Title and Subtitle

Association of Training Injuries and Physical Fitness in U.S. Army Combat Engineers

Authors

K. Reynolds, J. Knapik, R. Hoyt, M. Mayo, J. Bremmer, B. Jones

Performing Organization Name and Address

U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760-5007

Funding Numbers

19960419 085

Supplementary Notes

Approved for public release; distribution is unlimited

Abstract

Combat Engineers engage in heavy construction activities but like other Army units, also perform weightbearing physical activities such as running and marching. We investigated associations between training injuries and physical fitness over a one year period in 147 combat engineers. Incidence of new musculoskeletal injuries was documented by a complete review of each soldier's medical record. Physical fitness was measured by the standard Army Physical Fitness Test. Soldiers performed the maximum number of pushups (PU) in 2 min, the maximum number of situps (SU) in 2 min and a 2-mile run for time. Sixty-eight percent of the soldiers suffered one or more training injuries. Subjects performed an average (+SD) 61+13 PU, 65+11 SU and ran an average time of 14.6+1.3 min. Subjects were divided into quartiles based on their scores in each fitness test. A 2X4 chi-square test (CST) and linear trend test (LTT) were used to compare quartiles (Q) for those injured at least once vs those not injured. For run time, soldiers in the fastest quartile were at lower injury risk than those in the slower quartiles (CST p=0.03, LTT p=0.02, Risk Ratio for Q1 vs Q4=1.5). There were no significant differences among the quartiles for PU (truncated after 200 words)

Subject Terms

Combat Engineers, physical fitness, musculoskeletal injuries

Security Classification of Report

Unclassified

Security Classification of Abstract

Unclassified

Security Classification of Page

Unclassified

Limitation of Abstract

UL
| Block 1. **Agency Use Only (Leave blank).** |
| Block 2. **Report Date.** Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year. |
| Block 3. **Type of Report and Dates Covered.** State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88). |
| Block 4. **Title and Subtitle.** A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses. |
| Block 5. **Funding Numbers.** To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:
 - C - Contract
 - G - Grant
 - PE - Program
 - PR - Project
 - TA - Task
 - WU - Work Unit
 - Element Accession No. |
| Block 6. **Author(s).** Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s). |
| Block 7. **Performing Organization Name(s) and Address(es).** Self-explanatory. |
| Block 8. **Performing Organization Report Number.** Enter the unique alphanumeric report number(s) assigned by the organization performing the report. |
| Block 9. **Sponsoring/Monitoring Agency Name(s) and Address(es).** Self-explanatory. |
| Block 10. **Sponsoring/Monitoring Agency Report Number.** (If known) |
| Block 11. **Supplementary Notes.** Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report. |
| Block 12a. **Distribution/Availability Statement.** Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).
 - DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."
 - DOE - See authorities.
 - NTIS - Leave blank. |
| Block 12b. **Distribution Code.**
 - DOD - Leave blank.
 - DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
 - NASA - Leave blank.
 - NTIS - Leave blank. |
| Block 13. **Abstract.** Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report. |
| Block 14. **Subject Terms.** Keywords or phrases identifying major subjects in the report. |
| Block 15. **Number of Pages.** Enter the total number of pages. |
| Block 16. **Price Code.** Enter appropriate price code (NTIS only). |
| Blocks 17. - 19. **Security Classifications.** Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page. |
| Block 20. **Limitation of Abstract.** This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited. |
PUBLICATION AND TECHNICAL PRESENTATION CLEARANCE

1. Report/Presentation Title:
 Association of Training Injuries and Physical Fitness in U.S. Army Combat Engineers

2. Authors: K. Reynolds, J. Knapik, R. Hoyt, M. Mayo, J. Bremmer, B. Jones

3. Type of Document: [X] Abstract [] Poster [] Presentation [] Book Chapter
 [] Journal Article [] Technical Report [] Review Article

5. Meeting name, dates & location: American College of Sports Medicine Annual Mtg., Indianapolis, IN, 1-4 June 1994

6. The attached material contains/does not contain classified material. It does/not contain any potentially sensitive or controversial material.

7. Editorial Comments: have/have not been requested.

8. Recommend Clearance:
 [X] Clearance is granted. [] Clearance is not granted.

 [] This must be forwarded to USAMRDC for clearance.

 ____________________________ ____________________________
 Technical Editor Date

9. ____________________________ ____________________________
 Research Division Chief Research Director

10. STO/Task number: Budget Project No: Cost Code

11. USARIEM Clearance Number: by RPOD (Date)

NATICK FORM 1486
1 Mar 93 This form replaces NATICK FL 453 dtd 1 Aug 90 which is obsolete.
ASSOCIATION OF TRAINING INJURIES AND PHYSICAL FITNESS IN U.S. ARMY COMBAT ENGINEERS

K Reynolds, J Knapik, FACSM, R Hoyt, M Mayo, J Bremner, B Jones. U.S. Army Research Institute of Environmental Medicine, Natick, MA 1760-5007

Combat Engineers engage in heavy construction activities but like other Army units, also perform weightbearing physical activities such as running and marching. We investigated associations between training injuries and physical fitness over a one-year period in 147 combat engineers. Incidence of new musculoskeletal injuries was documented by a complete review of each soldier’s medical record. Physical fitness was measured by the standard Army Physical Fitness Test. Soldiers performed the maximum number of pushups (PU) in 2 min, the maximum number of situps (SU) in 2 min and a 2-mile run for time. Sixty-eight percent of the soldiers suffered one or more training injuries. Subjects performed an average (±SD) 61±13 PU, 65±11 SU and ran an average time of 14.6±1.3 min. Subjects were divided into quartiles based on their scores in each fitness test. A 2X4 chi-square test (CST) and linear trend test (LTT) were used to compare quartiles (Q) for those injured at least once vs those not injured. For run time, soldiers in the fastest quartile were at lower injury risk than those in the slower quartiles (CST p=0.03, LTT p=0.02, Risk Ratio for Q4 vs Q1=1.5). There were no significant differences among the quartiles for PU (CST p=0.92, LTT p=0.97) or SU (CST p=0.74, LTT p=0.79). These data suggest that lower aerobic fitness is associated with musculoskeletal injuries in physically active combat engineers.