Photoinduced Orientation and Some of Its Photonic Consequences in Amorphous Azo-Containing Polymers

A. Natansohn and P. Rochon

Department of Chemistry
Queen's University
Kingston, Ontario K7L 3N6 Canada

Department of the Navy
Office of the Naval Research
800 North Quincy Street,
Arlington, VA 22217-5000

Submitted to Polymer Materials: Science and Engineering Division Preprints (ACS)

Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.

Photoinduced birefringence, surface gratings inscription and two-beam coupling properties are investigated on a series of amorphous high-Tg azo-containing polymers. For photoinduced birefringence, a neighboring group effect was observed, and dipolar interaction is demonstrated to be the main factor determining cooperative motion of side groups below Tg. Surface gratings can act as optical couplers into waveguides on the polymer films. Asymmetrical (photorefractive) and two-beam coupling due to multiwave mixing can be exploited for switching elements. In principle, a whole photonic device can be envisaged on a simple polymer film and obtained by optical inscription.

Azo polymers, photonic devices, photoinduced birefringence, two-beam coupling

unclassified

unclassified

unclassified

unlimited
Photoinduced Orientation and Some of Its Photonic Consequences in Amorphous Azo-Containing Polymers

by

A. Natansohn and P. Rochon

Submitted for publication in Polymer Materials: Science and Engineering Division Preprints (ACS)

Department of Chemistry
Queen's University
Kingston, On., Canada

March 28, 1996

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
PHOTOINDUCED ORIENTATION AND SOME OF ITS PHOTONIC CONSEQUENCES IN AMORPHOUS AZO-CONTAINING POLYMERS. A. Natansohn¹ and P. Rochon². ¹Department of Chemistry, Queen’s University, Kingston, Ont. K7L 3N6 and ²Department of Physics, Royal Military College, Kingston, Ont. K7K 5L0, Canada

Photoinduced birefringence, surface gratings inscription and two-beam coupling properties are investigated on a series of amorphous high-Tg azo-containing polymers. For photoinduced birefringence, a neighboring group effect was observed, and dipolar interaction is demonstrated to be the main factor determining cooperative motion of side groups below Tg. Surface gratings can act as optical couplers into waveguides on the polymer films. Asymmetrical (photorefractive) and two-beam coupling due to multiwave mixing can be exploited for switching elements. In principle, a whole photonic device can be envisaged on a simple polymer film and obtained by optical inscription.

ABSTRACT. Please be BRIEF—150 words maximum if possible. Title of paper should be ALL CAPS; author(s) listed by first name, middle initial, last name; indicate address w/zip code. SINGLE SPACE, BLACK INK.

A. DIVISION OF Polymeric Materials: Science and Engineering

B. MEMBER □ Yes □ No

C. TITLE OF PAPER Photoinduced Orientation and some of its Photonic Consequences in Amorphous Azo-Containing Polymers.

Please indicate preference: X oral □ poster (invited)

D. AUTHORS

Principal Author:
Surname NATANSOHN
First Name ALMERIA MI L

Presenting Author (if different)

Co-authors:
PAUL ROCHON

(To be filled in by Division)
Paper number as listed on program

E. Principal Author’s Business Mailing Address Including Zip Code
Dr. A. Natansohn
Department of Chemistry
Queen’s University
Kingston, Ontario K7L 3N6
Canada

F. Principal Author’s Telephone, Fax Number, and E-mail Address
613-545-2008 (phone)
613-545-6669 (fax)
natansoh@chem.queensu.ca

G. For contributed papers, do authors meet criteria outlined in ACS Bylaw VI, Section 6(3)? See instructions.
□ Yes □ No

H. Specify Equipment Required for Presentation Other than 2” x 2” (35MM)slide or overhead (transparency) projector
PHOTOINDUCED ORIENTATION AND SOME OF ITS PHOTONIC CONSEQUENCES IN AMORPHOUS AZO-CONTAINING POLYMERS

Almeria Natansohn1 and Paul Rochon2

1Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 2Department of Physics, Royal Military College, Kingston, Ontario, K7K 5L0, CANADA

Three different properties are of interest in the study of azo-containing polymers in our laboratory:

 photonconductive properties, and in the case presented above, carbazole is a well-know photoconductive group in various polymer structures. When the combination of electro-optic activity and photoconductive activity is present in a polymer, photorefractivity is a possibility. Photorefractivity has been demonstrated in the visible (λ = 534 nm) for thin films of the polymer with n = 2 by performing asymmetric two-beam coupling10, which is a definitive test for photorefractivity.2 By performing photorefractive poling with two interfering laser beams, birefringence gratings and surface gratings are also created in the polymer film, and the consequence is the appearance of two-beam coupling other than that produced by photorefractivity. Two-beam coupling due to multwave mixing can be observed in the absence of an electric field. Thus, this third property is fairly complex and more research is required before it can be used for optical switching.

 Potential for devices

 Stable birefringence can be locally induced and erased on a polymer film made of an azobenzene-containing polymer at a very high resolution. The birefringence can be used as a memory bit, or can be used for waveguide purposes. A "printed circuit" of waveguides can in principle be drawn on such a polymer film. At the points of incidence with a light beam coming from outside the film, the surface grating can be used to couple the external beam into and out of the polymer film. Such a surface grating can be obtained by exclusive optical means and its efficiency and direction of guiding are adjustable. Such a grating can also be erased, although local heating would be required for erasing. Finally, by local poling on films with photorefractive properties, or by exploiting symmetrical two-beam coupling, optical switches can be obtained. In principle, such an integrated circuit can be changed at will using only optical means.

 Acknowledgments

 Funding for this project is provided by the Office of Naval Research, NSERC Canada and the Department of Defence, Canada. The contributions of all our postdoctoral associates (M. S. Ho, X. Meng) and graduate students (S. Xie, C. Barrett, D. Brown, J. Paterson, S. To) were essential in developing this project. A. N. thanks Canada Council for a Killam Research Fellowship.

 References


In-situ orientation studies performed by monitoring infrared dichroism while birefringence was being photoinduced, clearly show different motions of the azobenzene and of the phenyl benzoate groups.

 Surface gratings

 Deep penodic surface gratings can be inscribed on azobenzene-containing polymer films by interfering beams, thus giving the possibility for long-term holographic storage12. The mechanism of inscribing such gratings was proposed to be pressure-driven10 and will be described in a separate paper in this symposium.

 Two-beam coupling

 A third property of some of the amorphous, high-Tg, azobenzene-containing polymer films is the ability for two-beam coupling, symmetric and asymmetric. Symmetric two-beam coupling can be obtained after inscription of a volume grating on the film (exploiting differences in birefringence) or of a surface grating, as mentioned above. Either grating will diffract incoming beams and may produce gain or loss. Asymmetric coupling can be obtained by exploiting the inherent photorefractive properties of at least some of these polymers.13,14. An example of a class of polymers studied for its photorefractive properties is presented below:

\[
\begin{align*}
O_2N-N- & \quad N \quad N \\
 & \quad (CH_2)n \quad O \quad CO \quad CR \\
& \quad CH_2
\end{align*}
\]

These polymers contain the rigid polar azobenzene groups which can be poled in the presence of an electric field. Such an arrangement has electro-optic activity. The presence of the amino group provides

\[
\begin{align*}
\text{PHOTOINDUCED ORIENTATION AND SOME OF ITS PHOTONIC CONSEQUENCES IN AMORPHOUS AZO-CONTAINING POLYMERS} \\
\text{Almeria Natansohn and Paul Rochon} \\
\text{Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6} \\
\text{Department of Physics, Royal Military College, Kingston, Ontario, K7K 5L0, CANADA} \\
\text{Three different properties are of interest in the study of azo-containing polymers in our laboratory:} \\
\text{photonic properties, and in the case presented above, carbazole is a well-known photonic group in various polymer structures. When the combination of electro-optic activity and photoconductive activity is present in a polymer, photorefractivity is a possibility. Photorefractivity has been demonstrated in the visible (λ = 534 nm) for thin films of the polymer with n = 2 by performing asymmetric two-beam coupling, which is a definitive test for photorefractivity. By performing photorefractive poling with two interfering laser beams, birefringence gratings and surface gratings are also created in the polymer film, and the consequence is the appearance of two-beam coupling other than that produced by photorefractivity. Two-beam coupling due to multwave mixing can be observed in the absence of an electric field. Thus, this third property is fairly complex and more research is required before it can be used for optical switching.} \\
\text{Potential for devices} \\
\text{Stable birefringence can be locally induced and erased on a polymer film made of an azobenzene-containing polymer at a very high resolution. The birefringence can be used as a memory bit, or can be used for waveguide purposes. A "printed circuit" of waveguides can in principle be drawn on such a polymer film. At the points of incidence with a light beam coming from outside the film, the surface grating can be used to couple the external beam into and out of the polymer film. Such a surface grating can be obtained by exclusive optical means and its efficiency and direction of guiding are adjustable. Such a grating can also be erased, although local heating would be required for erasing. Finally, by local poling on films with photorefractive properties, or by exploiting symmetrical two-beam coupling, optical switches can be obtained. In principle, such an integrated circuit can be changed at will using only optical means.} \\
\text{Acknowledgments} \\
\text{Funding for this project is provided by the Office of Naval Research, NSERC Canada and the Department of Defence, Canada. The contributions of all our postdoctoral associates (M. S. Ho, X. Meng) and graduate students (S. Xie, C. Barrett, D. Brown, J. Paterson, S. To) were essential in developing this project. A. N. thanks Canada Council for a Killam Research Fellowship.} \\
\text{References} \\
5. M. Pézolet and T. Buffeteau, in preparation. \\