Higher-Order Superposition for Dependent Types

Roberto Virga
May 9, 1995
CMU-CS-95-150

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

In this paper we extend the higher-order critical pair criterion, as described in [9], to the LF framework
[10], a calculus with dependent types. The notion of dependence relation is introduced, and used to restrict
rewriting to those cases where well-typedness is preserved.

This work was supported by NSF Grant CCR-9303383
The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of NSF or the U.S. government

Keywords: meta logic, logical frameworks, rewriting, superposition, lambda calculus, type theory

1. HISTORICAL BACKGROUND

In the study of Term Rewriting Systems (TRS), the two key properties that we are mostly interested with
are termination and confluence, which imply existence and uniqueness, respectively, of normal forms. In
presence of these conditions, the test for convertibility of two terms, undecidable in the general case, reduces
to a simple test for equality of their respective normal forms.

One of the central results in this study is certainly the Critical Pair Lemma for first-order TRSes [6], which
provides a computational method to check for local confluence in a TRS, together with a way to extend any
TRS to an equivalent locally confluent one. This fact, in conjunction with Newman’s lemma [4], which says
that in presence of termination local confluence and confluence coincide, has led in the last decade to a series
of important breakthroughs in the field of automated equational reasoning.

Until fairly recently, all attempts to lift the theory of TRSes to the higher-order case seemed to be
undermined by the presence of some well-known negative results in this setting, first among these the
undecidability of the general unification problem. The first important advance in order to overcome these
difficulties is due to D. Miller [8], who identified a subclass of higher-order terms, called higher-order patterns
for which the unification problem is decidable, and moreover uniqueness of most general unifiers hold. Making
use of this result, T. Nipkow [7, 9] was able to state and prove an analogous of the Critical Pair Lemma for
the case of higher-order, simply-typed TRSes. Nipkow’s Higher Order Term Rewriting Systems (HTRS) are
similar to Klop’s Combinatory Reduction Systems (CRS). For a detailed analysis of the relation between
these two, see [16]. In this paper we extend higher-order rewriting to a calculus with dependent types, as
presented in [3]. Our approach in the proof of most results, notably the Critical Pair Lemma, will follow
Nipkow’s one, though significant modifications are necessary due to the fact that here terms may appear
inside types.

2. PRELIMINARIES

Definition 2.1. The LF calculus is a three-level calculus for terms, type families, and kinds

Kinds K = type|llz: AK
Families A := a|lzx:AB|AM
Terms M := cl|z|Xx:AM|MN

In the following, K denotes kinds, A, B families, M, N terms; a stands for constants at the level of type
families, ¢ for constants at the level of terms, x,y, 2 for variables.

We assume the usual notions of «, § and n-reduction. All these notions, although defined on terms,
extend naturally by congruence to type families and kinds. All objects will be considered equal modulo
Q-conversion.

We denote by —2*, =7 and =, the reflexive, reflexive-transitive, and reflexive-symmetric-transitive
closure, respectively, of =, v € {«, 3,n}; = is the smallest equivalence relation including =,, =4, =,,.

By [N/2]M ([N/x]A, [N/z]K respectively) we intend, as usual, the replacement of all the free occurrences
of by N inside M (A, K, respectively). As usual, a-conversion will be used, if necessary, to ensure the
that no free variable occurrence is captured inside the scope of a quantifier.

The notation FV(E) and BY(E) is used to denote the set of free and bound variables, respectively, in E,
where E may be a term, a type family or a kind.

Definition 2.2. To define the class of well-typed kinds, type families, and terms we make use of signatures

and contexts:

Signatures ¥ = | Z,a:K|Z,c: A
Contexts T S| T, A

We will use I and A to range over contexts.
Well-formed terms of a given type, type families, and kinds are then formed accordingly to the judgements

ks M:-AT Fe A: K
I's K Kind

These in turn are defined in terms of the auxiliary judgements
FX Sig
Fe T Ctx

which specify how valid signatures and contexts are formed.
The rules for the calculus are listed below:

Y(c)=4 T'(x)=A4
I'bye:A Thya:A

Ity Aitype Ta:AFsM:B
ks Az A M I12:A.B

TFsM:A A=B Tty B:type
't M:B

by M:IIx:A.B Ty N:A
I‘l_g:\[_\?[_\?/T]B

Y(a)=K
I'bya: K

ThyAdle:B.K T M:B
T AM:[M/2] I

'ty Aitype Iz:Abs Bitype
I'tsIlz:A.B:type

I'tsAitype Ta:AFs K Kind
I'kytype Kind I'ksllz: ALK Kind

Ful' Cte Ths Attype

Fs Ctx Fsla:A Cte
s A: K K=K' T K Kind
ks A:K7
k- Sig

Fo K Kind FY Sig FyAitype THY Sig
FX,a: K Sig FX,c:A Sig

We will use M N to denote the repeated application M Ny N, ... N,; similarly for type families. The
notation [V /7] will stand for the repeated replacement [N,,/x,]... [Ny /2] rather than, as traditionally, for
the simultaneous one [Ny /z1,..., N, /x|, which we will not need to use in this paper.

3. DEPENDENCY RELATIONS

Differently from the simply-typed lambda-calculus, in the LF calculus replacing a subterm with another
of the same type inside a term may affect the type of the overall expression. The reason for this lies in the
definition of the rule for application:

ThoM:Ta:A.B THsN:A
Tk M N:[N/z]B

If we replace N by another term I' Fy; N’ : A we get an expression of a different (and not necessarily
equivalent) type:

Tl—g.MHJAB I"—ZJ\’?’ZA
TFsMN":[N"]x]B

Worse than that, the resulting expression may not be well-typed at all. Suppose that the expression above

was in turn a subterm in the expression:

Tt M :Iy:[N/x|B.C TkxM N:[N/z|B
TheM' (M N):[(M N)/y|C
Since in general I' Fx, M’ : Ily : [N’ /2] B.C' may not hold, the expression we obtain after the replacement
is ill-typed.
This problem is concretely illustrated by the following:

Example 1. Consider the following representation of a fragment of arithmetic:
nat : type

0 : nat
s :nat = nat
+ :nat = (nat = nat)

where we used the notation A = B and A = K for the abstractions IIz : A.B and Ilx : A.K where
x ¢ FV(B) and x ¢ FY(K), respectively.

We want now to formalize the (first-order) predicate “n is even”, together with some inference rules that
allow us to decide if a number is even:

o : type
proof: o = type

even :nat = o

even : proof(even 0)

even,, : IIz : nat. proof(even z) = proof(even (s (s z)))

even, : IIz : nat. ITy : nat. proof(even z) = (proof(even y) = proof(even (4 = y)))
even,y : Iz : nat. ITy : nat. proof(even (+ 2 y)) = proof(even (+ (s z) (s y)))

In this signature, for example, the term
even; 0 (+ 0 0) even, (even, 00 even, eveny)
is well typed, but rewriting (+ 0 0) — 0 : nat we get
even; 00 even, (even, 0 0 even, eveny)

which is not.

In defining a notion of rewriting, we must therefore be careful to rule out all these pathological cases that
lead to ill-typed expressions. A natural way to do this is to make use of dependency relations.

A signature ¥ implicitly describes a hierarchy of type families: more complex families may depend on
terms belonging to simpler ones defined before. For example, formalizing a proof system, one may start by
defining basic type families, one for terms and the other for formulas; the family of proofs may depend on
formulas, and, if some predicate symbols are defined, through these on terms. Dependency relations formalize

4

mathematically this idea by defining preorders over type constants, constructed by looking (recursively) at
the signature.

The idea of using dependency relations is not completely new in LF. They have also been used in [13]
to prove well-foundedness of proofs by structural induction. In this paper, we will use them to obtain
information about the type of objects appearing inside types, and in turn we will use this information to
define a notion of rewriting which is sound with respect to type checking.

Definition 3.1. Define

head(Ilzy : Ay ... Ix,, ¢ A,.aM) = a,
let ©¢ be a signature, a pair <= (<7', <3!) of binary transitive relations over the set of type constants of
Yy is called a dependency relation if it satisfies the following conditions:

o a; <gt aif Sg(a) =Tay : Ay.... Mz, : A, type, head(4;) = a;, 1 <i <y
o a =i d if, for some b, a <g' b <} a’ or a <} b <g d;

o a<Mbifa=<g o
° |_<0 E(] Slg

where F=0 ¥ Sig is defined (recursively) by the judgements
F=0. Sig

FoK Kind F<0% Sig FoAitype F=03 Sig
F=o¥,a: K Sig F=0X.c:A Sig

S(a)=K

%K

TH30 Al B.K THIM:B
THo0 A M:[M /x| K

Fl-;oA:type I’,;E:AP—SOB:type
Fl—;oﬂx:A.B:type

, wherehead(4)<2"head(B) or head(A4)=head(B)

TF0A: K=K' TF°K' Kind
T A: K

Y(e)=A T(x)=A
FI—;OC:A Fl—;ox:A

[F30 Astype Da:AFS°M:B
Fl—;())\m:A.AM:HI:A.B

, wherehead(4)<)"head(B) or head(A4)=head(B)

T3 MIe:A.B TFZON:A
TH"M N:[N/x]B

PFIOM:A A=A" (TS0 Altype
THo0M: A

Ut

TI—;‘)A:type F,;L:AI—;“K Kind
T type Kind THoTLe: A K Kind

I—;"l—‘ Cta TI—;‘)A:type
Fo0- Ctr FSOT 24 Cta

Notation. By abuse of notation, given two type families A, B, we will write A <4 B and A <™ B for
head(A) <* head(B) and head(A4) <" head(B), respectively. We will use A <¥ B to say that 4 <" B or
head(A) = head(B).

The idea underlying the introduction of the relations <* and <* is to restrict, using the k3 judgements,
the generation of valid terms and type families to those which preserve the dependencies generated by the
signature ¥ in particular, we want terms of type A to be allowed to appear inside B only if A <4 B, and
similarly terms of type 4 will be subterms of terms of type B only if A <M B,

When looking for a dependency relation, we will usually prefer coarser ones, so that the class of dependency-
preserving terms (i.e. terms well typed according to the -3 judgement) is as wide as possible. In practice,
given a derivation of F & Sig, we will compute the minimum < such that == 3 Sig holds.

FEzxample 1. In our previous example about even numbers, the following is easily seen to be a dependency
relation:
<= ({nat <* proof, o <* proof}, {nat <" o,nat <* proof,o <" proof})
The condition o <* proof comes from the type of proof; nat <™ o is obtained from type checking on

even; finally nat <" proof since <*D<" . < A, and all the others pair in <™ follow from <™ D><4.

Ezample 2. To demonstrate the gain in expressive power that the use of dependent types allows, we show
how the simply-typed lambda calculus can be formalized in this calculus. We will need two type families:
one, called type, for types, and the second, term, indexed by objects of the first, for terms.

type : type
arrow : type = (type = type)

term : type = type
lambda : [Tz : type.Ily : type.((term z) = (term y)) = term(arrow z y))
app : Iz : type.Ily : type.(term(arrow z y)) = ((term z) = (term y))
For this system, a dependency relation is simply
<= ({type <" term}, {type <" term})
Notation. In what follows, we will assume that a signature ¥ and a dependency relation < for ¥ have

been fixed. Moreover, wherever a context I' is mentioned, we will will tacitly assume it is well-typed and
dependency-preserving, i.e. -5 I' Cta.

We state below a few properties of the LF calculus that continue to hold when restricting ourselves to
dependency-preserving terms:
Proposition 3.2. If T' b3 M : A and N is a subterm of M, then there is TV D T' and type A’ such that
I'FS N AL
Proof. By induction on the derivation of I' -3 M : A. O
Notation. In the rest of this paper, we will write I'(M, N) and A(M, N) for the context I and type 4’
respectively, obtained by the Proposition above. Note that these are not unique, but depend on the particular

derivation of I' F M : A considered. However, all these are easily seen to be equivalent when conversion
and variable renaming are taken into account.

6

Proposition 3.3 (Weakening). Let ' C X, IV C T, and 3 T Ctx, then:

1 IfTFZ M: A then T FZ M : A.
2. IfT'FS A K thenTHS A K.
3. If 17 F;, K Kind then I' b3 K Kind.

Proof. By an easy induction on the derivations. O

Lemma 3.4 (Substitution). Let T +3 N : C, then:

L 4fT,y: C,A RS M : A then T, [N/y|A b5 [N/y]M : [N/y]A;
2. fT,y: C,A RS A: K then T, [N/y]A B3 [N/ylA : [N/y|K;
3. f Ty : C,A+S K Kind then T',[N/y|A 3 [N/y|K Kind.

Proof. By (simultaneous) induction on the size of the derivations. For term and type abstractions, one has

to observe that head([IV/y]A) = head(A). O

Lemma 3.5. We have:
1. TFS M : A dimplies T FS A : type;
2. TFS A: K implies T +& K Kind.

Proof. Both are proved by induction on the derivation.

e Type constant:
Y(a)=K
IFSa:K
By inversion on the derivation of - ¥ Sig and Weakening.
e Type application:

IFSAIL:B. K TFSM:B
TFZA MMk

By inductive hypothesis we get I' 3 IIz : B.K Kind. By inversion I',z : B 3 K Kind, hence by
Substitution the result.

e Type abstraction:

P Aiype TS Biivpe
I'FSIlz:A.B:type

A=MB

Trivial.
e Kind conversion:

I'Fo AR K'=K THSK Kind

TS AR
Trivial.
¢ Term constant:
Y(c)=A
TFSe:A

By inversion on the derivation of - ¥ Sig and Weakening.
e Term variable:
T(z)=A
IFoa:A

By inversion on the derivation of F3 I' C'tz and Weakening,.

e Term application:
I'F3M:2:B.A THIN:B
I'FSM N:[N/x)A

By inductive hypothesis we get I' -3 Iz : B.A : type. By inversion, I,z : B k5 A : type, hence by
Substitution the result.
e Term abhstraction:

I3 Astype Ta:AFSM:B
TSz AM:I2:A.B

A<M B
By inductive hypothesis we get I,z : A b5 B : type, and, applying the type abstraction rule, the
result.

e Type conversion:

TESM:A" A'=A THS Aitype
TFZMA

Trivial.

Corollary 3.6. The following holds:
1. IfT +3 Ta: A.B : type then A <M B.
2. IfTHS M : 1o : A.B then A =¥ B.

Proof. (1) is obtained immediately by inversion. For (2) we use the Lemma to conclude I' 3 IIw : A.B : type,
and hence by (1) the result. O

The following result clarifies the motivating property of the two relations <4 and <:

Lemma 3.7. Let b3 Toa : C Cta,
LofT,a: CCARS At K and v € FV(A) then C <4 A
2. if T, : CCA RS M 2 A and © € FV(M) then C <M A

Proof. By (simultaneous) induction on both derivations. The cases when either A or M are constants, or M
is a variable are trivial. So are those for the conversion rules. The only interesting cases are, for both terms
and type families, application and abstraction:
e Type application:
Fa:C,AFS A:lly: BK T,0:C,AFSM:B
To:CLARS AM : [M/y|K
If # € FV(A) we are done by inductive hypothesison ',z : C, A F3 A : Iy : B.K,, since head(A4 M) =
head(A). Otherwise, if x € FV(M), then by the inductive hypothesis on I,z : C.A F3 M : B we get
C jgj B. By inversion, we easily see A = aN for some terms N and type family constant a = head(A4);
then Y(a) = Hay : Cy ... Mz, : Cp.type and head(B) = head(C;) for some i, so B <4 A; hence, we
conclude C' <4 A.
e Type abstraction:
Ie:C,ARS A:type Toa:C A y: AFS B type
Ie:C, ARSIy : A.B : type

A=Y B

If v € FV(B) we are done by inductive hypothesis on I,z : C, A,y : A by, B : type, since head(Ily :
A.B) = head(B). Otherwise, if # € FV(A), then by the inductive hypothesison I', 2 : C, A Fy; A : type
we get C' <4 A, and hence by the side condition the result.
e Term application:
Fe:C,AFSM:1ly: BA T,2:C,AFSN:B
Te:C,AFS M N :[N/ylA

If » € FVY(M) we are done by inductive hypothesis on T,z : C,A Fx M : Ily : B.A, since
head([N/y]A) = head(Ily : B.A). Otherwise, if 2 € FV(N) by the inductive hypothesis on T', 2 :
C,A Fs N : B we get C =¥ B. By Corollary 3.6, B <¥ A, and by transitivity we conclude
C =< [N/ylA.
e Term abhstraction:
Fx:C.AFy Aitype Diz:C/Aly: Abs M : B
ks Ay AM:1ly: A.B

If € FY(M) we are done by inductive hypothesis on I'z : C,Ay : A by M : B, since head(Ily :
A.B) = head(B). Otherwise, if # € FV(A), then by the inductive hypothesison T,z : C, A by A : type
we get C' jgj A, hence by the side condition and transitivity we conclude C jgj Iy : A.B.

A=Y B,

|

Definition 3.8. Environments are expressions with a “hole”, which we will denote by o, constructed ac-
cording to the following syntax:

Environments E := o|Xz: AF

ME|EN
Well-typed environments are constructed by means of the judgement
TS E[Ds ko A A,

and the rules

-3 Aqtype TLCT
IHSo [ToborAl]:As

I3 Aitype Tt AFSE[Co oA]:B
IFS A E[Dobo: A Il A.B

A=YB

I'FSE[L oA Ie:A.B THEN:A
TF5 (B[ToFoA]) NN/z]B

TFSM:Mx:A.B THSE[Dobo: A A
TFSM (E[Tobo:AL]):B

A AB

IFSE[DoFo:A:A A=B TS Bitype
I'FSE[Doto:Al]:B

Ezxzample 1. The environments

even. 0 (o[o: nat]),

and

even_ 0 (o] o : nat]) (even, 00 even, eveny)

are not well-typed. This because in the application

Fseven, O:Ily:mat.proof(even 0)=(proof(even y)=-proof(even (+ 0 y))) o [Fo:nat]:nat
Fseven, O (o [Fo:nat]):proof(even 0)=(proof(even o)=proof(even (+ 0 0)))

the side condition nat 4* even is violated.

9

Notation. Given an environment E and a term M, we will write E[M] for the term obtained by replacing
the hole o with M. Conversely, let M be a term and N an occurrence of one of its subterm, we will write
M{o]ny for the environment (not necessarily well-typed) obtained from M by replacing that occurrence of
N by o.

The type of an environment depends, by the relation <", on the type of its hole:
Proposition 3.9. [fI'+3 E[l'c Fo: AJ]: A then A, =¥ A,

Proof. By induction on the derivation of I' -3 E[I's F o : A.] : A. All cases are trivial, except perhaps

IFSMy:a:B. A THSES[ToFo:Al]:B

TFEM, (Es[Toto:Al]):A
By inductive hypothesis, A, <¥ B. From T’ FS M, : Iz : B.A one concludes B <M A. Hence by
transitivity 4, <3 A. O

A AN A

As expected, when the hole is replaced by an expression of compatible type, environments produce well-
typed expressions:

Lemma 3.10. IfTFJ E[loFo: A : A, and A S M : A with A CTo, then T +3 E[M] : A.

Proof. By induction on I' 3 E[['s F o: A.] : A. The only interesting case is, as before,

IFSMy:2:B. A THSER[Tobo:A]:B
- - AoAMA
THSM(E[ToboiAl]):A)

By induction hypothesis we get

I'FSMy:z:B.A THSES[M]:B

TESM, (Ex[M]):[Ex[M]/«]A
We are left to show that x ¢ FV(A), so that [E2[M]/z]A = A. From I' -3 M, : IIz : B.A we deduce
I'+3 Iz : B.A: type, and by inversion I',z : B +3 A : type. Suppose v € FV(A), then B <4 A, and, since
from T F3 FaTo ko A 1 A we get Ao =¥ B, we conclude A, <* A, a contradiction. |

In general the composition of two well-typed environment does not produce a well-typed environment. A
sufficient condition for this to happen is given by the following:

Proposition 3.11. Let T FJ E[lo ko A A, A RS F'[U ko A] : A two environments, if A ¥ A,
then A RS E'[E[To Fo: A - A

Proof. By an easy induction on A F3 E'[T'F o : A] : A”. We show the case

AFSM|:a:B'. A" AFSES[Tho:A]: B’
AFZM] (E[TFoiA])i A7
By inductive hypothesis we obtain A +3 EJ[E[[s F o : AJ]] : B'. If A, <* A’ from the assumption
A j‘zu A, we get A <A A’ a contradiction. Hence

AL

ARSM{Ma:B'. A" AFSESE[Tolo: A]: B’
AFSM] (ES[E[Toko: AT A

A AN

The following shows that environments behave nicely with respect to g-reduction:

Lemma 3.12. Let T,z : C,A B3 M : A be any term and T' +3 E[ls & o Aj] + C an environment, if
Ay AA A, then for any occurrence of x in M we have T',z : C,A FS M[E[To F o1 AJ]], : A.

10
Proof. By induction on the derivation of I', 2 : C, A & M : A. Most of the cases are trivial; one interesting

case is abstraction, since we have in particular to make sure that = cannot appear inside the type:

2:CAFS Artype T,a:C,Ay: AFSM:B
To:CAFSAy: AM:ITy:A.B

A=MB

If © € FV(A) then C' <4 A, and, by the side condition C' <4 Ily : A.B. From '+ E[ls Fo: A : C
we get Ao <M € hence A, <4 Iy : A.B, contradiction to the assumptions. So it must be v € FY(M), and
the result follows by induction hypothesis.

Another interesting case is application, where x appears on the right-hand-side:

Da:CAFSMTTy:B.A T,a:C,AFIN:B
T.0:C.AFSM NIN/yIA

Note that the side condition in the corresponding rule for environments is automatically guaranteed by
the hypotheses. We are left to show that y does not appear in A and that A, £ B.

Since we are assuming v € FV(N), C ¥ B. If y € FV(A) then B <* A, hence C' <" A, and, since
Ao =¥ C, we obtain a contradiction. Similarly A, A* B, because otherwise we would get, from B <& A,
A, <4 A, again a contradiction. Having shown these two simple facts, the result follows by inductive
hypothesis on I’z : C,A RS N @ A, O

Corollary 3.13. IfI' F3 (Az : AM) (E[ls b o : AJ]) : B then for all the occurrences of x in M we have
Iye: AFS M[E[Ts Fo: Al]]. : B.

Proof. By inversion (and type conversion, if necessary), we get I,z : AFS M : B, T3 E[ls Fo: A : A,
and A, £* B. The result then follows by the Lemma. O

4. SUBSTITUTIONS

In [9], the definition of substitution makes use of the existence and uniqueness of long 7 normal forms.
In the LF calculus, these find an analogue in the concept of canonical form:

Definition 4.1. We define canonical forms for terms and type families by the judgements
'k MU A M is canonical of type A
'y Al type A is a canonical type
ke M| A M is atomic of type A
'k ALK A is atomic of type K
formed according to the following inference rules:

TksAl type Ta:AFsM | B
I'ksde:AM | I12:A.B

TheA | type ThsM | A
TFeM A

TheM || A A=B ThksB:type
TroM | B

11

E(c):A T(x):A
Thscel A Thya | A

THeM | Ha:A.B TheN | A
TFoM N | [N/z|B

T'tsM | A A=B TkyB:type
TksM | B

S(a)=K
Trea K

TrsA | Te:B.K TreM | B
TrwA M | [M/2]K

TFyA]l K K=K' TrhsR' Kind
I'FeA | K

Ty A |} type Ta:AFs B | type
I'tsIlz:A.B || type

T'HxA | type
I'kFsA | type
Theorem 4.2. Let by T Ctx, then
IfI'ts M | A then I' by M @ A.
IfTts ALK thenT ks A K.
IfTrs My AthenT s M : A.
IfT'Fsy Al type then T' by A @ type.
IfT ks M : A then there is a unique M’ such that M' = M and T'Fs M || A.
IfT' by A type then there is a unique A’ such that A= A’ and I' by A’ || type.

IRl gl

Proof. See [1], [2], [15]. O

In light of the previous section, our goal is to show that if a well-typed term or type family respects the
dependencies, so does its canonical form.

Notation. We will make use of the following abbreviations:
THIM U AL Ty My AandTFS M : A
I'k3 A | type &b r Fsx Al type and T FS A : type

TS M| ALE T M AandTHE M : A

THEALK €5 Thy AL KandTHS A1 K
The inversion properties for the judgements I' 3 M | A and I' FS M} A are non-trivial enough to be
worth being stated and proved explicitly:
Proposition 4.3 (Inversion). We have:
L TS M: Tl : AB THEIN: A andThs M N [C thenTHS M | Tlx: AB and T HS N |} A,
2. IfT,o: AFS M :B, and T by Az : AM)) C thenT.a: AFS M | B.
3. IUTHFIM:A A=A Ty A L type, and Ty, M | C then T'H3 M | A.

Proof. (1) By induction on the derivation of I' 5 M N | C' . There are only two cases:

12

e Application:
s M | e A’ B TN A’
TksM N | [N/z]|B’
From I' b3 M : IIx : A.B we get I' 3 IIw : A.B : type, and by inversion I' b33 A : type. The result
then follows from I' by M | Ilx : A’. B’ and I" sy N |} A’ by conversion, since A = A’ and B = B’.

e Conversion:

IExM N | C" O'=C ThkyCitype
TksM N | C

Immediate by inductive hypothesis.
The proofs of (2) and (3) are similar. |

The following (quite technical) lemmas show that the class of dependency-preserving terms is closed with
respect to 8- and n-reduction, and also, under some circumstances, under n-expansion.

Lemma 4.4. IfTFS M : A and M —5 M’ then T +3 M’ : A.

Proof. By induction on the derivation of I 3 M : A. Application is the only interesting case:
IFSMy:M2:B.A THSM,:B
TESMy My:[M,/2]A
We have to distinguish three possible subcases:
[17\41 [\’[’2 —B M { [\’[’2
By inductive hypothesis ' +3 M] : IIz : B.A, hence the result.
o My M, —3 M, :\{[2/
By inductive hypothesis I' =3 M} : B. From I' =3 My My : [Ms/x]A we get T' B3 [My/x]A : type,
and clearly [M}/z]A = [M,/z]A, so

THSMyw:B.A THIMy:B
TF;A I 3L0L /i]i T /2] A=[My /2] A THS[My /] Astype

CRESMy MMy /2] A

o (Ax: B.M{)My =5 [My/x|M|
By inversion and type conversion, I',z : B' b5 M{ : A and I' & M, : B'. The result then follows
by Substitution.

a
Corollary 4.5. IfT'FS M : A and M =% M’ then T +3 M’ : A.
Lemma 4.6. IfT'FS M : A and M —, M’ then T =35 M’ : A,
Proof. By induction on the derivation of I' b5 M : A. Abstraction is the only interesting case:
< Aoty e BES A
fl—zAjype l‘"?a/.BI—ZJL.A A<V B
I'EsAz:B .M, :IIz:B.A by
We have to distinguish two possible subcases:
o \x: AM =, Ax: AM]|
By inductive hypothesis T',x : B 3 M : A, hence the result.
o \v: AM, = e :B.(M| x) =, M|
By inversion (and type conversion, if necessary) I' b5 M| : Ilz : B.A.
O

Corollary 4.7. If T35 M : A and M —; M' then T3 M': A.
Lemma 4.8. IfT'F3 M | C, then there is M’ =5 M such that T 3 M' |} C.

13

Proof. The induction is on the structure of C":
e Case (' =TIz : A.B:
From the assumptions, one gets I' F5 Iz : A.B : type, and by inversion, I' k3 A : type, so
[z AFS 2 | A and by inductive hypothesis we get a N —y, zsuch that Iz : A FSN | A
By inversion again, from I' 3 Iz : A.B : type one also gets I,z : A F3 B : type, and since
ILe: AFS M N | B, we can apply the inductive hypothesis once more to get a A’ =, M N such
that I,z : AFS M’ | B. Then Az : A.M’ is as required.
e CaseC=ANorC=ua
From the assumptions I' F3 C': type, and by Theorem 4.2 thereis C' = C' such that ' by, €7 |} type.
By inversion then I' y; C | type, and, since I' by, M | C” by type conversion, we get I' by, M || C”.
By conversion again, we get finally I' by M |} C.

|
Proposition 4.9. Let C = C', T +3 C': type, then:
L IfT,2: C,ARS M Y AthenTyx: C'A RS M | A
2. IfT,o: C,A RS Al type then Tz : C',A RS A | type.
3. fT,o: C,AFS M L Athen T,z : C',A RS M | A.
4. IfT,o : CLAFS ALK thenT,x: C'ARS ALK,
Proof. By an easy induction on the derivations. Replace
Ta:C AR 2 | C
with
I — Y el 2C-ty
F O AFZa 0 C'=C T'a:C,AFSCitype
I'Fa O
O

Theorem 4.10. We have:
1. If T B3 M : A then there is a M' = M such that T +3 M' || A.
2. IfT F3 A type then there is a A" = A such that T =3 A" || type.
3. T FS M : A and M = hN where h constant or variable, then there is a M' = M such that
L'k M| A
4. If TS A K and A= aN, then there is a A' = A such that T +5 A' | K.
Proof. By (simultaneous) inductions on the derivations. By Corollary 4.5, in (1) and (3) we will furthermore
assume, without loss of generality, M in S-normal form.
e Type constant:
S(a)=K
IFoa:K
We have immediately I' b5 a | K. If K = type, we have also I' 3 a | type.
e Type application:
'3 A:dMle:B.K THSM:B
THSA MM /2| K

By inversion we easily see A = aN, hence by inductive hypothesis we get A’ = A and M’ = M such
that T 5 A’ | IIe : B.K and T' =5 M’ || B, and therefore I -5 A'M' | [M'/2]K.

From I' 5 A : Iz : B.K we get I' F3 Iz : B.K Kind, and by inversion I,z : B -3 K Kind.
Therefore by Substitution I' -3 [M/2]K Kind, and hence by conversion I' +3 A'M' | [M/z]K. If
K = type, we have also I' b5 A’M’ || type.

14

Type abstraction:
IH3 Aitype Dot AFS Bitype
I'FSIle:A.B:type
From the inductive hypotheses we get A’ = A and B’ = B such that T +3 A’ | type and T,z : A F3
B’ | type. Using Proposition 4.9 we conclude I' -3 Tz : A".B’ || type.

A=¥B

Kind conversion:
FI—;A:K K=K’ fl—;K’ Kind
FI—;A:K’

Immediate from inductive hypothesis.

Term constant:
S(c)=A
I‘I—; cA

We get immediately I' 3 ¢ | A; (1) then follows from Lemma 4.8.

Term variable:

I(z)=A
Iky2:A

We get immediately I' b5 2 | A4; (1) then follows from Lemma 4.8.
Term application:
MF3M:M2:B.A THIN:B
I'FSM N:[N/z]A

Since M in -normal form, by inductive hypothesis we get M’ = M and N’ = N’ such that I' -3 M’ |
Iz : B.Aand ' +3 N’ | B, and hence I' 33 M/N’ | [M' /2] A.

From T' 5 M : Iz : B.A we get T b5 Il : B.A type, and by inversion I,z : B I3 A type.
Therefore by Substitution I’ F3 [M/z]A Kind, and hence by type conversion I' +3 M'N" | [M/z]A.

Once again, (1) follows from Lemma 4.8.

Term abstraction:
I'F3Astype Ta:AFSM:B
IFSAv:AM:Iz:A.B
From the inductive hypotheses we get A’ = A and M’ = M such that T' 3 A" || type and ',z : A F3
M’ || B. By Proposition 4.9 one obtain I' 5 Az : A’.M' || Tz : A".B.
From T 3 Az : AM : IIz : A.B we get I' 3 Tl : A.B type, and therefore by type conversion
DES A AVM 11w : AB.

M
A=¥p

Type conversion:
THESM:A A=A" THSA type
TESM:A’

Immediate by inductive hypothesis.

O

Corollary 4.11. IfT' =3 M : A then there are M', M" such that M —%5 M', M" —» M', T'F3 M" |} A

Proof. By inspection of the proof of Theorem 4.10 and commutativity of 3 reduction and 7 expansion. [

Notation. Given a well-typed term M or a type family A, we will denote their canonical form by M} and
Ay, respectively.

Lemma 4.12. Let T I—; E[lotFo: Al]: A an environment and T l—; M : A, a compatible term.

1. [fT S E[M] Y A then To b5 M I} Ay or To b3 M | Ao. Moreover, if To b3 M Aq (To b5 M | AL)

then for allTo 3 N | Ao (To FS N | Ay) we have T'+S E[N] | A.

15

2. ITFS E[M] L AthenTo b3 MU Ag orT'o b5 M | A, Moreover, if To b8 M Y Aq (To b5 M | Ao)
then for allTo 5 N | Ao (To b5 N | Ag) we have T +3 E[N] | A.

Proof. By induction on T' 3 E[['s F o: A.] : A, using Lemma 3.10 and Inversion. O

Definition 4.13. Given two contexts I' and A, a substitution from I' to A is a type-preserving, finite-
support mapping from variables to terms 0 : I' — A formed according to the following rules:

{FM}T—A AFsNI[M/7]A
{F=M,y—N}(TyA)—A

Dependency-preserving substitution are defined by the rules:

e SA

{Z-M}TSA AFSNY[M /7] A
{F=M y—N}:(T,y:A) ZA

Definition 4.14. Given any well-typed term T s, M : A and substitution § = {F = N} : T' — A, define
6M to be the (unique) canonical form of

Similarly, given I' Fx. A : type we also define § A.

Note that here, in analogy to [9], we define the result of a substitution application to be a canonical term.
This will simplify considerably some proofs in the next section.

Definition 4.15. We define:

1. Given two substitutions 6; = {7 H} : Ty = Ty and @ : T's — T's, the composition 0, o 6, is the
substitution 03 0 6; = {T — W} : Ty — T's.

2. A substitution @ = {F + M} : T — A is a renaming if all the terms M; are (convertible to) distinct
variables.

3. A substitution 0; : I' — A is said to be more general than 65 : T' — A’ if thereis p: A — A’ such that
92 =po 01.

4. Given two well typed terms T' by M : A and T ks N : A’, a substitution 6 : I' — A is said to be a
unifier of M and N if 0M = ON; M and N are then said to unify.

The class of dependency-preserving terms is closed with respect to substitution application:

Proposition 4.16. Let 0 = {z— N} : T 5 A,

L IfTFS M : A then AFS OM : [N/7]A.

2. IfTFS A type then ARG 6A: [N/T]K.

Proof. (1) First assume domT' Ndom A = (). Then by Weakening one gets A,T'F3 M : A and AFS N; : B;
for all :. By repeated applications of Weakening and Substitution from these one gets the result.

If domT NdomA # (), let p: A ZAa renaming into a set of fresh variables. Using the proof above,
one easily show, by induction on ¢ : T’ = A that ¢ = pof: T = A Moreover, it is immediate to see
p A" S A and OM = p~1(8'M), hence, by using again (twice) the proof above, one gets the result.

(2) Similar. O
Corollary 4.17. If 6, : Ty =Ty and 65 : Ty = T3, then 6206, :) = Ts.

Proof. By induction on the derivation of 8 : 'y = Ts. O

16

Definition 4.18. A canonical term I' by, M |} A is said to be a pattern if each x € domI' can appear in M
and A only applied to terms n-equivalent to distinct bound variables.

Theorem 4.19. Unification of patterns is decidable; if two patterns unify, there is a unique (up to conver-
sion) most general unifier.

Proof. See [11]. |

5. HIGHER-ORDER TERM REWRITING

In this section we extend the notion of term rewriting system and rewriting relation to a higher-order
setting with dependent types.

Definition 5.1. A rewrite rule I' -3 1 — r: A is a pair of well typed terms such that

e I'F3 1| Ais apattern, T F3 7 : A,

o I'F3 A | type,

o FV(I) 2 FV(r).

A higher-order term rewriting system (HTRS) R is a finite set of rewrite rules, such that, for each pair of
rules Ty B3 L o A Do bS5t Ay € R Ay A4 Ay,

The condition above translates to the requirement that it is not possible to use a rewrite rule to rewrite
the type of another. This is therefore consistent with the original goal to define rewriting in such a way that
it does not modify types, and hence preserve well-typedness of expressions.

Moreover, under this assumption, as we will see, the critical pair criterion will involve, precisely like the
first order case, a check for overlaps only among the left-hand-sides of the rules.

Ezample 2. In the formalization of the simply-typed lambda calculus given before, 3 and n reductions can
be expressed as rewrite rules:

A:type,B:type, F: (term 4) = (term B),U : term A5 (app (lambda F)U) — (F U) : term B
A:type, B : type,G : term (arrow A B) I3 lambda(\r : term A.app G 7) — G : term(arrow A B)
The check that both rules are well-typed and preserve dependencies is left to the reader.
Definition 5.2. Given a HTRS R and two terms I' 3 M : A and T' F& N : A we define R-rewriting as
follows:
TS M RGNS M, = E[fl], Ny = E[fr] for some (AFl = r:B)eR,6: A = (M, 00),
and ' +3 E[T(My,00) Fo: A(M.,600)] : A.

We furthermore define R-conversion as the judgement I' -3 M % Nt A formed according to the following
rules:

THIM:A M=N THEN:A THIM -5 N:A
THSMESN:A THIMSN:A
THEM S N:A TFEM SN A TEEN' S N:A
THENGS M A THIM S N:A

In addition to R-conversion, we introduce a more natural notion of equality modulo R, as a congruence
relation containing all instances of R, and closed with respect to conversion:

Definition 5.3. Let R be a HTRS, congruence modulo R is defined by the judgement
e M EN.ABD M and N of type A are congruent modulo R

where D is a set of type constants used to keep track of the dependency constraints. The rules associated to
this judgement are the following;:

THSM:A THIMEN: ABD
THEMEM:AS) THENEM:ASD

TFEMEN APD THIN'EN:ARD!
THMEN: Ax(DUDY)

AFZl—rAER 9:AST
THZ0120r:0 A>{ head(A)}

THZ Aitype Ta:AFEMEN:BSD
T Az A MEN:: A NTLe: A.B>D

A<M
A=Mp

TESMEM T2:A.B>D THINEN: ASD!
THEM NEM' N7:[N/2]B>(DUD')

a#£*B for all aeD’

THEMEN:AD N'=N THIN':A
TFEMEN:ASD

17

The only place the set of dependency D above plays a role is in the application rule: there, it restricts
the rule to those cases where well-typedness of both sides is guaranteed. An analogous set is defined for

R-rewriting;:
Definition 5.4. The set of dependency constraints generated by a R-rewriting step is defined as
(TS M L5 N2 A) IF {head(B)}

if (AFS1— r:B)€ R was the rewriting rule used in its definition.
This definition is extended to R-conversion:

THIM:A M=N THIN:A (TS ML N:A)IFD
(TFEM S N:A)IH) (TFEM S N:A)FD
TS M« N:A)FD TFEM SN AWD (TFIN' SN A)FD!
> b)) / >
(THSN<S M:A)FD (THSM S N:A)IH(DUD')

The main theorem of this section will be the following:
Theorem 5.5. Let R be a HTRS, then for all M, N,
THM SN AHFDeTFEMEN: A D.

One direction is easy to prove:

Lemma 5.6. If TS E[lobFo: A]: A and To b5 M LN Ao > {head(Ao)} then T +3 E[M] e E[N] :

A > {head(As)}.

Proof. By an easy induction on the derivation of I' -3 E[I's F o : A.] : A. We check the case:

IFSM:e:B.A THSES[ToFo:A]:B
TESM, (Ey[Doto:Al]): A

A AAA

18

By reflexivity, I' -3 M, £ M; : Iz : B.A > 0, and by inductive hypothesis I' 5 E»[M] £ EL[N]: B>
{head(A,)}. By hypothesis 4, £* A, hence by the application rule:

THEM EM, T B AS) THE B [M]LE, [N]:B>{head(A,)}
TS (M Ex[MD)E(M, Ey[N]):[E2 [M]/2]A>{head(As)}

To conclude the proof we have to show that & FV(A), so that [Ea[M]/z]A = A. If not, then B <4 A,
and since we know 4, <™ B from T' I—; EyTo ko Al] : B, we conclude A, <" A, a contradiction. O

Corollary 5.7. Let R be a HTRS, if (TFS M <2 N: A) I D then THE M E N : A D.
Proof. By induction on the derivation of (I' 3 M LI\ A) IF D. We consider two cases:

[] COIIVGI'SiOIlZ
THIM:A M=N THIN:A
(CFEM S N:A)IHD

From I' & M : A by reflexivity we get I F3 M EM:A>0and by the term conversion rule the
result:
THIMEM:AS) M=N THIN:A
THMEN:Ab)

¢ R-rewriting:
(TS M5 N:A)IFD
(THSM S N:AYFD

By definition, T’ k5 M B N . A if there are (AFS 1l 5 r:B)€eR,H:A = T(My,0l), and
L'k E[D(My,0l) F o A(My.01)] : A such that My = E[0l], Ny = E[6r].

By reflexivity and conversion, like the pre\'ious case, we get I’ I—g MmE Epl] : A>@Qand T I—g
El6r] EN:A> D Albo T(My,0l) B 61 = L. A(My,0l) > D, where D = {head(B)} =
{head(A(My,01))}, so applying the Lemma we get I' 3 E[0]] £ Efor] : A > {head(B)}, and by
transitivity the result.

|

To prove the other direction of Theorem 5.5 we follow the same approach used in [9], which goes through
the definition of a weaker notion of rewriting;:

Definition 5.8. For terms T'F5 M : A and T 3 N : A, we define weak R-rewriting as:

def

TS M LN LAy Y E[M,].N = E[N,], M, = 0l, N, =, 0r. for some (A1l —r:B)€R,

0: A S T(M, M), and T +5 E[D(M, M) b o : A(M.M.)] : A.
[A]

We furthermore define weak R-conversion as the judgement I' 3 M <— N : A formed according to the

following rules:

TFSM:A M=N TFIN:A T PN
THEM A N A T AT v
resvdhva et g

TSN A T N A

19

The set of dependency constraints generated by a weak R-rewriting step is defined as

Crs M N A) - (head(B))

if (AFS1— r:B)€ R was the rewriting rule used.
This definition is extended to weak R-conversion:

TH3M:A M=N THIN:A CrsM BN A)D
(s N A (s N YD
<M [R] AT <\ [R]w"-/ =N [R]J‘T-/ /
CrsM S NAwD (RIS NAD (TEN L N 4D
(NS A A)D (M N A (DUDY)

One relation between these two notions of rewriting is easily derived from their respective definitions:

Proposition 5.9. (I' 5 M %5 N : A)IF D if and only if (T 5 My <5 Ny : A) IF D.

Proof. By definition and Lemma 4.12, (T' +5 M LN, W A) IF D if and only if (T 3 My ﬂ) Ny :A)IFD,

and the result follows by a trivial induction on the two derivations. O

Our next goal is to show that (I' b5 M SN A) IF D whenever (I' b5 M ML A) I D. The proof

of this fact relies on a series of technical lemmas.

Lemma 5.10. If ',z : C.T' +3 E[lo,z : C.T, F o : A] : A then for all terms T +3 N : C there is
an environment T',[N/z][" +3 E'[To, [N/z]T, & o : [N/z]A.] : [N/z]A such that for all compatible terms
To,z:C, T, F M: A, we have [N/z|E'[M] = E'[[N/z]M].

Proof. By a trivial induction on the derivation of I',z : C\I" +3 E[ls,z : C,T, F o : A] : A, using
Substitution. We consider the case:

Do:CV'FSMy:Mle:B.A Ta:C IS BT ,0:C o AL]:B

TESM, (Eo[Dobo:Al]):A
By Substitution, I', [N/z]T', & [N/2]M : [N/z]llz : B.A, and by inductive hypothesis T, [N/2]I” F§
El[To, [N/2|TL F o : [N/x]Ao] : [N/2]B. Since head([N/x]Ao) = head(A,), head([/N/z]A) = head(A), and
[N/2z]As A4 [N/2]A, the result follows. O

A AAA

Notation. In the sequel, we will denote the environment obtained from Lemma 5.10 by [N/z]E.

Corollary 5.11. If (T,z : C' +3 M ﬂ) N : A) Ik D then for all terms T +3 M’ : C there is a term

TS N’ A such that [M'/2]N =5 N’ and (T F5 (M /2] Y5 N7 [0 2] 4) Ik D.

Proof. By definition, I',z : C'+3 M B, N': A means there are

(AF$1—r:B)€eR,
0:A S T(M,M,),
T.2:CHS E[D(M, M) Fo: A(M,M,)]: A
such that

M = E[M,], N = E[N.].
M, = 41, N, =, 0r.

20

By Lemma 5.10,
I3 (M)2]E)[T([M' /)M, [M'[2)Ms) F o« A([M' /x| M, [M'[x]M.)] : [M'/2]A
Let ¢/ = 6 o{x — M'}, pick NJ =, 68'r such that [M’'/x]Ny =% N{§; then N = ([M'/2]|E)[N{] is as
required. O
Lemma 5.12. If T,z : C g M’ : A, T FS M ﬂ) N:C)IFD, and a A* A if a € D, then there is a
rewrite sequence (I 3 M) E} M+ A)YIFD (0 <i<n) such that MO = [M/z|M’, M) = [N/z|M'.

Proof. By definition, T' 3 M L N : C if there are

(AFSI1—7r:B)€ER,
:A = D(M,M,),
T3 E[D(M,M,) Fo: A(M.M,)]: C

such that

M = E[M,], N = E[N,],
M, =6l, No =y, 0r.

By progressively replacing all the occurrences of @ in M by N using Lemma 3.12, we get a sequence
of terms M (0 < i < n) such that (by Lemma 5.10) (T' 5 [M/z]|M) BT AL /200D 4) D,
MO = M, MW = [N/z]|M'. O
Proposition 5.13. We have:

L If(T,e: ARS M LIV B)IFD and A Y B then (T +5 Aot A M 1B e ADM T A.B) Ik D.

o IF(CFE M A T AB)IFD and T FE N A then (U F5 M N 55 A¢ N [N/21B) IF D.

3. FTFE M Tl AB, (THE N S N LAY D, and a £ B ifa € D, then (U5 M N 55 v N7

B) - D

(R

N’ : A means there are
(AFST—7r:C)€ER,
0:A = T(N,N,),
IFHS E[T(N,No)Fo: A(N,N.)]: A

Proof. (3) By definition, I & N —

such that
N=E[N.]. N =E[N].
N, =01, N, =, or.
and D = {head(C)} = {head(A(N,N,))}. Then
T3 M (E[D(N,N.) Fo: A(N,N,)]) : B

and hence by definition (I' 3 M N — LN YN B) I+ D.

The proofs of (1) and (2) are similar. O

Corollary 5.14. We have:
LT ArE M S M BYIFD and A <Y B then (D FE Ar s AM A e AM 11 2 AB)IF
D.
o IF(CFS M & M Tt AB)WFD and T +3 Nt A then (D FS M N &5 M/ N [N/«]B) IF D.
3. FTFE M :Tr: AB, (T3 N4 N': A)IF D, and a £ B ifa € D, then (T F3 M N &% M N .
B) IF D.

21

|

Proof. By an easy induction on the derivations.
Lemma 5.15. If (I +5 M % N0 O) I D and M — 5 M’ then there is a rewrite sequence (I 5 M) %
MUY - A)I- D (0 < i < n) such that M' = M, N =% M.

In pictures:

M = N

[R] |
,ﬁl Bl
Al

AI(O) 7“;] e — [j{]> AI(”)

Proof. By definition, I' b5 M ﬂ) N : A if there are
(AFSI1—7r:B)€ER,
0:A S T(M,M,),
IT'HS E[T(M, M) Fo: A(M,M,)]: A

such that

M =E[M,], N =E[N],
M, = 0l N, =, or.
The proof proceeds by induction on I' =& E[I'(M, Mo) F o : A(M, M,)] : A. The most interesting cases

are the two application rules:

e Case:
TS B [Tobo:A:MMe:B.A THEM>:B
TFZ (B [ToFoiAl]) Mo

There are three possible subcases:
— M = (Eq[M.] My) —5 (EA[M] My) = M’
It is easily checked that

T g (ED(M. M) F o2 A(M, M,)]) M, : A,
U5 (B M) M) 25 (BN M) - A,
N = (E\[N.] My) =5 (EL[N.] My) = M)
— M’ = (M] My) and Ey[M.] =5 M}
Then, since
T B M) 5 BN 1 : BA,

the result follows by inductive hypothesis and repeated applications of Proposition 5.13.(2).

— M = (\y: B".E\[M,]) My — 3 [M>/y]E\[M,]
By inversion (and type conversion, if necessary) I,y : B’ +3 Ei[To Fo: A]: A, T +3 M, : B,
and the result follows directly by Corollary 5.11.

e Case:

THM,:le:B.A THSE[Tobo:A.]:B

A A A
TFSM, (Ex[ToborAl]):A AR A

There are again three possible subcases:

22

— M = (M E5[M.]) =5 (M] Ey[M.]) = M’

It is easily checked that
TS M| (Bo[T(M,M,) & o: A(M,M,)] : A,
U5 (M Bsa]) Y% (! Ba[NG]) - AL
N = (M E>[No]) =5 (M) Ex[No]) = MW
— M' = (M, M) and Ey[M.] —5 M,

Then, since
T3 BM.] 5 B[N - B,

the result follows by inductive hypothesis and repeated applications of Proposition 5.13.(3).
— M = (\y: B'.M]) Es[Ms] =3 [E2[Mo]/y) M
By inversion and type conversion, I',y : B' 3 M| : A, T +3 Eb[Ts F o : A] : B', and the result
follows directly by Lemma 5.12.
|

Lemma 5.16. Let ;), —2> and > be relations on some set S such that > is a terminating partial order,

sétimplies s>t, and si>timpli635>t, Then
Lo 2 I ; 1 = * 2
Ve, o'y o <=——12—=y =y o ——r<"y
implies
/ pogx 21 = AR T
Ve,2',y 2 g/ =—ax——=Y =y g —sax<—"1Y.

In pictures

T—])-?J T —Y
| |

zl 21% = zj* PARS
* Y * Y
y7T>y’ y7?>y’

Proof. By a double induction argument. The primary induction is on (z,>), the secondary one on the length
of the derivation x —]*> Y.
The cases when # =z’ or # = y are trivial. In the induction case we have the following diagram:

VU
I |

2j 2 1% 2| *
0Ly

V= — >y - - >w
1 | |

2| * 2| % 21
Y A
T B
r - qTu 1Y

where the existence of v’ and w are given by hypothesis and secondary inductive hypothesis (z > w but

U —1>*y is shorter than « —li‘y), respectively, while the existence of u” and 3’ come from primary
inductive hypothesis (z > v > u’). O

Corollary 5.17. If (T +5 M E) N:A)IFDand M —>§ M', then there is a rewrite sequence (I' F3

MO B A0 L 4) 18D (0 < i < n) such that M! = M©), N =% M,

23

Proof. Define, for any terms I' =3 M : A and T'FS N : A,
m(M) = maximal length of 3-reductions starting from M,
and M < N if and only if m(M) < m(N), then
Mg N=M>N

s B N A= >N

and the result follows by the previous Lemma and 4.12. O
Lemma 5.18. If (T 3 M A N A) - D then for all T =3 M’ : A such that M' —,, M there is a
T RS N2 A such that N' 557 N and (U -5 M' 2 N7 4) Ik D.
In pictures:
A — — >] 7!
M (7] \l
UL MIRF
¥
M - e N
Proof. By definition, I' b5 M ﬂ) N : A if there are
(AFS1—r:B)€ER,
0:A = T(M,M,),
I'tS E[T(M, M) Fo: A(M,M,)]: A

such that

M = E[M,], N = E[N.].
M, = 41, N, =, 0r.

We will construct, by induction on T' & E[['(M,M,) F o : A(M,M,)] : A, an environment I' F3
E'[T(M,M,)Fo: A(M,M,)]: A and term T’ I—; N': A such that

M' = E'[M!], N'=EFE[N],
JLIC/) = 01. l\ré =n 07"7

N —FEN.
We show some representative cases:

o Case:
TF8Astype TLCT
IHoo[lokoiA]: A,
Then M’ = 61, hence picking E' = E and N’ = N we have the result.

e Case:
IESMy:a:A.B THSES[ToFoiA]:A
Tl—gﬂ/ﬁ (Ea[Toko:Al]):B
We have three different subcases:
— B=Tz: A.B and M' =Xy : A'.(M, M) y =y My My =M
It is easily checked that
T I—; Ay A'.(All E [T(M,M,)Fo: A(M,M,)] y): B

and Ay : A'.(E[N,] y) =, N.

AA'B

24

- M= (A[{ 17»[2) —n (17\41 17»12) =M

By inversion (and type conversion, if necessary), I' b3 M| : Iz : A.B, and E’

E'[N,] are as required.
- M= (A[l A[é) —n (17\41 17»12) =M

= M| By, N' =

By inductive hypothesis on I' b Eo[T's F o : Ao] - A we get E) and Nj; defining E' = M, E} and

N’ = My N} we have the result.

e Case:
IFSE[Tobo:A]:A A=B THEB:itype
IFSE[Tolo:Al]:B

Immediate by inductive hypothesis and type conversion.

|

Corollary 5.19. If (' & M ﬂ) N : A) Ik D then for all T =3 M’ : A such that M’ =, M there is a

T hg N': A such that N' % N and (T 5 M 55 N 4) Ik D

Proof. By induction on the length of the reduction M’ —, M, using the Lemma.

Lemma 5.20. If (0 -5 M L N A) I D then (T FE M <25 N 4) IF D.

Proof. Immediate from Corollaries 4.11, 5.17, 5.19.

(R

Corollary 5.21. If (T +5 M ¢= N : A) b D then (T FS M 2 N : A) IF D.

Proof of Theorem 5.5. One direction has already been proved by Corollary 5.7.

|

The proof of the other is

by induction on the derivation of I' 3 M £ N A D. Most of the cases are immediate. The only two

requiring some work are application and abstraction:
o Abstraction:
'3 Artype T,:L':fll—ﬂ\/fiﬁf’:BDD
THAT: A MEN2: A N:Tl2: A. B>D

A M
A<M B

By inductive hypothesis,
(T,w: AFZ M <& N : B)IF D.
By Proposition 5.9,
(oo AFS My & Ny B) IF D,

and by Proposition 5.13.(1) and Corollary 5.21

(THS (Ax: AMy) <5 (A : ANy) : e : A.B) I+ D.

By conversion
R

(TFS Azt AAM) +— (Ax: AMy) : Iz : A.B) I+ D,

R

(THS (Az: ALNy) +— (Av: AN): Iz : A.B) I+ D,

hence by transitivity the result.
e Application:
THIMEM Te:A.B>D THINZEN: ASD!
THIM NEM' N':Bi>(DUDY)
By inductive hypothesis,

(TS M <& M/ :Tle: AB)IF D,
CHIN S N A D

aA" B for all aeD’

By Proposition 5.9,

(Crs My & ar) T AB) I D,

(U5 Ny &5 N2 Ay I D
by Proposition 5.13 and Corollary 5.21
T 5 (My Ny) <& (M) Ny): B)IF D
by 4 VY (AR)
TR (M) Ny) & (M N|): B)IF D',
5] AV (% /

and by conversion and transitivity the result.

6. CRITICAT PAIRS

As in the first order case, the check for local confluence of PN goes through the search for critical pairs
generated by the rules of the HTRS R. The definition of critical pairs here, however, is complicated by the
presence of dependent types. Before giving the precise definition of critical pair, we need some additional
machinery:

Definition 6.1. Let 6 : I' — A be a substitution, the support of 8 (supp(9)) is the set
{z € domT | =(8(x) = 2)}.
Given two substitutions # : I’ — A and ¢’ : T" — A’, we will say that they are equivalent, and write 6 = §’,
if supp(6) = supp(#’) and O(x) = 6'(x) for all x € supp(h).
Proposition 6.2. Let § = {T+ M} :T = A be a substitution, T FS Ayt AM : Iy : A.B any term , then
there is a substitution 8’ : T,y : A = A,y : [M/Z)A such that §' =0 and
BNy : AM) = Ay :0A.6'M
Proof. From A b5 0M : [M/z](Ily : A.B) we get A 5 [M/7](Ily : A.B) : type and by inversion A k3
[M/Z)A : type.
Also, by inversion (using type conversion, if necessary), ' F3 A : type, I,y : AFS M : B, and A <Y B;
hence A F3 A | type.
Let A,y : A S N || [M/F]Abesuch that N =y, then ' = {7 = M,y —~ N}:T,y: A N [M /7] A,

so
AFZ0Atype A0 AFZO'MU[M /7)B —
20AUype AyhACSOINMITB) uiyz /b,
AFSAy:0 A.0MITy:0 A.[M /7B
By type conversion A F3 Ay : 0A.0M || [M/7](Tly : 6A.B and, observing that #(\y : A.M) = (\y :
6 A .6'M), by uniqueness of canonical forms we get the result. O

Definition 6.3. Let ¢ : I' = Abea substitution, an atomic term I' by M | A is said to be stable for 0 if
M = hN where h is either a constant ¢ or a variable 2 ¢ supp(f).

Stability implies that the head of a canonical term is preserved by the application of a substitution, i.e.

that O(hN) = hON.

Lemma 6.4. Let 6 = {7 — H} T = A bea substitution, T’ l—; M | A stable for 0, then there exists an
atomic term A +Z M’ | [M/Z]A such that 0M —; M.

Proof. By Lemma 4.8 and uniqueness of canonical forms, it suffices to show M’ = 6M. Moreover, by
Proposition 4.16 and Corollary 4.7, we need only to show A ks M’ | [M/Z]A. The proof goes by induction
on the derivation I' Fvy M | A:

26

e Case
Y(e)=A
rl_gc J, A
It is immediately verified that fc = ¢, and for each € domT, z ¢ FV(A). Hence [M/7]A = A and
therefore
Y(e)=[M /7] A
Abysie | [M/7)A
o Case

T T =A
Thsz |l A

By stability, #(x) = x; by inversion on 0 : T’ = A we have A(x) = [M /7] A, hence

e Case
T'tsM | TIy:A.B THsN || A
TksM N | [N/y|B

Since by hypothesis M N is stable for 8, so is M, so by inductive hypothesis there is an atomic term

Aty M’ | [M/7)(Iy : A.B) such that M —;, M'. Then

AFsM' | [M/7|(Iy:A.B) AFs6N | [M/7]A
TrsM 0N | [ON/y]M /7B
From A +3 6(M N) | [M/Z|[N/y]B we get A +3 [M/Z|[N/y]B : type and, since [M /Z][N/y]|B =
[ON/y][M /Z]B, by type conversion the result.

o Case

T'tsM | A A=B TkyB:type
TksM | B

Immediate by inductive hypothesis and type conversion.

|

Definition 6.5. Let § = {7 — H} ‘T = Abea substitution, an environment T’ I—; E[lcFo:A]: Ais
stable for @ if whenever the rule

TESMy:IlaiA.B THSES[DFo:A A
TF 20, (Bo[Toh oA B

is applied, I' 5 M | Iz : A.B and M is stable for 6.

A AAB

Since all the applications contained in it involve stable terms, one would expect that a stable environment
preserves most of its structure when the substitution is applied to it. The following Lemma shows that this
is actually the case:

Lemma 6.6. Let
g={T—M}:T S A
IS E[Ds Fo: Al] : A stable for 6,
To b3 Mo | Ao, To B Ao | type,

27

and M = E[M,], then there are
0': T = Ao with 6 =9,
AFS E'[Ac ko [M/7|Al] : [M/7]A
such that:

1. if T+5 E[M,] | A then 0M = E'[0'M.] and A +E E'0'M,] | [M /7] A:
2. if U5 B[Mo] L A then 6M =7 E'[6'Mo] and A F5 E'[6'M,] | [M/7]A.

Proof. By induction on the derivation of I' -3 E[[s Fo: A.] : A:
o Case
-3 Aqstype TLCT
TES[Coko:AL]: A
(1) By Weakening I' 35 M, : Ag, so A F3 6M, |} [H/E]Ao, hence by letting F' = F = o, #/ = 6 we
have the result. L
(2) By hypothesis I 3 A, | type and therefore [AM/ZT]A, = A", A +3 A" | type. Hence by
Inversion A k3 OM | [H/?]A% and the proof follows from (1).

o Case:
I3 Atype TatARSE[Dobo:A]:B
TSz AE [Dobo: Al Ilx:A.B
(1) Since T',x : A FS Ey[M.] : B, by Inversion I', z : A +3 E,[M,] || B. By Proposition 6.2 there is
0 :T,x: A = A x: [H/T]A such that 6; = 6 and Az : A.E4[M.]) = (A\x : 04.6, E;[M.]), hence we
can apply the inductive hypothesis obtaining

A M
A<M B

0 : Ty = A,
Ay [M/7|A RS Ef[Ac o [M/7)Al] : [M /7B
such that 0E[M,] = E{[¢'M,] and A, : [H/7]4 S EL[0'M] | [H/?]B Let E' be
AFS Az [M/7)AE[As ko [M/F|A] : [M/z|x : A.B,

it is as required.

e Case:
IS EDoboi Al e B. A THSM,:B
TES (B [DoborAc]) Mo A
(2) Since T’ b5 Ey[M,] : I : B.A, by Inversion I' -3 Ey[M,] | Iz : B.A. By inductive hypothesis

there are

9 Ty = A,
AFS E{[Acto: [H/T]ﬁlo]] : [H/T]Haf :B.A
such that 0E,[M.] = E{[0'M,] and A +5 E{[0'M,] | [M/Z](Ilz : B.A). Let E' be

A RS (B [Ac ko [M/7)A])0M, : [M /7 A,
it is as required.

(1) By inversion, we must have 4 = A, T' -3 A’ | type; it is not difficult then to verify that
[M/7Z]A= A", A S A" | type. Hence by Inversion I' F3 E[M.] | A, and the result follows from (1)
and uniqueness of canonical forms.

o Case:
IFSM:e:B.A THSES[ToFo:A]:B
TESM, (Ey[Doto:Al]): A

A AAA

28

2) Since I' F3 Es[M,] : B, by Inversion I' 3 My | Iz : B.A and I' +J E»[M, B. By inductive
b b)
hypothesis there are

6 : T, = Ao,

A RS Ei[Ac ko [M/7)Al] : [M/7]|B
such that 0 E[M,] = EL[0'M,] and A +5 EL[0'M,] | [M /z]B. By stability of My, thereis a M; such
that 0 M, —; M| and A 35 M | [M/7](Tlx : B.A). Let then E' be the environment

A RS M (E)[Ac b o [M/T)Al]) : [M/7]A,
it is as required.
(1) Similar to (1) of the previous case.
o Case:
IFSE[Doko:A]:B B=A TS Bitype
FI—;E[[FOI—O:AO]]:A

Both (1) and (2) follow trivially from inductive hypothesis and type conversion.

|

Notation. For the rest of this paper, we will write E(6, M,) and 8(E, M,) to denote the environments E’
and substitutions #’ obtained from Lemma 6.6.(1).

Definition 6.7 (Critical Pair). Let R be a HTRS, T’ l—; = r o C, Ty I—; ly — ro : (5 two rules in
R o6 i1y S A 6y:T9 S A6 ={T— N} and Iy 5 E[[o F o : AJ] : A such that Iy = E[M.],
9] (E],Afo)leo = 9212, then

A |‘§< E(@l,:\[o)[[egrg]],elll > [T/?]Cl
is a critical pair
Remark. By applying a renaming substitution and using a-conversion, we can assuime, without loss of

generality, I'y NIy = (). The by Weakening it is easily verified that 6; Uy : 'y, Ty 2 A is a unifier of {1 and
M, and the definition above appears as a generalization of the familiar one for first-order TRSs.

Ezample 2. In the HTRS for the typed lambda calculus given before, letting
'y = A:type,B : type,F: (term 4) = (term B),U : term A
I'y = A:type, B: type.G : term (arrow A B)

)
Il

L
Il

A :type, B : type,G : term (arrow A B),U : term A

01 ={A— A, B— B,F— (Ar:term Aapp G 2),U —» U}
o ={A—~ A, B— B,G— G}

E =app o U
we get the (trivial) critical pair

AFS<app GU,app GU >: term B

Proposition 6.8. Let § = {T +— M} : T = A be a substitution, T kS M | C stable for 0, M —; M| M,,
A S MM, | [FT/F]C, then M = My My, OM; =7 M}, OM, = My},

Proof. It M = ¢ or M = x where z ¢ supp(#), then M = M, contradiction to uniqueness of atomic
forms. Therefore M = M; M,. By inversion, there are types A, B such that T’ I—g M, | Ilx : A.B,
'S My @ A, C = [My/x]B. Since M is also stable for #, by Lemma 6.4 there is an atomic term
A RS M | [M/7)(Ilz : A.B) such that 6M; —; M{". Then A +3 M 0M, : [0M>/x][M/7]B, and by type
conversion, since [M- /z][M /Z)B = [M /Z][M, /x]B, the result. O

29

By definition, the only non-stable subterms of a pattern M have a very specific form, i.e. the must consist of
a free variable, possibly applied to a sequence of terms equivalent to distinct bound variables. Unfortunately,
this property is not preserved by subterms, since bound variables may become free. Proposition 6.2, however,
suggests a slightly different definition of pattern, which relies on the support of a substitution rather than
on on the set of free variables of the term.

Definition 6.9. Let § : ' — A be a substitution. A teem I'Fx, M |} A (T' by M | A) is said to be a pattern
for 0 if each » € supp(#) appears in M applied to terms r-equivalent to distinct bound variables.
Proposition 6.10. IfI'Fy M | A is a pattern, then it is a pattern for any substitution 6 : ' — A.

The following theorem says that any subterm N’ of 0M, where M is a pattern for 6, either corresponds
to a subterm N of M (such that ’N = N’ for some 6’ = 0) or it is a subterm of 8{z) for some = € supp?¥.
This key fact will play a central role in the proof of the Critical Pair Lemma.

Lemma 6.11. Let
f={F—M}:T S A
AFS ETAcFo: ALl C
Ao BS ML AL,
THS M: C,
then

1. if M = E'[M]], Ao b5 E'[M.]) C" and T'+3 M | C pattern for 6, or

2. if OM =} E'[M!], A =3 E'[M] L C', and T+ M | C both pattern and stable for 6,
then either there is an environment E stable for 0 such that M = E[M,], E' = E(0, M), M, = 6(F., M,) M.,

or there are well-typed environments Fy, Eg and variable © € supp(8) such that M = Ey [[xﬁ]] N; = vy,
0(x) = A7 : C.Eg[M']. E' = Ers (6. 2N)[Es]-

Proof. By induction on the derivation of A 3 E'[Aq Fo: AL]: €7, where C' = [M/Z]C":

e Case
ASALtype ACA
AFS[AFo: AL AL

(1), (2) Immediate, by letting E = o.

e Case:
AFSA'itype Aot A'FSE [AFo:ALLB
AFSAz: A B [Ako: ALl Ia: A B!
(1) By Inversion on A +3 Az : A E{[M]}] | Iz : A’.B" we obtain immediately A,z : A’ =5 E{[M.] |
B. From the derivation of I b M || €' we get types A, B such that M = Az : A.M,, C =1la: A.B and
['a: AFS My | B. By Proposition 6.2 and uniqueness of canonical forms we conclude A’ = [M /T]B.
The result then follows by inductive hypothesis.

M
A<M B

o Case:
AFSE Ao AL B'. A" AFEM):B’
ARS (Bl [Aoko: AL]) ML (M [2] AY

(2) By Inversion on A F3 (E{[M.])M; | [M;/xz]A" we obtain immediately A,z : A’ +& E{[M]] | B.
By Proposition 6.8, M = M; M, and inversion on the derivation of I' =5 M |} C' there are types A, B
such that '3 M,y § Tz : B.A, T F3 M, |} B, and C' = [M>/2]B. From Lemma 6.4, by uniqueness of
atomic forms we deduce § My = My, 9M; —; E{[M(], hence the result follows by inductive hypothesis.

(1) We must have A B3 C} | type. Tt is not difficult then to verify that ' 3 Cy | type, and
therefore by Inversion I' =55 M | C. If M is stable for ¢, the result follows from (1). Otherwise, by
definition, it is easy to verify M = 2N, N; = y;, € supp(d), 6(z) = Ay : C.E'[M!]. Hence Ey; = o,
Ey = E’' are as required.

30

o Case:
AFSM|:Ix:B'. A" AFSES[AFo:ALl:B’
AFSM|(EY[Acko:ALL): A

(2) By Inversion on A 3 M{(E5[M.]) | A’ we obtain immediately A -3 E{[M!] | B. By Proposition
6.8, M = M, M>, and by inversion on the derivation of ' b5 M |} C' there are types A, B such that
PFS M U Ie: BA T RS M, | B, and C' = [M>/z]B. From Lemma 6.4, by uniqueness of atomic
forms we deduce §My = E5[M(], 0My — M, hence the result follows by inductive hypothesis. Notice
that head(A') = head(A).

(1) We must have A k3 Cﬁ ! type. It is not difficult then to verify that I' F3 C | type, and
therefore by Inversion I' =55 M | C. If M is stable for ¢, the result follows from (1). Otherwise, by
definition, it is easy to verify M = «N, N; = y;, « € supp(f), 0(x) = \g : C.E'[M!]. Hence Ey; = o,
Ey = E’' are as required.

ALAAA

o Case:
AFJE'[AFo:ALl:B" B'=A" ARG B:type
AFSE[A Fo:AL]: A

Both (1) and (2) follow trivially from inductive hypothesis and type conversion.

|
Theorem 6.12 (Critical Pair Lemma). Let R be a HTRS, if I' +3 M it Ny :Aand T S M it Ny A

then either there is a critical pair in R, or there are rewriting sequences T' 3 Nl(i) Eil N{Hl) (0 <i<mny),
TSN BN 0 <i < ny) such that N = Ny, NI = Ny, N[™) = NI

Proof. By definition, I' b3 M X Ni if and only if there are
A bl =i Ch €RG,: AL ST RS EWIY o al]: 4
such that My = EW[0,1,], (Ni)y = E®[0ry], (B =1,2).

The proof proceeds on induction on the size of the environments E("), E(*).| We show some representative
cases:
o BV =)r: AEY, E® = \p: A.EY:
2)

Using type conversion, if necessary, we can assume that the type derivations of E(V), E(?) are:

IS Aitype DaARSEY [T Fo: Al)8
T A B [T Fo: A 120 A.B

F";Athe Rl?Al—SEE]) [[F(O])l_044(()1)]]B
A A B M Fo: ATz A B

A='B A=MB

Then My = Az : A.M;, and by Inversion on I',z : A -3 E{l)[[n% Ii]: Bwehave ',z : A3 M, |} B.
Therefore
Too:ARS M B EW 0] (k=1,2),
and the result follows by inductive hypothesis.
o« EW =E" N, E® = EY N

Using type conversion, if necessary, we can assume that the type derivations of E(V), E(?) are:

TFEEV M o AV oA B THEN:A THEED [N o AP [Tz A.B THEN:A
TFS(EV I o A N [N/2] B THS(EP TP 0 AP) N[V /2] B

By inversion, My = (h M) N. Since all rules are of atomic type, it is easy to see that there are
indexes i; such that

EY =h M. My B M p0 .. M, (k=1,2)

There are two subcases:

31

— 11 =19
By inversion on the derivation of I' -3 My |} [N/x]B we get I'(My, M;) b5 M;, |} A(My, M;)),
and the result follows by induction hypothesis.

— 11 F iz

Assuming ¢y < i, it is easy to verify that

TEs (h My My —y ESY My My, _y B [65r] Miysy ... M) N : [N/« B
TS (h My My, B[00] Miyr oo Miy 1 BS Miyiy ... M) Nz A

are well-typed contexts, hence letting

NV =N = (b My M,y B[00] Miyar oo Moy—y B [0ors] Moyt ... M) N
we have
THI N, S NP 4 (k=1,2)

e EN =0
Then 6,1, = E® [f205]- By Lemma 6.11 we have two possible subcases:
— There is E stable for 6, such that I, = E[M.], E®® = E(61,M,), a1y = 6,(E, M.)M..
Then by definition

I |_§< E(H],LWIO)[[egrz]],!g] ry > A

is a critical pair.

— There are well-typed environments Ej, ;, , Ep, and variable 2 € supp(91)such that 6117 = Ep g, [[mM]L
M; = yi, 01(z) = Xy : C.Eg,[0212], E' = Eg,1,(61,2N)[Ep,]-
Let 0} : Ay = T defined as

’ _ 01 (y) Yy # €
b1ly) = {Ay : C.Ep,[0215] y=u,

we want to show that both Ny = 6,1, and Ny = E®)[0,15] both rewrite to 6)r;.
Assume Ay 3 0 (z) : C, let = be a fresh variable, define 67 : Ay = I'z:Cby

03 (y) = {31(1/) y#E

z Y=z

By replacing progressively all the occurrences of z in 715, starting from the occurrencein Ey, 1, (65, rﬁ)
with Ay : C.Ey, [f212], we get a rewrite sequence i\rl(i) such that Nl(o) =Ny, Nl(‘nl = 61l;. Simi-
larly, by replacing all the occurrences of z in 87r; with Ay : C.FEy, [02r2] we get a rewrite sequence
Néi) such that 1\"2(0) = [61(2)/y]0ir = Na, 1\"2("2) = 0{r1. The result then follows by a single
additional rewrite step.

|

Definition 6.13. Let R be a HTRS, if whenever I' b5 M it Ny:Aand T FS M g Ny : A there are
rewriting sequences I' -3 Nl(i) LS Nl(i) 0<i<m), kS sz it Néi) (0 <i < ny) such that NI(O) = Ny,
Néo) = Ny, N1(MJ = 1\’—2("2), R is said to be locally confluent.

Corollary 6.14. If for all critical pairs T F3< M, N >: A of « HTRS R both M and N R-rewrite to a
common term, then R it is locally confluent.

32

7. FUTURE DEVELOPMENTS

The Critical Pair Lemma gives us a criterion to check for local confluence of a HTRS. As said before, local
confluence assumes a great relevance in presence of termination, since by Newman’s Lemma, it provides a
simple and computationally-effective way to check for confluence. Very recently, in [5] and [12] two methods
of proving the termination of a HTRS have been proposed for simple types; it is our hope that these will
translate to dependent types, and that perhaps the richer type structure will allow to obtain better results.

Another interesting line of research is R-rewriting modulo a (higher-order) equational theory E. In LF,
where the relation < define a hierarchy of types, it is possible to define a suggestive notion of “multi-staged
completion”: once a terminating HTRS, defined on some set S of type classes, has been checked for local
confluence, it becomes part of the underlying equational theory E modulo over which a new HTRS, defined
of a set S” of “higher” type classes (i.e. VA € SAB € §’ A <A B, or at least VA € SVYB € §' B A& 4) is in

turn tested for confluence, and so on.

8. ACKNOWLEGMENTS

I would like to thank Prof. Frank Pfenning for his help, suggestions, and support. I also thank E.
Rohwedder and W. Gehrke for their valuable comments.

REFERENCES

[1] Coquand, T. An algorithm for testing conversion in type theory. Logical Frameworks, Cambridge University Press, 1991,
pp. 155-279
[2] Geuvers, H. The Church-Rosser Property for Bn-Reduction in Typed A-Calculi. Seventh. Ann. TEEE Symp. on Lofic in
Comp. Sci., IEEE Computer Society Press, 1992, pp. 453-460
[3] Harper, R. , Honsell F., Plotkin, G. A framework for defining logics. Journal of the Association for Computing Machinery,
January 1993, pp. 143-184
[4] Klop, J. Combinatory Reduction Systems. Mathematical Centre Tracts 127. Stichting Mathematisch Centrum, Amsterdam,
1980.
[5] Kahrs, D.Towards a Domain Theory for Termination Proofs. Sixth International Conference on Rewriting Techniques and
Applications (RTA), 1994
[6] Knuth, D. and Bendix, P. Simple Word Problems in Universal Algebra. Computational Problems in Abstract Algebra,
Pergamon Press, 1972, pp. 263-297
[7] Mayr, R., Nipkow, T. Higher-Order Rewrite Systems and their Confluence. Tech. Report, Technische Universitit Miinchen,
1994
[8] Miller, D. A Logic Programming Language With Lambda abstraction, Function Variables, and Simple Unification. LFCS
report series, University of Edinburgh, 1991, pp. 253-281
[9] Nipkow, T. Higher-Order Critical Pairs. Proceedings of the 5th IEEE Conference of Logic In Computer Science (LICS),
1990, pp. 342-348
[10] Pfenning, F. Logic Programming in the LF Logical Framework. G. Huet, G. Plotkin ed., Logical Frameworks, Cambridge
University Press, 1991, pp. 149-181
[11] Pfenning, F. Unification and ant-unification in the Calculus of Constructions., Proceedings of the 6th IEEE Conference
of Logic In Computer Science (LLICS), 1991, pp. 149-181
| Rohwedder, E. , Pfenning, F. Mode and Termination analysis for Higher-Order Logic., to appear at ESOP 96
| Snyder, W. A Proof Theory for General Unification. Birkhauser, 1991
4] Salvesen, A. The Church-Rosser Property for Pure Systems with On-Reduction. Tech. Rep., University of Oslo, 1992
] Van de Pol, J. Termination Proofs for Higher-Order Rewrite Systems, J. Heering, K. Meinke, B. Moller, T. Nipkow ed.,
Higher Order Algebra, Logic and Term Rewriting, Lect. Notes in Comp. Sci., Vol 816, Springer Verlag, 1994
[16] Van Qostrom, V., Van Raamsdonk, F. Comparing Combinatory Reduction Systems and Other Systems. J. Heering, K.
Meinke, B. Moller, T. Nipkow ed., Higher Order Algebra, Logic and Term Rewriting, Lect. Notes in Comp. Sci., Vol 816,
Springer Verlag, 1994, pp. 305-325

