tlabel, author provided naming convention. 42 % USE: lengv.
52 % 43 %
53 % 4 %
54 ifnargin=—=4 45 deltal = mean(diff{lengv));
55 if isstr(tlabel); % Checks to sce if tlabel is a string. 46 h=max(engv);
56 if stremp(tlabel, tiabel'); % Checks to see if tabel is used. 47 nl =length(lengv);
57 tlabel = ['Beam'}; % If so, a default is applied. 48 %
58 elsc 49 % Section (3)
59 tabel(1) = upper(tlabel(1)); % lLposes upper casc on first letter. 50 % If the geometry vectors of the element arc shart, the data is stretched
60 end 51 % to make it longer for higher resalution of the imer-product integral
61 clse 52 % approximation. This 2ero-arder-hold like approach preserves total mass.
62 dabel = ['Bean']; % Default is applied in ne valid Uabel given. 53 % DEFINE: mss.
63 end 54 % POSSIBLY ALTER: deltal, IE], lengy, Irho.
64 name = [dabel ' State-Space Matrix ']; 55 % USE: deltal, 1B1, lengv, Irho, nl, author provided default value.
65 dqglab=[}; 56 %
6 qlab=[}; 51 %
67 ulab=([]; 58 mss =50; % Author defined minimum sample size or spatial resolution.
68 ylab=[]; 59 %
69 forl=1:n2/2 60 ifnl <mss;
70 qlab={qglab'x int2st(I)""]; 61 mf = ceil(mse/nl); % integer magnification factar.
n qlab = [qlab ‘theta’ int2str(1) ' ']; 62 mnl =nl*mf; % New length is of {(mss+1)(2*mss-1)}.
72 dqlab = [dglab'dx’ in2st(I) *']; 63 rsindex = (L:rml)’; % Set the new resample ndex columm vector.
73 dqlab =[dqglabdtheta’ int2su(1) "']; 64 %
74 ulab = [ulab F int2str(}) *'); 65 mdeltal = deltalimf; % Redefine the new resample deltal.
75 ulab = [ulab'M' int2str(1) *'}; 66 rslengv = rsdeltal *rsindex; % Define new resample lengv.
76 end 6 %
77 ylab=qlab; 68 rslrhom = Irho(:,ones(1,mf))';% Make a matrix of repeated colurrms.
78 qglab =[qlab dqlab]; 69 rslrho = rslrham(:);% Convert matrix to single columm vector with each
79 forl=1n272 0 % value repeated mf times. (Like a 2cro-order-hald.)
80 dqlab = [dqlab 'ddx" int2ste(I) ' '}; 71 %
81 dgleb = [dglab 'ddtheta’ int2st(I) *'J; 72 nlElm =EI(:,ones(1,mf));% As above.
82 end 73 rslEl = lEIm(:);
8 % % %
84 printmat(A,[name ‘A’},dglab,qlab) 75 deltal = rsdeltal; % Note: by the change of deltal, the resample
85 printmat(B,[namc 'B'),dglab,ulzb) 76 lengv =sslengv; % effect onlrho & IEI is accounted far in the.,
86 printmat(C,[name 'C],ylab,qlab) 77 Uho=mlrho; % integral approximation of section 5.
87 printmat(D,[name 'D'),ylab,ulab) 78 IEl=nlEl;
88 end 79 end
89 % 80 %
90 % Complewed: 81 mf={}; rsdeltal = [}; sindex = []; ralengv = {[; rsirho = [¢H
91 % OUTPUT: A, B,C,D. 82 rslEl=(];rsnl ={];
92 % 83 %
93 % 84 % Section (4)

5 % Define and ically evaluate the interpolation functions and
<fem_beamel m> 86 % derivatives at the resclution of the input spatial vector, lengv.
1 function [Me,Ke|=fem_beamel(lengv,IrhoIED) 87 % DEFINE: zphi, zddphi.
2 % fem_becamel.m 88 % USE lengv.
3 % [Me Kel=fern_beamel(lengv Irho)El) 89 %
4 % o Element Matrices for Euler-Bemnoulli Beam (FEM approach) 90 %
5 % undergoing transverse vibration. i i1= interp(.
6 % o This file uses: g; [;,Phl' zadphi] = feen. ?np),
7 % gcmn_drck.n} in aci;u'on 1. 93 % Section (5)
8 % fem_intwerpm m‘ucnon‘%. 94 % Ny ically eval the Is of Junkins, eq((4.102) using
9 % o lnpuy/Output Variables: . 95 % an inner product cstimation for the integrals.
10 % Me ->4x4 clement mass matrix for coordinates 96 % DEFINE: Me, Ke.
11 % (xlthetal x2,theta?) 97 % USE: deltal, LEl, Irho, zphi, 2ddphi.
12 % Ke ->4x4 clement stiffness matrix for coordinates 08 %
13 % {x1 thetal x2,theta?) 9 %
14 % lengv -> Vector of input element positians, evenly spaced. 100 Me = ze10s(4,4); Ke = zcros(4,4);% Initialize the matrices.
15 % (commonly in millimeters from 1mm to next node-this node.) 101 forl=1:4
16 % Irho -> variable linear density at positions that correspend to 102 forj=1:i
17 % lengv. 1 Me(i,j) = sum(Irho. *zphi(:,). *zphi: j)) *deltal;
18 % 1EI-> variable EI (bending resistance) at positions that correspond 13 Ke((xlj)) = xmimﬁphi(?nzdépﬂﬁ)*deltal;
19 % tolengv. 105 end
20 % o This file was created using clebeam.m as a guide, which was programmed 106 end
21 % by Youdan Kim, Dept. of Acrospace Eng., Texas A&M University. 107 %

62

18 fuc =13

75 % POSSIBLY ALTER: ncord.

W8 faj=gisind 76 %

N% MeGi=Me(.i) T %

111 Ke(ij)=Ke(j,i); 78 [ncord,spatial] = fem_node_check(ncord,spatial);

112 end 79 1 =length{ncord); % number of nodes of ncord.

113 end 80 %

114 % 81 nel=mn-1;

115 % Completed: 82 %

116 % OUTPUT: Me, Ke. 83 % Section (3)

17 % 84 % Determine the equivalent node force equation for lateral loading.
S %

<fem_force.m> 86 % f

1 function [F) = fem_foroe(spatial lforce Jmoment.ncord,dabel) 87 % " A b

2 % fem_forcem [B O P — Ny P ohe X eenenene b _

3 % [F] = fem_force(spatial Jfarce Imament ncard, dabel); 89 % / | \

4 % o This operatar computes the force veciar, F, 920 %1 ML |XX00000000000000CKXXX BEAM ELEMENT

5 % faran Euler-Bermoulli beam using the FEM with standard JEOOOCOOCOOEO000XK | MR |

6 % reaction force wchniques. B\ A Ay

7 % o The input geametry vector spatial is generally entered and computed % -_l< B >I_-

8 % ulin; pomf_‘.m. % 1 L]

9 % o The node index vector, ncord is generally entered and computed using % FL FR

42

88388 RESE
R

% fem mesh.m.
% o This file uscs: % USE: Author provided data as referenced.
% geom_check.m in section 1 % Define: mif, Aif, mrf, &f.
% fem_pode_check.m in section 2 9,
% geom_check.m '
% o Specific varigble definitians arc: 100 % Formulae from: Sermett,"Matrix Analysis of Structures,” Prentico
% spatial -> Axial position vector, currently limited to equally spaced 101 % Prentice-Hall, 1994, page 69. (Alt. reference below.)
% position vectors with position data of every dx*n point such that 102 %
% n=1llength(spatial) and length(spatial)*dx equals max(spatial). 103 f1f = (). *((h-x):A2).%(2*x+h)X13);% Dot notation allows for the use
% Iforce -> Beam transverse force vector such that each index value 104 mif =(£).%(x).*((h-X).A2)/(1"2);% of the eval command in section 5.
% camrespands to a lateral force imposed at the beam position of the 105 &f = (f).9(x.A2).%(3*h-2*x)/(3)";
% respective spatial value at the same index. 106 mrf = '(£).%(x.A2).*(h-x}/(2"2)';
% lmoment -> similar to Iforce except for mament loading in liew of 107 %
% wansverse force loading. 108 % Section (4)

% ncord ->The vector of indices such that spatial(ncord) is the position 109 % Determins the equivalent nods farcs equation for moment loading.
% of each pair of (nel+1) generalized coordinates. 110 %

% tlabel -> Enables printing of the force vectar. 11 % s | b
% Ifvalid, the string of tlabel is incorporated into e listing to 112 % _ > Keeeree X mommeeed> _ <o
% describe the beam. 113 % / I\ \
% F->Out-put force vectar of the second-order self-adjoint 114 % | ML | X00000XXXXXXXXXX | m XXX BEAM ELEMENT XXXXXXXOOXX |
% system of size 2*(nel+1) by 1. (The gencralized coardinate MR |
% vector in this case consists of [x1 thetal x2 theta2 . theta(pel+1)]". 115 %\ A _-> A/
% o Created 05 October 1995 by Eric Kathe. 116 % - _l< h >!_-
% Benet Labs, Watervliet Arsenal, NY 12189-4050 <ekathe@pica.army.mil> wWe 1 L { -

Gy AAAAAAAAANAAMAAAARAAAAAAAAAAARAAAAAAAAAA, 18 % FL FR

% 119 %
% Scction (1) 120 % USE: Author provided data as referenced.
% A fow checks to be sure input variables are the right size, et cetera. 12! % Define: mim, fim, mrm, fm.
% This section uses geam_check.m to validate the input geametry vectar. 12 %
% Also define the number of elements of spatial, ns. The ncord will be 123 %
% checked later, in section 2. 124 % Formulsc from: Buchanan,"Theary and Problems of Finite Element
% DEFINE: s. 125 % Analysis,” McGraw-Hill, Schaum's, 1995, page 111.
% USE: lfoce, Imoment, spatial. 126 % (Alt reference above.)
% POSSIBLY ALTER: Ifoce, Imoment, spatial. 127 %
% 128 flm ="-6*(m).*(x).*(h-x¥/(1"3)’;
% 129 mlm = ‘(m). *(h-x).*((h-x)-2*x)ABA2)';
[spatial] = geom_check(spatial); 130 frm ="6*(m).*(x). *(b-x)/(213);
ns = length(spatial); % number of elements of spatial, 131 mrm = (m).*(x). *(x-2*(b-x))AM2)";
% 132 %
Iforce = lforee(:);% lmpose column structure on vector. 133 %
if length(iforce) ~= ns 134 % Soction (5)

2zvector = zeros(ns,1); 135 % Evaluate the force vector for each finite clement and combine

2zvector(size(lfarce)) = lforee; % If 1farce larger zvector is too big, 136 % into a completo system force vectar.

Iforce = zvector(1:ns); % then it is truncated, else zero pad. 137 % DEFINE: Fv.

wamning = ['Lforce must be same length as spatial. It has been'... 138 % USE: Iforce, lmoment, ncord, nel, on, spatial, mim, fim, mmm, fm

‘padded or runcated to size. Errors likely.”) 139 % mif, Af, mf, &f.

end 140 %
% 141 %
Imoment =1lmoment(:);% Impose column structure on vector. 142 % (A) Define the number of generalized coordinates and initialize the
if length(lmoment) ~= ns 143 % force vector, B:

zvector = zeros(ns,1); 144 9%

zvector(size(lmoment)) = Imoment;% If imoment larger zvectar is too big, 145 n2=2*m;

Imorment = zvector(l:ns);% then it is truncated, else zero pad. 146 P = zeros(u2,1);

waming = ['Lmoment must be same length as spatial. It has been'... 147 %

‘padded or truncated to size. Errors likely.] 148 % (B) For the first element of the beam:
end 149 %
% 150 x = spatial(ncord(1)mcord(2)); % Length vector of finite element.
waming = (]; zvectar = []; 151 f=lforce(ncord(1)mcord(2)); % Force vectar of finite element.
152 m = Imoment{ncord(1):ncord(2)); % Mament vectar of finite clement.

% Section (2) 153 h =max(x);% Length of element.
% Validate & sort node vector, ncord. Also determine the number 154 %
% of nodes, m, and number of elements, ncl. 155 FVe = [sum{eval(flf) + eval{fim));% The first elements canribution o F.
% This section uses fem_node_check.m to validate the node vector. 156 sum(eval(mlf) + eval(mim));
% DEFINE: mn, el. 157 sum(eval(Ed) + eval(Sm));
% USE: ncord, ns.

158 sum(eval(mrf) + eval(mm))};

63

159 %
160 F(1:4) =FVe;% Adds in the contribution of the first element to F.

161 %

162 %

163 % © For remaining elements:

164 % (The looping sum algebraically couples the elemental node forces

165 % by overlapping them when defining the system force vector.)

166 %

167 for I=2:nel;

168 %

169 x = spatial((ncord(I}+1):ncord(1+1)) - spatial(ncord(l));

170 f=1force{(ncard(I)+1):mcord(1+1)}); % Farce vector of fiite element.

171 m =1moment((ncord(I)+1):ncord(I+1)); % Mament vectar of finits element.
172 h = max(x);% Length of element.

173 %

174 FVe = [sum{eval(lf) + eval(fim));% Later clements contribution to F.

175 sum(eval(mif) + eval(mim));

176 sum(eval(frf) + eval(frm));

177 sum{eval(mrf) + eval(mmy)));

178 %

179 ind1=2*I-1; ind2=ind1 +3;

180 Kindl:ind2) = Kindl:ind2) + FVe;

181 end

182 %

183 I=[);indl =[);nd2 ={l;x={l: f={h=[km={}

184 n2={}; FVe=]];

185 %

186 % Section (6}

187 % 1f tlabel is set, print the nodal force vectar.

188 % USE: F, nn, nargin, tlabel, author provided naming convention.
189 % POSSIBLY MODIFY: tabel.

190 %
191 %
192 ifnargin=35

193 if isstr(tlabel); % Checks 1o see if tlabel is a string.

194 if stremp(dabel, tlabel’); % Checks to see if tlabel is used.

195 tabel = ['Beam']; % If so, a default is applied.

196 else

197 tabel(1) = upper(tlabel(1)); % Lmposes upper case on first letter.
198 end

199 else

200 dabel =['Beam']; % Default is applicd if no valid tabel given.

201 end

202 name = [tlabel ' Nodal Force Vector');

203 ulab={};

204 forl=1mn

205 ulab=[ulab F int2st([)"*];

206 uleb=[ulab™' m2str(l)''];

8BEYR

31
32
33

gYaRy
FRRRERRRRRRARRERI|REN

39

41
42
43

45
47
48
49
51

52
53

56

spatial -> Axial position vector, currently limited to equally spaced
position vectors with position data of every dx*n point such that
0 = lilongth{spatial) and length(spatial)*dx equals max(spatial}.

Iden -> Beam linear density vector such that cach index value
conespands to the beam position of the respective spatial value
at the same index.

1EI -> similar to Iden except for linear EI cross-section properties.

Inbden -> similar to lden, except this records the inertia of non-beam
masscs that are attached to the beam.

ncord -> The vector of indices such that spatial(ncord) is the position
of cach 2*(nel+1) generalized coordinatos. (Also thought of as nodes.)

tabel -> Enables plotting of the besm mass and stiffness matrices.
If valid, the string of tlabel is incorporated into the plot to
describe the beam.

MK ->Out-put mass and stiffness matrices of the second-order self-adjoint
system commonly of size 2*(nel+1) square. (The gencralized coordinate
vectar in this case consists of [x1 thetal x2 theta? ..theta(nel+1)]",

o This file was creared using beamfem.m as a guide, which was programmed
by Youdan Kim, Dept. of Acrospace Eng., Texas A&M Univernsity,
o Greated 13 Scptember - 24 October 1995 by Eric Kathe.
Benot Labs, Wamrvlict Arsenal, NY 12189-4050 <ekatho@pica.army.mil>

G AMMAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAMAAAAAAAAAA

%

% Section (1)

% A few checks to be sure input varisbles are the right size, et cetera,

% This scction uses geam_check.m to validate the input geometry vectors.
% Also define the number of clements of spatial, ns. The ncord will be

% checked later, in section 2.

% DEFINE: ns.

% USE: lden, 1E], Inbden, spatial.

% POSSIBLY ALTER: lden, 1B], Inbden, spatial.

%
%
[spatial Jden JE] Inbden) = geam_check(spatial Jden,IE] Inbden);
ns = length(spatial); % number of elements of spatial,

%

% Section (2)

% Validate & sort node vector, ncord. Also determine the number
% of nodes, nn, and mumber of elements, nel.

% This section uses fem_node_check.m to validate the node vectar,
% DEFINE: m, nel.

% USE: ncard, ns.

% POSSIBLY ALTER: ncord.

%
%
[ncord,spatial] = fem_node_check(ncord,spatial);
mmn = length({ncord); % number of nodes of ncord.
%

BRI R R 2BIAIFIRIIEZ229209R2328388Y

27 end mel=m-1;
208 % %
209 printmat(F,name,ulab,[]) % Section (3)
210 end % Combine beam and non-beam linear densities:
211 % % DEFINE: ldent.
212 uwab=[]; % USE: lden, Inbden.
213 % %
214 % Completed: %
215 % OUTPUT: F. ldent = lden + Inbden; % Net lincar density including beam and non-beam.
216 % %
27 % %
% Section (4)

<fem_form.m> % Compute the mass and stiffncss matrices for each finite element using
1 function (M K] = fem_form(spatial Jden,JEI Inbden ncord,Uabel) % elebeamint.m, and combine into complete system M & K matrices.
2 % fem_formm % DEFINE: K, M.
3 % MK] = fem_form(spatial Jden,E] Inbden,ncord, labet) 89 % USE: ldert, 1EI, ncord, nel, mm, spatial
4 % o This m-file generates the mass and stiffness matrices far arbitrary 90 %
S % beams as described in Junkins, “Introduction to Dynamics 91 % For the first element of the beam
6 % and Contral of flexible Structures,” pp. 200 92 %
7 % o This operator computes the mnass and sdf&ts§ matrices (M, K) 93 lengvseg = spatial(ncord(1)mcord(2)); % length of finite element.
8 % foran Euler-Bemoulli beain using the FEM with standard 94 Irhoscg = |dent(ncord(1)mcord(2)); % linear density of finite clement.
9 % (cubic spline) interpolation functions. M and K are the 95 IElscg = IEKncord(1)mcard(2)); % El distribution over finit element,
10 % symmetric, positive definite (or seri-definite) coefficient matrices 9% %
11 % inthe lincar system: Mddxv + Cdxv + K xv = fv 97 [MeKe] = fem_beamel(lengvaeg, lrhoscg, 1Elscg); % element M&K.
12 % o The input geometry is generally cntered and computed using 98 %
13 % *_geamlm. 99 ngee =size(Me,1); % The mumber of elermental generalized coordintes.
14 % o Thenode index vector, ncord is generally entered and computed using 100 % (C ly four ponding to: [xL thetal. xR thetaR].)
15 % fem_meshan. 101 %
16 % o This file uses: 102 n2=(ngee/2)*(nn);% n2 is the total number of gencralized coordinates,
17 % geom_check.m in section 1 103 % ‘
18 % fem_node_check.m in section 2 104 % Initialize the Matrices
19 % geom_check.m 105 %
20 % fem_beamel.m in section 4 106 M = zeros(n2,n2);
21 % geom_check.m 107 K =zeros(n2,n2);
2 % fem_interp.m 108 %
B % geom_check.m 109 M(1mgee,1mgee) = Mc;
% % o Non beam masses are also included. 110 K(1mgoe,1mgee) = Ke; % Add in clement M&K into total M&K.
25 % o Specific variable definitions arc: 11 %

64

212 % For rexmaining «lvenents:

113 % {Tér Jooping sun algebraically couples the elemental matrices
L4 % Yy owerlapping them when defining the system matrices.)
115 %

116 for I=Zmel;

117 %

118 lengvseg = spatial((ncord(I}+1)incard(I+1)) - spatial(ncord(D));
119 Irhoseg = ldent((ncard(I)+1 yincord(I+1));

120 Elseg =1El{{(ncord(l)+1)mcard(1+1));

121 %

122 [Me,Ke] = fom_beamel(lengvseg, Irhoseg, 1Elscg);

1283 %

124 ind1=2*l-1; ind2=ind1+3;

125 ndl=(nges2)*(}-1)}+1;

126 ind2=indl +ngee - 1;

127 M(indl:ind2,indl:ind2)=M(ind1:ind2,indl :ind2)+Me;

128 K(indl:ind2,indl1:ind2)=K(ind1:ind2,ind1:ind2)}+Ke;

129 end

130 %

131 I=[];indl =(}; ind2 = [}; Ke = [Me = [};n2 = []; ngee = [J;
132 %

133 % Section (5)

134 % If tlabel is s¢t, plot the M & K matrices for visual inspection.
135 % the current figure window.

136 % USE: ncord, smperk, spatial, sv.

137 %
138 %
139 if nargin==6

140 clg, colarmap(flipud(hot))

141 if isstr(tlabel); % Checks to see if tlabel is a string.

142 if swemp(Uabel,'flag’); % Checks to sec if tlabel is an old

143 tlabel = ['Beam']; % convention. If so, a default is applied.

144 clseif stremp(tlabel, ‘tabel’); % Checks to see if tabel is used.

145 tabel = {'Beamn'}); % if so, 2 default is applied.

146 else

147 tlabel(1) = upper(tlabel(1)); % lmposes upper casc on first leter.
148 end

149 else

150 debel = ['Beam']; % Default is applied in no valid tlabel given.

151 end

152 subplot(321), image(64*M/max(max(M))); % Normalize M to O to 64.
153 title({'lmage of * tlabel ' Mass Matrix'])

154 subplot(11,2,11), image(1:64)

155 tite('Color Scale')

156 alabel = [Zero'High'];

157 set{gea,’XTick',[1,64])

158 set(gca, XTickLabels' alabel)

159 set(gea, YTick' [})

160 subplot(325), image(64*K/max(max(K))) % Normalize K to 0 to 64.
161 title({'mage of ‘ dabel ' Stiffness Matrix'])

162 subplot(222), spy(M)

163 title(On/OI{Y Image of Nonzero Mass Matrix Elements')

164 subplot(224), spy(K)}

165 tite('Ony/OIf Image of Nonzero Stiffness Matrix Elemcnts’)

166 orient(’1all)

167 end

168 %

169 % Completed:

170 % OUTPUT: M, K.
171 %
172 %

% Check to be sure lengv is well posed.
% USE: lengv.

% POSSIBLY ALTER: lengv.

%
%
lengv = geom_check(lengv);
%

BEYRMR

31 % Section (2)

32 % Extract two values from lengv.

33 % DEFINE: b, nl.

34 % USE: lengv.

35 %

36 %

37 h=max(lengv);

38 nl=length(lengv);
%

40 % Section (3)
41 % Define the cubic spline interpolation functions and their 2nd spatial
42 % derivatives: (Note: the A's provide for ¢l by el camputati
43 % for x (a vector) in the eval command of section 4.)
44 % (Note: tho symbolic toolbax is an exceliont means to arrive at the
45 % inwrpolation function dorivatives. This means has been removed to
46 % fnci]mu: more general use.)
47 % DEFINE: phil, phi2, phi3, phid, ddphil, ddphi2, ddphi3, ddphid,
48 % USE: author provided symbolic spline functions.

%

50 %
51 phil ='1 - 3*xA2/(h2) + 2*x.A3/(M"3);
52 phi2 ='x - 2*h*x.A2(1"2) + h*x A3/(13)';
53 phid ="3%xA2AA2) - 2*xA3/(W"3),

54 phi4 = “h*xA2/(*2) + h*xA3[h3);

55 %

56 ddphil ='-6/2+12*x/\3'; . ;
57 ddphi2 ='-4/h+6*x/h"2; '
58 ddphi3 ='6/p"2-12°x/m3,

59 ddphid ="-2/m+6*x/M2;

60 %

61 % Section (4)

62 % Numerically evaluate the i lation functions and derivatives at the

63 % resalution of the input spatial vcctm— lengv.

64 % DEFINE: zphi, zddphi.

65 % USE: lengv, nl, phil, phi2, phi3, phi4, ddphil, ddphi2, ddphﬁ ddpln4

66 % INDIRECTLY USE: h (ic, it's emnbedded in the eval

67 % NULLIFY: phil, phi2, phi3, phi4, ddphil, ddphi2, ddph&.ddphxd.

68 %

6 %

70 % Initialize matrices to hold numeric evaluations of interpolation functions:
71

2

73

74

75

76

n

78

79

80

2zphi = zeros(nl 4);
zddphi = zeros(nl 4);
%

x =lengv;

%

zphi(:,1) = eval(phil);
zphi(:,2) = eval(phi2);
Zphi(: 3) = oval(phi3);
zphi(:,4) = eval(phi4);
%

81 2zddphi(:,1) = eval(ddphil);
82 zddphi(:,2) = eval(ddphi2);
83 2ddphi(:,3) = eval(ddphi3);

84 2ddphi(:,4) = eval(ddphid);
%

<fem_interp.m>

1 function [zphi,zddphi) = fem_interp(lengv)

2 % fem_interpm

3 % [zphi,zddphi} = fem_interp{lengv)

4 % o This function numerically computes the interpolation functions
5 % {or finite element formulatian of a Euler-Bermoulli Beam

6 % undergoing transverse vibration.

7 % o This file uses:

8 % geom checkaminsectionl.

9 % o This version does not use the symbolic toolbax.

10 % o Input/Output Variables:

11 % lengy -> Vector of input element positions, evenly spaced.

12 % {Commonly in millimeters from 1mm to clement length.)
13 % zphi, 2ddphi -> The numerical evaluation of the interpolation
14 % functions and their derivatives in a form compatible
15 % with lengv.

16 % o The method used here is drawn from: Junkins,

17 % “Inwoduction to Dynamics and Contro} of Flexible

18 % Suuctures,” equation 4.101.

19 % oCreated 31 August - 06 October 1995 by Eric Kathe.

20 % BenctLabs, Watervlict Arsenal, NY 12189-4050 <ckathe@pica.army.mil>
21 Gy AAMAAAAAAAAAAAAAAAAARAAAAAAAAAAAAMAAAA

2 %

86 phil ={]; phi2 ={}; phi3 =[}; phid =[};

87 ddphil ={J; ddphi2 ={}; ddphi3 = [}; ddphi4 ={];
88 x=[J;

89 %
90 % Campleed:

91 % OUTPUT: zphi, zddphi.
92 %
93 %

<fem_lump.m>

function [M,K,Cd] = fem_lump(M K Mextl Mextr,alpha bets,constraintm,mtdm)
% fem_lump.

% (M, K,Cd} = fem_lump(M, K,dpha bcu wmmmun,mtdm),

% o This m-file the fini lation of the

% Mass and Stiffness matriccs wnh external lumped parameter

% elements and assembles the proportional damping matrix.

% o This file uses:

% fem_Jumpm_check.m in Section 1.

% o Specific variable defmitions are:

10 % M, K (Input) -> n2xn2 mass and stiffness matrices where n2 = mumber
1 % of generalized coordinates, These include only the beam

12 % dynamics with no constraints. (If mass tuned damper elements arc

000NN A WD

23 % Section (1)

13 % included n2 will increase by the number of rows of mtdm.)
14 % Mextl, Mextr -> 2x2 sub matrices of left and right extreme rigid body

65

ERL-E R RS RN

[RV RN W W
\:ouu.ﬁuw

%

86

88
89

% inertia. (Wam & zeros will be substituted if not 2x2.) These 101 waming = ["Too many mass tuned dampers, mtdm truncated to ‘...
% are generally entered and computed using geom(_*.am. 102 ‘the number of generalized coordinates (' ...

% slpha, beta -> scaler proporticnality constants for the Rayleigh 103 int2str(n2))

% damping matrix, Cd = alpha*M + beta*K. (Shames & Dyn, pp. 646.) 104 end

% constraintm -> Translational or rotational lumped parameter constraint 105 nmid = size(midm,1);

% spring and damping matrix. The matrix is asscmbled one row for 106 end

% each node effected. Columnl -> generalized coordinate number, 107 %

% NOTE: Must be in ascending order. 108 m=[];n =(]; wamning = [J;

% Colurnn?2 -> lumped spring constant, 109 %

% Column3 -> lumped damping cocfficient. 110 % Section (2}

% midm ->Mass tuned damper matrix. The structure is the same as 111 % Compute the damping matrix and add Mextl&rs to M.
% constraintm with an additional colunm4 -> lumped mid mass, 112 % DEFINE: Cd.

% M, K, Cd (Output) -> Mass, stiffness, and Rayleigh damping matrices of 113 % USE: alpha, beta, M, K, n2, Mexd, Mextr.

% generalized coordinates that include the constraint and 114 %

% extemally coupled dynamics. (If mass tuncd damper elements 115 %

% arc included n2 will increase by the number of rows of midm.) 116 M(1:2,1:2) = M(1:2,1:2) + Mextl;

% o Created 29 September - 31 October 1995 by Eric Kathe. 117 M((n2-1):02,(n2-1)12) = M{(n2-1)m2,(n2- 1):n2) + Mextr;
% Bemet Labs, Watervlict Arsenal, NY 12189-4050 <ckathe@pica.army.mil> 118 %

Go AAAAAAAAAAA A AMAARAAAMMAMAMMARMANAAMARMMANAA. 119 Cd = alpha®M + beta*K; % Proportionsl damping matrix.
% 120 %

% Section (1) 121 % Section (3)

% Check the damping coefficients to ensure that they are not negative. 122 % Addinthe 1 stiffoess and damping.
% Also check Mextl, Mextr, canstraintm, mtdm. Wamings indicate reasons 123 % POSSIBLY MODIFY: Cd, K, M.

% for if checks.

% USE: alpha, beta, constraintm, mtdm, Mexd, Mextr,

% Define: n2, ncnst, nimtd.

% POSSIBLY ALTER: alphg, beta, constraintm, mtdin, Mextl, Mextr.
%

%
% (A) Check alpha & beta.
o
ifalpha <0
alpha = Q;
waming = Negative alpha not valid. Alpha set to zero.'
end
ifbeta< 0
beta =0;
waming = ‘Negative beta not valid. Beta set to zero.'
end
%
% (B) Check sizes of Mextl & Mext.
%
[m.n] = size(Mexul);
fm~=2
Mexd = zeros(2,2);
warning = Mextl must be 2x2. It has been sct to 2x2 zeros.'
elscifn~=2
Mexd = zeros(2,2);
wamning = Mextl must be 2x2. It has been set to 2x2 zeros.!
end
{m,n] = size(Mextr);
ifm~=2
Mextr = zeros(2,2);
waming = 'Mexur must be 2x2. It has been set to zeros.*
clscifn~=2
Mexwr = zeros(2,2);
waming = 'Mextr must be 2x2. It has been set to zeros.'
end
%
% @ First check of constraintin for proper input form.
%
comstraintm = fem_lumpm_check(constramtm);
%
% (D) Second check of constraintm for comparison against M.
% Also define the number of generalized coordinates, n2,
% and the number of external constraints, nenst.

Ya
n2 = size(M,1);% The number of generalized coordinates.
if size(constrainim,1) > n2
constraintm = constraintm(1:n2,:);
waming = {"Too many constraints, canstraintm truncated to ...
‘the number of generalized coordinates (' ...
int2str(n2))}
end
nenst = size(constraintm,1 ;% The number of extermnal constraints.

90 %

91
92
93
94
95
96
97
98
9

% (E) Check the mass tuned damper & compare against M.
% Also definc the number of mid's. Note: This input is
% optional. Its presence is checked via nargin (the number
% of input variables).
%
amtd = 0;% Initialize the number of mass tuned dampers 1o zero.
ifpargin=28
mtdm = fem_lumpm_check(mtdm);
if size(mtdm,1) > n2

100 midm =mtdm(l:n2,:);

124 % USE: Cd, constraintm, M, K, nenst.
1285 %
126 %
127 for I = limcnst

128 gcind = constraintmy(i,1);

129 K(gcind,geind) = K(gcind,geind) + constraintmyi,2);
130 Cd(gcind,geind) = Cd(geind,geind) + constraimm(i,3);
131 end

132 %

133 geind=[]; I=[);

134 %

135 % Section (4)

136 % Add in the external mass tuned dampers.
137 % POSSIBLY MODIFY: Cd, K, M.

138 % USE: Cd, M, mtdm, K, nmtd.

139 %

140 %

141 ifnargin =8

142 M = [M zeros(n2,nmtd);zeros(nmtd,(n2+umtd))];

143
144

K = [K zeros(n2,nmd);zeros(nmtd (n2-+nmed))];

Cd = [Cd zeros(n2,nmtd);zeros(nmtd (n2+nmtd))];

145 for I=l:nmid

146 gcind = mtdm(i,1);% This is the generalized coordinate ,gc, that
147 % the mid will be coupled to.

148 mtdind=n2+ L% Mudind is the new gc of the mid itsclf.

149 %

150 M(mtdind,mdind) = mtdm(i4);% Add in new inertia.

151 %

152
153
154
155
156
157
158
159

K(mtdind,gcind) = - mtdm(i,2);% Add in new spring effect in four
K(gcind mtdind) = - mtdm(i,2);% locations.

K(gcind,gcind) = K(geind,geind) + mtdm(i,2);

K(mtdind,mtdind) = mtdm(i,2);

%

Cd(mtdind geind) = - mtdm(i,3);% Add innew damping effect in four
Cd(gcind,mtdind) = - mtdm(i,3);% locations.

Cd(gcind,geind) = Cd{geind,geind) + mtdm(i,3);

160 Cd{mtdind,mtdind) = mtdm(i,3);

161 end

162 end

163 %
164 geind =[]; I = {]; mtdind = [J;
165 %

166 % Compleied:
167 % OUTPUT: Cd, K, M.

168 %

169 %

<fem_lumpm_check.m>

1 function [lumpm) = fem_Jumpm_check(lumpm)

2 % fem_Jumpm_check.n

3 % (lumpm] = fem_Jumpm_check(lumpm)

4 % o This m-file chocks the validity of the lumped parameter matrices
5 % o Specific inpuy/output variable definitions are:

6 % lumpm -> Translational or 1 lumped [matrix.
7 % The matrix is assembled one row for each generalized

8 % coordinate effected. Typically:

9 % Columml -> generalized coardinate mumber,

10 % Column?2 -> lumped spring constant,

11 % Column3 -> lumped damping coefficient,

12 % o Created 29 September - 06 October 1995 by Eric Kathe.
13 % BenetLabs, Watervliet Arsenal, NY 12189-4050 <ckathe@pics.army.mil>

14 9 AMAA AAA
15 %

66

16

e
(R

SERURBRUBLEBERYRRRUNER

68 %

69
70
7
12

% Section (1)
% Check first colurnn to be sure that the generalized coordinates are
% referenced by positive integers.
% USE: lumpm.
% POSSIBLY ALTER: lumpm.
%
%
if sum(lumpm(:,1) - floar(lumpm(:,1)}) > 0
lumpm(:,1) = floor(lurmpm(;,1) + ¥%);
warmning = ['Column one of lumpm, indi the g lized di fee
‘or spatial index number and must be integer. It has boen ‘...
'reset to: ' m2str{lumpm(:,1))]

end
if min{lumpm(:,1)) <1;
lumpm(:,1) = lumpm(:,1) - min(lumpm(:,1)) + 1;% Sets first index to 1.
warning = {'Colurnn one of lumpm, indicates the generalized coordinate ...
‘mumber and must be positive. It has been reset to: ..
int2str(lumpmy:,1))]
eod
%

waming = {];
%

% Scction (2)
% Insure the rows of lumpm are sorted in order of ascending coordinate
% or spatial index numbers. Wam if they're shuffled.
% USE: lumpm.
% POSSIBLY ALTER: lumpm.
%
%
ly,ind} = sort(turmpm(:,1));
if sum(abs(y - lumpm(:,1))) ~=0

wamning = Lumpm was sorted in order of ascending coordinates.
end
lumpm = lumpm(ind,:);
%

mnd={liy=[l;
%

% Section (3)

% Check remaining columns 1o be sure that the lumped parameters are positive.

% USE: lumpm.
% POSSIBLY ALTER: lumpm.
%
%
far I = 2:size(lumpm,2)
if min(tumpm(:I)) < ¢
lumpm(:,I} = abs(lumpm(:,1));
warning = ['Colurmm ' int2str(]) ‘of lumpr, indicates a negative ...
'lumped parameter that must be positive. It has been ...
‘reset 10 it”s absolute values: ' num2strQumpm(:,1))]

end
end
1={]; warning =[];

% Campleed:

% OUTPUT: lumpm
%
%

28 % andthe set of all nodes spatial(ncard). If valid, the string of

29 % tlabel is incorporated into the plot to describe the beam.

30 % ncord -> The vector of indices such that spatial(ncord) is the position

31 % of each pair of (nel+1) generalized coordinates. (Also known as nodes.)
32 % o Created 13 September 1995 - 15 January 1996 by Eric Kathe,

33 % Benet Labs, Watervlict Arsenal, NY 12189-4050 <ekathe@pica.army.mil>

34 G A AAAMAAA AMAAA

36 %

37 % Section (1)

38 % A fow chocks to be sure input variables are the right size, et cotera.

39 % This section uses geam_check.m to validate the input geometry vectors.

40 % Also define the number of indices of spatial, ns. The sulv will be

41 % checked later, in section 2.

42 % DEFINE: ns.

43 % USE: 1den, 1El, Inbden, nel, spatial, author provided default values,

44 % POSSIBLY ALTRR: lden, IEI, inbden, nel, spatial.

45 %

446 %

47 s = length(spatial); % number of indices of spatial.
%

49 {spatial Jen,IBLinbden} = goom_check(spatial Jden IELlnbden);
%

51 neldefault = 14;% Author provided default value to be used i invalid
52 % value specified.
53 %
54 pel =nel(s);
55 if length(nel) > 1
56 nol = neldefault;

ing = [Number of el

‘It has been reset to ' mt2str{nel) '.']

nel, must be a scaler. ‘...

57

58

59 end

60 ifnel<1

61 el = neldefault;

62 waming = ['nel must not be negative or zero. ...
63 'It has been reset to ' m2strnel) ')
64 end

65 if (ol - ceil(nel)) <O

66 el =ceil(rel-1/2);

67 waming = ['ncl must be an integer. ...
68 ‘It has been resct to’ int2str(nel) ']

69 end

70 ifoel >(ns-1)

71 nel=(ns-1);

72 waming = ['nel too large, cannot allocate more elements' ...
73 ‘than spatial points. It is now ="' nRstr(nel} ']

74 end

5
76
77

%
neldefault = [}; waming =[l;x ={Ly =}
%

78 % Section (2)

79 % Validate & Sort imposed node vector. Also determine the number
80 % of valid imposed nodes, nin, and number of super segments,

81 % nsel, between validated imposed nodes, and ends of beam.

82 % DEFINE: nin, nsel, sv.

83 9% USE: ns, sulv, spatial.

84 %

<fem_mesh.m>

RTINS SR v vlet i i dh S
SERRANNIINNRIRefee e

function [ncord] = fem_mesh(spatial Jden,JEl Inbden,snlv, nel, label)
% fem_mesh.m
% [ncord) = fem_mesh(spatial Jden JE Inbden,snlv nel,flag)
% o This m-file generates the node point coordinate vector for later
% finite element formulation.
% o This file uses:
% geom_check.m
% o The input gcomeuy is generally entered and comnputed using
geomf_*an.
o Non beam masses (such as the breech) are also included.
o Specific npuy/ourput variable defmitions are:
spatial -> Axial position vector, currently limited 1o equally spaced
position vectors with position data of every dx*n point such that
n = Ll:length(spatial) and length(spatial)*dx equals max(spatial).
lden -> Beam lincar density vector such that each index value
corresponds to the beam position of the respective spatial value
at the same index.
1EI -> similar to lden except for linear EI cross-section propertics.
Inbden -> similar to lden, except this records the inertis of non-beam
masses that are attached to the beam.
snlv -> Imposed node location vector in units of spatial. Typically
camsists of two suppart locatians.
nel -> Desired number of finite elements, with the condition that s(I)
are imposcd node points. The rest of the barrel is broken upina
manner that attempts to evenly space the elements in a cross-sectional
property sense. Minimum value of nel is imposed as length{sniv)+1.
tlabel -> Enabies plotiing of the beam meshing metric, imposed nodes,

%

86 snlv =slv(});

87 salv = sort(salv);

88 nin = length{snlv);% # of imposed nodes. (May be modificd later.)

89 %

90 if slv(1) <= mean(spatisl(1:2))

91 snlv(1) = 0;% Zero values to climinated later this section.

92 wamning = ‘Negative, zero, or beginning of beam imposed node ignored.’
93 elseif snlv(1) >= mean(spatial((ns-1)ms))
94 snlv(l) = 0;% Zcero values to eliminated later this section,

95 warning = 'Imposed node beyond or at end of beam ignared.’

96 end

97 for I=2min

98 if slv(l) <= mean(spatial(1:2))

99 mlwv(l) = 0;% Zero values to eliminated later this section.

100 waming = ‘Negative, zero, or b of beam imposed node ignored.'
101 elscif snlv(l) >= mean(spatial((ns-1)ms))

102 snlv(l) = 0;% Zero values to eliminated later this section.

103 waming = ‘Imposed node beyond or at end of beam ignared.’

104 claeif snlv(l) = miv{((I-1))

105 snlv(l) = 0;% Zero values to climinated later this section.

106 waming = Repeated imposed node ignored.’

107 end

108 end

109 %

110 snlv = sort{snlv(find(snlv)));% Exclude zero clements of snlv & resart.
1 %

112 nin = length(sulv); % Final # of valid imposed nodes.

113 nsel =nin + 1; % # of super segments imposed between valid nodes.

67

114 %
115 sv = zeros(nin,1); % Initialize imposed node index vector, (Will change.)
116 for1=1mm

117 [y, sv(D)] = min(abs(spatial - snlv(I))); % Identify closest index to node.

118 end

119 sv =[1; sv; ns]; % Final node vector includes free ends of beam as nodes.
120 %

121 I=]); waming =Ly ={);

122 %

200 % you cut the metric into x+1' picces. Tho last scgments's last index
201 % just reaches ‘x+1', s0 the final '} must be removed.

202 %
203 1 = ones(size(nf)) + nf;% This is a vector of the number of nodes per
204 % super segment. (Before Check.}

205 nelsv = diff(sv);% The number of clements per super scgment.

206 if max(n/oelsv) > 1 % Check if mare elements allotted than will fit.
207 warning = ['While-loop entered to redistribute frec elements fram ...
208 ‘supper clements that are too short to fit them all to .,

123 % Section (3)

124 % Combinc beam and non-beam linear densities:
125 % DEFINE: ldent.

126 % USE: iden, Inbden.

127 %
128 %
129 1dent =1den + Inbden; % Net linear density including beam and non-beam.
130 %
131 %

132 % Section (4)

133 % Check & impose a valid number of FEM beam elements given the number
134 % of valid imposed nodes. Also determine # of valid FEM nodes:

135 % DEFINE: m.

136 % USE: nsel, nel.

137 % POSSIBLY ALTER: ncl.

138 %
139 %
140 if nel <nsel;% If the # of desired elements is less than the # of super
141 nel =nsel;% elements imposed, match the # desired to the # impased.
142 waming = [im2str(nel} ...

143 * finite elements imposed between & around imposed nodes.]
144 end

145 nn =nel + 1; % number of tota! FIIM nodes (after meshing).

146 %

147 waming ={];

148 %

149 % Section (5)

150 % First, I would like to create a vector of the curnulative norm of

151 % mass over stiffness. The qualitative reasoning is that the portions of
152 % the beam with a large mass to stiffness ratio, shoutd move sbout more
153 % and thus need more elements. This metric can easily be changed.

154 % DEFINE: smperk.

155 % USE:ldent, 1El, ns.

156 %
157 %
158 smperk = cumsum(ldent/1E1); % Cumulative sum of rass perk.
159 %

160 % Section (6)

161 % Determine the number of free clements & normalize the metric.
162 % Since, I will have 1o insure that each majar segment has at least
163 % one finite element, | will normalize the metric by the number
164 % of free nodes in Section 8. (Note: if no free nodes (nel==nbel),
165 % the metric is sct 10 zeros in Section 8.)

166 % DEFINE: relfr, nfm, nsmperk.

167 % USE: nsel, nel, smperk.

168 %
169 %
170 relfr =ne! - nsel; % This is the number of truly free elements.

171 %

172 nsmperk = smperk/max(smperk); % Nommalized smperk from O+ to nelfr
173 %
174 %

175 % Section (7)

176 % What I must now do is bresk-up the beam into the nsel super segments:
177 % For example, if nin = 2 (supparts) one super segment befare the first
178 % suppart, one between the supports, and one afier the supparts. Then
179 % determine the number of frec elements that would ideally exist in each
180 % super scgment. To achieve this I scale the metric to the number

181 % of free nodes and then ratchet it down, 10 spread out the free

182 % el and sep ly add i the imposed n of ane finite
183 %ol to each super seg;

184 % DEFINE: n.

185 % USE: nclfr, nscl, nsmperk, sv.

186 %

187 %

188 nf = zeros(nsel,1); % Initialize vector of integer appraximation to the
189 % number of free clements per super segment.

190 %

191 for I = 1msel
192 nf(l) = floar((relfr+1)*nsmperk(sv(I+1))) - sum(nf); % Round scaled

193 % curnulative metric to nearest integer, and
194 % ratchet down by previous # of free elements
195 % allocated 10 previous super scgments.

196 end

197 af{nsel) = nflnsel) - 1;% The final super clement picked-up an extra
198 % clement since the normalization is based on nelfr+1 instead of nelfr,
199 % This normalization works because 1o place 'x' free elements evenly

209 ‘those that have room.’]

210 while max(n./nelsv) > 1

211 |y, indthin] = max(n/nelsv);% Pind index of s-element w/ too many.
212 [y, indfat] = min(n/nelsv); % Find index of s-clement w/ too fow.
213 n(indthin) = n(indthin) - 1; % Swap one clement at a time.

214 n(indfat) =n(indfat) + 1;

215 end

216 end

27 x;i=H:y=[l:indzhin=ﬂ: indfat = [); nelsy = []; warning = [J;

218

219 % Section (8)

220 % What I must now do is partition the super scgments, based on the
221 % total number of finite eloments per segment. To achieve this |
222 % will conduct an exercise similar to the ane of section 7 for each
223 % super sogment, excepting that 1 will identify the index directly.
224 % DEFINE: ncord.

225 % USE: n,nscl, nn, ns, smperk, sv.

2% %

2%

228 n = zeros(nn,1); % Initialize vector of all node points.
229 %

230 for I =1mscl

231 smperki = smperk(sv(D):sv(1+1)) - smperk(sv(I));%sum M/K super segment |,
232 nsmperki = smperki/max(smperki);% Normalized smperk over super segment 1.
233 nindi = zeros(u(l),1); % Initialize the node index over super segment I,

%

235 forj=1x(l)

236 [y, nindi(j)} = min{abs(n(I) *nsmperki - (j-1)));% nindi is the relative

237 % index of the node in

28 % the super segment.

239 end

240 %

241 if min(diffinindi)) < 1 % Test for callocated nodes.

242 waming = ['While-loop entered to redistribute collocated clements ..

243 ‘from elements that are too short to fit them all to ...

A4 ‘those that have room.’]

245 nindi(find(difftnindi) == 0)) = };% Nullify collocated nodes.

246 while (o(]) - length{nindi)) > 0

247 |y, indfat] = max(diff(nindi));% Index of nindi w/ room for more.

248 % Now, identify node between nindi(indfat) and indi(indfat+1).

249 nindi = [nind}; round(mean(nindi([indfat (indfat+1)})))};

250 nindj = sort{nindi);

¥

251 end

252 end

253 %

254 ifl=1

255 mp=0;% Sct-up previous index 30 that super segment elements
256 % beginat their first index, and end one before the following
257 % clements scgment. Setting p to 0 will facilitate

258 % the index starting at 1 for the first super segment.

259 else

260 op =sum(n(l:(I-1)));% Remaining previous indices sum up all

%1 % previous indices.

262 end

%63 %

264 ncord((np+1):(ap+n(l))) = nindi + sv(I) - 1;% Recall, sv(l) is the absolute
265 % index of the start of the big

266 % element.

267 % (Since the lowest index nindi is 1, 1 must be subtracted.)
268 end

269 %

270 ncord(nn) = ns;% The final node point is imposed as the end of the bearn.,
271 if ncord(mm-1) = ns;% One last callocated node slipped by.

212 ncard(um-1) =(];% Nullify collocated node.

273y, indfat] = max(diffinindi));% Index of nindi w/ room for more.

274 % Now, identify node between nindi(indfat) and indi(indfat+1).

275 % Remember that sv(I) - 1 must be added.

276 ncord = [ncord; round(mean(nindi((indfat (indfat+1)}))) + sv(l) - 1];
277 ncord = sort(ncord);

278 end

279

280 ncord(nn) =ns;% The final node point is imposed as the end of the beam.
281 clse

282

283 %

284 1=([]; j=[]; smperki = []; esmperki = [}; nindi = [l y = [J; ip = [};

285 indfat=J;

68

- < 33 9% USE: ncord, ns.
287 % Sewdon (9) DISABLED (Addressed in elebeamint.m) 34 % POSSIBLY ALTER: ncord.
288 % Wam if finite clement length is becoming short relative to geometric 3%
289 % resolution. 36 %
290 % USE: ncord. 37 ncord = ncord(:);% Imposc colum structure,
21 % 38 ncord = sort(ncord);
292 % 39 nn=length(ncord);% # of nodes. (May be modified later.)
293 % if min{difftncord)) < 50 40 %
264 % warning = [Finite element length of ' in@str(min(diff{ncord))) ... 41 if sum(ceil(ncord)-ncord) > 0
295 % ‘indices is small. Consider using fewer finite elements.... 42 ncord = ceil(ncord - ¥4);
296 % * Also be surc that non-beam masses are distributed over .. 43 waming = {'Non integer values of ncord encountered. '..
297 % 'neighboring indices in the Inbden vector.' } 44 ‘values of ncord have boen rounded to the nearest integer.’)
298 % end 45 end :
299 % nn = nel + 1; % number of total FEM nodes (after meshing). 46 if ncord(1) ~=1
300 % 47 ifncord(l)<1
301 % warning =[]; 48 ncord(l)=1;
302 % 49 waming = ['Negative or zero node of ncord ignored. ...
303 % Sectiom (10) 50 ‘First node placed at index 1. (The beginning of the beam)’]
304 % If tlabel is set, plot the metric and node locations versus position in 51 else
305 % the current figure window. 52 ncord =[1; ncord};
306 % USE: nargin, ncord, nel, nsmperk, spatial, sv, tlabel. 53 waming = [First node of ncord must be at begiming of beam. *...
307 % 54 ‘Pirst nods at index 1 added to ncord.’]
308 % §5 nm=nn+1;% # of nodes increased to compensate for new node.
309 if pargin==7 56 % May still be modified later.
310 clg 57 end
311 plot(spatial nel*nsmperk, k) 58 end
312 holdon 59 forl=2mn
313 sem(spatisl(ncord),ncl*nsmperk(ncord)) 60 ifncord(l)<2
314 plot(spatial(sv),nel*nsmperk(sv),'k*) 61 ncord(l)=0;
315 grid 62 ing = [Negative, 2ero, or additional b of beam node * ...
316 if isst(tlabel); % Checks to sce if tlabel is a string. 63 ‘of ncard ignored.']
317 if swemp{tiabel, lag); % Checks to see if tlabel is an old 64 olseif ncord(l) > us
318 tabel =['Beam'}; % convention. If so, a default is applied. 65 ncord)=0;
319 elseif stremp(tlabel,'label’); % Checks to see if tlabel is used. 66 waming = 'Node beyond beam in ncord ignored.’
320 tlabel = ['Beam']; % If 50, a default is applied. 67 elseif ncard(l) = ncard((I-1))
321 else 68 ncord()=0;
322 abel(1) = upper(tlabel(1)); % lmposes upper case on first letter. 69 waming = Repeated node of ncord ignored.’
323 end 70 end
324 clse 7t end
325 dabel = ['Beam’]; % Default is applied in no valid tlabel given. 72 %
326 end 73 ncord = sort{ncord{find(ncord)));% Exclude zero elements of ncord & resort.
327 tide({tlabel ' Meshing Metric & Node Locations Vs Position’]) % %
328 xlabel(Positon Along Beam') 75 nn =length(ncord);% # of nodes. (May be modified one more time.)
329 ylabel('Normalized Metric {0"s->nodes, *'s->imposed nodes, ->metric}’) 76 %
330 % Note: " pravides for using * within a 'string’. 77 ifucord(nn) <ns
331 boldoff 78 ncord = [ncard; ns);
332 end 79 waming = ['Last node of ncord must be at end of beam. ' ...
333 % 80 'End of beam index node added to ncord.’]
334 % Completed: 81 mm=nn+ 1;% Last possible modification to # of nodes.
335 % OUTPUT: ncard. 82 end
336 % 83 %
3% 84 I={};m=[}; wamning ={};
5 %
<fem_node_check.m> 86 % Completed:
1 function [ncord,spatial] = femn_node_check(ncord,spatial) 87 % OUTPUT: ncard, spatial.
2 % fem_node_check.m 88 %
3 % [ncord] = fem_node_check(ncord); 89 %
4 % o This m-file checks the consistency of the vector of node -
5 % finite element node coordinates, and spatial vector. <freq2str.m>
6 % o Thisfile uses: 1 function t = freq2str(x, prec)
7 % geom_check.m in section 1 2 %NUM(FREQ}2STR Number to string conversion {For lincar frequencies}.
8 % o Specific input/output variable definitions are: 3 % T = NUM{FREQ}2STR(X) converts the scalar number X into 8 string
9 % ncord -> The vector of indices such that spatisl(ncord) is the position 4 % roprescntation T with about 4 digits and an exponent if
10 % of each 2*(nel+1) gencralized coordinates. (Also thought of 3 nodes.) S % required. This is useful for labeling plots with the
11 % spatial -> Axial position vector, cwrently limited to equally spaced 6 % TITLE, XLABEL, YLABEL, and TBXT commands. An optional
12 % position vectors with position data of every dx*n point such that 7 % can be supplied for indicating an al precisi
13 % n=llength(spatial) and length(spatial)*dx equals max(spatial). 8 % T=NUM(FREQ}2STR(X,PREC) converts the scalar {lincar frequency}
14 % o Created 03 October 1995 by Eric Kathe. 9 % pumber X into s string
15 % Benet Labs, Watervliet Arsenal, NY 12189-4050 <ckathe@pica.army.mil> 10 % rcpresentation {using fixed rey } witha
16 % AMMAAMAMAAMAAAAMARAAAARAAAAAAAAAAANAMANAAA 11 % precision {number of digits to the right of the decimal point}
17 % 12 % spocificd by PREC.
18 % Section (1) 13 %
19 % A few checks to be sure input variables are the right size, ¢t cetera. 14 % {Modified from MATLAB's num2str by Eric Kathe, 31 Oct 95.}
20 % This scction uses gearn_check.m to validate the input geometry vectors. 1S % Sec also INT2STR, SPRINTF, FPRINTF.
21 % Also define the number of clements of spatial, ns. 16
22 % DEFINE: ns. 17 if isstr(x)
23 % USE: spatial. 18 1=x;
24 % POSSIBLY ALTER: spatial. 19 clse
25 % 20 if(nargm=1)
% % 21 num_format ='%.4g";
27 ns = length(spatial); % number of elements of spatial. 2 else
B % 23 num_format = ['%.' num2str(prec) 'f);% (Mod 1 of 2: 'g'to'f.)
29 [spatial] = geom_check(spatial); 24 end
30 % 25
31 % Section (2) 26 t=sprintioum_format, real(x));
32 % Validate & sort node vector, ncord. 27 if imag(x)>0

28 t= [t'+ sprintf{num_format, imag(x)) 'T');
29 clseif imag(x) <0

79 pv=dumv(lms);
B0 waming = Mismatched pv' imt2str(l) ' size truncated ...

30 t=[t" sprintf{num_format, -imag(x)) 'T}; 81 ‘or padded to spatial size.’)
31 end 82 cflag=cflag+1;
32 t1=[t"H2'};% (Mod 2 of 2: append ' Hz',) 83 end
33 end 84 if min(pv) <0; pv = abs(pv);
85 ing = ['pv' int2str(]) * must not be negative. It has ...
<geam_check.m> . 86 "boon resct o it"s absolute values.]
1 function [spatial,pv1,pv2,pv3] = geom_check(spatial pv1,pv2,pv3) 87 oflagmeflag+l;
2 % geam_checkom 88 end
3 % [spatial,pv1,pv2,pv3] = geom_check(spatial,pv1 pv2,pv3) 89 ev . [p— P i
4 % o Thism-file checks the geametric vectar inputs for 9(9) mdd(lw m2st(D)" = pvi) % This sssigns py to pvi
5 % later finite clement formulation. 91 %
6 % o The spatial vector must always be included. Up to three 92 dumv = (; I=(]; pv=[]; warning = [};
7 % additional vectors that are supposed to correspond ane-to 93 g
8 % onc with spatial and have no ncgative elements can also be 94 % Section (3)
9 % validawd. 95 % Wam of Problems encountered:
10 % o The input geometry vectors are gencrally entered and 96 % USE: eflag.
11 % computked using *_geomfum. 97 %
12 % o Specific imputoutput variablc defmitions are: 98 %
13 % spatial -> Axial position vector, currently limited to equally spaced 99 ifeflag>0

14 % position vectors with position data of every dx*n point such that

15 % n=Lliength{spatial) and length(spatial)*dx equals max(spatial}.

16 % pvlpv2,pv3-> Vectors with no negative el that pand one

17 % to ane with the spatial vector. Comman example for finite

18 % clement formulation include linear density and EI cross-sectional

19 % property vectors versus spatial.

% o Created 20 Sepiember - 05 October 1995 by Eric Kathe.

% Benet Labs, Waiervliet Arsenal, NY 12189-4050 <ckatho@pica.army.mil>

Gy AAMAMAAAAAAAAAAAAAAAAANAA

%

100 waming =['WARNING: ' int2str(eflag) ' serious crror(s) in* ...

101 ‘ge y vectors d. Further results likely to be in error.)
102 end

103 %

104 wamning =[);

105 %

106 % Compleed:

107 % OUTPUT: spatial, pvl, pv2, pv3. (If nargin >=1,2,3,&4 respectively.)
108 %
109 %

20

2

2

23

24 % Section (1)

25 % Check spatisl. Waming labels provide the reason for cach if statement.
26 % DEFINE: eflag, ns.

27 % USE: spatial.

28 % POSSIBLY ALTER: spatiai.

2 %
30
31
32
33
34
35
36
37
38
39

%

spatial = spatial(:); % lmposc colurmm structure.

ns = length(spatial); % Number of elements of spatial.

eflag = 0; % This will form a cumulalive error count.

%

dspat = diff{spatial);

deltax = mean(difi{spatial));

if min{spatial) < deltax*(1 - 10/(-2))

% Note: must allow for machine round off. Thus the 10A(-2) factor.
spatial = spatial - min(spatial) + dehax;

40 waming =['Spatial must not be negative nor start at zero.'...

41 * It has been offset by the negative minimum ...

42 ‘and it*s increment 10 make it*s first value start at ...
43 ‘it"s incremental value. (Commonly Imm.)]

44 cflag=cilag+1;

45 end

46 if abs(spatial(1) - deliax) > deltax*10%(-2)
47 spatial = spatial - spatial(1) + deltax;
48 waming = ['Spatial must start at its first neremental value....

49 ‘It must not start at zero or some large positive value.’
50 ' ADC offset has been applied to try ta correct it,]
51 eflag=eflag+1;

52 end

53 %

54 if abs(max(dspat) - min(dspat)) > deltax*10M(-2)

% Note: must allow for machine round off. Thus the 104-2) factor in

% licu of zero, (1% is also a reasonable variation.)

spatial = max(spatial)*(1 :ns)/ns;

waming = "Spatial must be evenly spaced. Even spacing has been imposed.'
eflag =cflag + 1;

end

%

dspat = []; deliax = []; waming = {};

<geam_nbseg.an>

1 function [ind],indr,Inbdenseg] = geom_nbscg(pasl,posr,mass,spatial)

% geam_nbseg

% [Inbdenseg] = gaom_nbscg(pcsl,posr,mm,xpaﬁal)

% o This m-file converts information of & non beam mass, and converts
% ittothe Inbdenseg vector scgment.

% o This file uses:

% geom_check.m

% o Specific variable defmitions are:

% posl, posr -> The left and right indices of the desired scgment in

% the units of spatial. (Example: meters.)

% mass -> The total non beam mass to be evenly distributed between
% pos! & posr in desired units. (Example: Kg.)

% spatial -> Axial position vectar, currently limited to cqually spaced
% position vectors with position data of every dx*n point such that

% n=llcngth(spatial) and length(spatial)*dx equals max(spatial).

% lnbdenscg -> A scaler of uniform lincar density of the mass spread
% out between the indices of posl & posr in spatial,

% o Created 22 - 27 September 1995 by Eric Kathe.

% Benet Labs, Waervlict Arsenal, NY 12189-4050 <ckathe@pica.army.mil>

Gy AAMAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

=
BEexSanrEiosgeetounsvn

% Section (2)

% Check pvl, pv2, pv3. Waming labels provide the reason for each if
% statement.

% USE: eflag, nargin, pvl, pv2, pv3.

% POSSIBLY ALTER: cflag, pvl, pv2, pv3,

%
%
for I = 1:(nargin - 1)

eval(['pv = pv’ int2str(1) ';]) % This assigns pvi to pv.
%

55
56
57
58
59
60
61
62
63
64 %
65
66
67
68
69
70
)
7
3

75 pv=pv(:); % Impose column siructure.
76 iflength(pv) ~=ns

Y dumv = zeros(ns,1);

78 dumv(1:ength(pv)) = pv;

21 %

22 % Section (1)

23 % Check and validate input parameters. Wamings indicate the reason for
24 % the checks.

25 % This section uses geam_check.m

26 % USE: posl,posr,mass,spatisl

27 % POSSIBLY ALTER: pos!,posr,mass,spatial

2B %

2 %

30 %

31 [spatial] = goom_check(spatial); % Performs a serics of checks to
2% insure a valid spatial vector,

33 if posl > posr

34 poss = posl;% Temporary swap value.

35 posl =pasr;

36 posr = poss;

37 waming = ['Right position should be larger than left. ...
38 Reset to (' num2str(posl) ', mm2str(posr) ').']

39 end

40 %

41 ifposl<0

42 posi=0;

43 warning = ['Negative positions not valid. '...

44 ‘Reset posl to (' num2str(posl) *).]

45 end

46 ifposr<0

47 post=0;

48 warning = ['Negative positions not valid. '...

49 ‘Reset posr to (num?2str(posr) *).']

50 end

51 if posl > max(spatial)
52 posl = max(spatial); .
53 waming = ['Positions greater than beam length are not valid. ...

& Resen podi 12 {’ num2str{posl)).} 35 if indv(1) > indv(2)
&5 ond 36 indv = sort(indv);
56 if posr > max(spatial) 37 warning = [right index should be larger than leR. * ...
57 posr = max(spatial); 38 Reset to (' int2str{indv(1)) ', int2str(indv(2))}).']
58 waming = ['Positions greater than beam length are not valid. ‘... 39 end
59 "Resct post to (* num2su{posr))] 40 if min(indv) <1
60 end 41 indv=indv - min(indv) + 1;
6l % 42 waming = ['Nogative and zero indices not valid. ...
62 ifmass<0 43 ‘Reset to (* int2str(indv(1)) ', int2str(indv(2))).
63 mass=0; 44 end
64 waming = ['Negative mass not valid. "... 45 indl = indv(1);
65 'Reset 1o ' num2str{mass) "'} 46 indr = indv(2);
66 end 47 %
61 % 48 ifl <0
68 poss =[]; warnmg ={; 49 d=0;
69 % 50 warmning = ['Negative tl not valid. "...
70 % Section (2) 51 ‘Resctto ' int2str(tl) ']
71 % Find the indices of desired locations in spatial, and evaluate the 52 end
72 % length of the scgment over which the mass is to be applied. 53 if nargflag == 4;% Indicatos that &r defined.
73 % DEFINE: indl, indr, scglen. 54 ifo<0 .
74 % USE: posl, posr, spatial. 55 u=0
B % 56 waming = [Nogative tr ot valid. "...
76 % 57 Reset to' int2str(tr)]
77 {y, ind) = min{abs(spatial - pos!)); % Pind the left index. 58 end
78 [y, indr] = min(abs(spatial - posr)}; % Find the right index. 59 if tr = 1;% If both thick are cqual, pute as non-tapered.
% % 60 npargflag=3;
80 deltax = mean(diff{spatial));% m (The delta x of spatial.) 61 end
81 % 62 end
82 % Determine total segment length in spatial. This length may 63 %
83 % vary slighty due to finding the closest ndex mastches (indl & indr) 64 indv=[]; wamning = [];
84 % above. (Note that the deltax is required to add in the length of 65 %
85 % spatial(indl) as in onc footequals 12" -1 +1%) 66 % Section(2)
86 % 67 % If the section is not tapered, evaluate tse directly.
87 scglen = spatial(indr) - spatial(indl) + deltax; 68 % Else, compute as tapered.
88 % 69 % DEFINE: tscg.
89 delax=[};y=[} 70 % USE: ind), indr, nargflag, 1, tr.
90 % n %
91 % Section (3) 72 %
92 % Evaluate the lincar density. 73 ifnpargflag==3
93 % DEFINE: Inbdenseg. 74 teeg = tl*ones(((indr - indl)+1),1);
94 % USE: mass, scglen. 15 else
95 % 76 tap = (0:(indr - indl))’;
96 % 77 ntap = tap/max(iap); % Linear vector fram zero to ane.
97 lnbdenscg = mass/scglen; % Determine linear density = m/L. 78 tseg = t1*oncs(size(ntap)) - (U-tr)*niap;% Tl minus the linear
% % Y % taper difference (-tr)*tap to tr.
99 % 80 end
100 % Completed: 8l %
101 % OUTPUT: ind], indr, Inbdenseg. 82 ntap={}tap=[};
102 % 83 %
13 % 84 % Completed:
5 % OUTPUT: seg.
<geom_scg.m> 86 %
1 function [wseg] = geom_seg(indl,indr,t,tr} 87 %
2 % geom_scg
3 % [tseg] = geom_seg(mdl,indr,tltr) <geomf_XM291.m>
4 % o This m-filc converts raw information of a beam segment, read off 1 function {spatial, Iden, IEI, Inbden, Mextl, Mextr, gm] = ...
5 % of a drawing, to the geometry vector segment. 1t determines 2 geomf_XM291(tlabel)
6 % from the number of input arguments if the segment is 3 % geamf XM291.m
7 % uniform or consists of a linear taper. 4 % [spatial, 1den, IE], Inbden, Mextl, Mextr, gm} = geamf_XM291(tlabel);
8 % o Specific variable defmitions are: 5 % o This m-filo generates the linear density and EI for the XM291
9 % indl, indr -> The lcft and right indices of the desired segment. 6 % gunsystem.
10 % ,tr-> The width or thickness of the segrment at the left and right 7 %o Theg ic infi 3 d was derived from XM291 Drawings
11 % indices respectively. If no tr given, & uniform segment 8 % #WTV-F37060 sheets 1-4 of 4.
12 % is assumed. 9 % o This filc uses:
13 % tscg-> A vector of length 1:(indr-indl+1) that represents the tapered 10 % gcom,_scg.mn
14 % or uniform thickness of the segment. 11 % geom_nbseg.m
15 % o Created 22 September 1995 by Eric Kathe. 12 % geom_check.m
16 % Benet Labs, Watervlict Arscnal, NY 12189-4050 <ckathe@pica.army.mil> 13 % o Specific varisble definitions are:
17 Gp AMAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAAAAAANAA 14 % tlabel -> Enables plotting of the beam geometry.
18 % 15 % Ifvalid, the string of tlabel is incorporated into the plot to
19 % Section (1) 16 % describe the beam.
20 % Check and validate input parameters. Warnings indicate the reason for 17 % spatial -> Axial position vector, currently limited to equally spaced
21 % the checks. 18 % position vectors with position data of every dx*n point such that
22 % DEFINE: nargflag. 19 % = liength{spatial) and length(spatial)*dx equals max(spatial).
23 % USE: ind], indr, nargin, 1, tr. 20 % 1den-> Beam lincar density vector such that each index value
24 % POSSIBLY ALTER: indl, indr, 4, tr. 21 % corresponds 1o the beam position of the respective spatial
28 % 2% value at the same index.
% % 23 % 1EI-> Similar to lden except for lincar EI cross-section propertics.
27 nargflag = nargin;% This is the number of input arguments. 24 % Inbden -> Similar to lden, except this records the inertia of non-beam
B % 25 % masses that are attached to the beam.
29 indv = [ind inds}’; 26 % Mextl, Mextr -> 2x2 sub matrices of left and right extreme rigid body
30 if sum(ceil(indv) - indv) ~=0 21 % inertia. This special treatment of a non-beam mass is
31 indv = ceil(indv - %); 28 % required when the location is beyond the barrel. (It
32 warning = {‘Indices must be integer. ... 29 % will later be added to the M & K matrices along with
33 Reset to (' int2str(indv(1)) ')’ int2str(indv(2)))."] 30 % the canstraint forees.)
34 end 31 % gm ->Similar to 1den except the columns of this matrix record the

~J
.-

32
33

35

78
79
80
81
82
83
84
85
86
87
88
89
90

91 %

92
93
94
95
96
97
98
99

% inner and outer radii respectively.
% o Created 30 August - 28 November 1995 by Eric Kathe,

% Benet Labs, Watervliet Arsenal, NY 12189-4050 <ckathe@pica.army.mil>

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Gy AMAAAAAAAAAAAAAAMAAAAAAAAAA

%

% Section (1)

% The approach here will be to record the outer radii of the barrel in

% millimeters per cach millimeter. When a taper is encountered,

% a vector decrement method will be used. Indl & indr define the extreme
% indices of the scgment. For example, 19 to 75 indicaies radii beginning
% at axial position 0.01 9m and ending at 0.075m. Diameters are divided by
% two.

% (Note: The semantics used in the descriptions are not necessarily those
% used by the gun designers. Refer to the drawings based on index
% location to avoid confusion.)

% This section uses geom_seg.m.

% DEFINE: rout,

% USE: author provided data as listed.

%

%
rout = zeros(6750,1); % Initialize rout vector.

% A) Flat prior to rear threads. {shect 2, scction N-N & ed}:
ind =1;

indr = 37;

1L =291.84/2;

rout{indl:indr) = geom_scg(ind!,indr,rL);

%

% B) Rear threads. {sheet 2, section N-N, I between Major & Minar, & b2}:

indl =38;

indr=211;

1L = 298.24/2;

roui(indl:indr) = geom_seg(indl,indrrL);
%

% C) Flat following treads. {sheet 2, b2):
indl =212;

indr = 224;

1L =291.84/2;

rout{indl:indr) = geom_scg(indl,indr,fL);
%

% D) Taper prior to trunnion. {sheet 1, ¢8-7}:
ind] =225;

indr = 1100;

1L =305/2;

R =304.8/2; .
rout{indl:indr) = geom_seg(indl,indrsL 1R });

%

% E) Flat at runnion. {sheet 1, section EE & ¢6):
indl = 1101;

indr = 1323;

1L =304.8/2;

rout{indl:indr) = geam_seg(indl,ndr rL);

%

% F) Lip afier trunnion flat. {steet 1, €7):

indl = 1324;

indr = 1332;

1L =304.8/2;

1R=287/2;

rout(indl:indr) = geom_scg(indl,indrsL 1R);

o

% G) Flat forward of trunnion. {sicet 1, ¢6 d6):
ind] = 1333;

indr = 1428;

1L =287/2;

rout{indl:indr) = geam_scg(ind),indr,rL);

%

% H) Taper forward of trunnion. (sheet 1, ¢6}:
indl = 1429;

100 indr = 1603;

101 1L = 28772,

102 1R =260/2;

103 rout({indl:indr) = geom_seg(indl,indr,iL rR);
14 %

105 % I) The next Flat. {shect 1, ¢6 d6}:

106 indl = 1604;

107 indr =1661;

108 L = 260/2;

109 rout(indl:indr) = geom_seg(indl, indr,rL);
110 %

111 % J) Second lip after trunnion flat. {sheet 1, €7 detail A-A}:
112 indl = 1662;

113 indr = 1663;

114 L = 26072;

115 1R =258/2;

116 rout(indl:indr) = geom_seg(indl, indr,rLrR);
17 %

118 % K) First long taper. {sheet 1, ¢6-5):

119 indl = 1664;

120 indr =3041;

121 L =258/2;

122 R =212.602;

123 rout(indl:indr) = geom_seg(indl,indr,rL,rR);
14 %

125 % L) Flat prior to bore ovacuator. {sheet 1, ¢5):
126 ind = 3042;

127 indr=3102;

128 L = 220/2;

129 rout(indl:indr) = goom_seg(ind],indr,sL);

130 %

131 % M) Fisst taper of bore evacuator. {sheet 1, e5):
132 indl =3103;

133 indr=3112;

134 L =22072;

135 R =210/2;

136 rout{indl:indr) = geom_seg(indl,indr,rL1R);
137 %

138 % N) Second flat prior to bare ovacuatar. {sheet 1, 65):
139 indl = 3113;

140 indr = 3165;

141 L =21572;

142 rout(indl:indr) = geom_seg(indl,indr,rL);

143 %

144 % O) Thread fiat prior to bore evacustar. {sheet 1, e5):
145 indl = 3166;

146 indr = 3200;

147 1L =207.80/2;

148 rout(indl:indr) = geom_seg(indl, indrsL);

149 %

150 % P) Main taper of bare evacuator. {sheet 1, e5-4):
151 indl =3201;

152 indr =3902;

153 1L =207.80/2;

154 1R =184/2;

155 rout(indl:indr) = geom_seg(indl,indr,rL (R);
156 %

157 % Q) First flat after boro evacuator. {shect 1, e4):
158 indl =3903;

159 indr = 3954;

160 1L =190/2;

161 rout(ind):indr) = geom_seg(indl, indrrL);

162 %

163 % R) Second fat after bare evacuator. {sheot 1, ed):
164 indl = 3955;

165 indr = 4183;

166 L = 183/2;

167 rout(indl:indr) = geom_seg(indl,indrsL);

168 %

169 % S) Third flat after bore evacuator. {sheet 1,04}:
170 indl =4184;

171 indr =4234;

172 1L =177.40/2;

173 rout(indl:indr) = geom_seg(indl, indrrL);

174 %

175 % T) Secand long taper. {shect 1, e4-2):

176 indl =4235;

177 indr = 6403;

178 1L =17740/2;

179 R =156.60/2;

180 rout(indl:indr) = geom_seg(ind],indr,L. 1R);
181 %

182 % U) Taper prior to muzzle. {sheet1,¢1}:

183 indl = 6404;

184 indr = 6428;

185 1L = 156.60/2;

186 1R =169.8/2;

187 rou(indl:indr) = geom_seg(indl, indr,rL fR);
188 %

189 % V) First flat of muzzle. {shect 4, {7-6):

190 indl = 6429;

191 indr = 6527,

192 1L = 165.8/2;

193 rout(indl:indr) = geom_seg(ind],indrsL);

194 %

185 % W) Fisst groove of muzzle. {sheet 4, £7-6}:
196 indl = 6528;

197 indr = 6533;

198 1L =159/2;

199 rout(indl:indr) = geom_seg(ind},indr,rL);

200 %

201 % X) Taper between grooves of muzzle, {sheet 1, el}):
202 indl = 6534;

203 indr = 6573;

72

b3 BERTS NI

205 =047

206 rout(indl:indr) = geom_seg(indl,indr,rL1R);
207 %

208 % Y) Sccond flat of muzzle, (sheet 4, f6-5):
209 indl =6574;

210 indr = 6644;

211 1L =164/2;

212 rout(indl:indr) = geom_seg(indl, indr,rL);

23 %

214 % Z) Second groove of muzzle. {sheet 4, {5):
215 indl = 6645;

216 indr = 6650;

217 L. =157.5/2;

218 rout(indl:indr) = geom_seg(indl, mdr,rL);

29 %

220 % AA) Threads of muzzle. {sheet 4, {5}:

221 indl = 6651;

222 indr = 6673;

223 1L = 6.3037*(25.4)/2;% English thread: (in}(mm/in)
224 roui(indl:indr) = geom_seg(indl, indr,sL);

25 %

226 % AB) The finsl flat. {sheet 4, c5-4}:

227 indl = 6674;

228 indr = 6750;

229 rl =157.5/2;

230 rout(indl:indr} = geom_seg(indl,nds,rL);

231 %

222 mdl =[hindr=[};iL={F R=(];

233 %

290 1L =120.85/2;

291 rin(indl:indr) = geom_seg(indl,indr,rL);
292 %

293 indl ={};indr={l; L= {}; R ={};

294 %

295 % Section (3)

296 % Now to convest units to meters, and create a corresponding position
297 % vector in meters with indices corresponding to the rin & rout vectors.
298 % DEFINE: ns, spatial.

299 % USE: rin, rout.

300 % Alter: rin, rout.

30 %
302 % -

303 rout =rouy1000;% mm/{mm/m)

304 rin = rin/1000;% munAmm/m)

305 ps = length(rout);% Number of geametric vector indices.
306 spatial = (11s)/(1000);% (rmm)/(mm/m)

307 %

308 % Section (4)

309 % Now campute the cross-sectional properties of the beam.
310 % Also computs the total mass to validate the geometry.
311 % DEFINE: deltax, lden, 1BI, masy, masseng.

312 % USE: rin, rout, spatial, suthor provided data as listed.

313 %
314 %
315 deltax = moan(diff{spatial));% m (The disk thickness.)

316 donsity = 489*(0.4536)/(0.028317);% Ibr/fi3(Kg/lbm)/(m3/R3)
317 % MARK's %th, table page 6.44, Carban stecl (040% C).
318 % Gun steel 4337m close to 4340 w/ some extra Vanadium
319 % added for machinsbility. (4340->38- 43% C)

234 % Section (2)

235 % The approach here will be to record the inner diameters of the barrel in
236 % analogy with section 1.

237 % (Note: The semantics used in the descriptions are not necessarily those
238 % uscd by the gun designers. Refer 1o the drawings based on index
239 % location 1o avoid confusion.)

240 % DEFINE: rin.

241 % USE: rout, authar provided data as listed.

242 %
U3 %
244 rin = zeros(size(rout)); % Initialize rin vecior.

245 %

246 % A) Chamfer taper. {sheet 3, {6):

247 ind =1;

248 indr =30;

249 1L =159.0951/2;

250 1R = 158.36/2;

251 rin(indl:indr) = geom_seg(indl indr,rLrR);

252 %

253 % B) Gas check seal. {sheet 3, {6}

254 indl =31;

255 indr=61;

256 1l =158.36/2;

257 1R =157.6/2;

258 rin(indl:indr) = geom_seg(indl,indr,rL rR);

259 %

260 % C) Rat of chamber. {sheet 3, £5-6):

261 indl =62;

262 indr = 487;

263 1L = 157.6/2;

264 rin(indl:indr) = geom_seg(indl,indrsL);

265 %

266 % D) First taper of chambrage cone. {sheet 3, f4):
267 indl =488;

268 indr = 515;

269 1L =157.6/2;

270 1R =140.14/2;

271 rin{indl:indr) = geam_seg(indl,indr,rL1R);

212 %

273 % E) Secand taper of chambrage cone. {sheet 3, f4}:
274 indl =516;

275 indr=555;

276 1. =140.14/2;

277 R =121.84/2;

278 rin{indl:indr) = geom_seg(indl,indrrLtR);

219 %

280 % F) Taper of forcing cone. {shect 3, f4)

281 indl =556;

282 indr = 602;

283 1.=121.84/2;

284 rR=120.85/2;

285 rin{indl:indr) = geom_seg(indlindr,sL rR);

286 %

287 % G) The barrel. {sheet 3, f4-3):

288 indl =603;

289 indr = 6750;

320 lden = density*pi*(routA2 - rinA2);% (Kg/mA3)(m"2)

321 %

322 mass = sum(lden)*deltax; % (Kg/m)(m)

323 masseng = mass*(1/0.4536);% Kg(1/(Kg/lbm))

U %

325 E =(29.5*1016)*6894.8; % 1bf/m2*((N/m2)A1bf/in2))

326 % Private communication with Dr. Ran Gast, AMATA-AR-CCB-DE.
327 % (Shingley & Mitchell, 4th, table A-18 B's for steel from

328 % 29-30 Mpsi.) (Very heat treat dependent.)

329 %

330 1EI = B*(rout.Ad4 - rinAd)*pi/d;
31 %

332 density=[; B=[];

333 %

334 % Section (5)

335 % Add in the external rigid mass. This mass is treated differently than
336 % simple non-beam mess (to be computed in sectian 6) due to the

337 % location of its center of gravity beyond the end of the beam. Therefore,
338 % it will be treated as a lumped inertia and directly coupled to the

339 % generalized coordinates of the first & or last node at a later time, It
340 % is important to note that this formulation provides for the inclusion of
341 % rigid body rotational inertia and could be used within the beam for non-
342 % beam masscs where the linear density approximation is poar.

343 % For the case of a left external mass (Note: r would be negative):

344 % x(ext) =x(1) + r*theta(l) -> dx(ext) = dx(1) + r*dtheta(l)

345 % ddx(ext) = ddx(1) + r*ddtheta(1), (ext) = ddtheta(1)

346 % F(1) = mbr*ddx(ext), M(1) = (mext*rA2 + Jbr)*ddtheta(ext)

347 % [ml1ml2; m21 m22]*(ddx(1) ddtheta(1)]' = [P(1) M(1))'

348 %

349 % DEFINE: ldenextl, ldenextr, Mextl, Mextr, spext, spextr, massext.
350 % USE: deltax, author provided data as listed.

351 %
352 %
353 massext =0;

354 %

355 % A) Left external mass: The Breech, mb = 13004, located 10.9" RFB ->
356 % -0.6 RFT. (RFB & RFT arc the rear face of breech and tube respectively.)
357 % For the breech, quick moasurements indicate the breach is sbout 21°
358 % axial, and 15" high, for & J of m(1/12)bh(bA2+h"2)/(bh).

359 % x(ext) =x(1) + r*theta(1) -> dx{ext) = dx(1) + r*dtheta(l)

360 % ddx(ext) =ddx(1) + r*ddtheta(1), ddthetaext) = ddtheta(l)

361 % F(1) = mbr*ddx(ext), M(1) = (mext*r*2 + Jbr)*ddtheta(ext)

362 % [mllml2; m21 m22)*[ddx(1) ddtheta(1)]' = [R(1) M(1)]'

363 mext = 1300%(0.4536);% lbm*(Kg/tbm)

364 rext =-0.6%(0.0254);% in*(m/in)

365 bext = 21%(0.0254);% in*(m/in)

366 hext = 15%(0.0254);% in*(m/in)

367 Jext = mext*(1/12)*(bextA2+hextA2);

368 %

369 Mextl = [mext mext*rext; mext*rext (Jext + mext*rextA2)];

370 %

371 rextl = (rext - bext/2);% in*(cm/m)*(m/cm)

372 iextl = floar(rextl/deltax + ¥);% Round to nearest increment of deltax.
373 rextr = (rext + bext/2);% in*(cm/in)*(m/cm)

374 iextr = floos(rextr/deltax + 14);

375 spextl = deltax*(icxtl:iextr)’;

73

376 ldenext = mext/(max(spextl) - min{spext)))*ones(size(spexu));
377 massext = massext + mext;

378 %

379 % B) Right external mass: Nome.

380 Mextr = zeros(2,2);

381 spextr=[};

382 ldenextr=[];

383 massext = massext +0;

384 %

385 mext =[]; rext = [}; bext = [}; hext = {1; iext = {J; fextr ={];
386 Jext =[); rextl ={]; rextr = (};

387 %

462 poscg = 38.9%(0.0254);% in*(m/in)

463 span = 10%(0.0254);% in*(m/in)

464 posl = poscg - span/2;% Lef most position of distribution.
465 powmr = poscg + span/2;% Right most position of distribution.
466 [indl indr,Inbdenseg] = geam_nbseg(posl,posrmassnb,spatial);
467 Inbden(ind):indr) = Inbden(indl:indr) + Inbdenseg;

468 %

469 % F) DISABLED: (Not mounted for testing.)

470 % The bore cvacuator, 67# @ 3.200m to 3.902m

471 % Since this mass is clearly distributed, Tl place over the span
472 % 3.200m to 3.902m as indicated on sheet 1 of 4 of the XM291 drawings,
413 %

388 % Scction (6)

389 % Add in non-beam masses. {Since this data is not often directly on
390 % drawings, the nearest indices of spatial arc found from positions
391 % expressed in general unils of measure, rather than indices directly.)
392 % Also compute the total non-beam mass to validate the geometry.
393 % This section uses geom_nbseg.m.

394 % DEFINE: Inbden, massnb.

395 % USE: deliax, ns, spatial, suthor provided data as listed.

396 %
397 %
398 lnbden = zeros(ns,1); % Initialize Inbden vector.

399 %

400 %

401 % A) The cradle, mer = 10004, 46.26 RFB -> 34,76 RFT.

402 % (RFB & RFT are the rear face of breech and tube respectively.)
403 % Since this mass is clearly distributed, I} place over a 40* span
404 % centered at the center of gravity, (Measured distribution ~ 40".)
405 %

406 massnb = 1000*(0.4536);% 1bm*(Kg/lbn)

407 poscg = 34.76*(0.0254);% in*(m/in) Position of center of gravity.
408 span = 40*(0.0254);% in*(m/in) Span of distribution.

409 % Note: poscg +- span/2 must lay within the beam. If they don't,
410 % geom_nbseg will apply the closest vatid value and wam of change.
411 % -
412 posl = poscg - spary/2;% Lefi most position of distribution.

413 posr = poscg + span/2;% Right nost position of distribution.

414 %

415 % ldentify indices of lennb and effective linear density of mnb.
416 {indl,indr Inbdenseg) = geom_nbseg(posl,posrmassnb,spatial);
417 %

418 % The non-beam mass is now added into the Inbden vector:

419 Inbden(indl:indr) = Inbden(indl:indr) + Inbdenseg;

420 %

421 % B) The recoil brakes (all 4): mrb = 528# @ 37"RFB -> 25.5*RFT.
422 % Since this mass is clearly distributed, I'll place over a 30*

423 % span centered at the CG. (measured distribution ~ 30")

424 %

425 massnb = 528*%(0.4536);% lbm*(Kg/lbm)

426 poscg = 25.5%(0.0254),% in*(m/in)

427 span =30%(0.0254);% m*(m/in)

428 posl = poscg - span/2;% Left most position of distribution.

429 posr = pascg + span/2;% Right most position of distribution.

430 [indl,indr,Jnbdenscg} = geam_nbseg(posl,posr,massnb,spatial);
431 Inbden(indl:indr) = Inbden(indl:indr) + Inbdenseg;

432 %

433 G C) The recuperstors: mrc = 804 @ 36.5'RFB -> 25.0'RFT.

434 % Since this mass is clearly distributed, Il place over a 20"

435 % span centered at the CG.

436 %

437 massnb = 80*(0.4536);% Ibm*(Kg/lbm)

438 poscg = 25.0%(0.0254);% in*(m/in)

439 span = 20%(0.0254);% m*(m/in)

440 pos! = poscg - span/2;% Left most position of distribution.

441 posr = poscg + span/2,% Right most position of distribution.

442 [indl,indrlnbdenseg] = geomn_nbseg(posl,posrmassub,spatial);
443 Inbden(indl:indr) = Inbden(indl:indr) + Inbdenseg;

44 %

445 % D) The hydraulic manifold: mhmn = 704 @ 31"RFB -> 19.5*RFT.
446 % Since this mass is clearly distributed, I'l place over 2 15"

447 % span centered at the CG.

448 %

449 massnb = 70*(0.4536);% lbm*(Kg/1bm)

450 poscg = 19.5%(0.0254);% in*(1n/in)

451 span =15%0.0254);% in*(m/in)

452 posl = poscg - span/2;% Left most pasition of distribution.

453 posr = poscg + span/2;% Right most position of distribation.

454 [indl,indr Inbdenseg] = geom_nbseg(pos! posr,massub,spatial);
455 Inbden(indl:indr) = Inbden(indl:indr) + Inbdenseg;

456 %

457 % E) The rails & yoke: mry = 2004 @ S0.4"RFB -> 38.9"RFT.

458 % Since this mass is clearly distributed, I'll place overa 10"

459 % span centered at the CG.

460 %

461 massnb = 200%(0.4536);% Ibm*(Kg/1bm)

474 % massnb = 67*(0.4536);% lbm*(Kg/1bm)

475 % pasl = 3.200;% Left most position of distribution.

476 % posr = 3.902,% Right most position of distributicn.

477 % (indl,indr,Inbdenseg) = geom _pbseg(posl posr,massnb,spatial);
478 % Inbden(ind!:indr) = Inbden(indl:indr) + Inbdenseg;

479 %

480 % G) DISABLED: (Not mounted for testing.)

481 % The muzzle reference mount, 15# @ 264.6" RFT. About 1.5° wide.
482 %

483 % masmb = 15*(0.4536);% Ibm*(Kg/lbm)

484 % poscg = 264.6%(0.0254);% in*(my/in)

485 % span = 1.5%(0.0254);% in*(m/in)

486 % post = poscg - span/2;% Left most position of distribution.

487 % posr = poscg + span/2;% Right most position of distribution,
488 % [indl,indr Inbdenseg) = geom_nbseg(posl,posr,massnb,spatial);
489 % Inbden(indl:indr) = Inbden(indl:indr) + Inbdenseg;

490 %

491 % H) No additional non-bearn masses. Swm up total mass.

492 %

493 massnb = sum(inbden)*deltax;

494 %

495 %

496 indl = }; indr = [J; nbdenseg = []; poscg = [}; posl =J;

497 posr =[]; span =[};

498 %

499 % Section(7)

500 % Define the geametry matrix. (Used by later files for plotting.)
501 % DEFINE: gm.

502 % USE: rin, rout.

503 %
504 %
505 gm = [rin rout];
506 %

507 % Section (8)

508 % If flag is set, plot the property vectors and geometric matrix far
509 % visual inspection in the current figure window. (Note: in order to
510 % preserve the visual inspection, the non-beam masses are plotted
511 % within the confines of the geometry matrix. Otherwise the visual
512 % validation of lincar beam density could be obscured.)

513 % USE: delwx, IEl, gm, lden, Inbden, ldenexil, Idenextr, ns, spatial,
514 % spext, spextr, tlabel.

515 %

516 %

517 ifnargin==1

518 «clg

519 %

520 % A) Determine if tlabel is a valid title string or apply default:

521 %

522 if isstr(tlabel); % Checks to see if tlabel is a string.

523 dabel(1) = upper(tlabel(1)); % Imposes uppercase on first letter.

524 else

525 dabel = [XM291 Radial ;% Default is used if no valid tlabel given.
526 end

521 %

528 % B) Combine external and non beam masses into ane vector:

529 %

530 nbxlden = Inbden;% Initialize the combined external and non beam
531 % mass vector that is within the confines of the beam geametry.
532 %

533 lobindx = find(spext] < deltax); % Lef of beam index.

534 lobspat = spexti(lobindx);% Left of beam spatial vector.

535 loblden =ldenextl(lobindx);% Left of beam lincar density.

536 coindx = find(spextl >= deltax);% Index of ldenextl within beam.

537 spatindx = (1dength(coindx));% Indices of Idenextl in terms of

538 % spatial, within beam.

539 % Now combine the left external and non beam tinear density that
540 % coexists within the confines of the beam geometry.

541 nbxlden(spatindx) = nbxlden(spatindx) + ldenextl(coindx);

542 %

543 robindx = find(spextr >max(spatial));% Right of beam index.

544 robspat = spextr{robindx);% Right of beam spatial vector.

545 roblden = ldenextr(robindx);% Right of beam linear densiry.

546 coindx = find(spextr <= max(spatial));% Index of ldenextr within beam,
547 spatindx = ((ns-length(coindx)):ns)';% Indices of Idenextr in terms of

74

58 % i, withan bowo

52 % Now combine e ight exrusd 27 von bearn lincer deasiy that
550 & coexds witin e confres of the bearn geommedy.

551 nbxlden(spatinéx} = nbxlden(spatindx) + ldenext{coindx);

552 %

553 % C) Determine plotting scale to farce external and non beam densitics
554 % tobe plotted within the confines of the beam geometry.

555 %

556 nbi = find(nbxlden);% Find external & non beam density index locus.
557 psf = (0.50y*min{ min(gm(nbi,:)")".bxlden(nbi));% Plot scale factor.
558 %

559 % D) Combine exicmal and non beam mass totals:

560 %

561 nbmass = sum(Inbden)*deliax + massext; % (Kg/m)(m)+(Kg) Nbcam&ext mass.

562 nbmasseng = nbmass*(1/0.4536); % (Kg)(1/(Kg/lbm))

563 %

564 % E) Plot results:

565 %

566 subplot(311), plot(spatial,gm,k'); hold on

567 plo(spatial,-gm,k');

568 stem(spatial(nbi),psf*nbxlden(nbi));

569 stem(spatial(nbi),-psf*nbxlden(nbi});

5§70 stem(lobspat,psf*loblden); stem(lobspat,-psf*loblden);

571 stem(robspat,psf*roblden); stem(robspat,-psf*roblden);

572 holdoff

573 tstring = [tlabel ’ Profile & Non beam Masses Versus Length ..

574 ‘in Meters, (Total Non beam Mass of ' ...

575 num2str{nbmass) ' Kg, or ' num2str(nbmasseng) ' Ibm)'];

576 ttle(tstring)

577 ylabel(m)

578 axis([max(spatial}*[-0.1 1.1], max(rout)*{-1.21.2}}); grid;

519 %

580 % The following axis manipulation scales the subplot for better printing.
581 pos = get(gea,'position’); % This is in normalized coordinates

582 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85

583 pos(2)=pos(2) + pos(4)*.15;% Rais: the subplot by the saved height.
584 set(gca,'position’,pos);

585 %

586 subploy(312), plot(spatial Jden, k');

587 1string = ['Linear Density from Profile, (Total Mass of Beam ' ...

588 num2str{mass) ' Kg, or ' num2str{masseng) * lbm)'];

589 title(tstring)

590 ylabel('Kg/m')

591 axis((max(spatial)*{-0.1 1.1], max(lden)*[0 1.2}]); grid;

592 %

593 % The following axis manipulation scales the subplot for better printing.
594 pos = get(gea,‘position’); % This is in normalized coordinates

595 pos(4)=pos(4)*.85; % Strink the height by a factor of .85

596 pos(2)=pos(2) + pos(4)*.15;% Raisc the subplot by the saved height.
597 set(gca,'position’,pos);

598 %

599 subplot(313), plot(spatial JE1'k'):

600 ylabel('N-m*2)

601 xlabel('Axial Position (m)")

602 title(El fram Profile’)

603 axis{{max(spatial)*[-0.1 1.1], max(IED*([0 1.2]]); grid;

4 %

605 % The following axis manipulation scales the subplot for better printing.
606 pos = get(gea,'position’); % This is in normalized coordinates

607 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85

608 pos(2)=pos(2) + pos(4)*.15;% Raisc the subplot by the saved height.
609 set(gcs, position’,pos);

610 %

611 end

612 %

613 coindx = (]; lobindx = {}; loblden = [}; lobspat = [}; ubi = [];

614 nbmass = []; nbmasseng = |}, nbx =[]; den =[J; pos = [}; psf = };

615 robindx = {]; roblden ={]; robspat = [}; spatindx = [}; tstring = [};

616 %

617 % Completed:

618 9 OUTPUT: gin, lden, IE), Inbden, Mexu, Mextr, spatial,
619 %
620 %

PRYIKRRER

BEELHEEROBEBEEYRREERY

51

<geamf_hybrid.m>
function |spatial, lden, IEl, Inbden, Mexu, Mextr, gm] = geomf_hybrid(tlabel)
% geam{_hybrid.m
% [spatial, }den, 1El, Inbden, Mext, Mextr, gm] = geomf_hybrid(tabel);
% o This m-file generates the linear density and El for Ron Gast's 60mm
% gunsystem.
% o The geometric information contained was derived from Drawings
% # WTV-F34406 Sheets 1 & 2.
% o This file uses:
% geom_seg.m

0 % geom_nbseg.m

1% geom_check.m

— 0 00 N OV B W

86

% o Specific varisble defmitions are:

% tabel -> Enables plotting of the beam geometry.

% Ifvalid, the string of tlabel is incorporated into the plot to

% describe the beam.

% spatial -> Axial position vector, currently limited to equally spaced

% position vectors with position data of every dx*n point such that

% n=llength{spatial) and length(spatial)*dx equals max(spatial).

% lden -> Beam linear density vector such that each index value

% corresponds to the beam position of the respective spatial value

% atthe same index.

% 1EI-> Similar to lden except for lincar EI cross-section propertics.

% Inbden -> Similar to lden, except this records the inertia of non-beam

% masses that aro attached to the beam. ’

% gm -> Similar to Iden except the columns of this matrix record the

% irmer and outer radii rospectively.

% o Created 12 Soptember - 05 October 1995 by Eric Kathe.

% Benot Labs, Watprvliet Arsenal, NY 12189-4050 <ekathe@pica.army.mil>
Gy AMAAAAAAAAAAAAAAAAAAAAAAAAAA

%

% Section (1)

% The approach here will be to record the outer radii of the barrel in

% inches per cach 10 mils (ic, 0.01 in). When a taper is encountered,

% & vectar decrement method will be used. Indl & indr defme the extreme
% indices of ths segn Far ple, 19 to 75 indi radii beginning
% at axial position 0.19" and ending at 0.75." Diameters are divided by

% two.

% This section uses geom_seg.m.

% DEFINE: rout.

% USE: author provided data as listed.

%
%
rout = zeras(14500,1); % Initialize rout vector.

%

% A) Chamfer priar to rear threads. {sheet 2, b7}):
indl=1;

indr=18;

L =4 430/2;

R =4.466/2;

rout{indl:indr) = geom_seg(indl,indrrLsR);

%

% B) Flat prior to rear threads. {shect 1, g8}:

indl =19;

indr =75;

1L =4 466/2;

rout{indl:indr) = gearn_seg(indl,indrsL);

%

% C) Threads. {sheet 1, g7-8}:

indl =76;

indr = 325;

L =4.670/2;

rout{ndl:indr) = geom_seg(indl,indr,rL);

%

% D) Groove afier threads. {sheet 1, g7}:

indl =326;

indr = 356;

L =447/2;

rout{indl:indr) = georn_seg(ind},indrrL);

%

% B) Second chamfer. (sheet1, g7}:

indl =357;

indr = 368;

1L =4.756/2;

1R =4.996/2;

rout{indl:indr) = geom_seg(indl,indr,rL fR);
%

% F) Forward flat of brecch area. {sheet 1, g7}:
ind} =369;

indr = 500;

1. =4.996/2;

rout(indl:indr) = geom_seg(indl,indr,rL);

%

% G) First major segment. {sheet 1, ¢-d,7-5):
indl =501;

indr = 3000;

L. =5.4072;

rout{indl:indr) = geomn_seg(indl,indrrL);

88 %

89
90
9
92
93
94

% H) Second major segment (tapered). {sheet 1, ¢c-d,4-5}:
indl = 3001;

indr = 4500;

1L =5.4072;

R =3.00/2;

rout{mdl:indr) = geom_seg(indl,indrsL1R);

95 %

96
97

15

9 I) Final section, {sheet 1, ¢-d,3-1}:
indl = 4501;

98 indr = 14500;

99 1L =3.00/2;

100 rout({indl:indr) = geom_seg(indl,mdr,rL);
101 %

102 indl =[] indr = (J; tL = [; R =[};

103 %

184 % USE: rin, rout, spatial, author provided data as listed.
185 %
186 %
187 deltax = mean(diff{spatial));% m (The disk thickness.)

188 density = 489*(0.4536)/(0.028317);% Ibm/R3(K g br)/(m3/03)
189 % MARK's 9th, table page 6.44, Carbon steel (0.40% C).

104 % Section (2)

105 % The approach here will be to record the inner diameters of the barre] in
106 % analogy with section 1.

107 % DEFINE: rin.

108 % USE: rout, suthar provided data as listed.

19 %
110 %
111 rin = zeros(size(rout)); % Initialize rin vector.

12 %

113 % A) Chamfer prior to rear threads. {sheet 2, b7):
114 indl = 1;

115 indr=18;

116 1L = (2755 + 0.18)/2;

117 R =2.755/2;

118 rin(indl:indr) = georn_seg(indl indr,rLrR);

119

120 % B) Flat prior to main chamber. {sheet 2, b-c,7}:
121 indt =19;

122 indr=100;

123 1L = 2.755/2;

124 rin(indl:indr) = geamn_seg(indl, indrrL);

125 %

126 % C) Flat of main charnber, (sheet 2, bc,7):

127 ind! =101;

128 indr =525;

129 1. =281/2;

130 rin(indl:indr) = geom_seg(indl,indr,rL);

131 %

132 % D) Chamfer prior to forcing cone. {sheet 2, b-c,6):
133 indl = 526;

134 indr = 536;

135 L =281/2;

136 R =2.75072;

137 rin(indl:indr) = geom_seg(indl,indr,rL rR);

138 %

139 % E) Flat prior to forcing canc. {sheet 2, b-c,6}:

140 indl =537;

141 indr = 651;

142 1L = 2.750/2;

143 rin(ind:indr) = geom_seg(ind!,indr,rL.);

190 % Gun stee] 4337m close to 4340 w/ some x-tra Vanadium

191 % edded for machinability. (4340 ->.38- 43 % C)

192 1den = density*pi*(routA2 - rin.A2);% (Kg/mA3)Xm"2)

193 %

194 mass = sumn(lden)*deltax; % (Kg/m)(m)

195 masseng = mass*(10.4536);% Kpg(1/(Kg/lbm))

196 %

197 E =(29.5*10%6)*6894.8; % 1bf/in2*((N/m2)A1b{/in2))

198 % Privaw communication with Dr. Ron Gast, AMSTA-AR-CCB-DE.
199 % (Shingloy & Mitchell, 4th, table A-18 E's for stee] from

200 % 29-30 Mpsi.) (Very heat treat dependent.)

201 %

202 IEI = E*(routAd - rinAd)*pid;

203 %

204 density =[]; E=([];

205 %

206 % Section (5)

207 % Add in the external rigid mass. This mass is treated differently than
208 % simple nan-beam mass (to be computed in section 6).1t will be treated
209 % as a lumped inertia and directly coupled 1o the generalized

210 % coordinates of the first & or last node at a later time,

211 % For the casc of a left external mass (Note: r would be negative):

212 % x(ext) =x(1) + r*theta(l) -> dx(ext) = dx(1) + r*dtheta(l)

213 % ddx(ext) = ddx(1) + r*ddtheta(1), ddtheta(ext) = ddtheta(1)

214 % F(1) =mbr*ddx(ext), M(1) = (mext*rA2 + Jbr)*ddtheta(ext)

215 % [mllml2; m21 m22)*[ddx(1) ddtheta(1)] = [F(1) M(1)}'

216 %

217 % DEFINE: ldenextl, ldenextr, Mextl, Mextr, spextl, Spextr, massext.
218 % USE: deltax, author provided data as listed.

219 %
20 %
221 massext=0;

22 %

223 % A)Left external mass: None.

224 Mexi = zeros(2,2);

225 spexd ={};

226 ldenext =[];

227 massext =0;

228 %

229 % B) Right external mass: Aceclerator Unit from 3" prior to muzzle to 38"

144 % . 230 % (From Pat Vottis, 09 August 1995.)

145 % F) Forcing cone. {sheet 2, b-¢,6}: 81 %

146 indl = 652; 232 % Initialize:

147 indr = 653; 233 Mextr = zeros(2,2);

148 1L = 2.496/2; 234 rext] = max(spatial) - 3%(0.0254);% in*(m/in)

149 1R =2.36%2; 235 rextr = max(spatial) + 38%(0.0254);% n*(m/in)

150 ririndl:indr) = geam_seg(indl indr, L R); 236 iextl = floar(rextl/deltax + ¥%);% Round to nearest increment of deltax.
151 % 237 iextr = floor(rextr/deltax + 14);

152 % G) Main barrel. {sheet 2, b-c,6-2}: 238 gpextr = deltax*(iextl:iextr)';

153 indl = 654; 239 ldenextr = zeros(size(spexty));

154 indr = 14475; 240 massext=0;

155 1L = 2.362/2; Al %

156 rin(indl:indr) = geom_scg(ind,indr,rL); 242 % Rear Nut:

157 % 243 mext = 34*%(0.4536);% lbm*(Kg/lbm)

158 % H) The final chamfer. {sheet 2, b-c,2}: 244 rext = 04(0.0254);% in*(m/in)

159 indl = 14476; 245 bext=5%(0.0254);% in*(m/in)

160 indr = 14500; 246 hext=5%0.0254);% n*(m/in)

161 1L =2.362/2; 247 Jext = mext*(1/12)*(bextA2+hextA2);

162 1R = 2.450/2; 248 Mextr = Mextr + [mext mext*rext; mext*rext (Jext + mext*rextA2)];
163 rin(indl:indr) = geom_seg(indl,indr L rR}; 249 ly,indl] = min(abs(spextr - max(spatial) + 3%(0.0254)));

164 % 250 [y,indr] = min(abs(spextr - max(spatial) - 2%(0.0254)) };

165 md = (L mdr={};iL=(};R=(); 251 ldenextr(indl:indr) = ldenexw(indl:indr) + ...

166 % 252 mext/(spextr(indr) - spextr(ind]))* anes(size(ldenextr(indliindr)));
167 % Section (3) 253 %

168 % Now to convert units 1o meters, and create a corresponding position 254 % Casing:

169 % vectar m meters with indices corresponding to the rin & rout vectors.
170 % DEFINE: ns, spatial. -

171 % USE: rin, rout.

172 % Alter: rin, rout.

173 %
174 %
175 rout = rout*(0.0254);% in{m/in)

176 rin =rin*(0.0254);% m{m/in)

177 ns = length(rout);% Number of gecametric vector indices.

178 spatial = (1:ns)'*(1/100)*(0.0254);% (hundredths)(in/hund)(m/in)
179 %

255 mext = 32.4*(0.4536);% 1bm*(Kg/lbm)

256 rext = 11%(0.0254);% in*(m/in)

257 bext = 22.2%(0.0254);% in*(m/in)

258 hext=7%(0.0254);% m*(m/in)

259 Jext = mext*(1/12) *(bextA2+hextA2);

260 Mextr = Mextr + [mext mext*rext; mext*rext (Jext + mext*rexth2));
261 [y,indl] = min(abs(spextr - max(spatial) + 0*(0.0254)));

262 [y,indr] = min(abs(spextr - max(spatial) - 22#4(0.0254)));

263 ldenextr(indl:indr) = ldenextr(indi:indr) + ...

264 mext/(spextr{indr) - spextr(ind!))* ones(size(ldenextr(indl:indr)));
265 %

180 % Section (4)

181 % Now compute the cross-sectional properties of the bearn.
182 % Also compute the total mass to validate the geometry.
183 % DEFINE: lden, IE], mass, masseng, deltax.

266 % G10's (4) & Liner:

267 mext = 12.4%(0.4536);% lbm*(Kg/lbm)
268 rext =11%(0.0254);% in*(m/in)

269 bext = 19.4%(0.0254);% in*(m/in)

76

TG bt == 2.440.0254% % in¥myial

TV Yowd oo et (100 Kb B2 ke xtA2);

272 Mextr = Mext: + froext mext*rext; mext*rext (Jext + mext*rextA2)];
273 [y,indl] = min(abs(spextr - max(spatial) - 1%(0.0254)));

274 [y,indr] = min abs(spextr - max(spatial) - 21%(0.0254)));

275 ldenextr(indl:indr) = ldenextr(indl:indr) + ...

276 mext/(spextr(indr) - spextr(indl))*ones(size(ldenextr(indl:indr)));
n%

278 % Coils (12) & Spacer:

279 mext = 9%(0.4536);% lbm*(Kg/lbin)

280 rext =11*(0.0254);% in*(m/in)

281 bext = 12%(0.0254);% in*(m/in)

282 hext =3%(0.0254),% n*(m/in)

283 Jext = mext*(1/12)*(bextA2+hextA2);

284 Mextr = Mextr + [mext mext*rext; mext*rext (Jext + mext*rextA2)};
285 [y,indl] = min(abs(spextr - max(spatial) - $*(0.0254)));

286 [y,indr] = min{ abs(spextr - max(spatial) - 16*(0.0254)));

287 ldenext(indl:indr) = Idenexu(indl:indr) + ...

288 mext/(spextr(indr) - spextr(indl))*ones(size(ldenextr(indl:indr)));
29 %

290 % Forward Nut:

291 mext = 36%(0.4536);% lbm*(Kg/thim)

292 rext = 22*(0.0254);% in*(m/in)

293 bext = 5%(0.0254);% in*(m/in)

294 hext=5%(0.0254);% m*(m/in)

295 Jext = mext*(1/12)*(bext"2+hex1A2);

296 Mextr = Mextr + [mext mext¥rext; mext*rext (Jext + mext*rextA2)];
297 (y,indl] = min(abs(spextr - max(spatial) - 19*(0.0254)));

298 [y,indr] = min(abs(spextr - max(spatial) - 24*(0.0254)));

299 ldenextr(indl:indr) = ldenextr(indl:indr) + ...

300 mext/(spextr(indr) - spextr({indl))*ones(size(ldenextr(indk:indr)});
301 %

302 % Muzzle Extension:

303 mext = 18.2%(0.4536),% 1bm*(Kg/lbm)

304 rext =30.5%(0.0254);% in*(m/in}

305 bext = 15%(0.0254);% in*(m/m)

306 hext =4*(0.0254);% in*(m/in)

307 Jext = mext*(1/12)*(bextA2+hextA2);

308 Mextr = Mextr + [mext mext*rext; mext*rext (Jext + mext*rextA2)];
309 [y,ind] = min(abs(spextr - max(spatial) - 23%(0.0254)));

310 [y,indr] = min(abs(spextr - max(spatial) - 38*(0.0254)));

311 ldenextr{indl:indr) = ldenextr{indl:indr) + ...

312 mexy/(spextr(indr) - spexir{ind}))*ones(size(ldenextr(indl:indr)));
313 %

356 % preserve the visual inspection, the non-beam masses are plotted
357 % within the confines of the geometry matrix. Otherwise the visual
358 % validation of lincar beam density could be obscured.)

359 % USE: deltax, 1El, gm, lden, Inbden, spatial, tiabel.

360 %
361 %
362 if nargin=1

363 clg

364 %

365 % A) Determine if tlabel is a valid title sring or apply default:

366 %

367 if issu(tiabel); % Checks to see if tlabel is a string.

368 dabel(l) = upper(tlabek(1)); % Imposes uppercase on first letter.

369 else

370 tlabel = [Hybrid 60mm’];% Default is used if no valid tiabel given.

371 end

3N %

373 % B) Combine external and non beamn masses into one vector:

374 %

375 ubxlden =1nbden;% Initislize the combined extermnal and non beam

376 % mass vector that is within the confines of the beam geometry.

M %

378 lobmdx = find(spext] < deltax); % Left of beam index.

379 lobspat = spexti(lobindx);% Left of beam spatial vector.

380 loblden = ldenextl(lobindx);% Left of beam linear density.

381 coindx = find(spextl >= deltax); % Index of ldenext] within beam.

382 spatindx = (1:dength{coindx))";% Indices of 1denextl in terms of

383 % spatial, within beam.

384 % Now combine the left external and non beam linear density that

385 % coexists within the canfines of the beam geometry.

386 nbxlden(spatindx) = nbxlden(spatindx) + ldenextl(coindx);

387 %

388 robindx = find(spextr > max(spatial));% Right of beam index.

389 robspat = spextr(robindx);% Right of beam spatial vectar.

390 roblden = ldenextr(robindx);% Right of beam lincar density.

391 coindx = find(spextr <= max(spatial));% Index of ldenextr within beam.
392 spatindx = ((ns-length{coindx)+1):ns)';% Indices of ldenextr in terms of

393 % spatial, within beam.

394 % Now combine the right external and non beam linear density that
395 % ists within the canfines of the beam g Y.

396 nbxlden(spatindx) = nbxlden(spatindx) + 1d coindx):

97 %

398 % C) Determine plotting scale to force external and non beam densities
399 % to be plotied within the confines of the beam geometry.

314 % Section (6)

315 % Add in non-beam masses. (Since this data is not often directly on
- 316 % drawings, the nearcst indices of spatial are found from positions

317 % expressed in general units of measure, rather than indices directly.)

318 % Also compute the total non-beam mass to validate the gcometry.

319 % This section uses geom_nbscg.m.

. 320 % DEFINE: Inbden, massnb.
321 % USE: deltax, ns, spatial, author provided data as listed.
2%
38 %
324 Inbden = zeros(ns,1); % Initialize Inbden vector,
325 %
326 % A) The Brecch, mb = 50#, located 0.75" RFT spread over 1.5,
321 %

328 massnb = 50*(0.4536),% 1bm*(Kg/lbm) Non beam mass.
329 post = (0.02)*(0.0254);% in(n/in) Left most position of distribution.
330 posr = (1.50)*(0.0254);% in(m/in) Right most position of distribution.

400 %

401 nbi = find(nbxlden);% Find external & non beamn density index locus.

402 psf = (0.50)*min(min(gm(nbi,:)')".nbxlden(nbi) ;% Plot scale factar.
%

404 % D) Combine extemal and non beam mass totals:
%

406 nbmass = (sum(inbden)+sum(ldenextl)+sum(ldenextr))* deltax;
407 nbmasseng = nbmass*(1/0.4536); % (Kg)(1/(Kg/lbm))
408 %

409 % E) Plot rosults:

410 %

411 subplot(311), plot(spatial,gm,k’); hold on

412 plot(spatial,-gm,k’);

413 stem{spatial(nbi),psfubxlden(nbi));

414 stem{spatial(nbi),-psf*nbxlden({nbi));

415 stem(lobspat,psf*loblden); stem(lobspat,-psf*loblden);
416 stem({robspat,psf*roblden); stem(robspat,-psf*roblden);

31 % 417 holdoff

332 % ldentify indices of lennb and effective lincar density of mnb. 418 string = [tabel ' Profie & Non bearn Masses Versus Length ...

333 [indl,indrInbdenseg) = gean_nbseg(posl,posr,massnb,spatial); 419 'in Meters, (Total Non beam Mass of ' ...

334 % 420 mum2str{nbmass) ' Kg, or num2str(nbmasseng) ' 1bm)'};

335 9% The non-beam mass is now added into the Inbden vector: 421 titde(tstring)

336 Inbden(indi:indr) = Inbden(indl:indr) + Inbdenseg; 422 ylabel('m)

337 % 423 axis([max(spatial)*{-0.1 1.3], max(rout)*({-1.2 1.2]]); grid;

338 % B) No additional non-beamn masses. Sum up total mass. 424 %

339 % 425 % The following axis manipulation scales the subplot for better printing.
340 massnb = (sum(Inbden)+sum{ldenextl)+sum(ldenextr))* deltax; 426 pos = gey(gea, position’); % This is in normalized coordinates

341 % 427 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85

342 % 428 pos(2)=pos(2) + pos(4)*.15;% Raise the subplot by the saved height.
343 indl = [}; indr = []; Inbdenseg = (|; posl = (]; posr =[}; 429 sct(gca, positian’,pos);

34 % 430 %

345 % Section (7)
346 % Define the geometry matrix. (Used for plotting.)

431 subplot(312), plot(spatial lden,k');
432 tstring = [Linear Density from Profile, (Total Mass of Beam ' ...

347 % DEFINE: gm. 433 num2str{mass) ' Kg, or ' num2str{masseng) ' 1bm)'];
348 % USE: rin, rout. 434 ritle(wstring)
. 345 % 435 ylabel(Kg/m)
350 % 436 axis([max(spatial)*[-0.1 1.3], max(lden)*[0 1.2]]); grid;
351 gm = [rin rout]; 437 %
352 % 438 % The following axis manipulation scales the subplot for better printing.

353 % Section (8)
354 % If flag is set, plot the property veciors and geometric matrix for
355 % visual inspection in the current figure window. (Note: in arder to

439 pos = get{gca,'position’); % This is in normalized coordinates
440 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85
441 pos(2)=pos(2) + pos(4)*.15;% Raise the subplot by the saved height.

77

442 set(gea,'position’,pos);

443

o

444 subplot(313), plot(spatial IELk);
445 ylabel('N-mA2)
446- xlabel('Axial Position {m)')

447
448
49

title('E] fram Profile’)
axis{[max(spatial)*{-0.1 1.3], max(IED*[0 1.2]]); grid;
%

450 % The following axis manipulation scales the subplot for better printing.

451

Ppos = get(gcea, position’); % This is in normalized coordinates

452 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85

453 pos(2)=pos(2) + pos(4)*.15;% Raisc the subplot by the saved height.
454 =t(gea,'position’ pos);

4455 %

456 end

457 %

458 coindx = []; lobindx = []; loblden = []; lobspat = []; nbi = [];

459 nbmass = [}; nbmasseng = [); nbx = {); den =[J; pos = {]; psf =[};

460 robindx = [); roblden = [}; robspat = []; spatindx = {}; tstring = [};

61 %
62 el =74;% Number of elements.
%

64 [ncord] = fem_mesh(spatial Jden JE] zeros(size(lnbden)) snlv,nel);
%

66 % Scction (3)
67 % Generate the beam-only mass and stiffness matrices via FEM.
68 % DEFINE: Mfcm, Kfem.
69 % USE: spatial, lden, 1E], ncard, tabel
0 %
n %
72 [Mfem Kfem] = fom_form(spatial |den,IE] zeros(size(lden)) ncord);
73 % Mfem & Kfom are out-put mass and stiffncss matrices. The non-beam
74 % lincar density vector is sot to zero, to cansider just the barrel,

%

76 % Section (4)
77 % Generate the free-free system constraints (zero).
78 % DEFINE: constraintm.
79 % USE: author supplicd data.
%

461 % 80
462 % Complerd: 8! %
463 % QUTPUT: gm, lden, IEI, Inbden, Mextl, Mextr, spatial. 82 kcust = [0; 0);% Set constraint springs to zero column vector.
464 % 83 %
465 % 84 cdenst = 0%kenst; % Zero damping column vector,
5 %
<hybrid60.m> 86 [y, k1} = min(abs(snilv(1) - spatial(ncord)));% Identification of
1 % hybrid60.m -> A working script M-file to execute analysis of the hybrid 87 [y, k2] = mir{abs(snlv(2) - spatial(ncord)));% constraint node number.
2 % 60mm gun using the finite element formulation and dynamics analysis 88 %
3 % functions defined within e subdirectory, beam_fem/. 89 geindk = 24[k1;k2] - 1;% ldentification of latcral constraint gencralized
4 % o Created 02 January - 09 January 1996 by Eric Kathe. 90 % coardinate number.
5 % BenetLabs, Watervlict Arsenal, NY 12189-4050 <ckathe@pica.army.mil> 91 %
6 Go AMAMAAAAAAAMAAAAAMANAAAAAAAAAAAAMAAAAAAAA 92 constrsintm = [geindk kenst edenst];
7 9 %
8 % 94 kenst =(J; cdenst = [I; y = 1: k1 =[]; k2 = [}; geindk =[};
9 % Scction(1) 95 %
10 % Set the plot and print flags on or off, run the geomelry 96 % Section (5)
11 % m-file, and create & plot label. 97 % Compute system matrices without any exiernal nor non-beam masses.
12 % DEFINE: tlabe], spatial, 1den, 1El, Inbden, Mextl, Mextr, gm. 98 % Also the Rayleigh damping matrix.
13 % 99 % DEFINE: M, K, Cd, n2.
14 % 100 % USE: suthor supplicd data.
15 % Set plot and print flags to 1 10 cnable, zero to disable. 101 %
16 plot on=1; 102 %
17 print_on=0; 103 M K,Cd] = fem_lump(Mfem,Kfem,zeros(2,2),ze108(2,2),0,0, intmy;
18 % 104 % M, K, Cd ->Mass, stiffoess, and 2ero damping matrices of
19 if print_an==1 105 % generalized coordinates that include the constraint and
20 plor_on=1; % Clearly, to print, the plot flag must be enabled. 106 % externally coupled dynamics.
2L end 107 02 =size(M,1);% The number of generalized coardinates.
2 % 108 %
23 tlabel = "Hybrid 60mm’;% tlabel -> Enables plotting. If valid, the 109 %
24 % string of Uabel is incorporated into the plot to describe the beam., 110 % Section (6)
5 % 111 % Generate the sccond order, undamped eigen-modes.
26 ifplot on==1 112 % DEFINE: phi, fvn, rlab.
27 figure(l) 113 % USE: suthor supplicd data.
B dg 114 %
29 se(gef,'PaperOrientation’, portrait’); % This series of commands configures 115 %
30 set(gef, PaperUnits','inches”); % the plot window to effectively 116 [phi,fvn,riab] =cigen 20(M,K);% Compute, normalize, sort, and identify
31 set(gef, PaperPosition’,[11 6.5 4.5]); % be incorporated into a report. 117 % the modes of vibration.
32 set{gef, Units','inches’,'position’,gei(gef, PaperPosition’)); 118 %
33 set(gef, DefaultAxesFoniSize’,9); 119 % Section (7)
34 [spatial, Iden, IEI, Inbden, Mextl, Mextr, gm] = geam{_hybrid(tlabel); 120 % Import Dr. Gast's Mode shapes & compare (if available).
35 else 121 % DEFINE: phi, fvn, riab.
36 (spatial, lden, IE], Inbden, MexU, Mextr, gm] = geomf_hybrid; 122 % USE: author supplicd data,
37 end 123 9
38 % spatial -> Axial position vectar. 1% %
39 % lden->Beam lincar density vector. 125 ml_phi = zeros(length(spatial),6); % Initialize matrix far MATLAB modes.
40 % 1EI-> Similar 1o lden except for lincar EI cross-section properties. 126 rg_phi = zeros(length(spatial),6); % Initialize zero matrix if no modes.
41 % Inbden->The incriiz of non-beamn masses attached to the beam. 127 rg nx = spatial/max(spatial);% Initialize axial positicn if no modes.
42 % Mextl, Mextr -> 2x2 sub mnztrices of left and right extreme rigid body 128 %
43 % inertiz. 129 modes_avail = 1;% Flag if Dr. Gast's modes arc available, If not, set to 0.
44 % gm->The columns of this matrix record the inner and outer radii. 130 %
45 if print_on == 1 131 forI=16
46 print -deps figlS.ps; % Print the filc as an encapsulated Post-Script file. 132 if modes_avail == 1
47 end 133 eval([load fusr/people/ustry/ckathe/wpfiles/gast_hyb/modc’ ...
8 % 134 m2str(]) “ascy']);
49 % 135 eval({'mat = mode' in2stx(l) '} 1);
50 % Section (2) 136 eval(['clear mode' int2st(D) ;1);
51 % Define barrel constraint locations, number of elements, and create 137 ifl=1
52 % clement mesh vector. 138 g _phi = zeros(size(mat,1),6); % Initialize matrix for modes.
53 % DEFINE: snlv, ncord. 139 rg nx = mai(;,1);% Respective axial position vector.
54 % USE: spatial, lden, 1E], Inbden, snlv, tabel, Author supplied 140 end
55 % data, Author supplicd default value. 141 rg_phi(:,]) = mat(:,2)/max(abs(mat(:,2)));
56 % 142 1g_phi(:,]) = rg_phi(:,IVmax(abs(rg_phi(:,1)));
51 % 143 dearmat;
58 hangl = 15%(0.0254);% in(ny/in) Location of hanger 1, near breach. 144 end
59 hang2 = 100*(0.0254);% n(m/in) Location of hanger 2, near muzzle. 145 %
60 sulv = [hangl; hang2];% (m) Imposcd node location vector.

146 ml_phi(:,I) = mode_shape(ncord spatial,-phi(: (1+2)));

78

147 o _yhi(z,1) = ml_phi(:,1)Anax(abs(m!_phi(:,1)));% Unit normalize.

148 end

149 %

150 ml_nx = spatial/max(spatial);% Unit normalize axial position vectar.

151 frg =[26.4 83.1 187.4 329.5 478.2 656.4]; % Dr. Gast's frequencies.

152 fml = fvn(3:8);% FEM frequencics, minus the first two rigid body modes.
153 %

154 ifplot_on==1

155 figure(2)

156 «<lg

157 set(gcf, PaperOricntation’, portrait’); % This series of cammands configures

158 set(gcf, PaperUnits''inches’); % the plot window to effectively
159 set{gcf, PaperPosition’,[1 1 6.5 4.5]); % be incorporated into a report.
160 set(gef, Units', inches’, position’, get(gef, PaperPosition’));

161 sct(gcf, DefaultAxesFontSize',10);

162 n=0;

163 forj=1:3

164 fork=0:33

165 I=j+k;

166 n=n+l;

167 subplot(3,2,n)

168 plot{ml_nx,ml_phi(:,]),'k:'rg_nxrg_phi(:D),k');

169 mlabel = rlab(l+2,fmd(abs(rlab(1+2,:)) ~= 32));

176 miabel = [mlabel *, :FEM * num2sir(fml(1)) Hz:'};

171 if modes_avail == 1

172 miabel = [miabel ', -USM ‘ num2sir(frg(I)) * Hz-');

173 end

174 tte(miabel)

175 axis{[-0.05 1.05-1.05 1.05))

176 ifn>4
177 xlabel('Narmalized Axial Position’)
178 end

179 pos = get(gea,'position'’); % This is in normalized coordinates

180 pos(4)=pos(4)*.85; % Shrink the height by a factor of .85

181 pos(2)=pes(2) + pos(4)*.15;% Raise the subplot by the saved height.
182 sct(gea, position',pos);

183 if modes_avail = 1

184 ifl<4

185 legend(FEM','USM');
186 end

187 end

188 end

189 end

190 if modes_avail == 1

191 subtitle('60mm Barrel Eigenvectors and Frequencies (FEM:, -USM-))
192 clse

193 subtitle('60mm Barrel Eigenvectors and Frequencics)

194 end

195 end

196 %

197 if print_on==1

198 print -deps figl6.ps; % Print the file as an encapsulated Post-Script file.
199 end

233
234
235
236
237
238
239
240
241
242
83
44
245
246
247
248
49
250
251
252
253
254
255

262
263
264

2%5
266
267
268
269
270
mn
272
273
274
215
276 dlg
217
278
279
280
281
282
283
24
285
286
287

%
%

% Section (10)
% Farce due to gravity.
% USE: A,B,C,D.
%
g =-9.8067; % Earth Surface Gravity (m/(s/2)).
weight = g*(lden + Inbden)*diff{spatial(1:2));
%
% [F] = fem_force(spatial, weight zeros(size(lden)),ncord tlabel);% Prints F.
[F} = fem_force(spatial weight,zeros(size(lden))ncord);
%
% Now incorporate the two 2x2 rigid body mass matrices after checking to
% avoid divide by zero:
%
if abs(Mext(1,1)) >0
F(1)=F1) + g*Mext(1,1); % g*Kg.
R(2) =F(2) + g*(Mextl(1,2)*2/Mextl(1,1)); % g*((mn*Kg)'2/Kg).
end
%
if abs(Mextx(1,1)) > 0
Kn2-1) = Fn2-1) + g*Mextr(1,1);
F(n2) = F(n2) + g*(Mextr(1,2)*2/Mextr(1,1)); % g*((m*Kg¥Kg).
end
%

%o Section (11)

% Second order inverted stiffness approximatian to static gravity loading.
% USE: K and F.

%
xinvk = K\P;% Ie, since x ddot -> zeros, K*x =F -> x = inv(K)*F.
%

% Section (12)

% Plot the static gravity deflection.
% USE: xinvk, gm, spatial, M.

%
sm = 2*floor(size(M,1)/2);

xtemp = xinvk(1:2:5m);% Usc lateral displacements of nodes for scaling.
scale = max(abs{xtemp))/(8*max(max(gm)));

av = [(min(spatial)- 0.1 *max(spatial)) 1.1*max(spatial) ...

[-15 5)1000);

%
ifplot_on=1
figure(3)

set(gcf, PaperOricntation’, portrait’); % This series of commands configures
set{gef, PaperUnits’,'inches'); % the plot window to effectively
set(gef, PaperPosition',[1.75 3.75 4 2.5)); % be incarperated into a report.
set{gcf, Units','inches’, ‘position’, get(gef, PaperPositian’));

set{gef, DefaultAxesFontSize',10);

%

beam_plofncard,spatial xinvk,gm*scale,canstraintm(:,1));

% av =axis;

% av(l) = -av(2)/10;

200 % axis(av)

201 % grid

202 % Section (8) 288 title([' ‘tlabel’ Static Gravity Deflection'])

203 % Generate the as hung system constraints. 280 xiabel('Axial Position (m)")

204 % DEFINE: constraintm. 290 ylabel('Lateral Doflection (m)’)

205 % USE: author supplicd data, 291 pos = get{gca, position'); % This is in normalized coordinates

206 % 292 pos(2)=pos(2)+(1-0.85)*pos(4)/2; % Raise the subplot & keep it centered.
27 % 293 pos(4)=0.85*pos(4); % Shrink the height by a factor of .85
208 kenst=[1; 1]*2*1045;% Set canstraint springs to 200,000 N/m. 294 pos(1)=pos(1)+(1-0.85)*pos(4)/2; % Shift to the right.

209 % 295 set(gca, position',pos);

210 cdenst = 0*kenst; % Zero damping columnn vector. 296 end

211 % 297 %

212 [y, k1] = min(abs(snlv(1) - spatial{ncord)));% Identification of 298 if print_on==1

213 [y, k2] = min(abs(snlv{2) - spatial(ncord)));% constraint node number. 299 print -deps figl7.ps; % Print the filc as an encapsulated Post-Script file.

214 %
215 geindk = 2*[k1;k2] - 1;% Identification of lateral constraint gencralized

216 % coordinate number.
217 %
218 conswraintm = {geindk kenst cdenst};
219 %

220 kenst=[]; edenst={]; y = [J; k1 = [}; k2 =[}; geindk = [];
221 %

300
301
302
303

end
%

% Completed:
%

<mode_shape.m>
1 function [phi] = modec_shape(ncord,spatial,y)
2 % mode_shape.n

222 % Section (9)

223 % Compute system matrices with all external and non-beam masses.
224 % DEFINE: M, Mfem, K, Kiem, Cd, n2.

225 % USE: author supplicd data.

2% %
21 %
228 {Mfem,Kfem] = fem_form(spatial lden JE] Inbden,ncord);

229 %

230 [M,K,Cd] = fem_lump(Mf{em,Kfem Mextd, Mextr,0,0,constraintm);
28l %

232 n2 =size(M,1);% The number of gencralized coordinates.

3 % [] = mode_shape(ncord,spatial,y);
4 % o This m-file generates a mode shape of a beam in its spatial domain.

-0 00 oW

0

%

%

% fem_interpan in section 2.
%o K) lized

% o

% o This file uses:

fem_node_checkan in section 1.
geom_check.m

[di may be include via extge.

Specific imput/output variable defmitions are:

11 % ncord -> The vectar of indices such that spatial(ncord) is the position
12 % ofeach pair of beam gencralized coordinates. (Also known as nodes.)
13 % spatial -> Axial position vector, currently limited to equally spaced

79

% position vectors with position data of every dx*n point such that

% n=lilength{spatial) and lcnglh(spaual)‘dx cquals max(spatial).

% 'y ->Output vector, Contains the des of the displ and
k2 mmtxcns of the generalized coordinaws. It is a vectar uftl: form:

% {x(1) theta(1) x(2)..x(n2) theta(n2) extge(1) extge 2)...extge{nxge)} .
phi -> mode shape vectar that corresponds one-to-one with spatial.
o Created 3 January 1996 by Eric Kathe.
Benet Labs, Watervliet Arscnal, NY 12189-4050 <ckathe@pica.army.mil>
Gy AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
%

100 %

101 I=[]; indL =[}; indR

=[} xv ={}; lengvseg ={]; zphi = [];

102 zddphi ={J;

103 %

104 % Camplerd:
105 % OUTPUT: Nore.

106 %

<rank_kimn>

9 Section (1)

% A few checks to be sure input variables are the right size, et ceters.

% This scction uscs geom_check.m 10 validate the input geometry vectors.
% Also define the number of indices of spatial, ns, the number of generalized
% coordinates nge, ¢t celera.

% DEFINE: nel, nge, nn, ns, nxge.

% USE: nargin, ncord, spatial, y,

% author provided default valuc.

% POSSIBLY ALTER: ncord, spatial, y.

%
% (A) Check spatial & ncard & define their length's, ns
%

{ncord,spatial] = fem_node_check(ncord,spatial);
13 = length{spatial); % Number of indices of spatial.
m = length{ncord); % Number of nodes of ncord.
nel =nn - 1;% Number of clements of the beam.
%
%
% (B) lmpos¢ column structure on y, and check constancy of number of
% gereralized coordinales.
%
y=y)
nge = lengthly);
if nge ~=(2*mn)
if nge <2*nn :
waming = ['More generalized coordinales than the numnber of outputs.'...
‘No corrective action has been taken.')
clscif pargin =135
zgext = ones((nge - 2*m),1);
2gexy(l mxge) = extge;
extge = zgext(l:(nge - 2*mn));
warning = {'Mismatched number of gencralized & or external ...
‘couplings. extge padded or truncated to fit. ‘...
‘Further errars are very likely.'}

clse
waming = ['Fewer generalized coordinates than the number of outputs.'...
‘No carrective action has been taken.']

end
end
%
default ={}; wamning = (];
%

% Section (2)

% Campute the beam deflection vectars for each finite element using
% fern_interp.m, and combine into one beam deflection vector.

% DEFINE: deflectv.

% USE: ncord, nn, ns, spatial, y,

%
%
% (A) Initialize deflection vector.

%

deflectv = zeros(size(spatial));

%

% (B) For the first element of the beam.

%

lengvseg = spatial(ncord(1):ncord(2)); % Length of finite element.

{zphi, 2ddphi) = fem_interp(lengvseg);% Zphi contains the shape functions.
%

xv = y(1:4);% The deflection of element one is a function of the
% state of both adjacent nodes. In this case
% {x1, thetal, x2, theta2}.
%
deflectv(ncord(1):ncord(2)) = zphi*xv;
%
% @ For remaining clements:
%
for I=2:nel;
%
lengvseg = spatial((ncord(D)+1)mcord(1+1)) - spatial(ncord(D);
[zphi, zddphi] = fem_interp(lengvseg);
indL=2°1-1;
indR = indL. + 3;
deflectv((ncord(I)+1):ncord(1+1)} = zphi*y(indL:indR);
end
%
phi = deflectv;

L R . Y N

-
- O

12

LGREUELSBRIRRYNR

W W W
0 N&

39
40
41

43
44
45
46

47 %

48
49
50
51
52
53
54
55

% rank_kim

% rank_kixm -> A script M-file that utilizes the symbolic walbox to

% demonstrate the deficient rank of the elemental

% stiffnoss matrix.

% o Creard 06 - 07 November 1995 by Eric Kathe,

% Bonet Labs, Watervlict Arsenal, NY 12189-4050 <ckathe@pica.army.mil>

G, AAAAAA AAAAAAAAAAAAAA.

%

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

% Section (1)

% Enter the Hermie-cubic polynomials. (Junkins & Kim: (4.101)
% DEFINE: phil, phi2, phi3, phid.

%
%
phil ='1 - 3*xA2/(hA2) + 2*xA3/(3);
phi2 = 'x - 2*h*xA2/(bA2) + h*xA3/(hA3);
Phi3 ="3%xA2AA2) - 2%xA3/(MA3);

phid = “h*xA2/(h"2) + h*xA3/(13)';

%

%

% Section (2)

% Compute the second spatial derivative pairs of the Hermite-cubic polynornisls
% as uscd in the integration definition of the elemental stiffness valucs.

% Also print them.

% (Junkins & Kim: (4.102)):

% USE: phil, phi2, phi3, phi4.

%

% DISABLED: Used to display each multiplicd pair of second spatial
% differentiated interpolation functions.

% forI=1:4

% forj=1:i

% (1

% eval(['pretty(expand(symmul(diffphi' int2stx(1) * 2),diff{phi’ ...
% int2se(i) ", 2))

% end

% end

%
I=[}j=1I}
%

% Section (3)

% Campute the first three independent pairs of section (2).
% DEFINE: a, b, g.

%
%
a = expand(symmul(difiiphil, 2),diff(phil ,2)));
b = expand(symmul(dif{phi2,2),diff(phil,2)));
8 = expand(symmul{diff{phi2, 2),dif f(phi2,2)));

% Section (4)

% Velidate the following matrix simplification, smat, clement by element.
%

% Smat is to be uunphﬁcauan of the mululed pairs cfsecand

% spatial derivatives of interpolati ions that are subs

% multiplied by the axial dutnbuurm of elemental stiffness, and thcn

% integrated from zero to the element length, b, to form the symmetric
% elemental stiffness matrix. (See Junkins & Kim: (4.102))

56 %

57
58
59

62

22D

70
7

7
74
75
76

80

% DEFINE: check11, check21, check22, check31, check32, check33,
% checkdl, check4?, check43, check44, smat.
% USE: phil, phi2, phi3, phi4, 8, b, g.
%
%
smat = str2mat(’| a - - Sym
b 3 - L
'l -a -b 2 j .
‘[(a*h-b) (b*b-g) (a*h- b) (i‘h‘?/2‘b‘h+g) 153

Ty

%

% Subtract a fram stiffness inerpolation pair

% of matrix clement {1,1):

checkl | = simple(symsub(symmul(diff(phil ,2),difi(phi1,2)} , 8));
% Subtract b from stiffness interpalation pair

% of matrix element (2,1):

check?2] = simple(symsub(symmul(difi(phi2,2),diff(phil 2)) , b));
% Subtract g from stiffness interpolation pair

% of matrix element (2,2):

check22 = simple(symsub(symmul(diff(phi2,2),dif(phi2,2)) , &));
% Subtract -a from stiffncss interpolation pair

T7 % of matyix eaoena (3,1): 14 % Set plot and print flags to 1 to enable, zero to disable.
78 check31 = simple(symadd(symumul(diff(phi3,2) diff(phil,2)) , a)); 15 plot on=1;
79 % Subtract -b from stiffness interpolation pair 16 print_on=0;
80 % of matrix element (3,2): 17 %
81 check32 = simple(symadd(symmul(diff(phi3,2),diff(phi2,2)) , b)); 18 if print_on==
82 % Subtract a from stiffness interpolation pair 19 plot_on=1; % Clearly, to print, the plot flag must be ensbled.
83 % of matrix element (3,3): 20 end
84 check33 = simple(symsub(symmul(diffiphi3,2),diff(phi3,2)) , 8)); 2 %
85 % Subtract (a*h-b) fram (4,1): 22 % Define a normalize axial position vector from 0 <x<=1:
86 check4l = simple(symsub(symmui(diff{phi4,2),diff(phil,2)), ... 23 %
87 symsub(symmal(a,h’) b))); 24 Xn=(1:1001)/1001;
88 % Subtract (b*h-g) from stiffness interpolation pair 25 %
89 % of matrix clement (4,2): 26 % Set uniform beam propertios o unity.
90 check42 = simple(symsub(symmul(diffiphi4,2),diff(phi2,2)} , ... 21 %
91 symsub(symmul(b,'h) ,8))); 28 L=
92 % Subtract {(a*h-b) from stiffness interpalation pair 29 rho=1;
93 % of matrix clement (4,3): 30 E=1;
94 chockd3 = simple(symadd(symmul(diffphi4,2) diff(phi3,2)) , ... 31 i=y
95 symsub(symmul(a,’h) b))); 32 ial = Xn;
96 % Subtract -(a*hA2-2*b*h+g) fram stiffness interpolation pair 33 lden =rho*oncs(size(spatial));
97 % of matrix element (4,4): 34 1Bl =E*I*anes(size(spatial));
68 check44 = simple(symsubX symmul(diff(phi4,2),diff(phi4,2)), ... 35 Inbden = zeros(size(lden));
99 symadd(symsub(symmul(a,h*2") symmul(b,"2*h)),g))); 36 gm = ones(size(spatial));
10 % 37 %
101 % 38 % Section (2)
102 % Section (5) 39 % Compute Analytic Eige and bending frequencies. Symbali
103 % Examine results for errors. 40 % to derive solution ere shown.
104 % USE: checkll, check21, check22, check31, check32, check33, 41 % DEFINE: fub, ub_phi.
105 % check4l, checkd2, checkd3, checkdd. 42 % USE:nx,L,rho,E, L.
106 % 43 %
107 % 4“4 %
108 eflag =0; 45 % (A) Define and display initial calculations and appl of boundary
109 errormat = zeros(4 ,4); 46 % conditians.
110 farI=1:4 47 %
111 forj=1i 48 % Define assumed form of the mode shape function:
112 eval(['check = check' im2str(I) int2ste(j) ') 49 %
113 ifcheck~='0! S0 shape = ['C1*(cos(k*x) + cosh(k*x)) + C2*(cos(k*x) - cosh(k*x)) ' ...
114 warning = ['matrix element (' int2str(l) ', int2str() ... 51 '+ C3*(sin(k*x) + sinh(k*x)) + C4*(sin(k*x) - sinh(k*x))');
115 9 results in error.’] 52 %
116 ecflag=eflag+1 53 % Display free-free boundary conditions, this solution shows that C2 and
117 errormat(ij) = 1; 54 % C4 must be zero:
118 errormat(j,i) = 1; 55 %
119 end 56 % simple(subs(diff(shape,2),'0))
120 end 57 % ans=-2*C2%A2
121 end 58 % sunpb(subs(dxﬂ(shapc 3),00)
122 ifeflag==0 59 % ans =-2*C4¥kA;
123 message =" No errors found. The matrix, smat, was validated:' 60 % smxple(subs(dlﬂ‘(shape,Z),'L))
124 smat 61 % ans=(Cl*(-cos(k*L)+cosh(k*L))}+C2*(-cos(k*L)-cosh(k*L))+...
125 clse 62 % C3%(-sin(k*L)+sinh(k*L))+C4*(-sin(k *L)-sinh(k*L.)))*k"2
126 waming = [int2sir{eflag) ' crrors found. The matrix is not validated.’] 63 9 simple(subs(diffishape,3),'L))
127 smat 64 % ans =(C1*(sm(k*L)+sinh(k*L))+C2*(sin(k *L)-sinh(k*L)+...
128 message = Error locations indicated by a one in the following matrix.! 65 % C3*(-cos{k*L)+cosh(k*L))+C4*(-cos(k*L)-cosh(k *L))}*kA3
129 errormat 66 %
130 end 67 % Defme mode shape with C2 and C4 set to zero:
131 % 68 %
132 1={}; j =1{1; eflag = {}; message = [}; wamning = {}; 69 shapet = subs(subs(shape,0',C2),'0",/C4');
133 % 0 %
134 % Completed: 71 % simplo(subs(diffi(shapet,2), L)
135 % 72 % ans = (Cl*(-cos(k*L)+cosh(k*L))+C3*(-sin(k *L)+sinh(k*L)))*kA2
136 % 73 % simple(subs(diff{shapet,3),’L))
74 % ans = (C1*sin(k*L)+sinh(k *L))+C3*(-cos(k*L)+cosh(k*L)))*k"3
<ubcameig.m> 75 %
1 function [ccosh] = ubcameig(f) 76 % Dofins 2x2 matrix that when multiplied by [C1 C3] results in [0 0
2 % ubeameigmn . 77 % whenthe ining two boundary are d. This matrix
3 % [ccosh] = ubcameig(f); 78 % is assembled by cut&paste from above d-out simple d:
4 % o This function numerically computes the unifonn beam eigenvalue 79 %
5 % equation. The zero crossings are salutions of it. 80 dmat = sym(['{-cos(k*L)+cosh(k*L),-sin(k*L)+sinh(k*L); ...
6 % o Created January 1996 by Eric Kathe. 81 'gin(k*L)+sinh(k*L),-cos(k*L)+cosh(k*L)]1); % Symbolic form.
7 % BenetLabs, Watervliet Arscnal, NY 12189-4050 <ckathe@pica.army.mil> 82 %
8 Gy AAMAAAAAAAMAMAAAMANAAAAAAARAAAARAAAMAAAAAAAAAAAAAAAAAMARAAAAAAA 83 % Bvaluae andmnpl.\fy the eigen-determinate for values of (k°L) that
9 84 % satisfy the ing two boundary conditions excluding the trivial
10_ccosh =1 - cos(f). “cosh(f); 85 % solution. (C1 =0 & C2=0is trivial.)
<uniform.m> 8 % .
1 % uniform.m-> A working script M-file to execute enalyses of g’; :: >> pretty(simple(doterm{dmat)))
2 % uniform beams.
3 % o Created 10 January 1996 by Eric Kathe. gg 2 2-2cos(k L) cosh(k 1)
! . . .

AR AN 91 % Fox MATLAB to findthe rootsof this cigenvalue probiem, te
6 92 % equation must be implemented in a new function file, <ubeameig.m>, as
7 9 93 % shown below, then the function <fzero> may be applied to salve for the
8 % Section (1) 94 % roots closest to an initial guess that must be provided:

R . 95 % MMA_.
9 % Compute approximations of the uniform beam geometry for finite element . _ .
10 % analysis, and numerical spproximation of analytic mode-shapes. 5 % Dunction [ocosh] = nbeameig(D
i;— 2DEFIN'E. Xn, L, rho, E, I, spatial, Iden, 1El, Inbden, gm. 98 % coosh =1 - cas(f).*cosh(f);
13 9 99 G MMA__

100 %

101 % (B) Numerically identify the eigenvalues:

102 %

103 % For the uniform beam being analyzed, w = kA2*(E*)/rho)N(}4).
104 % Also, w = f*(2*pi), (radians/time) = (cycles/time)*(2*pi).

105 %

106 % Defire high resolution scarch vector that exceeds the highest
107 % expected root by 20%.

108 %

109 kig =((1:1000)/1000)*25;% 25 ~ sqri{w G6-mode rad/scc)*1.2

110 nts = zeros(size(kig)); % Initialize roots vectar.

11 %

112 % Find the roots of the eigenvalue equation using the search vectar
113 % values as initial guesses and compute cyclic frequencies:

114 % .

115 for I = Lilength(kig)

116 ns(l) = f2ero('ubcameig' kig(D);

117 end

118 % plot(kig,ns)

119 %

120 kig(find(rts < eps*1042)) = []; % Extract only positive values of interest
121 ns(find(rts < eps*1012)) =[]; % by nullifying negative & zero elements.
122 % plot(kig,ns)

123 %

124 % Extact first six mode vatues and compute cyclic frequency:

15 %

126 ubk = zeros(6,1);% Initialize the uniform beam k-vector.

1271 %

128 forl=1:6

129 ng =son(ns);

130 ubk(l) = nts{1)/L;% Assign sallest remaining rts value to current mode.
131 %

132 % Nuliify rts values that are close to or less than the current mode:

133 %

134 ns(find((rts-rts(D)<leps*1072))) = {};

135 end

136 %

137 wub = ubk A2*sqrt(E*}/rho);% Note the L's already assumed unity.

138 fub = wub/(2*pi);

139 %

140 % © Using the cigenvalues, solve for the two remaining mode-shape

141 % constants, and numerically evaluate the uniforin beam mode-shapes:
142 %

143 ub_phi = zeros(length(xn),6); % Initialize uniform bean mode-shape matrix.
144 %

145 for1=1:6
146 k= ubk(l);
147 %

148 % Numerically evaluate boundary condition matrix using eigenvalue.
149 %
150 dmam = [(-cos(k*L)+cash{k*L}) (-sin(k *L)+sinh(k*L));...

151 (sin(k*L)+sinh(k*L)) (-cos(k*L.)+cosh(k*L)}];
152 %
153 C3=1; % Set value for C3 to unity.

154 Cl = -(dmam(2,2)*C3)/dmatm(2,1);% Solve for C1 using 2nd row of dmatm.
155 %

156 if abs(sum(dmatn*[C1;C3]))/max(abs({C1;C3])) > 107(-4)

157 waming = Uniform beam boundary condition solution may not be good.*
158 end

159 %

160 % Evaluate and unit normalize mode-shape for solved boundary canditions:
161 %

162 msv=Cl *(cos(k*xn)+cosh{k*xn)}+C3*(sin(k*xn)+sinh(k*xn));

163 ub_phi(:,]) = msv/max(abs(msv));

164 end

165 %

166 % Section (3)

167 % Create beam element mesh vector, generate finite element system
168 % matrices, and computc eigen sysiem.

169 % DEFINE: snlv, fm], phi3, ncord3, phi20, ncord20, phi, ncard.

170 % USE: spatial, 1den, IE, Inbden.

171 %
172 %
173 salv = 1;% Due 10 the way <fem_mesh.m> was writicn, a value must be passed
174 % for imposed node locations. Setting it to ane, imposes the end

175 % of the beam, this triggers a waming, but <fem_mesh.m> then works.
176

177 om = 20;% Highest number of finite elements 1o be employed.

178 fml = zeros(nm,6);% Initialize estimated frequency matrix.

179 %

180 for I =1:nm

181 pe =]

182 ncord = fem_mesh(spatial Yden |Ellnbden,sulv,nel);

183 MfemKfem)] = fern_form(spatial Jden JELInbden,neord);

184 [phi,fvnrlab) =eigen_20o(Mfem Kfem);% Compute, undamped eigen frequencies.

185 %

186 % Notz: that with rigid bady mades, warnings may be displayed regarding the
187 % non-orthogonality of the mode-shapes, and a small imaginary content of the
188 % zero frequencies is common.

189

190 % Extract first six bending modes. (Note first two frequencics correspond
191 % to zero-frequency rigid-body modes, so they arc skipped.):

192 %

193 fom = NaN*zeros(1,8);

194 fom{1:length{fvn)) = fvn'; % This leaves NaN's where 1o frequency is modeled.
195 fmi(i,1:6) = abs(fom(3:8));% Estimated first six bending mode frequencics
196 % in Hz. Some small imaginary content is comman.

197 %

198 ifnel =3

199 phi3=phi; % Save mode-shapes from 3 element approximation. This is
200 ncard3 = ncord;% the first model to include the first 6 bending modes.

201 end

202 end

203 %

204 %

205 figure(1)

206 clg

207 set(gef, PaperOrientation’, partrait’); % This serics of commands configures
208 seigef, PaperUnits, 'inches'); % the plot window to cffectively

209 set(gef, PaperPosition’,[1 1 3.5 4]); % be incorparated into repart.

210 set(gef, Units', inches’,‘position’, get(gef, PaperPositian’));

211 sexgef, DefaultAxesPantSize',10);

22 %

213 plot([1:nm),fml(;,1),k',[1:nm], fmi(:,2), K[1 om),fnl(:,3),%,...

214 {1z}, fml(:,4),% [1mm},fml(:,5), %’ [1 ;mm], fml(:,6),X)

215 haldon

216 plot{[1mm],fmi(:,1), ko' (1 nm),fnl(:,2),ko',[1 am), fml(:,3),'%0' ...

217 [1:nm],fmi(:,4),ko"[1:nm), fmi(:,5), ko' [1:num), Emd(:,6), ko)

218 plo([1 mm],[fub fub),k:)

219 hold off

220 av=axis;

221 av(2)=20;

222 axis(av)

223 sei(gea, YTick! fub)

224 ylab=""

225 forl=1:

226 ylab = sur2mat(ylab, freq2str{fut(1)));
227 end

228
229

ylab(1,) =[];

set(gea, YTickLabely'ylab)
230 titde(Finiw Element Convergence to Mode Frequencies b
231 ylabel(First Six Analytic Bending Modes b
232 xlabel('Number of Finite Elements’)
233 pos = get(gea, position’); % This is in namnalized coordinates
234 pos(1)=pos(1) + pas(3)*.13; % Shift the subplot to the right.
235 pos(3)=pos(3)*.85; % Narrow it.
236 set(gca, positian’,pos);

%

238 nel =[); Mfem = [}; Kfem = [}; dab = [}; ylab = [);
%

240 % Section (6)

241 % Normalize and truncate the second order eigen modes.
242 % DEFINE: phi, fv, fvn, rlab.

243 % USE: ncard, ncord3, phi, phi3.

%44 %
U5 %
U6 %
247 ml_phi = zeros(length(xn),6);

248 ml_phi3 = zeros(length(xn),6);

249 ml_phi20 = zeros({length(xn),6);

250 %

251 forl=1:6

252 ml phi:h= modc_shxpc(nccrd.spat.ia.l,phi(:,(l+2)));

253 ml_phi(:,1) = ml_phi(:,)/max(abs(ml_phi(:,})));% Unit normalize.

254 ml_phi3(:,]) = mode_shape(ncord3,spatialphi3(:,(1+2)));

255 ml_phi3(:]) = mi_phi3(:,I)/max(abs(mi_phi3(:,1)));% Unit normalize.

256 end

257 %

258 %

259 %

260 if plot_an==1

261 figure(2)

262 «clg

263 set(gcf, PaperOricntation, portrait’); % This scries of commands configures
264 sei(gef, PaperUnits', inches”); % the plot window 1o effectively

265 ser(gef, PaperPosition’,[1 17 5]); % be incorporated into a repart.

266 ser(gef, Units', inches’, position’, get(gef, PaperPosition’));

267 ser(gef, DefaultAxesFontSize',10);

268 n=0;

269 forj=13

210 fork=0:33

211 l=j+k;

i
3
274
215
276
2n
278
279
230
281
282
283
84
285
286
%
288
29
290
291
292
293
294
295
296
297
298
299
300
301
302
303

wEntrl;
sivplot(3,2,n)
plot(xn,ml_phi3(:,1),k--' xn,ml_phi20(:,D),k-,...
xn,ml_phi(:,1)'k:' xn,ub_phi(:1), k'),
title('Bending Mode * ini2str(l) ', Analytic ' freq2str(fuXD)])
axis([-0.05 1.05 -1.05 1.05})
ifn>4
xlabel('Normalized Axial Position')
end
pos = get(gea, position’); % This is in normalized coordinates
pos{[4]))=pos([4])*.9; % Shrink the height by s factor of .9

pos((2])=pos([2]) + pos({4])*.%;% Raisc the subplot by the saved height.

pos{[3])=pos([3])*.95; G Shrink the width by a factor of .9
if foar(n/2) == ceil(n/2)
pos({1])=pos([1]) + pos([3})*.05/2;% Shift the subplot to the right.

clse
pos({1])=pos([1]) - pos(]3])*.05/2;% Shift the subplot to the left.
end

set(gca, positian’ pos);
ifle=3
legend('3 Element 20 Element',...
[mt2str(nm) * Element'], Analytic');
end
end
end
subtitle('Uniform Beam Eigenvectors and Frequencics’)
end
%
ifprint_on==
print -deps fig22.ps; % Print the file as an encapsulated Post-Seript file.
end
%

83

7 BIBLIOGRAPHY

1. Dholiwar, D. K., Dcvelopment of a Hybrid Distributed-Lumped Parameter Openloop Model of
Elevation Axis for a Gun System,” Proceedings of the Seventh U.S. Army Symposium on Gun Dynamics,
ARCCB-SP-93034, Benét Laboratorics, Watervliet, NY, 11-13 May 1993, pp. 368-385.

2. Mattice, M. S., “State Space Model of the XM291 Tank Main Armament System,” Draft Technical
Report, U.S. Army ARDEC, AMSTA-AR-FSF-R, Picatinny Arsenal, NJ, 04 November 1994,

3. Gast, R., “"Modal Analysis of the Dynamic Flexure in Tank Weapons,” PhD Thesis, Rensselaer
Polytechnic Institute, Troy, NY, May 1988.

4, Simulation of Barrel Dynamics: Users Manual, Danby Engineering, Cirencester, United Kingdom,
1992.

5. De Marchi, J. A., Ma, ., and Craig, K. C., "Experimental Degradation of Flexible Beam Control in
the Presence of Drive-Train Non-Linearities,” ASME Paper No. WAM-95-17, 1995,

6. Meirovitch, L., Elements of Vibration Analysis, McGraw-Hill, New York, NY, 1986.
7. Junkins, J. L., and Kim, Y., Introduction to0 Dynamics and Control of Flexible Structures,

American Institute of Aeronautics and Astronautics, Inc., Washington, DC, 1993.

8. Leung, A. Y. T., Dynamic Stiffness and Substructures, Springer-Verlag, New York, NY, 1993,
9. Gast, R. G., “Normal Modes Analysis of Gun Vibrations by the Uniform Segment Method,”

Proceedings of the Fifth U.S. Army Symposium on Gun Dynamics, ARCCB-SP-87023, Benét
Laboratories, Watervliet, NY, 23-25 September 1987, pp. 175-201.

10. Sennett, R. E., Matrix Analysis of Structures, Prentice-Hall, Englewood Cliffs, NJ, 1994,

11. Buchanan, G. R., Theory and Problems of Finite Element Analysis, Schaum's Qutline Series,

McGraw-Hill, New York, NY, 1995.

12. MATILAB® Reference Guide and MATLAB® User's Guide, The MathWorks, Inc., Natick, MA,
July 1993.

13. Symbolic Math TOOLBOX User's Guide, The MathWorks, Inc., Natick, MA, August 1993.
14. Thompson, W. T., Theory of Vibration with Applications, Prentice Hall, Englewood Cliffs, NJ,

1993.

15. Dimarogonas, A. D., and Haddad, S., Vibration for Engineers, Prentice Hall, Englewood Cliffs, -
NJ, 1992

16. Leipholz, H. H. E., and Abdel-Rohman, M., Control of Structures, Martinus Nijhoff Publishers,
Boston, MA, 1986.

17. Shames, 1. H., and Dyn, C. L., Energy and Finite Element Methods in Structural Mechanics,

Hemisphere Publishing Corporation, New York, NY, 1985,

84

18. Kanchi, Madhu B., Matrix Methods of Structural Analysis, John Wiley & Sons, New York, NY,
1993.

19. Przemienieki, Theory of Matrix Structural Analysis, McGraw-Hill, New York, NY, 1968.

20. Meirovitch, L., Dynamics and Control of Structures, John Wiley & Sons, New York, NY, 1990.
21. Beyer, W. H. (Ed.), CRC Standard Mathematical Tables, CRC Press, Inc., Boca Raton, FL, 1984.
22. Brogan, W. L., Modern Control Theory, Prentice-Hall, Englewood Cliffs, NJ, 1985.

23. Scarton, H. A., Unpublished Course Notes, "Advanced Vibrations,” Rensselaer Polytechnic
Institute, Troy, NY, Fall 1993.

24, Friedland, B., Control System Design: An Introduction to State-Space Methods, McGraw-Hill,
New York, NY, 1986. :

25. Control System TOOLBOX User's Guide, The MathWorks, Inc., Natick, MA, June 1994.
26.- - Ogata, Katsuhiko, Modern Control Engincering, Prentice-Hall, Englewood Cliffs, NJ, 1970.

27. Frederick, D. K., and Chow, J. H., Feedback Control Problems:; Using MATLAB® and The Control
System Toolbox, PWS Publishing Company, Boston, MA, 1995.

28. Clancy, Tom, Armored Cav: A Guided Tour of an Armored Cavalry Regiment, Berkley Books,
NY, 1994, '

- 29. Ewins, D. J., Modal Testing: Theory and Practice, John Wiley & Sons, New York, NY, 1984.

30. Bracewell, R. N., The Fourier Transform and Its Applications, McGraw-Hill, New York, NY,
1986.

31. Zabar, Z., Levi, E., Birenbaum, L., Vottis, P., Cipollo, M., and Kathe, E., “Pulsed Power to the Aid
of Chemical Guns,” Tenth IEEE International Pulsed Power Conference, Paper 5-3, Albuquerque, NM, 10-
13 July 1995.

32. Kathe, E., Gast, R. G., Vouttis, P. M., and Cipollo, M., “Analysis of Launch Induced Motion of a
Hybrid Electromagnetic/Gas Gun,” Lighth Electromagnetic Launch Symposium, Paper 109 B, Baltimore,
MD, 21-24 April 1996.

33, Gast, R. G., “Curvature-Induced Motions of 60-mm Guns, Phase 1I: Modeling,” ARDEC
Technical Report ARCCB-TR-94002, Benét Laboratories, Watervliet, NY, January 1994.

34, Timoshenko, S., and Young, D. H., Vibration Problems in Engineering, D. Van Nostrand
Company, New York, NY, January 1955.

85

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

CHIEF, DEVELOPMENT ENGINEERING DIVISION

ATTN: AMSTA-AR-CCB-DA
-DB
-DC
-DD
-DE

CHIEF, ENGINEERING DIVISION
ATTN: AMSTA-AR-CCB-E

-EA

-EB

-EC

CHIEF, TECHNOLOGY DIVISION
ATTN: AMSTA-AR-CCB-T

-TA

-TB

-TC

TECHNICAL LIBRARY
ATTN: AMSTA-AR-CCB-O

TECHNICAL PUBLICATIONS & EDITING SECTION

ATTN: AMSTA-AR-CCB-O

OPERATIONS DIRECTORATE
ATTN: SIOWV-ODP-P

DIRECTOR, PROCUREMENT & CONTRACTING DIRECTORATE

ATTN: SIOWV-PP

DIRECTOR, PRODUCT ASSURANCE & TEST DIRECTORATE

ATTN: SIOWV-QA

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: AMSTA-AR-CCB-O OF ADDRESS CHANGES.

NO. OF
COPIES

Pk ok ek ik e

bk ek pmd ek

- N

-

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

ASST SEC OF THE ARMY
RESEARCH AND DEVELOPMENT
ATTN: DEPT FOR SCI AND TECH
THE PENTAGON

WASHINGTON, D.C. 20310-0103

DEFENSE TECHNICAL INFO CENTER
ATTN: DTIC-OCP (ACQUISITIONS)
8725 JOHN J. KINGMAN ROAD

STE 0944

FT. BELVOIR, VA 22060-6218

COMMANDER

U.S. ARMY ARDEC

ATTN: AMSTA-AR-AEE, BLDG. 3022
AMSTA-AR-AES, BLDG. 321
AMSTA-AR-AET-O, BLDG. 183
AMSTA-AR-FSA, BLDG. 354
AMSTA-AR-FSM-E
AMSTA-AR-FSS-D, BLDG. 94
AMSTA-AR-IMC, BLDG. 59

PICATINNY ARSENAL, NJ 07806-5000

DIRECTOR

U.S. ARMY RESEARCH LABORATORY

ATTN: AMSRL-DD-T, BLDG. 305

ABERDEEN PROVING GROUND, MD
21005-5066

DIRECTOR

U.S. ARMY RESEARCH LABORATORY

ATTN: AMSRL-WT-PD (DR. B. BURNS)

ABERDEEN PROVING GROUND, MD
21005-5066

DIRECTOR

NO. OF
COPIES

D bt ek e et ek

U.S. MATERIEL SYSTEMS ANALYSIS ACTV

ATTN: AMXSY-MP
ABERDEEN PROVING GROUND, MD
21005-5071

NO. OF
COPIES

COMMANDER

ROCK ISLAND ARSENAL

ATTN: SMCRI-SEM 1
ROCK ISLAND, IL 61299-5001

MIAC/CINDAS

PURDUE UNIVERSITY

2595 YEAGER ROAD 1
WEST LAFAYETTE, IN 47906-1398

COMMANDER

U.S. ARMY TANK-AUTMV R&D COMMAND
ATTN: AMSTA-DDL (TECH LIBRARY) 1
WARREN, MI 48397-5000

COMMANDER

U.S. MILITARY ACADEMY

ATTN: DEPARTMENT OF MECHANICS 1
WEST POINT, NY 10966-1792

U.S. ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFO CENTER 2
ATTN: AMSMI-RD-CS-R/DOCUMENTS
BLDG. 4484
REDSTONE ARSENAL, AL 35898-5241

COMMANDER

U.S. ARMY FOREIGN SCI & TECH CENTER
ATTN: DRXST-SD 1
220 7TH STREET, N.E.

CHARLOTTESVILLE, VA 22901

COMMANDER

U.S. ARMY LABCOM, ISA

ATTN: SLCIS-IM-TL 1
2800 POWER MILL ROAD

ADELPHI, MD 20783-1145

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,
BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,
AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT’D)

NO. OF
COPIES
COMMANDER
U.S. ARMY RESEARCH OFFICE
ATTN: CHIEF, IPO 1

P.0. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211

DIRECTOR

U.S. NAVAL RESEARCH LABORATORY
ATTN: MATERIALS SCI & TECH DIV 1
WASHINGTON, D.C. 20375

WRIGHT LABORATORY
ARMAMENT DIRECTORATE
ATTN: WL/MNM

EGLIN AFB, FL 32542-6810

WRIGHT LABORATORY
ARMAMENT DIRECTORATE
ATTN: WL/MNMF

EGLIN AFB, FL 32542-6810

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,

BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIV

E AND ARMAMENTS COMMAND,

AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

NO. OF
COPIES

