
Higher-Order Superposition for Dependent Types

Roberto Virga

May 9, 1995

CMU-CS-95-150

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In this paper we extend the higher-order critical pair criterion, as described in [9], to the LF framework
[10], a calculus with dependent types. The notion of dependence relation is introduced, and used to restrict
rewriting to those cases where well-typedness is preserved.

This work was supported by NSF Grant CCR-9303383
The views and conclusions contained in this document are those of the author and should not be interpreted as

representing the o�cial policies, either expressed or implied, of NSF or the U.S. government

Keywords: meta logic, logical frameworks, rewriting, superposition, lambda calculus, type theory

1

1. Historical background

In the study of Term Rewriting Systems (TRS), the two key properties that we are mostly interested with
are termination and con
uence, which imply existence and uniqueness, respectively, of normal forms. In

presence of these conditions, the test for convertibility of two terms, undecidable in the general case, reduces
to a simple test for equality of their respective normal forms.

One of the central results in this study is certainly the Critical Pair Lemma for �rst-order TRSes [6], which
provides a computational method to check for local con
uence in a TRS, together with a way to extend any
TRS to an equivalent locally con
uent one. This fact, in conjunction with Newman's lemma [4], which says

that in presence of termination local con
uence and con
uence coincide, has led in the last decade to a series
of important breakthroughs in the �eld of automated equational reasoning.

Until fairly recently, all attempts to lift the theory of TRSes to the higher-order case seemed to be
undermined by the presence of some well-known negative results in this setting, �rst among these the

undecidability of the general uni�cation problem. The �rst important advance in order to overcome these
di�culties is due to D. Miller [8], who identi�ed a subclass of higher-order terms, called higher-order patterns
for which the uni�cation problem is decidable, and moreover uniqueness of most general uni�ers hold. Making

use of this result, T. Nipkow [7, 9] was able to state and prove an analogous of the Critical Pair Lemma for
the case of higher-order, simply-typed TRSes. Nipkow's Higher Order Term Rewriting Systems (HTRS) are

similar to Klop's Combinatory Reduction Systems (CRS). For a detailed analysis of the relation between
these two, see [16]. In this paper we extend higher-order rewriting to a calculus with dependent types, as
presented in [3]. Our approach in the proof of most results, notably the Critical Pair Lemma, will follow

Nipkow's one, though signi�cant modi�cations are necessary due to the fact that here terms may appear
inside types.

2. Preliminaries

De�nition 2.1. The LF calculus is a three-level calculus for terms, type families, and kinds

Kinds K := type j �x : A:K

Families A := a j �x : A:B j AM
Terms M := c j x j �x : A:M jMN

In the following, K denotes kinds, A;B families, M;N terms; a stands for constants at the level of type
families, c for constants at the level of terms, x; y; z for variables.

We assume the usual notions of �, � and �-reduction. All these notions, although de�ned on terms,
extend naturally by congruence to type families and kinds. All objects will be considered equal modulo
�-conversion.

We denote by !RF

, !�

and =
 the re
exive, re
exive-transitive, and re
exive-symmetric-transitive

closure, respectively, of !
 ,
 2 f�; �; �g; � is the smallest equivalence relation including =�, =� , =�.

By [N=x]M ([N=x]A, [N=x]K respectively) we intend, as usual, the replacement of all the free occurrences
of x by N inside M (A, K, respectively). As usual, �-conversion will be used, if necessary, to ensure the
that no free variable occurrence is captured inside the scope of a quanti�er.

The notation FV(E) and BV(E) is used to denote the set of free and bound variables, respectively, in E,
where E may be a term, a type family or a kind.

De�nition 2.2. To de�ne the class of well-typed kinds, type families, and terms we make use of signatures
and contexts:

Signatures � := � j �; a : K j �; c : A

Contexts � := � j �; x : A

We will use � and � to range over contexts.

Well-formed terms of a given type, type families, and kinds are then formed accordingly to the judgements

� `� M : A � `� A : K

� `� K Kind

2

These in turn are de�ned in terms of the auxiliary judgements

` � Sig

`� � Ctx

which specify how valid signatures and contexts are formed.

The rules for the calculus are listed below:

�(c)=A
�`�c:A

�(x)=A
�`�x:A

�`�A:type �;x:A`�M :B
�`��x:A:M :�x:A:B

�`�M :A A�B �`�B:type
�`�M :B

�`�M :�x:A:B �`�N :A
�`�MN :[N=x]B

�(a)=K
�`�a:K

�`�A:�x:B:K �`�M :B
�`�AM :[M=x]K

�`�A:type �;x:A`�B:type
�`��x:A:B:type

�`�typeKind
�`�A:type �;x:A`�K Kind

�`��x:A:K Kind

`�� Ctx
`�� Ctx �`�A:type
`��;x:A Ctx

�`�A:K K�K 0 �`�K
0 Kind

�`�A:K 0

`� Sig

`�K Kind `� Sig
`�;a:K Sig

`�A:type �`� Sig
`�;c:A Sig

We will use M N to denote the repeated application M N1 N2 : : : Nn; similarly for type families. The
notation [N=x] will stand for the repeated replacement [Nn=xn] : : : [N1=x1] rather than, as traditionally, for

the simultaneous one [N1=x1; : : : ; Nn=xn], which we will not need to use in this paper.

3. Dependency Relations

Di�erently from the simply-typed lambda-calculus, in the LF calculus replacing a subterm with another

of the same type inside a term may a�ect the type of the overall expression. The reason for this lies in the
de�nition of the rule for application:

�`�M :�x:A:B �`�N :A
�`�M N :[N=x]B

3

If we replace N by another term � `� N 0 : A we get an expression of a di�erent (and not necessarily

equivalent) type:

�`�M :�x:A:B �`�N
0:A

�`�MN 0:[N 0=x]B

Worse than that, the resulting expression may not be well-typed at all. Suppose that the expression above

was in turn a subterm in the expression:

�`�M
0:�y:[N=x]B:C �`�M N :[N=x]B
�`�M 0 (M N):[(M N)=y]C

Since in general � `� M 0 : �y : [N 0=x]B:C may not hold, the expression we obtain after the replacement

is ill-typed.
This problem is concretely illustrated by the following:

Example 1. Consider the following representation of a fragment of arithmetic:

nat : type

0 : nat

s : nat) nat

+ : nat) (nat) nat)

where we used the notation A) B and A) K for the abstractions �x : A:B and �x : A:K where
x =2 FV(B) and x =2 FV(K), respectively.

We want now to formalize the (�rst-order) predicate \n is even", together with some inference rules that
allow us to decide if a number is even:

o : type

proof : o) type

even : nat) o

even0 : proof(even 0)

evenss : �x : nat: proof(even x)) proof(even (s (s x)))

even+ : �x : nat: �y : nat: proof(even x)) (proof(even y)) proof(even (+ x y)))

evens+ : �x : nat: �y : nat: proof(even (+ x y))) proof(even (+ (s x) (s y)))

In this signature, for example, the term

even+ 0 (+ 0 0) even0 (even+ 0 0 even0 even0)

is well typed, but rewriting (+ 0 0)! 0 : nat we get

even+ 0 0 even0 (even+ 0 0 even0 even0)

which is not.

In de�ning a notion of rewriting, we must therefore be careful to rule out all these pathological cases that
lead to ill-typed expressions. A natural way to do this is to make use of dependency relations.

A signature � implicitly describes a hierarchy of type families: more complex families may depend on
terms belonging to simpler ones de�ned before. For example, formalizing a proof system, one may start by

de�ning basic type families, one for terms and the other for formulas; the family of proofs may depend on
formulas, and, if some predicate symbols are de�ned, through these on terms. Dependency relations formalize

4

mathematically this idea by de�ning preorders over type constants, constructed by looking (recursively) at

the signature.
The idea of using dependency relations is not completely new in LF. They have also been used in [13]

to prove well-foundedness of proofs by structural induction. In this paper, we will use them to obtain
information about the type of objects appearing inside types, and in turn we will use this information to
de�ne a notion of rewriting which is sound with respect to type checking.

De�nition 3.1. De�ne

head(�x1 : A1 : : :�xn : An:aM) = a;

let �0 be a signature, a pair �0= (�A0 ;�
M

0) of binary transitive relations over the set of type constants of
�0 is called a dependency relation if it satis�es the following conditions:

� ai �
A

0 a if �0(a) = �x1 : A1: : : :�xn : An:type, head(Ai) = ai, 1 � i � n;
� a �A0 a0 if, for some b, a �A0 b �M0 a0 or a �M0 b �A0 a0;

� a �M0 b if a �A0 b;

� `�0 �0 Sig;

where `�0 � Sig is de�ned (recursively) by the judgements

`�0 � Sig

`�K Kind `�0� Sig
`�0�;a:K Sig

`
�0
� A:type `�0� Sig

`�0�;c:A Sig

�(a)=K

�`
�0
� a:K

�`
�0
� A:�x:B:K �`

�0
� M :B

�`
�0
� A M :[M=x]K

�`
�0
� A:type �;x:A`

�0
� B:type

�`
�0
� �x:A:B:type

, wherehead(A)�M0 head(B) or head(A)=head(B)

�`
�0
� A: K�K 0 �`

�0
� K 0 Kind

�`
�0
� A:K 0

�(c)=A

�`
�0
� c:A

�(x)=A

�`
�0
� x:A

�`
�0
� A:type �;x:A`

�0
� M :B

�`
�0
� �x:A:M :�x:A:B

, wherehead(A)�M0 head(B) or head(A)=head(B)

�`
�0
� M :�x:A:B �`

�0
� N :A

�`
�0
� M N :[N=x]B

�`
�0
� M :A A�A0 (�`

�0
� A0:type

�`
�0
� M :A0

5

�`
�0
� typeKind

�`
�0
� A:type �;x:A`

�0
� K Kind

�`
�0
� �x:A:K Kind

`
�0
� � Ctx

`
�0
� � Ctx �`

�0
� A:type

`
�0
� �;x:A Ctx

Notation. By abuse of notation, given two type families A;B, we will write A �A B and A �M B for
head(A) �A head(B) and head(A) �M head(B), respectively. We will use A �M� B to say that A �M B or
head(A) = head(B).

The idea underlying the introduction of the relations �A and �M is to restrict, using the `�� judgements,

the generation of valid terms and type families to those which preserve the dependencies generated by the
signature �; in particular, we want terms of type A to be allowed to appear inside B only if A �A B, and
similarly terms of type A will be subterms of terms of type B only if A �M B.

When looking for a dependency relation, we will usually prefer coarser ones, so that the class of dependency-
preserving terms (i.e. terms well typed according to the `�� judgement) is as wide as possible. In practice,

given a derivation of ` � Sig, we will compute the minimum � such that `� � Sig holds.

Example 1. In our previous example about even numbers, the following is easily seen to be a dependency

relation:

�= (fnat �A proof;o �A proofg; fnat �M o;nat �A proof;o �M proofg)

The condition o �A proof comes from the type of proof; nat �M o is obtained from type checking on

even; �nally nat �A proof since �A��M � � A, and all the others pair in �M follow from �M��A.

Example 2. To demonstrate the gain in expressive power that the use of dependent types allows, we show

how the simply-typed lambda calculus can be formalized in this calculus. We will need two type families:
one, called type, for types, and the second, term, indexed by objects of the �rst, for terms.

type : type

arrow : type) (type) type)

term : type) type

lambda : �x : type:�y : type:((term x)) (term y))) term(arrow x y))

app : �x : type:�y : type:(term(arrow x y))) ((term x)) (term y))

For this system, a dependency relation is simply

�= (ftype �A termg; ftype �M termg)

Notation. In what follows, we will assume that a signature � and a dependency relation � for � have
been �xed. Moreover, wherever a context � is mentioned, we will will tacitly assume it is well-typed and

dependency-preserving, i.e. `�� � Ctx.

We state below a few properties of the LF calculus that continue to hold when restricting ourselves to

dependency-preserving terms:

Proposition 3.2. If � `�� M : A and N is a subterm of M , then there is �0 � � and type A0 such that

�0 `�� N : A0.

Proof. By induction on the derivation of � `�� M : A.

Notation. In the rest of this paper, we will write �(M;N) and A(M;N) for the context �0 and type A0,
respectively, obtained by the Proposition above. Note that these are not unique, but depend on the particular

derivation of � `�� M : A considered. However, all these are easily seen to be equivalent when conversion
and variable renaming are taken into account.

6

Proposition 3.3 (Weakening). Let �0 � �, �0 � �, and `�� � Ctx, then:

1. If �0 `��0 M : A then � `�� M : A.

2. If �0 `��0 A : K then � `�� A : K.
3. If �0 `��0 K Kind then � `�� K Kind.

Proof. By an easy induction on the derivations.

Lemma 3.4 (Substitution). Let � `�� N : C, then:

1. if �; y : C;� `�� M : A then �; [N=y]� `�� [N=y]M : [N=y]A;

2. if �; y : C;� `�� A : K then �; [N=y]� `�� [N=y]A : [N=y]K;
3. if �; y : C;� `�� K Kind then �; [N=y]� `�� [N=y]K Kind.

Proof. By (simultaneous) induction on the size of the derivations. For term and type abstractions, one has
to observe that head([N=y]A) = head(A).

Lemma 3.5. We have:

1. � `�� M : A implies � `�� A : type;

2. � `�� A : K implies � `�� K Kind.

Proof. Both are proved by induction on the derivation.

� Type constant:

�(a)=K

�`��a:K

By inversion on the derivation of ` � Sig and Weakening.

� Type application:

�`��A:�x:B:K �`��M :B

�`��A M :[M=x]K

By inductive hypothesis we get � `�� �x : B:K Kind. By inversion �; x : B `�� K Kind, hence by
Substitution the result.

� Type abstraction:

�`��A:type �;x:A`��B:type

�`���x:A:B:type
A�M� B

Trivial.

� Kind conversion:

�`��A:K
0 K 0�K �`��K Kind

�`��A:K

Trivial.

� Term constant:

�(c)=A

�`��c:A

By inversion on the derivation of ` � Sig and Weakening.

� Term variable:

�(x)=A

�`��x:A

By inversion on the derivation of `�� � Ctx and Weakening.

7

� Term application:

�`��M :�x:B:A �`��N :B

�`��M N :[N=x]A

By inductive hypothesis we get � `�� �x : B:A : type. By inversion, �; x : B `�� A : type, hence by
Substitution the result.

� Term abstraction:

�`��A:type �;x:A`��M :B

�`���x:A:M :�x:A:B
A�M� B

By inductive hypothesis we get �; x : A `�� B : type, and, applying the type abstraction rule, the

result.

� Type conversion:

�`��M :A0 A0�A �`��A:type

�`��M :A

Trivial.

Corollary 3.6. The following holds:

1. If � `�� �x : A:B : type then A �M� B.

2. If � `�� M : �x : A:B then A �M� B.

Proof. (1) is obtained immediately by inversion. For (2) we use the Lemma to conclude � `�� �x : A:B : type,
and hence by (1) the result.

The following result clari�es the motivating property of the two relations �A and �M :

Lemma 3.7. Let `�� �; x : C Ctx,

1. if �; x : C;� `�� A : K and x 2 FV(A) then C �A A

2. if �; x : C;� `�� M : A and x 2 FV(M) then C �M� A

Proof. By (simultaneous) induction on both derivations. The cases when either A orM are constants, orM

is a variable are trivial. So are those for the conversion rules. The only interesting cases are, for both terms
and type families, application and abstraction:

� Type application:

�; x : C;� `�
�
A : �y : B:K �; x : C;� `�

�
M : B

�; x : C;� `�� A M : [M=y]K

If x 2 FV(A) we are done by inductive hypothesis on �; x : C;� `�� A : �y : B:K, since head(AM) =

head(A). Otherwise, if x 2 FV(M), then by the inductive hypothesis on �; x : C;� `�� M : B we get

C �M� B. By inversion, we easily see A = aN for some termsN and type family constant a = head(A);

then �(a) = �x1 : C1 : : :�xn : Cn:type and head(B) = head(Ci) for some i, so B �A A; hence, we
conclude C �A A.

� Type abstraction:

�; x : C;� `�� A : type �; x : C;�; y : A `�� B : type

�; x : C;� `�� �y : A:B : type
A �M� B

If x 2 FV(B) we are done by inductive hypothesis on �; x : C;�; y : A `� B : type, since head(�y :

A:B) = head(B). Otherwise, if x 2 FV(A), then by the inductive hypothesis on �; x : C;� `� A : type
we get C �A A, and hence by the side condition the result.
� Term application:

�; x : C;� `�� M : �y : B:A �; x : C;� `�� N : B

�; x : C;� `�� M N : [N=y]A

8

If x 2 FV(M) we are done by inductive hypothesis on �; x : C;� `� M : �y : B:A, since

head([N=y]A) = head(�y : B:A). Otherwise, if x 2 FV(N) by the inductive hypothesis on �; x :
C;� `� N : B we get C �M� B. By Corollary 3.6, B �M� A, and by transitivity we conclude

C �M� [N=y]A.
� Term abstraction:

�; x : C;� `� A : type �; x : C;�; y : A `� M : B

� `� �y : A:M : �y : A:B
A �M� B:

If x 2 FV(M) we are done by inductive hypothesis on �; x : C;�; y : A `� M : B, since head(�y :
A:B) = head(B). Otherwise, if x 2 FV(A), then by the inductive hypothesis on �; x : C;� `� A : type
we get C �M� A, hence by the side condition and transitivity we conclude C �M� �y : A:B.

De�nition 3.8. Environments are expressions with a \hole", which we will denote by �, constructed ac-

cording to the following syntax:

Environments E := � j �x : A:E jM E j E N

Well-typed environments are constructed by means of the judgement

� `�� E[[�� ` � : A�]] : A;

and the rules

��`
�

�A�:type ����

�`��� [[��`�:A�]]:A�

�`��A:type �;x:A`��E[[��`�:A�]]:B

�`���x:A:E[[��`�:A�]]:�x:A:B
A�M� B

�`��E[[��`�:A�]]:�x:A:B �`��N :A

�`��(E[[��`�:A�]]) N :[N=x]B

�`��M :�x:A:B �`��E[[��`�:A�]]:A

�`��M (E[[��`�:A�]]):B
A��AB

�`��E[[��`�:A�]]:A A�B �`��B:type

�`��E[[��`�:A�]]:B

Example 1. The environments

even+ 0 (�[[` � : nat]]);

and

even+ 0 (�[[` � : nat]]) (even+ 0 0 even0 even0)

are not well-typed. This because in the application

`��even+ 0:�y:nat:proof(even 0))(proof(even y))proof(even (+ 0 y))) `��� [[`�:nat]]:nat

`��even+ 0 (� [[`�:nat]]):proof(even 0))(proof(even �))proof(even (+ 0 �)))

the side condition nat �A even is violated.

9

Notation. Given an environment E and a termM , we will write E[[M]] for the term obtained by replacing

the hole � with M . Conversely, let M be a term and N an occurrence of one of its subterm, we will write
M [[�]]N for the environment (not necessarily well-typed) obtained from M by replacing that occurrence of

N by �.

The type of an environment depends, by the relation �M , on the type of its hole:

Proposition 3.9. If � `�� E[[�� ` � : A�]] : A then A� �
M

� A.

Proof. By induction on the derivation of � `�� E[[�� ` � : A�]] : A. All cases are trivial, except perhaps

�`��M1:�x:B:A �`��E2[[��`�:A�]]:B

�`��M1(E2[[��`�:A�]]):A
A��AA

By inductive hypothesis, A� �
M

� B. From � `�� M1 : �x : B:A one concludes B �M� A. Hence by

transitivity A� �
M

� A.

As expected, when the hole is replaced by an expression of compatible type, environments produce well-
typed expressions:

Lemma 3.10. If � `�� E[[�� ` � : A�]] : A, and � `�� M : A� with � � ��, then � `�� E[[M]] : A.

Proof. By induction on � `�� E[[�� ` � : A�]] : A. The only interesting case is, as before,

�`��M1:�x:B:A �`��E2[[��`�:A�]]:B

�`��M1(E2[[��`�:A�]]):A
A��AA;

By induction hypothesis we get

�`��M1:�x:B:A �`��E2[[M]]:B

�`��M1 (E2[[M]]):[E2[[M]]=x]A

We are left to show that x =2 FV(A), so that [E2[[M]]=x]A = A. From � `�� M1 : �x : B:A we deduce

� `�� �x : B:A : type, and by inversion �; x : B `�� A : type. Suppose x 2 FV(A), then B �A A, and, since

from � `�� E2[[�� ` � : A�]] : A we get A� �
M

� B, we conclude A� �
A A, a contradiction.

In general the composition of two well-typed environment does not produce a well-typed environment. A

su�cient condition for this to happen is given by the following:

Proposition 3.11. Let � `�� E[[�� ` � : A�]] : A, � `
�

� E0[[� ` � : A]] : A0 two environments, if A �M� A�
then � `�� E0[[E[[�� ` � : A�]]]] : A

0.

Proof. By an easy induction on � `�� E0[[� ` � : A]] : A0. We show the case

�`��M
0
1:�x:B

0:A0 �`��E
0
2[[�`�:A]]:B

0

�`��M
0
1 (E

0
2[[�`�:A]]):A

0 A�AA0:

By inductive hypothesis we obtain � `�� E0
2[[E[[�� ` � : A�]]]] : B

0. If A� �
A A0 from the assumption

A �M� A� we get A �
A A0, a contradiction. Hence

�`��M
0
1:�x:B

0:A0 �`��E
0
2[[E[[��`�:A�]]]]:B

0

�`��M
0
1 (E

0
2[[E[[��`�:A�]]]]):A

0 A��AA0:

The following shows that environments behave nicely with respect to �-reduction:

Lemma 3.12. Let �; x : C;� `�� M : A be any term and � `�� E[[�� ` � : A�]] : C an environment, if

A� �A A, then for any occurrence of x in M we have �; x : C;� `�� M [[E[[�� ` � : A�]]]]x : A.

10

Proof. By induction on the derivation of �; x : C;� `�� M : A. Most of the cases are trivial; one interesting

case is abstraction, since we have in particular to make sure that x cannot appear inside the type:

�;x:C;�`��A:type �;x:C;�;y:A`��M :B

�;x:C;�`���y:A:M :�y:A:B
A�M� B

If x 2 FV(A) then C �A A, and, by the side condition C �A �y : A:B. From � `�� E[[�� ` � : A�]] : C

we get A� �
M

� C, hence A� �
A �y : A:B, contradiction to the assumptions. So it must be x 2 FV(M), and

the result follows by induction hypothesis.
Another interesting case is application, where x appears on the right-hand-side:

�;x:C;�`��M :�y:B:A �;x:C;�`��N :B

�;x:C;�`��M N :[N=y]A

Note that the side condition in the corresponding rule for environments is automatically guaranteed by
the hypotheses. We are left to show that y does not appear in A and that A� �A B.

Since we are assuming x 2 FV(N), C �M� B. If y 2 FV(A) then B �A A, hence C �A A, and, since

A� �
M

� C, we obtain a contradiction. Similarly A� �A B, because otherwise we would get, from B �M� A,

A� �
A A, again a contradiction. Having shown these two simple facts, the result follows by inductive

hypothesis on �; x : C;� `�� N : A.

Corollary 3.13. If � `�� (�x : A:M) (E[[�� ` � : A�]]) : B then for all the occurrences of x in M we have
�; x : A `�� M [[E[[�� ` � : A�]]]]x : B.

Proof. By inversion (and type conversion, if necessary), we get �; x : A `�� M : B, � `�� E[[�� ` � : A�]] : A,

and A� �A B. The result then follows by the Lemma.

4. Substitutions

In [9], the de�nition of substitution makes use of the existence and uniqueness of long �� normal forms.
In the LF calculus, these �nd an analogue in the concept of canonical form:

De�nition 4.1. We de�ne canonical forms for terms and type families by the judgements

� `� M + A M is canonical of type A
� `� A + type A is a canonical type

� `� M # A M is atomic of type A
� `� A # K A is atomic of type K

formed according to the following inference rules:

�`�A + type �;x:A`�M + B
�`��x:A:M + �x:A:B

�`�A # type �`�M # A
�`�M + A

�`�M + A A�B �`�B:type
�`�M + B

11

�(c)=A
�`�c # A

�(x)=A
�`�x # A

�`�M # �x:A:B �`�N + A
�`�M N # [N=x]B

�`�M # A A�B �`�B:type
�`�M # B

�(a)=K
�`�a # K

�`�A # �x:B:K �`�M + B
�`�A M # [M=x]K

�`�A # K K�K 0 �`�K
0 Kind

�`�A # K 0

�`�A + type �;x:A`�B + type
�`��x:A:B + type

�`�A # type
�`�A + type

Theorem 4.2. Let `� � Ctx, then

1. If � `� M # A then � `� M : A.
2. If � `� A # K then � `� A : K.

3. If � `� M + A then � `� M : A.
4. If � `� A + type then � `� A : type.
5. If � `� M : A then there is a unique M 0 such that M 0 �M and � `� M + A.

6. If � `� A : type then there is a unique A0 such that A � A0 and � `� A0 + type.

Proof. See [1], [2], [15].

In light of the previous section, our goal is to show that if a well-typed term or type family respects the

dependencies, so does its canonical form.

Notation. We will make use of the following abbreviations:

� `�� M + A
def
() � `� M + A and � `�� M : A

� `�� A + type
def
() � `� A # type and � `�� A : type

� `�� M # A
def
() � `� M # A and � `�� M : A

� `�� A # K
def
() � `� A # K and � `�� A : K

The inversion properties for the judgements � `�� M # A and � `�� M + A are non-trivial enough to be
worth being stated and proved explicitly:

Proposition 4.3 (Inversion). We have:

1. If � `�� M : �x : A:B, � `�� N : A, and � `� M N # C then � `�� M # �x : A:B and � `�� N + A.

2. If �; x : A `�� M : B, and � `� (�x : A:M) + C then �; x : A `�� M + B.
3. If � `�� M : A, A � A0, � `� A0 # type, and � `� M + C then � `�� M # A.

Proof. (1) By induction on the derivation of � `� M N # C . There are only two cases:

12

� Application:

�`�M # �x:A
0:B0 �`�N+A

0

�`�M N # [N=x]B0

From � `�� M : �x : A:B we get � `�� �x : A:B : type, and by inversion � `�� A : type. The result
then follows from � `� M # �x : A0:B0 and � `� N + A0 by conversion, since A � A0 and B � B0.

� Conversion:

�`�M N # C 0 C 0�C �`�C:type
�`�M N # C

Immediate by inductive hypothesis.

The proofs of (2) and (3) are similar.

The following (quite technical) lemmas show that the class of dependency-preserving terms is closed with

respect to �- and �-reduction, and also, under some circumstances, under �-expansion.

Lemma 4.4. If � `�� M : A and M !� M
0 then � `�� M 0 : A.

Proof. By induction on the derivation of � `�� M : A. Application is the only interesting case:

�`��M1:�x:B:A �`��M2:B

�`��M1 M2:[M2=x]A

We have to distinguish three possible subcases:

� M1 M2 !� M
0
1 M2

By inductive hypothesis � `�� M 0
1 : �x : B:A, hence the result.

� M1 M2 !� M1 M
0
2

By inductive hypothesis � `�� M 0
2 : B. From � `�� M1 M2 : [M2=x]A we get � `�� [M2=x]A : type,

and clearly [M 0
2=x]A � [M2=x]A, so

�`��M1:�x:B:A �`��M
0
2:B

�`��M1 M
0
2:[M

0
2=x]A

[M 0
2=x]A�[M2=x]A �`�� [M2=x]A:type

�`��M1 M
0
2:[M2=x]A

� (�x : B:M 0
1)M2 !� [M2=x]M

0
1

By inversion and type conversion, �; x : B0 `�� M 0
1 : A and � `�� M2 : B

0. The result then follows
by Substitution.

Corollary 4.5. If � `�� M : A and M !�
�
M 0 then � `�� M 0 : A.

Lemma 4.6. If � `�� M : A and M !� M
0 then � `�� M 0 : A.

Proof. By induction on the derivation of � `�� M : A. Abstraction is the only interesting case:

�`��A:type �;x:B`��M1:A

�`���x:B:M1:�x:B:A
A�M� B

We have to distinguish two possible subcases:

� �x : A:M1 !� �x : A:M 0
1

By inductive hypothesis �; x : B `�� M 0
1 : A, hence the result.

� �x : A:M1 = �x : B:(M 0
1 x)!� M

0
1

By inversion (and type conversion, if necessary) � `�� M 0
1 : �x : B:A.

Corollary 4.7. If � `�� M : A and M !�
�
M 0 then � `�� M 0 : A.

Lemma 4.8. If � `�� M # C, then there is M 0 !�
�
M such that � `�� M 0 + C.

13

Proof. The induction is on the structure of C:

� Case C = �x : A:B:

From the assumptions, one gets � `�� �x : A:B : type, and by inversion, � `�� A : type, so
�; x : A `�� x # A and by inductive hypothesis we get a N !�

�
x such that �; x : A `�� N + A.

By inversion again, from � `�� �x : A:B : type one also gets �; x : A `�� B : type, and since

�; x : A `�� M N # B, we can apply the inductive hypothesis once more to get a M 0 !�
�
M N such

that �; x : A `�� M 0 + B. Then �x : A:M 0 is as required.
� Case C = A N or C = a

From the assumptions � `�� C : type, and by Theorem 4.2 there is C 0 � C such that � `� C 0 + type.
By inversion then � `� C 0 # type, and, since � `� M # C 0 by type conversion, we get � `� M + C 0.
By conversion again, we get �nally � `� M + C.

Proposition 4.9. Let C � C 0, � `�� C 0 : type, then:

1. If �; x : C;� `�� M + A then �; x : C 0;� `�� M + A.
2. If �; x : C;� `�� A + type then �; x : C 0;� `�� A + type.

3. If �; x : C;� `�� M # A then �; x : C 0;� `�� M # A.
4. If �; x : C;� `�� A # K then �; x : C 0;� `�� A # K.

Proof. By an easy induction on the derivations. Replace

�;x:C;�`��x # C

with

�;x:C 0;�`��x#C
0 C 0�C �;x:C;�`��C:type

�`��x # C

Theorem 4.10. We have:

1. If � `�� M : A then there is a M 0 �M such that � `�� M 0 + A.
2. If � `�� A : type then there is a A0 � A such that � `�� A0 + type.

3. If � `�� M : A and M = hN where h constant or variable, then there is a M 0 � M such that
� `�� M 0 # A.

4. If � `�� A : K and A = aN , then there is a A0 � A such that � `�� A0 # K.

Proof. By (simultaneous) inductions on the derivations. By Corollary 4.5, in (1) and (3) we will furthermore

assume, without loss of generality, M in �-normal form.

� Type constant:

�(a)=K

�`��a:K

We have immediately � `�� a # K. If K = type, we have also � `�� a + type.

� Type application:

�`��A:�x:B:K �`��M :B

�`��A M :[M=x]K

By inversion we easily see A = aN , hence by inductive hypothesis we get A0 � A and M 0 � M such

that � `�� A0 # �x : B:K and � `�� M 0 + B, and therefore � `�� A0M 0 # [M 0=x]K.
From � `�� A : �x : B:K we get � `�� �x : B:K Kind, and by inversion �; x : B `�� K Kind.

Therefore by Substitution � `�� [M=x]K Kind, and hence by conversion � `�� A0M 0 # [M=x]K. If
K = type, we have also � `�� A0M 0 + type.

14

� Type abstraction:

�`��A:type �;x:A`��B:type

�`���x:A:B:type
A�M� B

From the inductive hypotheses we get A0 � A and B0 � B such that � `�� A0 + type and �; x : A `��
B0 + type. Using Proposition 4.9 we conclude � `�� �x : A0:B0 + type.

� Kind conversion:

�`��A:K K�K 0 �`��K
0 Kind

�`��A:K
0

Immediate from inductive hypothesis.

� Term constant:

�(c)=A

�`��c:A

We get immediately � `�� c # A; (1) then follows from Lemma 4.8.

� Term variable:

�(x)=A
�`�x:A

We get immediately � `�� x # A; (1) then follows from Lemma 4.8.

� Term application:

�`��M :�x:B:A �`��N :B

�`��M N :[N=x]A

SinceM in �-normal form, by inductive hypothesis we getM 0 �M and N 0 � N 0 such that � `�� M 0 #

�x : B:A and � `�� N 0 + B, and hence � `�� M 0N 0 # [M 0=x]A.

From � `�� M : �x : B:A we get � `�� �x : B:A type, and by inversion �; x : B `�� A type.
Therefore by Substitution � `�� [M=x]A Kind, and hence by type conversion � `�� M 0N 0 # [M=x]A.
Once again, (1) follows from Lemma 4.8.

� Term abstraction:

�`��A:type �;x:A`��M :B

�`���x:A:M :�x:A:B
A�M� B

From the inductive hypotheses we get A0 � A and M 0 �M such that � `�� A0 + type and �; x : A `��
M 0 + B. By Proposition 4.9 one obtain � `�� �x : A0:M 0 + �x : A0:B.

From � `�
�
�x : A:M : �x : A:B we get � `�

�
�x : A:B type, and therefore by type conversion

� `�� �x : A0:M 0 + �x : A:B.

� Type conversion:

�`��M :A A�A0 �`��A
0:type

�`��M :A0

Immediate by inductive hypothesis.

Corollary 4.11. If � `�
�
M : A then there are M 0;M 00 such that M !�

�
M 0, M 00 !�

�
M 0, � `�� M 00 + A

Proof. By inspection of the proof of Theorem 4.10 and commutativity of � reduction and � expansion.

Notation. Given a well-typed term M or a type family A, we will denote their canonical form by M+ and
A+, respectively.

Lemma 4.12. Let � `�� E[[�� ` � : A�]] : A an environment and �� `
�

� M : A� a compatible term.

1. If � `�� E[[M]] + A then �� `
�

� M + A� or �� `
�

� M # A�. Moreover, if �� `
�

� M + A� (�� `
�

� M # A�)
then for all �� `

�

� N + A� (�� `
�

� N # A�) we have � `�� E[[N]] + A.

15

2. If � `�� E[[M]] # A then �� `
�

� M + A� or �� `
�

� M # A�. Moreover, if �� `
�

� M + A� (�� `
�

� M # A�)

then for all �� `
�

� N + A� (�� `
�

� N # A�) we have � `�� E[[N]] # A.

Proof. By induction on � `�� E[[�� ` � : A�]] : A, using Lemma 3.10 and Inversion.

De�nition 4.13. Given two contexts � and �, a substitution from � to � is a type-preserving, �nite-

support mapping from variables to terms � : �+ � formed according to the following rules:

�:�+�

fx7!Mg:�+� �`�N+[M=x]A

fx7!M;y 7!Ng:(�;y:A)+�

Dependency-preserving substitution are de�ned by the rules:

�:�
�
+�

fx7!Mg:�
�
+� �`��N+[M=x]A

fx7!M;y 7!Ng:(�;y:A)
�
+�

De�nition 4.14. Given any well-typed term � `� M : A and substitution � = fx 7! Ng : � + �, de�ne

�M to be the (unique) canonical form of

� `� [N=x]M : [N=x]A

Similarly, given � `� A : type we also de�ne �A.

Note that here, in analogy to [9], we de�ne the result of a substitution application to be a canonical term.
This will simplify considerably some proofs in the next section.

De�nition 4.15. We de�ne:

1. Given two substitutions �1 = fx 7! Mg : �1 + �2 and �2 : �2 + �3, the composition �2 � �1 is the

substitution �2 � �1 = fx 7! �2Mg : �1 + �3.

2. A substitution � = fx 7! Mg : � + � is a renaming if all the terms Mi are (convertible to) distinct
variables.

3. A substitution �1 : �+ � is said to be more general than �2 : �+ �0 if there is � : � + �0 such that

�2 = � � �1.
4. Given two well typed terms � `� M : A and � `� N : A0, a substitution � : � + � is said to be a

uni�er of M and N if �M = �N ; M and N are then said to unify.

The class of dependency-preserving terms is closed with respect to substitution application:

Proposition 4.16. Let � = fx 7! Ng : �
�
+ �,

1. If � `�� M : A then � `�� �M : [N=x]A.

2. If � `�� A : type then � `�� �A : [N=x]K.

Proof. (1) First assume dom�\ dom� = ;. Then by Weakening one gets �;� `�� M : A and � `�� Ni : Bi

for all i. By repeated applications of Weakening and Substitution from these one gets the result.

If dom� \ dom� 6= ;, let � : �
�
+ �0 a renaming into a set of fresh variables. Using the proof above,

one easily show, by induction on � : �
�
+ � that �0 = � � � : �

�
+ �0. Moreover, it is immediate to see

��1 : �0 �+ � and �M = ��1(�0M), hence, by using again (twice) the proof above, one gets the result.
(2) Similar.

Corollary 4.17. If �1 : �1
�
+ �2 and �2 : �2

�
+ �3, then �2 � �1 : �1

�
+ �3.

Proof. By induction on the derivation of �1 : �1
�
+ �2.

16

De�nition 4.18. A canonical term � `� M + A is said to be a pattern if each x 2 dom� can appear in M

and A only applied to terms �-equivalent to distinct bound variables.

Theorem 4.19. Uni�cation of patterns is decidable; if two patterns unify, there is a unique (up to conver-

sion) most general uni�er.

Proof. See [11].

5. Higher-Order Term Rewriting

In this section we extend the notion of term rewriting system and rewriting relation to a higher-order
setting with dependent types.

De�nition 5.1. A rewrite rule � `�� l! r : A is a pair of well typed terms such that

� � `�� l + A is a pattern, � `�� r : A,
� � `�� A # type,

� FV(l) � FV(r).

A higher-order term rewriting system (HTRS) R is a �nite set of rewrite rules, such that, for each pair of
rules �1 `

�

� l1 ! r1 : A1;�2 `
�

� l2 ! r2 : A2 2 R, A1 �A A2.

The condition above translates to the requirement that it is not possible to use a rewrite rule to rewrite
the type of another. This is therefore consistent with the original goal to de�ne rewriting in such a way that

it does not modify types, and hence preserve well-typedness of expressions.
Moreover, under this assumption, as we will see, the critical pair criterion will involve, precisely like the

�rst order case, a check for overlaps only among the left-hand-sides of the rules.

Example 2. In the formalization of the simply-typed lambda calculus given before, � and � reductions can

be expressed as rewrite rules:

A : type; B : type; F : (term A)) (term B); U : term A `�� (app (lambda F) U)! (F U) : term B

A : type; B : type; G : term (arrow A B) `�� lambda(�x : term A:app G x)! G : term(arrow A B)

The check that both rules are well-typed and preserve dependencies is left to the reader.

De�nition 5.2. Given a HTRS R and two terms � `�� M : A and � `�� N : A we de�ne R-rewriting as

follows:

� `�� M
R
�! N : A

def

()M+ = E[[�l]]; N+ = E[[�r]] for some (� ` l! r : B) 2 R; � : �
�
+ �(M+; �l);

and � `�� E[[�(M+; �l) ` � : A(M+; �l)]] : A:

We furthermore de�ne R-conversion as the judgement � `�� M
R
 ! N : A formed according to the following

rules:

�`��M :A M�N �`��N :A

�`��M
R
 !N :A

�`��M
R
�!N :A

�`��M
R
 !N :A

�`��M
R

 !N :A

�`��N
R
 !M :A

�`��M
R

 !N 0:A �`��N
0 R

 !N :A

�`��M
R
 !N :A

In addition to R-conversion, we introduce a more natural notion of equality modulo R, as a congruence

relation containing all instances of R, and closed with respect to conversion:

De�nition 5.3. Let R be a HTRS, congruence modulo R is de�ned by the judgement

� `�� M
R
= N : A B D M and N of type A are congruent modulo R

where D is a set of type constants used to keep track of the dependency constraints. The rules associated to
this judgement are the following:

17

�`��M :A

�`��M
R

=M :AB;

�`��M
R

=N :ABD

�`��N
R

=M :ABD

�`��M
R
=N 0:ABD �`��N

0R=N :ABD0

�`��M
R

=N :AB(D[D0)

�`��l!r:A2R �:�
�
+�

�`���l
R
=�r:�ABfhead(A)g

�`��A:type �;x:A`��M
R
=N :BBD

�`���x:A:M
R
=�x:A:N :�x:A:BBD

A�M� B

�`��M
R
=M 0:�x:A:BBD �`��N

R
=N 0:ABD0

�`��M N
R
=M 0 N 0:[N=x]BB(D[D0)

a�AB for all a2D0

�`��M
R
=N 0:ABD N 0�N �`��N

0:A

�`��M
R
=N :ABD

The only place the set of dependency D above plays a role is in the application rule: there, it restricts
the rule to those cases where well-typedness of both sides is guaranteed. An analogous set is de�ned for

R-rewriting:

De�nition 5.4. The set of dependency constraints generated by a R-rewriting step is de�ned as

(� `�� M
R
�! N : A)
 fhead(B)g

if (� `�� l! r : B) 2 R was the rewriting rule used in its de�nition.

This de�nition is extended to R-conversion:

�`��M :A M�N �`��N :A

(�`��M
R
 !N :A)
;

(�`��M
R

�!N :A)
D

(�`��M
R
 !N :A)
D

(�`��M
R

 !N :A)
D

(�`��N
R
 !M :A)
D

(�`��M
R

 !N 0:A)
D (�`��N
0 R

 !N :A)
D0

(�`��M
R
 !N :A)
(D[D0)

The main theorem of this section will be the following:

Theorem 5.5. Let R be a HTRS, then for all M , N ,

(� `�� M
R
 ! N : A)
 D , � `�� M

R
= N : A B D:

One direction is easy to prove:

Lemma 5.6. If � `�� E[[�� ` � : A�]] : A and �� `
�

� M
R
= N : A� B fhead(A�)g then � `�� E[[M]]

R
= E[[N]] :

A B fhead(A�)g.

Proof. By an easy induction on the derivation of � `�� E[[�� ` � : A�]] : A. We check the case:

�`��M1:�x:B:A �`��E2[[��`�:A�]]:B

�`��M1(E2[[��`�:A�]]):A
A��AA

18

By re
exivity, � `�� M1
R
= M1 : �x : B:A B ;, and by inductive hypothesis � `�� E2[[M]]

R
= E2[[N]] : B B

fhead(A�)g. By hypothesis A� �A A, hence by the application rule:

�`��M1
R
=M1:�x:B:AB; �`��E2[[M]]

R
=E2[[N]]:BBfhead(A�)g

�`��(M1 E2[[M]])
R
=(M1 E2[[N]]):[E2 [[M]]=x]ABfhead(A�)g

To conclude the proof we have to show that x =2 FV(A), so that [E2[[M]]=x]A = A. If not, then B �A A,

and since we know A� �
M B from � `�� E2[[�� ` � : A�]] : B, we conclude A� �

A A, a contradiction.

Corollary 5.7. Let R be a HTRS, if (� `�� M
R
 ! N : A)
 D then � `�� M

R
= N : A B D.

Proof. By induction on the derivation of (� `�� M
R
 ! N : A)
 D. We consider two cases:

� Conversion:

�`��M :A M�N �`��N :A

(�`��M
R
 !N :A)
;

From � `�� M : A by re
exivity we get � `�� M
R
= M : A B ; and by the term conversion rule the

result:

�`��M
R
=M :AB; M�N �`��N :A

�`��M
R

=N :AB;

� R-rewriting:

(�`��M
R

�!N :A)
D

(�`��M
R
 !N :A)
D

By de�nition, � `�� M
R

�! N : A if there are (� `�� l ! r : B) 2 R, � : �
�
+ �(M+; �l), and

� `�� E[[�(M+; �l) ` � : A(M+; �l)]] : A such that M+ = E[[�l]]; N+ = E[[�r]].

By re
exivity and conversion, like the previous case, we get � `�� M
R
= E[[�l]] : A B ; and � `��

E[[�r]]
R
= N : A B ;. Also, �(M+; �l) `

�

� �l
R
= �r : A(M+; �l) B D, where D = fhead(B)g =

fhead(A(M+; �l))g, so applying the Lemma we get � `�� E[[�l]]
R

= E[[�r]] : A B fhead(B)g, and by
transitivity the result.

To prove the other direction of Theorem 5.5 we follow the same approach used in [9], which goes through

the de�nition of a weaker notion of rewriting:

De�nition 5.8. For terms � `�
�
M : A and � `�

�
N : A, we de�ne weak R-rewriting as:

� `�� M
[R]
�! N : A

def

()M = E[[M�]]; N = E[[N�]];M� � �l;N� =� �r, for some (� ` l! r : B) 2 R;

� : �
�
+ �(M;M�); and � `�� E[[�(M;M�) ` � : A(M;M�)]] : A:

We furthermore de�ne weak R-conversion as the judgement � `�� M
[R]
 ! N : A formed according to the

following rules:

�`��M :A M�N �`��N :A

�`��M
[R]
 !N :A

�`��M
[R]
�!N :A

�`��M
[R]
 !N :A

�`��M
[R]
 !N :A

�`��N
[R]
 !M :A

�`��M
[R]
 !N 0:A �`��N

0
[R]
 !N :A

�`��M
[R]
 !N :A

19

The set of dependency constraints generated by a weak R-rewriting step is de�ned as

(� `�� M
[R]
�! N : A)
 fhead(B)g

if (� `�� l! r : B) 2 R was the rewriting rule used.

This de�nition is extended to weak R-conversion:

�`��M :A M�N �`��N :A

(�`��M
[R]
 !N :A)
;

(�`��M
[R]
�!N :A)
D

(�`��M
[R]
 !N :A)
D

(�`��M
[R]
 !N :A)
D

(�`��N
[R]
 !M :A)
D

(�`��M
[R]
 !N 0:A)
D (�`��N

0
[R]
 !N :A)
D0

(�`��M
[R]
 !N :A)
(D[D0)

One relation between these two notions of rewriting is easily derived from their respective de�nitions:

Proposition 5.9. (� `�� M
R

 ! N : A)
 D if and only if (� `�� M+

[R]
 ! N+ : A)
 D.

Proof. By de�nition and Lemma 4.12, (� `�� M
R
�! N : A)
 D if and only if (� `�� M+

[R]
�! N+ : A)
 D,

and the result follows by a trivial induction on the two derivations.

Our next goal is to show that (� `�� M
R
 ! N : A)
 D whenever (� `�� M

[R]
 ! N : A)
 D. The proof

of this fact relies on a series of technical lemmas.

Lemma 5.10. If �; x : C;�0 `�� E[[��; x : C;�0� ` � : A�]] : A then for all terms � `�� N : C there is
an environment �; [N=x]�0 `�� E0[[��; [N=x]�

0
� ` � : [N=x]A�]] : [N=x]A such that for all compatible terms

��; x : C;�0� `M : A� we have [N=x]E0[[M]] = E0[[[N=x]M]].

Proof. By a trivial induction on the derivation of �; x : C;�0 `�� E[[��; x : C;�0� ` � : A�]] : A, using

Substitution. We consider the case:

�;x:C;�0`��M1:�x:B:A �;x:C;�0`��E2[[��;x:C;�
0
�`�:A�]]:B

�`��M1(E2[[��`�:A�]]):A
A��AA

By Substitution, �; [N=x]�0� `
�

� [N=x]M : [N=x]�x : B:A, and by inductive hypothesis �; [N=x]�0 `��
E0
2[[��; [N=x]�

0
� ` � : [N=x]A�]] : [N=x]B. Since head([N=x]A�) = head(A�), head([N=x]A) = head(A), and

[N=x]A� �A [N=x]A, the result follows.

Notation. In the sequel, we will denote the environment obtained from Lemma 5.10 by [N=x]E.

Corollary 5.11. If (�; x : C `�
�
M

[R]
�! N : A)
 D then for all terms � `�

�
M 0 : C there is a term

� `�� N 0 : A such that [M 0=x]N !�
�
N 0 and (� `�� [M 0=x]M

[R]
�! N 0 : [M 0=x]A)
 D.

Proof. By de�nition, �; x : C `�� M
R
�! N : A means there are

(� `�� l! r : B) 2 R;

� : �
�
+ �(M;M�);

�; x : C `�� E[[�(M;M�) ` � : A(M;M�)]] : A

such that

M = E[[M�]]; N = E[[N�]];

M� � �l; N� =� �r:

20

By Lemma 5.10,

� `�� ([M 0=x]E)[[�([M 0=x]M; [M 0=x]M�) ` � : A([M
0=x]M; [M 0=x]M�)]] : [M

0=x]A

Let �0 = � � fx 7! M 0g, pick N 0
0 =� �0r such that [M 0=x]N0 !

�
�
N 0

0; then N 0 = ([M 0=x]E)[[N 0
0]] is as

required.

Lemma 5.12. If �; x : C `�� M 0 : A, (� `�� M
[R]
�! N : C)
 D, and a �A A if a 2 D, then there is a

rewrite sequence (� `�� M (i) [R]
�!M (i+1) : A)
 D (0 � i < n) such that M (0) = [M=x]M 0, M (n) = [N=x]M 0.

Proof. By de�nition, � `�� M
R
�! N : C if there are

(� `�� l! r : B) 2 R;

� : �
�
+ �(M;M�);

� `�� E[[�(M;M�) ` � : A(M;M�)]] : C

such that

M = E[[M�]]; N = E[[N�]];

M� � �l; N� =� �r:

By progressively replacing all the occurrences of x in M by N using Lemma 3.12, we get a sequence

of terms M (i)0 (0 � i � n) such that (by Lemma 5.10) (� `�� [M=x]M (i)0 [R]
�! [M=x]M (i+1)0 : A)
 D,

M (0)0 = M 0, M (n)0 = [N=x]M 0.

Proposition 5.13. We have:

1. If (�; x : A `�� M
[R]
�!M 0 : B)
 D and A �M� B then (� `�� �x : A:M

[R]
�! �x : A:M 0 : �x : A:B)
 D.

2. If (� `�� M
[R]
�!M 0 : �x : A:B)
 D and � `�� N : A then (� `�� M N

[R]
�!M 0 N : [N=x]B)
 D.

3. If � `�� M : �x : A:B, (� `�� N
[R]
�! N 0 : A)
 D, and a �A B if a 2 D, then (� `�� M N

[R]
�!M N 0 :

B)
 D.

Proof. (3) By de�nition, � `�� N
[R]
�! N 0 : A means there are

(� `�� l! r : C) 2 R;

� : �
�
+ �(N;N�);

� `�� E[[�(N;N�) ` � : A(N;N�)]] : A

such that

N = E[[N�]]; N 0 = E[[N 0

�]];

N� � �l; N 0

� =� �r:

and D = fhead(C)g = fhead(A(N;N�))g. Then

� `�� M (E[[�(N;N�) ` � : A(N;N�)]]) : B

and hence by de�nition (� `�� M N
[R]
�!M N 0 : B)
 D.

The proofs of (1) and (2) are similar.

Corollary 5.14. We have:

1. If (�; x : A `�� M
[R]
 ! M 0 : B)
 D and A �M� B then (� `�� �x : A:M

[R]
 ! �x : A:M 0 : �x : A:B)

D.

2. If (� `�� M
[R]
 !M 0 : �x : A:B)
 D and � `�� N : A then (� `�� M N

[R]
 !M 0 N : [N=x]B)
 D.

3. If � `�� M : �x : A:B, (� `�� N
[R]
 ! N 0 : A)
 D, and a �A B if a 2 D, then (� `�� M N

[R]
 !M N 0 :

B)
 D.

21

Proof. By an easy induction on the derivations.

Lemma 5.15. If (� `�� M
[R]
�! N : C)
 D and M !� M

0, then there is a rewrite sequence (� `�� M (i) [R]
�!

M (i+1) : A)
 D (0 � i < n) such that M 0 =M (0), N !�
�
M (n).

In pictures:

M

��

�

//
[R]

N

��

� �
�

�

�

M (0) //
[R]

___ : : : //
[R]

___ M (n)

Proof. By de�nition, � `�� M
[R]
�! N : A if there are

(� `�� l! r : B) 2 R;

� : �
�
+ �(M;M�);

� `�� E[[�(M;M�) ` � : A(M;M�)]] : A

such that

M = E[[M�]]; N = E[[N�]];

M� � �l; N� =� �r:

The proof proceeds by induction on � `�� E[[�(M;M�) ` � : A(M;M�)]] : A. The most interesting cases

are the two application rules:

� Case:

�`��E1[[��`�:A�]]:�x:B:A �`��M2:B

�`��(E1[[��`�:A�]]) M2:A

There are three possible subcases:
{ M = (E1[[M�]] M2)!� (E1[[M�]] M

0
2) =M 0

It is easily checked that

� `�� (E1[[�(M;M�) ` � : A(M;M�)]])M
0

2 : A;

� `�� (E1[[M�]] M
0
2)

[R]
�! (E1[[N�]] M

0
2) : A;

N = (E1[[N�]] M2)!� (E1[[N�]] M
0
2) =M (1)

{ M 0 = (M 0
1 M2) and E1[[M�]]!� M

0
1

Then, since

� `�� E1[[M�]]
[R]
�! E1[[N�]] : �x : B:A;

the result follows by inductive hypothesis and repeated applications of Proposition 5.13.(2).

{ M = (�y : B0:E1[[M�]])M2 !� [M2=y]E1[[M�]]
By inversion (and type conversion, if necessary) �; y : B0 `�� E1[[�� ` � : A�]] : A, � `

�

� M2 : B
0,

and the result follows directly by Corollary 5.11.

� Case:

�`��M1:�x:B:A �`��E2[[��`�:A�]]:B

�`��M1 (E2[[��`�:A�]]):A
A��AA

There are again three possible subcases:

22

{ M = (M1 E2[[M�]])!� (M 0
1 E2[[M�]]) =M 0

It is easily checked that

� `�� M 0
1 (E2[[�(M;M�) ` � : A(M;M�)]] : A;

� `�� (M 0

1 E2[[M�]])
[R]
�! (M 0

1 E2[[N�]]) : A;

N = (M1 E2[[N�]])!� (M 0

1 E2[[N�]]) =M (1)

{ M 0 = (M1 M
0
2) and E2[[M�]]!� M

0
2

Then, since

� `�� E2[[M�]]
[R]
�! E2[[N�]] : B;

the result follows by inductive hypothesis and repeated applications of Proposition 5.13.(3).

{ M = (�y : B0:M 0
1) E2[[M�]]!� [E2[[M�]]=y]M

0
1

By inversion and type conversion, �; y : B0 `�� M 0
1 : A, � `

�

� E2[[�� ` � : A�]] : B
0, and the result

follows directly by Lemma 5.12.

Lemma 5.16. Let
1
�!,

2
�!, and > be relations on some set S such that > is a terminating partial order,

s
1
�! t implies s � t, and s

2
�! t implies s > t. Then

8x; x0; y x0 xoo 2 //1 y) 9y0 x0 //1 �
x yoo 2�

implies

8x; x0; y x0 x0 xoo 2� //1 �y) 9y0 x0 //1 �
x yoo 2�

:

In pictures

x

��

2

//
1

y

��

2 �
�

�

�

)

x

��

2 �

//
1

� y

��

2 �
�

�

�

y //
1

�
___ y0 y //

1

�
___ y0

Proof. By a double induction argument. The primary induction is on (x;>), the secondary one on the length

of the derivation x //
1

� y .

The cases when x = x0 or x = y are trivial. In the induction case we have the following diagram:

x

��

2

//
1

u

��

2 �
�

�

�
//

1

� y

��

2 �

�

�

�

v

��

2 �

//
1

�
___ //

1

�
___ u0

��

2 �
�

�

�

//
1

�
___ w

��

2 �
�

�

�

x0 //
1

�
___ u00 //

1

�
___ y0

where the existence of u0 and w are given by hypothesis and secondary inductive hypothesis (x � u but

u //
1

�y is shorter than x //
1

�y), respectively, while the existence of u00 and y0 come from primary

inductive hypothesis (x > v � u0).

Corollary 5.17. If (� `�� M
[R]
�! N : A)
 D and M !�

�
M 0, then there is a rewrite sequence (� `��

M (i) [R]
�!M (i+1) : A)
 D (0 � i < n) such that M 0 = M (0), N !�

�
M (n).

23

Proof. De�ne, for any terms � `�� M : A and � `�� N : A,

m(M) = maximal length of �-reductions starting from M ,

and M < N if and only if m(M) < m(N), then

M !� N)M > N

� `�� M
[R]
�! N : A)M � N

and the result follows by the previous Lemma and 4.12.

Lemma 5.18. If (� `�� M
[R]
�! N : A)
 D then for all � `�� M 0 : A such that M 0 !� M there is a

� `�� N 0 : A such that N 0 !RF

�
N and (� `�� M 0

[R]
�! N 0 : A)
 D.

In pictures:

M 0

��

�

//
[R]

___ N 0

��

� RF

�

�

�

M //
[R]

___ N

Proof. By de�nition, � `�� M
[R]
�! N : A if there are

(� `�� l! r : B) 2 R;

� : �
�
+ �(M;M�);

� `�� E[[�(M;M�) ` � : A(M;M�)]] : A

such that

M = E[[M�]]; N = E[[N�]];

M� � �l; N� =� �r:

We will construct, by induction on � `�� E[[�(M;M�) ` � : A(M;M�)]] : A, an environment � `��
E0[[�(M;M�) ` � : A(M;M�)]] : A and term � `�� N 0 : A such that

M 0 = E0[[M 0
�]]; N 0 = E0[[N 0

�]];

M 0
� � �l; N 0

� =� �r;

N 0 !RF

�
N:

We show some representative cases:

� Case:

��`
�

�A�:type ����

�`���[[��`�:A�]]:A�

Then M 0 � �l, hence picking E0 = E and N 0 = N we have the result.

� Case:

�`��M1:�x:A:B �`��E2[[��`�:A�]]:A

�`��M1 (E2[[��`�:A�]]):B
A��

AB

We have three di�erent subcases:
{ B = �x : A0:B0 and M 0 = �y : A0:(M1 M2) y !� M1 M2 = M

It is easily checked that

� `�� �y : A0:(M1 E2[[�(M;M�) ` � : A(M;M�)]] y) : B

and �y : A0:(E[[N�]] y)!� N .

24

{ M 0 = (M 0
1 M2)!� (M1 M2) =M

By inversion (and type conversion, if necessary), � `�� M 0
1 : �x : A:B, and E0 = M 0

1 E2, N
0 =

E0[[N�]] are as required.

{ M 0 = (M1 M
0
2)!� (M1 M2) =M

By inductive hypothesis on � `�� E2[[�� ` � : A�]] : A we get E0
2 and N

0
2; de�ning E

0 = M1 E
0
2 and

N 0 = M1 N
0
2 we have the result.

� Case:

�`��E[[��`�:A�]]:A A�B �`��B:type

�`��E[[��`�:A�]]:B

Immediate by inductive hypothesis and type conversion.

Corollary 5.19. If (� `�� M
[R]
�! N : A)
 D then for all � `�� M 0 : A such that M 0 !�

�
M there is a

� `�� N 0 : A such that N 0 !�
�
N and (� `�� M 0

[R]
�! N 0 : A)
 D

Proof. By induction on the length of the reduction M 0 !�
�
M , using the Lemma.

Lemma 5.20. If (� `�� M
[R]
�! N : A)
 D then (� `�� M

R
 ! N : A)
 D.

Proof. Immediate from Corollaries 4.11, 5.17, 5.19.

Corollary 5.21. If (� `�� M
[R]
 ! N : A)
 D then (� `�� M

R
 ! N : A)
 D.

Proof of Theorem 5.5. One direction has already been proved by Corollary 5.7. The proof of the other is

by induction on the derivation of � `�� M
R

= N : A B D. Most of the cases are immediate. The only two
requiring some work are application and abstraction:

� Abstraction:

�`��A:type �;x:A`��M
R
=N :BBD

�`���x:A:M
R
=�x:A:N :�x:A:BBD

A�M� B

By inductive hypothesis,

(�; x : A `�� M
R
 ! N : B)
 D:

By Proposition 5.9,

(�; x : A `�� M+

[R]
 ! N+ : B)
 D;

and by Proposition 5.13.(1) and Corollary 5.21

(� `�� (�x : A:M+)
R
 ! (�x : A:N+) : �x : A:B)
 D:

By conversion

(� `�� (�x : A:M)
R
 ! (�x : A:M+) : �x : A:B)
 D;

(� `�� (�x : A:N+)
R
 ! (�x : A:N) : �x : A:B)
 D;

hence by transitivity the result.

� Application:

�`��M
R
=M 0:�x:A:BBD �`��N

R
=N 0:ABD0

�`��M N
R
=M 0 N 0:BB(D[D0)

a�AB for all a2D0

By inductive hypothesis,

(� `�� M
R
 !M 0 : �x : A:B)
 D;

(� `�� N
R
 ! N 0 : A)
 D0:

25

By Proposition 5.9,

(� `�� M+

[R]
 !M 0

+ : �x : A:B)
 D;

(� `�� N+

[R]
 ! N 0

+ : A)
 D0;

by Proposition 5.13 and Corollary 5.21

(� `�� (M+ N+)
R

 ! (M 0
+ N+) : B)
 D

(� `�� (M 0

+ N+)
R
 ! (M 0

+ N
0

+) : B)
 D
0;

and by conversion and transitivity the result.

6. Critical Pairs

As in the �rst order case, the check for local con
uence of
R
 ! goes through the search for critical pairs

generated by the rules of the HTRS R. The de�nition of critical pairs here, however, is complicated by the
presence of dependent types. Before giving the precise de�nition of critical pair, we need some additional
machinery:

De�nition 6.1. Let � : �+ � be a substitution, the support of � (supp(�)) is the set

fx 2 dom� j :(�(x) � x)g:

Given two substitutions � : �+ � and �0 : �0 + �0, we will say that they are equivalent, and write �
:
= �0,

if supp(�) = supp(�0) and �(x) = �0(x) for all x 2 supp(�).

Proposition 6.2. Let � = fx 7! Mg : �
�
+ � be a substitution, � `�� �y : A:M : �y : A:B any term , then

there is a substitution �0 : �; y : A
�
+ �; y : [M=x]A such that �0

:
= � and

�(�y : A:M) = �y : �A:�0M

Proof. From � `�� �M : [M=x](�y : A:B) we get � `�� [M=x](�y : A:B) : type and by inversion � `��
[M=x]A : type.

Also, by inversion (using type conversion, if necessary), � `�� A : type, �; y : A `�� M : B, and A �M� B;

hence � `�� �A + type.

Let �; y : �A `�� N + [M=x]A be such thatN � y, then �0 = fx 7!M;y 7! Ng : �; y : A
�
+ �; y : [M=x]A,

so

�`���A+type �;y:�A`���
0M+[M=x]B

�`���y:�A:�M+�y:�A:[M=x]B
�A�M� [M=x]B:

By type conversion � `�� �y : �A:�M + [M=x](�y : �A:B and, observing that �(�y : A:M) � (�y :
�A : �0M), by uniqueness of canonical forms we get the result.

De�nition 6.3. Let � : �
�
+ � be a substitution, an atomic term � `� M # A is said to be stable for � if

M = hN where h is either a constant c or a variable x =2 supp(�).

Stability implies that the head of a canonical term is preserved by the application of a substitution, i.e.
that �(hN) = h�N .

Lemma 6.4. Let � = fx 7! Mg : �
�
+ � be a substitution, � `�� M # A stable for �, then there exists an

atomic term � `�� M 0 # [M=x]A such that �M !�
�
M 0.

Proof. By Lemma 4.8 and uniqueness of canonical forms, it su�ces to show M 0 � �M . Moreover, by

Proposition 4.16 and Corollary 4.7, we need only to show � `� M 0 # [M=x]A. The proof goes by induction
on the derivation � `� M # A:

26

� Case

�(c)=A
�`�c # A

It is immediately veri�ed that �c � c, and for each x 2 dom�, x =2 FV(A). Hence [M=x]A = A and

therefore

�(c)=[M=x]A

�`�c # [M=x]A

� Case

�(x)=A
�`�x # A

By stability, �(x) � x; by inversion on � : �
�
+ � we have �(x) = [M=x]A, hence

�(x)=[M=x]A

�`�x # [M=x]A
:

� Case

�`�M # �y:A:B �`�N + A
�`�M N # [N=y]B

Since by hypothesisM N is stable for �, so is M , so by inductive hypothesis there is an atomic term

� `� M 0 # [M=x](�y : A:B) such that �M !�
�
M 0. Then

�`�M
0 # [M=x](�y:A:B) �`��N + [M=x]A

�`�M �N # [�N=y][M=x]B

From � `�� �(M N) + [M=x][N=y]B we get � `�� [M=x][N=y]B : type and, since [M=x][N=y]B �

[�N=y][M=x]B, by type conversion the result.

� Case

�`�M # A A�B �`�B:type
�`�M # B

Immediate by inductive hypothesis and type conversion.

De�nition 6.5. Let � = fx 7! Mg : �
�
+ � be a substitution, an environment � `�

�
E[[�� ` � : A�]] : A is

stable for � if whenever the rule

�`��M1:�x:A:B �`��E2[[��`�:A�]]:A

�`��M1(E2[[��`�:A�]]):B
A��

AB

is applied, � `�� M # �x : A:B and M is stable for �.

Since all the applications contained in it involve stable terms, one would expect that a stable environment
preserves most of its structure when the substitution is applied to it. The following Lemma shows that this

is actually the case:

Lemma 6.6. Let

� = fx 7!Mg : �
�
+ �

� `�� E[[�� ` � : A�]] : A stable for �;

�� `
�

� M� + A�;�� `
�

� A� # type;

27

and M = E[[M�]], then there are

�0 : ��
�
+ �� with �0

:
= �;

� `�� E0[[�� ` � : [M=x]A�]] : [M=x]A

such that:

1. if � `�� E[[M�]] + A then �M = E0[[�0M�]] and � `�� E0[[�0M�]] + [M=x]A;

2. if � `�� E[[M�]] # A then �M !�
�
E0[[�0M�]] and � `�� E0[[�0M�]] # [M=x]A.

Proof. By induction on the derivation of � `�� E[[�� ` � : A�]] : A:

� Case

��`
�

�A�:type ����

�`�� [[��`�:A�]]:A�

(1) By Weakening � `�� M� : A�, so � `�� �M� + [M=x]A�, hence by letting E0 = E = �, �0 = � we
have the result.

(2) By hypothesis � `�� A� # type and therefore [M=x]A� � A00, � `�� A00 # type. Hence by

Inversion � `�� �M # [M=x]A�, and the proof follows from (1).

� Case:

�`��A:type �;x:A`��E1[[��`�:A�]]:B

�`���x:A:E1[[��`�:A�]]:�x:A:B
A�M� B

(1) Since �; x : A `�� E1[[M�]] : B, by Inversion �; x : A `�� E1[[M�]] + B. By Proposition 6.2 there is

�1 : �; x : A
�
+ �; x : [M=x]A such that �1 = � and �(�x : A:E1[[M�]]) = (�x : �A:�1E1[[M�]]), hence we

can apply the inductive hypothesis obtaining

�0 : ��
�
+ ��;

�; x : [M=x]A `�� E0

1[[�� ` � : [M=x]A�]] : [M=x]B

such that �E1[[M�]] = E0
1[[�

0M�]] and �; x : [M=x]A `�� E0
1[[�

0M�]] + [M=x]B. Let E0 be

� `�� �x : [M=x]A:E0

1[[�� ` � : [M=x]A�]] : [M=x]�x : A:B;

it is as required.

� Case:

�`��E1[[��`�:A�]]:�x:B:A �`��M2:B

�`��(E1[[��`�:A�]])M2:A

(2) Since � `�� E1[[M�]] : �x : B:A, by Inversion � `�� E1[[M�]] # �x : B:A. By inductive hypothesis

there are

�0 : ��
�
+ ��;

� `�� E0

1[[�� ` � : [M=x]A�]] : [M=x]�x : B:A

such that �E1[[M�]]!
�
�
E0
1[[�

0M�]] and � `�� E0
1[[�

0M�]] # [M=x](�x : B:A). Let E0 be

� `�� (E0

1[[�� ` � : [M=x]A�]])�M2 : [M=x]A;

it is as required.

(1) By inversion, we must have A � A0, � `�� A0 # type; it is not di�cult then to verify that

[M=x]A � A00, � `�� A00 # type. Hence by Inversion � `�� E[[M�]] # A, and the result follows from (1)

and uniqueness of canonical forms.

� Case:

�`��M1:�x:B:A �`��E2[[��`�:A�]]:B

�`��M1(E2[[��`�:A�]]):A
A��AA

28

(2) Since � `�� E2[[M�]] : B, by Inversion � `�� M1 # �x : B:A and � `�� E2[[M�]] + B. By inductive

hypothesis there are

�0 : ��
�
+ ��;

� `�� E0

2[[�� ` � : [M=x]A�]] : [M=x]B

such that �E2[[M�]] = E0
2[[�

0M�]] and � `
�

� E0
2[[�

0M�]] + [M=x]B. By stability ofM1, there is aM
0
1 such

that �M1 !
�
�
M 0

1 and � `�� M 0
1 # [M=x](�x : B:A). Let then E0 be the environment

� `�� M 0

1(E
0

2[[�� ` � : [M=x]A�]]) : [M=x]A;

it is as required.
(1) Similar to (1) of the previous case.

� Case:

�`��E[[��`�:A�]]:B B�A �`��B:type

�`��E[[��`�:A�]]:A

Both (1) and (2) follow trivially from inductive hypothesis and type conversion.

Notation. For the rest of this paper, we will write E(�;M�) and �(E;M�) to denote the environments E0

and substitutions �0 obtained from Lemma 6.6.(1).

De�nition 6.7 (Critical Pair). Let R be a HTRS, �1 `
�

� l1 ! r1 : C1, �2 `
�

� l2 ! r2 : C2 two rules in

R, �1 : �1
�
+ �, �2 : �2

�
+ �, �1 = fx 7! Ng, and �1 `

�

� E[[�� ` � : A�]] : A such that l1 = E[[M�]],

�1(E1;M�)M� = �2l2, then

� `��< E(�1;M�)[[�2r2]]; �1r1 >: [N=x]C1

is a critical pair

Remark. By applying a renaming substitution and using �-conversion, we can assume, without loss of

generality, �1 \�2 = ;. The by Weakening it is easily veri�ed that �1 [�2 : �1;�2
�
+ � is a uni�er of l1 and

M�, and the de�nition above appears as a generalization of the familiar one for �rst-order TRSs.

Example 2. In the HTRS for the typed lambda calculus given before, letting

�1 = A : type; B : type; F : (term A)) (term B); U : term A

�2 = A : type; B : type; G : term (arrow A B)

� = A : type; B : type; G : term (arrow A B); U : term A

�1 = fA 7! A;B 7! B;F 7! (�x : term A:app G x); U 7! Ug

�2 = fA 7! A;B 7! B;G 7! Gg

E = app � U

we get the (trivial) critical pair

� `��< app G U;app G U > : term B

Proposition 6.8. Let � = fx 7! Mg : �
�
+ � be a substitution, � `�� M # C stable for �, �M !�

�
M 0

1 M
0
2,

� `�� M 0
1M

0
2 # [M=x]C, then M =M1 M2, �M1 !

�
�
M 0

1, �M2 = M 0
2.

Proof. If M = c or M = x where x =2 supp(�), then �M � M , contradiction to uniqueness of atomic
forms. Therefore M = M1 M2. By inversion, there are types A;B such that � `�� M1 # �x : A:B,

� `�� M2 : A, C � [M2=x]B. Since M1 is also stable for �, by Lemma 6.4 there is an atomic term

� `�� M 0
1 # [M=x](�x : A:B) such that �M1 !

�
�
M 00

1 . Then � `�
�
M 0

1 �M2 : [�M2=x][M=x]B, and by type

conversion, since [�M2=x][M=x]B � [M=x][M2=x]B, the result.

29

By de�nition, the only non-stable subterms of a patternM have a very speci�c form, i.e. the must consist of

a free variable, possibly applied to a sequence of terms equivalent to distinct bound variables. Unfortunately,
this property is not preserved by subterms, since bound variables may become free. Proposition 6.2, however,

suggests a slightly di�erent de�nition of pattern, which relies on the support of a substitution rather than
on on the set of free variables of the term.

De�nition 6.9. Let � : �+ � be a substitution. A term � `� M + A (� `� M # A) is said to be a pattern
for � if each x 2 supp(�) appears in M applied to terms �-equivalent to distinct bound variables.

Proposition 6.10. If � `� M + A is a pattern, then it is a pattern for any substitution � : �+ �.

The following theorem says that any subterm N 0 of �M , where M is a pattern for �, either corresponds

to a subterm N of M (such that �0N = N 0 for some �0
:
= �) or it is a subterm of �(x) for some x 2 supp �.

This key fact will play a central role in the proof of the Critical Pair Lemma.

Lemma 6.11. Let

� = fx 7!Mg : �
�
+ �

� `�� E0[[�� ` � : A
0

�]] : C
0

�� `
�

� M 0

� + A
0

�;

� `�� M : C;

then

1. if �M = E0[[M 0
�]], �� `

�

� E0[[M 0
�]] + C

0 and � `�� M + C pattern for �, or
2. if �M !�

�
E0[[M 0

�]], �� `
�

� E0[[M 0
�]] # C

0, and � `�� M # C both pattern and stable for �,

then either there is an environment E stable for � such that M = E[[M�]], E
0 = E(�;M�), M

0
� = �(E;M�)M�,

or there are well-typed environments EM ; E� and variable x 2 supp(�) such that M = EM [[xN]], Ni � yi,

�(x) = �y : C:E�[[M
0
�]], E

0 = EM (�; xN)[[E�]].

Proof. By induction on the derivation of � `�� E0[[�� ` � : A
0
�]] : C

0, where C 0 � [M=x]C:

� Case

��`
�

�A
0
�:type ����

�`�� [[��`�:A0�]]:A
0
�

(1), (2) Immediate, by letting E = �.

� Case:

�`��A
0:type �;x:A0`��E

0
1[[��`�:A

0
�]]:B

�`���x:A
0:E0

1[[��`�:A0�]]:�x:A
0:B0 A�M� B

(1) By Inversion on � `�� �x : A0:E0
1[[M

0
�]] + �x : A0:B0 we obtain immediately �; x : A0 `�� E0

1[[M
0
�]] +

B. From the derivation of � `� M + C we get types A;B such thatM = �x : A:M1, C � �x : A:B and
�; x : A `�� M1 + B. By Proposition 6.2 and uniqueness of canonical forms we conclude A0 = [M=x]B.
The result then follows by inductive hypothesis.

� Case:

�`��E
0
1[[��`�:A

0
�]]:�x:B

0:A0 �`��M
0
2:B

0

�`��(E
0
1[[��`�:A0�]])M

0
2:[M

0
2=x]A

0

(2) By Inversion on � `�� (E0
1[[M

0
�]])M

0
2 # [M

0
2=x]A

0 we obtain immediately �; x : A0 `�� E0
1[[M

0
�]] # B.

By Proposition 6.8, M =M1 M2 and inversion on the derivation of � `�� M + C there are types A;B
such that � `�� M1 + �x : B:A, � `�� M2 + B, and C � [M2=x]B. From Lemma 6.4, by uniqueness of

atomic forms we deduce �M2 = M 0
2, �M1 !

�
�
E0
1[[M

0
�]], hence the result follows by inductive hypothesis.

(1) We must have � `�� C 0
+
type. It is not di�cult then to verify that � `�� C+ # type, and

therefore by Inversion � `�� M # C. If M is stable for �, the result follows from (1). Otherwise, by

de�nition, it is easy to verify M = xN , Ni � yi, x 2 supp(�), �(x) = �y : C:E0[[M 0
�]]. Hence EM = �,

E� = E0 are as required.

30

� Case:

�`��M
0
1:�x:B

0:A0 �`��E
0
2[[��`�:A

0
�]]:B

0

�`��M
0
1(E

0
2[[��`�:A0�]]):A

0 A0��
AA0

(2) By Inversion on � `�� M 0
1(E

0
2[[M

0
�]]) # A

0 we obtain immediately � `�� E0
1[[M

0
�]] + B. By Proposition

6.8, M = M1 M2, and by inversion on the derivation of � `�� M + C there are types A;B such that
� `�� M1 + �x : B:A, � `�� M2 + B, and C � [M2=x]B. From Lemma 6.4, by uniqueness of atomic

forms we deduce �M2 = E0
2[[M

0
�]], �M1 !

�
�
M 0

1, hence the result follows by inductive hypothesis. Notice

that head(A0) = head(A).

(1) We must have � `�� C 0
+
type. It is not di�cult then to verify that � `�� C+ # type, and

therefore by Inversion � `�� M # C. If M is stable for �, the result follows from (1). Otherwise, by

de�nition, it is easy to verify M = xN , Ni � yi, x 2 supp(�), �(x) = �y : C:E0[[M 0
�]]. Hence EM = �,

E� = E0 are as required.

� Case:

�`��E
0[[��`�:A

0
�]]:B

0 B0�A0 �`��B
0:type

�`��E[[��`�:A0�]]:A
0

Both (1) and (2) follow trivially from inductive hypothesis and type conversion.

Theorem 6.12 (Critical Pair Lemma). Let R be a HTRS, if � `�� M
R
! N1 : A and � `�� M

R
! N2 : A

then either there is a critical pair in R, or there are rewriting sequences � `�� N
(i)

1

R

! N
(i+1)

1 (0 � i < n1),

� `�� N
(i)

2

R

! N
(i+1)

2 (0 � i < n2) such that N
(0)

1 � N1, N
(0)

2 = N2, N
(n1)

1 � N
(n2)

2 .

Proof. By de�nition, � `�� M
R

! Nk if and only if there are

�k `
�

� lk ! rk : Ck 2 R; �k : �k

�
+ �;� `�� E(k)[[�

(k)
� ` � : A

(k)
�]] : A

such that M+ = E(k)[�klk], (Nk)+ = E(k)[�krk], (k = 1; 2).

The proof proceeds on induction on the size of the environments E(1); E(2) . We show some representative

cases:

� E(1) = �x : A:E
(1)

1 , E(2) = �x : A:E
(2)

1 :

Using type conversion, if necessary, we can assume that the type derivations of E(1); E(2) are:

�`��A:type �;x:A`��E
(1)

1 [[�
(1)
� `�:A

(1)
�]]:B

�`���x:A:E
(1)

1 [[�
(1)
� `�:A

(1)
�]]:�x:A:B

A�M� B
�`��A:type �;x:A`��E

(2)

1 [[�
(2)
� `�:A

(2)
�]]:B

�`���x:A:E
(2)

1 [[�
(2)
� `�:A

(2)
�]]:�x:A:B

A�M� B

Then M+ = �x : A:M1, and by Inversion on �; x : A `�� E
(1)

1 [[�1l1]] : B we have �; x : A `�� M1 + B.
Therefore

�; x : A `�� M1
R

! E
(k)

1 [[�krk]] (k = 1; 2);

and the result follows by inductive hypothesis.

� E(1) = E
(1)

1 N , E(2) = E
(2)

1 N :

Using type conversion, if necessary, we can assume that the type derivations of E(1); E(2) are:

�`��E
(1)

1 [[�
(1)
� `�:A

(1)
�]]:�x:A:B �`��N :A

�`��(E
(1)

1 [[�
(1)
� `�:A

(1)
�]])N :[N=x]B

�`��E
(2)

1 [[�
(2)
� `�:A

(2)
�]]:�x:A:B �`��N :A

�`��(E
(2)

1 [[�
(2)
� `�:A

(2)
�]])N :[N=x]B

By inversion, M+ = (h M) N . Since all rules are of atomic type, it is easy to see that there are
indexes ik such that

E
(k)

1 = h M1 : : : Mik�1 E
(k)

ik
Mik+1 : : : Mm (k = 1; 2)

There are two subcases:

31

{ i1 = i2
By inversion on the derivation of � `�� M+ + [N=x]B we get �(M+;Mi1

) `�� Mi1
+ A(M+;Mi1

),
and the result follows by induction hypothesis.

{ i1 6= i2
Assuming i1 < i2, it is easy to verify that

� `�� (h M1 : : : Mi1�1 E
(1)

i1
Mi1+1 : : : Mi2�1 E

(2)

i2
[[�2r2]] Mi2+1 : : : Mm) N : [N=x]B

� `�� (h M1 : : : Mi1�1 E
(1)

i1
[[�1r1]] Mi1+1 : : : Mi2�1 E

(2)

i2
Mi2+1 : : : Mm) N : A

are well-typed contexts, hence letting

N
(1)

1 = N
(2)

1 = (h M1 : : : Mi1�1 E
(1)

i1
[[�1r1]] Mi1+1 : : : Mn2�1 E

(2)
n2

[[�2r2]] Mn2+1 : : : Mm) N

we have

� `�� Nk

R
�! N

(k)

1 : A (k = 1; 2)

� E(1) = �:
Then �1l1 = E(2)[[�2l2]]. By Lemma 6.11 we have two possible subcases:

{ There is E stable for �1 such that l1 = E[[M�]], E
(2) = E(�1;M�), �2r2 = �1(E;M�)M�.

Then by de�nition

� `��< E(�1;M�)[[�2r2]]; �1r1 >: A

is a critical pair.

{ There are well-typed environmentsE�1l1
; E�1

and variable x 2 supp(�1) such that �1l1 = E�1l1
[[xM]],

Mi � yi, �1(x) = �y : C:E�1
[[�2l2]], E

0 = E�1l1
(�1; xN)[[E�1

]].

Let �01 : �1
�
+ � de�ned as

�01(y) =

(
�1(y) y 6= x

�y : C:E�1
[[�2r2]] y = x;

we want to show that both N1 = �1l1 and N2 = E(2)[[�2l2]] both rewrite to �01r1.

Assume �1 `
�

� �1(x) : C, let z be a fresh variable, de�ne �z1 : �1
�
+ �; z : C by

�z1(y) =

(
�1(y) y 6= x

z y = x:

By replacing progressively all the occurrences of z in �z1l1, starting from the occurrence in E�1l1
(�z1; xN),

with �y : C:E�1
[[�2r2]], we get a rewrite sequence N

(i)

1 such that N
(0)

1 � N1, N
(n1�1)

1 � �01l1. Simi-

larly, by replacing all the occurrences of z in �z1r1 with �y : C:E�1
[[�2r2]] we get a rewrite sequence

N
(i)

2 such that N
(0)

2 = [�1(x)=y]�
z

1r1 � N2, N
(n2)

2 � �01r1. The result then follows by a single

additional rewrite step.

De�nition 6.13. Let R be a HTRS, if whenever � `�� M
R

! N1 : A and � `�� M
R

! N2 : A there are

rewriting sequences � `�� N
(i)

1

R

! N
(i)

1 (0 � i � n1), � `
�

� N
(i)

2

R

! N
(i)

2 (0 � i � n2) such that N
(0)

1 � N1,

N
(0)

2 = N2, N
(n1)

1 � N
(n2)

2 , R is said to be locally con
uent.

Corollary 6.14. If for all critical pairs � `��< M;N > : A of a HTRS R both M and N R-rewrite to a
common term, then R it is locally con
uent.

32

7. Future Developments

The Critical Pair Lemma gives us a criterion to check for local con
uence of a HTRS. As said before, local
con
uence assumes a great relevance in presence of termination, since by Newman's Lemma, it provides a

simple and computationally-e�ective way to check for con
uence. Very recently, in [5] and [12] two methods
of proving the termination of a HTRS have been proposed for simple types; it is our hope that these will

translate to dependent types, and that perhaps the richer type structure will allow to obtain better results.
Another interesting line of research is R-rewriting modulo a (higher-order) equational theory E. In LF,

where the relation �A de�ne a hierarchy of types, it is possible to de�ne a suggestive notion of \multi-staged

completion": once a terminating HTRS, de�ned on some set S of type classes, has been checked for local
con
uence, it becomes part of the underlying equational theory E modulo over which a new HTRS, de�ned

of a set S0 of \higher" type classes (i.e. 8A 2 S9B 2 S0 A �A B, or at least 8A 2 S8B 2 S0 B �A� A) is in
turn tested for con
uence, and so on.

8. Acknowlegments

I would like to thank Prof. Frank Pfenning for his help, suggestions, and support. I also thank E.
Rohwedder and W. Gehrke for their valuable comments.

References

[1] Coquand, T. An algorithm for testing conversion in type theory. Logical Frameworks, Cambridge University Press, 1991,

pp. 155-279

[2] Geuvers, H. The Church-Rosser Property for ��-Reduction in Typed �-Calculi. Seventh. Ann. IEEE Symp. on Lo�c in

Comp. Sci., IEEE Computer Society Press, 1992, pp. 453-460

[3] Harper, R. , Honsell F., Plotkin, G. A framework for de�ning logics. Journal of the Association for Computing Machinery,

January 1993, pp. 143-184

[4] Klop, J. Combinatory Reduction Systems.Mathematical Centre Tracts 127. Stichting Mathematisch Centrum, Amsterdam,

1980.

[5] Kahrs, D.Towards a Domain Theory for Termination Proofs. Sixth International Conference on Rewriting Techniques and

Applications (RTA), 1994

[6] Knuth, D. and Bendix, P. Simple Word Problems in Universal Algebra. Computational Problems in Abstract Algebra,

Pergamon Press, 1972, pp. 263-297

[7] Mayr, R. , Nipkow, T. Higher-Order Rewrite Systems and their Con
uence.Tech. Report, Technische Universit�atM�unchen,

1994

[8] Miller, D. A Logic Programming Language With Lambda abstraction, Function Variables, and Simple Uni�cation. LFCS

report series, University of Edinburgh, 1991, pp. 253-281

[9] Nipkow, T. Higher-Order Critical Pairs. Proceedings of the 5th IEEE Conference of Logic In Computer Science (LICS),

1990, pp. 342-348

[10] Pfenning, F. Logic Programming in the LF Logical Framework. G. Huet, G. Plotkin ed., Logical Frameworks, Cambridge

University Press, 1991, pp. 149-181

[11] Pfenning, F. Uni�cation and ant-uni�cation in the Calculus of Constructions., Proceedings of the 6th IEEE Conference

of Logic In Computer Science (LICS), 1991, pp. 149-181

[12] Rohwedder, E. , Pfenning, F. Mode and Termination analysis for Higher-Order Logic., to appear at ESOP 96

[13] Snyder, W. A Proof Theory for General Uni�cation. Birkhauser, 1991

[14] Salvesen, A. The Church-Rosser Property for Pure Systems with ��-Reduction. Tech. Rep., University of Oslo, 1992

[15] Van de Pol, J. Termination Proofs for Higher-Order Rewrite Systems, J. Heering, K. Meinke, B. M�oller, T. Nipkow ed.,

Higher Order Algebra, Logic and Term Rewriting, Lect. Notes in Comp. Sci., Vol 816, Springer Verlag, 1994

[16] Van Oostrom, V. , Van Raamsdonk, F. Comparing Combinatory Reduction Systems and Other Systems. J. Heering, K.

Meinke, B. M�oller, T. Nipkow ed., Higher Order Algebra, Logic and Term Rewriting, Lect. Notes in Comp. Sci., Vol 816,

Springer Verlag, 1994, pp. 305-325

