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ABSTRACT 

This report demonstrates the remote sensing of a scattering object's size, shape, 
and surface properties using techniques based on the wavelength dependence of laser 
speckle. Originally, these techniques were motivated by applications of laser radar to 
target discrimination in ballistic missile defense. More recently, the emphasis has shifted 
to industrial applications of 3D imaging involving machine vision and dimensional 
metrology. Consequently, the report addresses a wide range of techniques and potential 
applications. 

For applications to target discrimination, the capability of obtaining high- 
resolution measurements of the target's range-resolved laser radar cross section is 
emphasized. Submillimeter range resolutions are demonstrated in the laboratory. The 
analytical background is also included for predicting and understanding target signatures 
based on knowledge of the target's shape and the scattering properties of its surface 
materials. 

Two approaches to high-resolution 3D imaging are considered that have many 
potential industrial applications. The first approach is an extension of the technique for 
measuring range-resolved laser radar cross section. The second approach relies on the 
wavelength dependence of laser speckle to provide range information and conventional 
optical imaging to provide lateral information. These techniques are analyzed 
theoretically and demonstrated in the laboratory. Together, they cover object sizes 
ranging from millimeters to meters. 

in 
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1.     INTRODUCTION 

This report deals with applications of tunable lasers to remote sensing of scattering objects with 
opaque diffuse surfaces. The objective is to extract information about the size, shape, and surface 
properties of the scattering object by observing variations of the radiation pattern caused by changing the 
laser frequency. In these applications the object is flood-illuminated by the laser beam. Because the 
illumination beam is coherent and the surface of the scattering object is rough on the scale of a 
wavelength of light, large phase irregularities occur in the scattered light coming from different scattering 
regions on the surface. Interference among the various contributions to the optical field produces a 
speckle pattern of bright and dark regions of intensity in the radiation pattern. As the laser is scanned in 
frequency, this speckle pattern appears to boil and decorrelates from the original pattern. This report 
investigates how this wavelength-dependent speckle pattern is related to the scattering object and 
demonstrates techniques for extracting information from the speckle pattern about the physical properties 
of the scattering object. Atmospheric turbulence effects are not treated here. 

Researchers have recognized for many years that the wavelength dependence of scattered 
electromagnetic radiation carries information about the physical properties of the scattering object. In the 
field of crystallography, it was realized early that the 3D Fourier-transform space of a crystal lattice can 
be accessed through X-ray diffraction [1]. For a given direction of incidence and a given wavelength, the 
region of Fourier space being accessed lies on the surface of a sphere known as the Ewald sphere of 
reflection [2-4]. The Ewald sphere is offset in Fourier space in the direction of the incident beam so that 
one point on the surface of the sphere touches the origin of Fourier space. Varying the wavelength 
changes the radius of the sphere and varying the angle of incidence changes the offset direction of the 
sphere, so it is possible to sample a volume in Fourier space. Wolf appears to have been the first to 
recognize the connection between the Ewald sphere and optical scattering; he proposed 3D structure 
determination using holographic data [5,6]. This concept of sampling Fourier space is now well known in 
the field of inverse scattering [4-10]. 

With the advent of tunable lasers, the wavelength dependence of speckle became readily 
observable. George et al. carried out pioneering investigations that related the wavelength-dependent 
speckle to the scattering object [11-16]. More recently, various imaging techniques based on the 
wavelength dependence of laser speckle and on tunable laser radars have been proposed and implemented 
[17-38]. 

The work being reported here was carried out at MIT Lincoln Laboratory in a laboratory set up in 
1990 to investigate applications of speckle in laser radar [31]. Recently, the scope of this work has been 
broadened to include nondefense-related applications, particularly those involving 3D imaging. 
Consequently, this report covers techniques motivated by a broad range of applications. One of the 
techniques developed for 3D imaging is notably similar to that of Marron et al. [33,34]. 

Section 2 contains background information on the spatial structure of laser speckle. This 
information is necessary for determining the detector-element size that should be used in a given 
application. The material contained in Sections 3-5 was developed with laser radar applications in mind. 
When this research began, laser speckle was generally considered a nuisance in laser radar because it 
degrades the target images obtained when conventional radar imaging techniques are applied to laser 



radars. The short wavelength of laser radars, however, which causes speckle in the first place, actually 
makes it possible to achieve much higher-resolution images than those obtainable with microwave radars. 
For example, in this report, laboratory measurements with submillimeter range resolutions are 
demonstrated by using the extremely large frequency modulations obtainable with a tunable laser. For 
comparison, the ALCOR Ka-band imaging radar has a range resolution of 25 cm [39]. 

The techniques described in Sections 3-5 are based on the wavelength decorrelation of laser 
speckle. The basic underlying quantity in these sections is the range-resolved laser radar cross section 
U(z) of the object for the particular viewing angle. U(z) is a natural quantity to consider for a monostatic 
laser radar, where the transmitter and the receiver are collocated. It is a useful quantity because it 
indicates how much of the object's total laser radar cross section a comes from each value of range z. 
Thus, U(z) is rich in information about the object's size, shape, and surface-scattering properties. 
Section 3 describes mathematically how U(z) and «rare related to the shape of an object and to its surface - 
scattering properties. This section also illustrates the calculation of a and U(z) for simple geometrical 

shapes. 

Section 4 contains a theoretical treatment of the wavelength dependence of laser speckle. This 
section takes a statistical approach to the analysis by treating the fluctuations of the speckle intensity 
caused by scanning the laser frequency as a random process. By calculating the statistical properties, or 
statistical moments, of this random process, information can be deduced about the physical properties of 
the scattering object. In reality, the speckle intensity is deterministic in nature and depends on the exact 
microscopic detail of the surface roughness. Randomness enters this approach because the microscopic 
surface detail is treated as a random process. In other words, a particular object is thought of as a single 
realization of an ensemble of realizations of that object that are identical on a macroscopic scale but have 
microscopic differences in their surface detail. This statistical approach provides smooth estimates of the 
quantity being measured. Without ensemble averaging, interference between the different scattering cells 
on the surface causes the estimate to be speckled or to fluctuate widely in value from point to point. 

Section 4 begins with a phenomenological discussion of the wavelength dependence of speckle. 
Next comes a derivation of the fundamental relation between the spectral density of the fluctuating 
speckle intensity and the autocorrelation function of the range-resolved laser radar cross section of the 
object. A random-process representation of the speckle signal is then developed to simplify further 
statistical analysis. Finally, various methods are described for measuring U(z) rather than just the 
autocorrelation function of U(z). 

Section 5 revisits the material introduced in Section 4 from a laboratory point of view and confirms 
the theoretical results. Some of the potential applications of the wavelength-decorrelation technique in 
target discrimination are also discussed. Because the measurements presented here are based on the 
statistical approach described in Section 4, macroscopic properties are measured that are independent of a 
particular realization of the scattering object. In determining these properties, it is necessary to have a 
collection of measurements available to represent different realizations of the random process from which 
to calculate statistical moments. Because in practice an ensemble of objects is not available, other means 
must be used to produce individual realizations of the speckle intensity. There are various ways of 
approximating individual realizations, but they all require taking data with respect to an additional 
parameter that has a small effect on the quantity being measured. For example, in measuring U(z) the 



object can be viewed at slightly different angles, the speckle-pattern intensity can be measured in the 
neighborhood of the monostatic direction, or a long frequency scan can be segmented into shorter scans. 

Section 6 was motivated by applications in advanced manufacturing and dimensional metrology, 
but the material also has relevance to laser radar. The basic underlying quantity here is the 3D distribution 
of scatterers, or the 3D image, of the scattering object. The mathematical framework for Section 6 is quite 
different than that for the earlier material because it is not based on statistics. Therefore, it is not 
necessary to read the theoretical treatment in Sections 3 and 4 to understand the material on 3D imaging 
in Section 6. 

Section 6 considers two different approaches to 3D imaging that use the wavelength dependence of 
laser speckle. The first approach is a natural extension of the technique described in Sections 3-5 for 
measuring U(z). As explained previously, one way to obtain an ensemble of realizations for determining 
U(z) is to sample the speckle pattern at various locations near the monostatic direction. Because the 
speckle intensity is measured at more than one location in this method, cross-range information as well as 
range information is available in the data. To extract both range and cross-range information, one must 
take into account the pixel location instead of simply using the individual pixels as a means for providing 
members of an ensemble of realizations that correspond to the monostatic direction. The difficulty with 
this 3D imaging approach is that some form of coherent detection or phase recovery is necessary to form 
the 3D image. This technique is attractive, however, for many applications where the object is easily 
accessible or the distance to the object is small. For these applications the phase information can be 
obtained by using a reference point located near the object or a reference beam that follows a separate 
propagation path. 

The second approach to 3D imaging relies on the wavelength dependence of laser speckle to 
provide range information and conventional imaging to provide cross-range information. This technique 
is also attractive for many applications, but it does have the drawback that conventional imaging limits the 
depth of field for applications that require high lateral resolutions. 

Finally, Section 7 summarizes results and makes recommendations for further development. 



2     SPATIAL PROPERTIES OF LASER SPECKLE 

Because the techniques described in this report are based on observing variations of speckle 
intensity, it is important to understand the spatial structure of speckle (see Figure 1). First, one needs to 
know the transverse speckle size along the detector plane to ensure that the detector elements are small 
enough to sample individual speckle lobes. It is also necessary to understand how quickly the speckle 
pattern varies longitudinally with changes of distance from the scatterer. This section describes the 
transverse and longitudinal structure of laser speckle and provides formulas for estimating the transverse 
and longitudinal speckle sizes. 

Figure 1. Transverse and longitudinal speckle size. 

Let d± denote the average transverse speckle size that would be observed on the interior surface of 
a sphere of radius R centered around the scattering object. If D represents the projected linear size extent 
of the illuminated portion of the scattering object for a given observation angle, then the average speckle 
size d± in the direction along which D is measured is given by d± = XR/D. This relation shows that 
speckle size is proportional to the wavelength A and the range R but inversely proportional to the size D. 
Consequently, if the object is elongated in one direction, the speckle is elongated in the other direction, 
and the statistics of the speckle pattern not only provide a measure of the size of the object but also carry 
information about its orientation and transverse shape. 

Although the spatial structure of speckle depends mainly on the size and shape of the illuminated 
portion of the scattering surface, it is also affected by factors such as variations of the intensity profile 
within the illuminating beam and variations in the strength of the return from different regions of the 
scattering surface. The latter variation is where the microscopic structure of the rough surface enters. The 
microscopic structure of a rough surface determines the angular distribution of light scattered from the 
surface [16,40]. Because of this angular dependence, the return strength varies according to the viewing 
angle for each surface element on the scattering object. Section 3 describes more fully how the angular 
scattering distribution of the surface material enters speckle calculations. 



Figure 2 shows the relation between the speckle shape and the transverse object shape for three 
different objects. For the triconic, the individual speckles are elongated in the direction perpendicular to 
the axis of the triconic. For the sphere, the speckles appear to wrap around one another like worms in a 
bucket. No direction is preferred, and the speckle shape is symmetric on average. For the ring, the borders 
of the individual speckles appear to be better defined. The average speckle size can be defined 
mathematically by taking the 2D autocorrelation function of the speckle pattern, which is displayed at the 
bottom of the figure for the three different objects. (Actually, the average of the autocorrelation is shown 
for 40 separate realizations of the speckle pattern for each object. The different realizations are obtained 
by rotating the object slightly.) Note that the autocorrelation function of the elongated speckle from the 
triconic is also elongated and that the autocorrelation functions of the rotationally symmetric objects are 
rotationally symmetric. 

Let dn denote the average longitudinal speckle size that would be observed in the radial direction at 
the distance R. An expression for dn in the Fresnel zone is given in the literature [16,41]; namely, 
cf|i = 4XR

2
/D

2
 . Thus, the longitudinal speckle size grows as the square of the distance R rather than 

linearly with R, so there is a rapid elongation of the speckles with distance. Once the observation point is 
in the far field, the intensity of the speckle pattern does not change in the radial direction except for 
falling off as I/R

2
. 

The variation in longitudinal structure is illustrated through the computer-simulated speckle pattern 
displayed in Figure 3(a). The data are generated by adding the field contributions from a linear array of 
point-scatterers. The array is 20A in length and the spacing between points is A/4. The scatterers are 
randomly phased by using a uniform distribution over 2 TT radians. The intensity is calculated on a square 
grid by summing the field contributions from the individual point-scatterers and squaring the magnitude. 
The grid lies in the plane defined by the linear scattering array and the longitudinal direction. The size of 
the sampled area is 40 A in the transverse direction and 50A in the longitudinal direction. For the purpose 
of visualization, the speckle intensity is normalized by dividing by the ensemble-averaged intensity value 
at each grid point. This normalization compensates for the decrease in intensity with distance. 

Figure 3(a) shows that the dimensions d± and d$ are small at locations near the scatterer but not 
smaller than the wavelength A. Also, the rule stating dL is proportional to the range R appears to apply 
well into the near field. Note that the speckles rapidly elongate in the radial direction. The transition to the 
far field occurs at a range of approximately R=D2/X. For this example, R = 400A. Figure 3(b) shows a 
calculation of the normalized speckle intensity as a function of the logarithm of the distance along a 
horizontal line passing through the center of the linear scattering array. This curve illustrates the transition 
to the far field and confirms that the normalized speckle intensity does not fluctuate past this point. 
Figures 3(c) and 3(d) contain similar curves for radial lines making angles of 30° and 60° with respect to 
the horizontal axis. The transition to the far field occurs more rapidly at these larger angles because the 
projected length of the scattering array decreases. 
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Figure 2. Effect of object shape on speckle patterns: photographs of laser-illuminated (a) 2.5-cm-long triconic, 
(b) 2.5-cm-diameter sphere, and (c) ring with an outer diameter of 2.5 cm and an inner diameter of 2.0 cm; their 
corresponding speckle patterns are shown in (d), (e), and (f), respectively; the ensemble-averaged autocorrelation 
functions (40 averages) of the speckle patterns are shown in (g), (h), and (i), respectively. 



(a) 

Figure 3. Computer-simulated normalized speckle intensity from a 20-wavelength-long linear array of randomly 
phased point-scatterers: (a) longitudinal slice of the speckle pattern cutting through the linear array; (b) speckle 
intensity versus logarithm of distance for a horizontal line lying in the longitudinal slice and beginning at the 
center of the linear array; (c) speckle intensity along a radial line 30° above the horizontal; (d) speckle intensity 
along a radial line 60° above the horizontal. The speckle intensity is normalized by dividing by the expected value 
of the intensity at each point. 

To further illustrate the spatial properties of speckle, a 3D measured speckle pattern is shown in 
Figure 4. This speckle pattern was obtained by back-illuminating a ground-glass diffuser with a focused 
laser beam from an HeNe laser and sampling the resulting speckle pattern with a CCD array. The CCD 



array was translated in the longitudinal direction between frames and the frames combined into a 3D array 
representing the speckle intensity as a function of position. The conical region containing the speckle 
pattern is 300 /im in length and its diameter increases from 25 /mi to 100 ßm. In acquiring the data, it was 
necessary to use a microscope objective to magnify the speckle and to image the plane of interest onto the 
CCD array. To more easily visualize the speckle pattern in three dimensions, the intensity was normalized 
(as in Figure 3) and a threshold function applied to convert the speckles to solid objects. As expected, the 
transverse speckle size increases linearly with radial distance, and the speckle rapidly elongates with 
distance. 

Figure 4. Measured 3D speckle pattern from a ground-glass diffuser back-illuminated by a 25- fum-diameter 
0.633- /lm-wavelength HeNe laser spot. This image was formed by stacking a series of 150 CCD images of the 
speckle pattern, with a longitudinal displacement of 2 jlm between frames. 

In these two examples, the transverse size D of the scatterer was chosen to be small so that a small 
number of speckles would be present for visualization purposes. [Observe that approximately D/A = 20 
speckles are at a given value of range in Figure 3(a). Thus, (D/A)2 is the approximate number of speckles 
associated with a scatterer.] Let us estimate the speckle size for other situations. In a typical laboratory 
setup with D = 5 cm, R = 2 m, and A = 0.75 jlm, the average transverse speckle size at the receiver plane 
is d±= 30 jlm, which matches well with the pixel size of a typical CCD detector. This range is still not in 
the far field, which occurs at R = 3300 m. Therefore, the speckle is still fluctuating in the radial direction 



and the longitudinal speckle size is dn = 4.8 mm. This relatively slow variation of the speckle pattern with 
R allows the methods described in the following sections to be applied to objects with longitudinal motion 
components. In a space-based application, typical parameters might be D = 1 m, R = 100 km, and X = 
1 /im, which yields a transverse speckle size of d± = 10 cm. The far-zone transition for this set of 
parameters occurs at approximately R = 1000 km, and the longitudinal speckle size at R = 100 km is 4 = 

40 km. 
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3.     LASER RADAR CROSS SECTION AND RANGE-RESOLVED LASER 
RADAR CROSS SECTION 

This section describes the basic relations involved in the calculation of an object's laser radar cross 
section a and its range-resolved laser radar cross section U(z). These quantities are fundamentally 
important in understanding and interpreting radar signatures. The laser radar cross section a indicates the 
strength of the return signal, whereas the range-resolved laser radar cross section U(z) indicates how 
much of the return signal comes from each value of range z. Therefore, U(z) contains information about 
the size, shape, and surface-scattering properties of the object. Because U(z) can be measured by the 
wavelength-decorrelation method, the interest lies in relating it to the physical properties of a target. The 
following builds a theoretical framework and points out similarities in the methodology for calculating 
U(z) and a. This methodology is then applied to the calculation of U(z) and a for basic geometrical 
shapes. 

3.1    DEFINITIONS 

Because of speckle, there is a basic distinction between microwave cross sections and laser radar 
cross sections. To smooth out the large fluctuations in intensity caused by the speckle, the laser radar 
cross section is defined as an ensemble-averaged quantity. Hence, the usual microwave-radar expression 
relating the cross section to the irradiance E (power per unit area) at the receiver is modified by placing 
ensemble-average brackets around the received irradiance 

G = 4nR2&    . (1) 

The quantity E0 in Eq. (1) is the irradiance of the illuminating beam and R is the distance to the target, as 
shown in Figure 5. The laser radar cross section a is interpreted as the cross-sectional area of a 
hypothetical isotropic scatterer that would produce the same averaged irradiance at the receiver as the 
actual scatterer. (An isotropic scatterer is one that scatters the incident light uniformly into 47rsteradians.) 

Because the laser wavelength is small compared to the object size and to any feature of interest on 
the object, the scattering can be treated as a localized phenomenon, which simplifies the calculation of a. 
In addition, because a is defined as an ensemble-averaged quantity and because the surface is rough on a 
wavelength scale, the interference between the contributions arising from different regions of the surface 
averages out. Therefore, a is obtainable by incoherently summing the contributions arising from 
individual surface patches. 

The range-resolved laser radar cross section U(z) is also an ensemble-averaged quantity. Because a 
is the incoherent sum of individual localized contributions, U(z) can be defined as the derivative of the 
laser radar cross section a with respect to range: 

U(z) = ^-    . (2) 
dz 
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Thus, U(z) is a density function that quantifies the contributions to the cross section as a function of 
range. Integrating U{z) over the entire range extent of the object yields a. Both a and U(z) are 
nonnegative functions; U(z) can be infinite at isolated points, as long as the integrated area under the 
curve is finite. Because a has dimensions of area, U(z) has dimensions of length. Both quantities depend 

on the viewing angle. 

<E> 

Figure 5.  The coordinate system used to define laser radar cross section and range-resolved laser radar cross 
section. 

32    METHOD OF CALCULATION 

Two physical properties of the object affect a and U(z): the shape of the object and the angular- 
scattering distribution of its surface materials. The shape of the object is characterized by the function 
\{x,y), which represents the height of the object boundaries above the z = 0 plane as a function of the 
Cartesian coordinates x and y lying in this plane. Hence, this height function is measured along the 
direction of illumination and increases with distance from the source. If the function is multivalued, then 
the smallest value is used because it corresponds to the point closest to the source; the other values are 
associated with points that are shadowed by the closest point. 

The standard radiometric quantity for specifying the angular-scattering distribution is the 
bidirectional reflectance distribution function (BRDF) [42,43]. The BRDF describes the scattering of light 
from a flat surface element as a function of both the illumination direction and the observation direction. 
Knowledge of the full BRDF is not necessary in our situation, however, because a monostatic radar 
configuration has been assumed. Instead, the monostatic reflectance distribution function j{6) can be used, 
which is a subset of the BRDF obtained by setting illumination and observation angles equal. [Writing 
j(ff) assumes no preferred azimuthal axis so that the monostatic reflectance distribution function depends 
only the local angle of incidence 6, defined as the angle between the normal vector to the surface and the 
direction of illumination.] The angle of incidence 6 varies with position on the surface and is related to 
the height function l\{x,y) through 
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cosfl = ±— , (3) 

where the subscripts JC and y denote partial derivatives of the height function with respect to these 
variables. The plus sign is chosen if the surface element points toward the source, and the minus sign is 
chosen if the surface element points away from the source. 

The cross section a is evaluated by incoherently summing the contributions arising from individual 
surface elements. If dA is the area of a given surface element, then the associated contribution to the cross 
section is 

da = 47cf(e)cos2edA    . (4) 

This result follows from the definition of cross section and the definition of the BRDF. One of the cosine 
factors arises from the illumination obliquity factor; the other is associated with the decreased projected 
area of the element as seen by the detector. The total cross section is obtained by integrating over the 
entire illuminated surface area. There are two conditions under which a surface patch will not be 
illuminated: (1) if its surface normal points away from the source, which occurs when cos 6 < 0, or (2) if it 
is shadowed by some other region of the object. The second condition occurs when h^ is multivalued and 
the given surface patch does not correspond to the lowest value of \. If the object is convex, then all 
shadowing can be accounted for by applying the cos0 < 0 rule. 

In our situation, it is more convenient to perform the integration over the projected area AL along 
the line of sight. If the surface-area differential dA is written in terms of dAL = dxdy = dAcosQ, then one 
of the cosine factors is eliminated. Summing over the projected area Ax of the object results in 

o = 47tjjf(9)cos0dxdy (5) 

as the cross section for the particular viewing angle. 

The assumptions that go into the derivation of Eq. (5) limit its use to the calculation of a for 
diffusely scattering objects that are large in size compared to the optical wavelength. Contributions to the 
cross section arising from specular scattering points can be accounted for separately. In addition, 
interactions between different surface elements, such as multiple scattering, are not accounted for. 
Polarization effects are also ignored in Eq. (5), but they could be included by defining a polarization- 
dependent ßi 9) and a. 

The basic formula for calculating U(z) is similar in appearance to Eq. (5). The only difference is the 
inclusion of a 5-function within the integral to limit the region of integration to the specified value of 
range z: 

U(z) = 4KJjf(9)cos9S[z-h[i(x,y)]dxdy    . (6) 
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Figure 6 illustrates how the <5-function reduces the region of integration to the contour formed by 
the intersection of the range plane with the boundary of the object. Equation (6) can be validated by 
substituting it into Eq. (2), which yields Eq. (5) for a. 

*- z »-X 

INTEGRATION 
PATHS 

Figure 6.   Circularly shaped integration paths for calculating the range-resolved laser radar cross section U(z) 
for a cone illuminated on axis. 

To further illustrate the meaning of Eq. (6), consider two special cases. In the first case, suppose 
that the scattering object is a flat plate of area A that is illuminated at normal incidence. Then the height 
function is constant (say z0) on this plate, and the object's total cross section is confined to one value of 
range, that is, z = z0. Equation (6) is easily evaluated in this case; the 5-function does not depend on the 
variables of integration and can be removed from the integral, which leaves 

U(z) = o8(z-z0) (7) 

where a= 47tf(0)A is the laser radar cross section of the plate. 

In the second case, exclude any situations covered by Eq. (7). Then Eq. (6) reduces to a line integral 
around the contour associated with the given height value of z. This line integral is obtained by changing 
variables from x and y to z and /, where / is the distance along the integration path. Then 
dxdy = cotOdldz, and the range integration can be performed by applying the 5-function, which leaves 

U(z) = An f /(0) cos 0 cot 6 dl (8) 
contour 

Because the height function may have multiple peaks and valleys, more than one contour line may exist 

for a given value of z. 
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33    ON-AXIS ILLUMINATION 

The calculation of a and U(z) for on-axis illumination of axially symmetric objects will now be 
illustrated. Although these calculations are among the simplest to carry out, the results are important 
because they apply to a number of common situations and because they illustrate the general behavior of 
a and U(z). Consider the laser radar cross section first. In radar measurements the radar is calibrated by 
using a standard target with a known cross section. The calibration standard for laser radars is typically 
either a diffuse disk illuminated at normal incidence or a diffuse sphere. Ideally, the surface of the 
calibration target is Lambertian, which corresponds to an angle-independent fid) of value / = 1/n. 

As calibration standards, the numerical values of c for Lambertian spheres and Lambertian disks 
have special significance. The laser radar cross section of a Lambertian sphere is 8/3 times its projected 
geometrical cross section. Compare this value to that of the conventional radar cross section of a smooth, 
perfectly conducting sphere as calculated in the short-wavelength, physical-optics limit [44]; in this 
situation the cross section is equal to the geometrical cross section of the sphere. The conventional radar 
cross section of a smooth sphere can be attributed to the neighborhood of the specular point, whereas the 
laser radar cross section of a diffuse sphere is composed of contributions from the entire illuminated 
hemisphere. Distinguishing between laser radar cross section and conventional radar cross section stresses 
the point that it is not necessary to take the ensemble average when the surface of the object is smooth. 
The laser radar cross section and the conventional radar cross section, however, are equal in this situation, 
and no further distinction between the two will be made in the remainder of this discussion. 

A Lambertian disk viewed at normal incidence has a laser radar cross section equal to four times its 
area A. But the laser radar cross section of a smooth, perfectly conducting disk at normal incidence 
depends on the wavelength X through the relation a = AnA2/X2. This strong wavelength dependence is 
caused by coherent addition of the specular reflections from the entire surface area of the disk. 

The surfaces of a sphere and a disk are examples of two different classes of surfaces, namely, those 
having curvature in two dimensions and those having no curvature in either dimension. The surface of a 
cylinder is an example of an intermediate category; its surface has curvature in a single dimension. When 
viewing a smooth, perfectly conducting cylinder normal to its axis, there is a straight line on the surface 
where specular reflections occur. The coherent addition of these specular contributions produces a laser 
radar cross section that is inversely proportional to wavelength; that is, a = 2nal}/X, where a is the 
radius of the cylinder and L is its length. Contrast this relation with the wavelength-independent result that 
G = 2naL for a Lambertian cylinder viewed normal to its axis. In summary of these three situations, 
except for possible variations of/(Ö) with wavelength, the laser radar cross section of a diffuse object is 
independent of the wavelength, but the laser radar cross section of a smooth-surfaced object can exhibit a 
strong wavelength dependence for those viewing angles where there is coherent addition of specular 
components. 

Now some elementary calculations of the range-resolved laser radar cross section are illustrated for 
axially symmetric objects that are viewed along the axis of symmetry. In these calculations Eq. (8) 
reduces to a simple form, derived by representing the object by a radius function r(z). If r(z) increases 
monotonically, then each value of z maps into a single value of the angle of incidence 0. Therefore, the 
quantities that depend on 6 can be removed from the integral, and the integration in Eq. (8) simply results 
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in the circumference 2jtr(z)27tr(z) of the object for the given range value. Consequently, for axially 
symmetric objects illuminated along the axis of symmetry, Eq. (8) takes the form 

U(z) = 8nzr(z)f(9)cos0cotO    . (9) 

The angle of incidence 0 is related to the radius function r(z) by cot0 = dr/dz. If Kz)is not a monotonic 
function, then for certain ranges z there will be more than one value of r corresponding to z. If this is the 
case, the contributions from the different solutions are summed. 

Let us apply Eq. (9) to the case of a cone viewed on axis. For a cone half-angle ac, a cone length 

equal to L, and the tip of the cone located at z = 0, 

U(z) = 8xzsmact<m2acf(7t/2-ac)z forO<z<L (10) 

is obtained. Note that the range-resolved laser radar cross section of the cone increases linearly with 
range, regardless of the functional form of f{6). This result is intuitive because the angle of incidence is 

constant and the circumference of the cone is proportional to z. 

Equation (9) can also be applied to the calculation of the range-resolved laser radar cross section of 
a sphere. If the sphere has radius a and is located with its center at z = 0, then 

U(z) = ^f\cos-\-z/a)\z2 for-a<z<0    . (11) 
a     l J 

Observe that U(z) is a segment of a parabola when the surface of the sphere is Lambertian. The parabola 
has a maximum value of 8na at the pole where z = -a and falls to zero at the equator where z = 0. 
Interestingly, the on-axis cone and the Lambertian sphere have range-resolved laser radar cross sections 
that are linear and quadratic in range, respectively. Figure 7 contains plots of U(z) for a top hat and a 
cone, each viewed on axis, and a Lambertian sphere. These plots illustrate Eqs. (7), (10), and (11), 

respectively. 

3.4    OFF-AXIS ILLUMINATION 

The cross section a and range-resolved laser radar cross section U(z) vary markedly with viewing 
angle. This angular dependence can produce distinctive signatures that are useful for identifying and 
characterizing objects; the capability to predict these signatures can aid in their interpretation. This section 
introduces methods for calculating the angular dependence of a and U(z). 

Although Eq. (5) for calculating a and Eq. (6) for calculating U(z) are general results, they are 
difficult to apply to angle-dependent problems because the functional form of l\ also depends on the 
aspect angle. Therefore, applying these results requires the appropriate height function of an object for 
each aspect angle. This difficulty is avoided by performing the integration in a rotated coordinate system 
(£ 77, 0 that is natural (or preferred) for defining the object shape. Let us denote the height function in 
this new coordinate system by ä(£ 77) (see Figure 8). If there is an axis of symmetry, it is usually aligned 

with the £-axis. 
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Figure 7.  Range-resolved laser radar cross sections for on-axis viewing: (a) top hat; (b) cone; (c) Lambertian 
sphere. 

In the rotated coordinate system the height function remains constant and the illumination direction 
varies. Let a and ß be the polar and azimuthal angles representing the direction of illumination, as 
illustrated in Figure 8. (a is commonly referred to as the aspect angle for axially symmetric objects.) Then 
the expression analogous to Eq. (3) for calculating the angle of incidence 6 in terms of the new height 
function is 

cos0 = 
cosa-sma(ht;cosß + hr]smß) 

V*l+*J+i 
(12) 

Note that Eq. (12) reduces to Eq. (3) when a = 0. 

The expression for a in the rotated coordinate system is obtained by changing the variables of 
integration from x and y to £ and r\ in Eq. (5), yielding 

o- = 4KJ\f(e)cos2e^hJ+hJ+l dt,dr\ (13) 
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Figure 8.  Coordinate system for describing the object height function h(%, r\) and the direction of illumination 
(a,ß). 

The region of integration Ah corresponds to the projection of the illuminated surface area onto the E,-r\ 
plane (as depicted in Figure 9 for a cone). Observe that Eq. (13) simplifies to Eq. (5) when a = 0. There is 
one complication in using Eq. (13) that does not arise in Eq. (5). In Eq. (5) shadowing is accounted for by 
retaining only the lowest value of /q, if it is multivalued. When using Eq. (13), it is necessary to separately 
determine when the old height function Aj, for the given aspect angle is multivalued. 

A similar integral exists for the range-resolved laser radar cross section. In the rotated coordinate 

system, Eq. (6) takes the form 

U(z) = 4wJJ/(0) COS
2
6>^ä|+äJ+1 

x ö[z - h(£,Ti)cosa- sina(£cos ß + r]smß)]d^dri 

(14) 

Again, the advantage of this form is that the height function h is independent of aspect angle. As 
expected, Eq. (14) reduces to Eq. (6) when a = 0. Note that Eq. (14) is identical to Eq. (13), except for the 
inclusion of the <5-function, which limits the integration to the contour formed by the intersection of the 
object boundary with the range plane. Note also that setting the argument of the 5-function to zero 
provides the formula that describes the integration path. 

Equations (13) and (14) can be difficult to evaluate analytically. Closed-form solutions can be 
found for many simple shapes, however, and these solutions aid in the prediction and interpretation of 
target signatures. Because complex objects can usually be described as a combination of simple 
component shapes, the analysis of simple components should be carried as far as possible. As long as 
cross-shadowing of one component by another is accounted for, the results determined for individual 
components can be used in modeling more complex object shapes. 
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Figure 9. Region of integration for calculating the laser radar cross section for off-axis illumination of a cone. As 
the aspect angle increases, the angular range of integration ±<j)s in the projection plane decreases. This range of 
integration corresponds to the illuminated surface area of the cone. 

Many component shapes have some form of symmetry. The remainder of this section considers off- 
axis illumination of the class of objects that are symmetric around an axis of rotation. One can 
characterize these objects by a height function h{r) that depends only on the radius r. Some important 
members of this class, including spheres, disks, cylinders, and cones, are treated below. 

Let us first consider the laser radar cross section a. Because the sphere is radially symmetric, a is 
independent of aspect angle as long as the material covering the sphere is applied uniformly. Most other 
objects, however, exhibit a strong angular dependence in their cross section. For example, by Eq. (13), the 
cross section of a disk or any other flat object falls off as cos20, not including any variations caused by 
j{6). The Lambertian cylinder also has a simple dependence on aspect angle. Let the radius of the cylinder 
be denoted by a and the length by L. If the aspect angle a is measured relative to the cylinder axis, then 
the cross section a is given by 2naL sin2a, not including contributions from end caps. The aspect-angle 
dependence of a for a Lambertian cone is not as simple [30,45]. If ac is the half-cone angle, a is the 
aspect angle relative to the axis of symmetry, and a is the radius at the base, then 

C = < 

2% A 

7T + 2 sin' 
iftanac 

t tana 

a<a„ 

+ 2 Ar>   ar<a<K-a^ 

n-a<a<K 

(15) 

where 

a 
A, = (sin2 a cos2 ar + 2 cos2 a sin2 ar) 

sina/ c> 
(16) 

and 

A2 =3a sinacosacosac-1 
tan2 a„ 

tan2 a 
(17) 
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The cross section of a cone with a disk base would include a contribution from the disk for n/2 < a< m 
Figure 10 illustrates this angle dependence for a Lambertian cone with a Lambertian disk base. 

30 60 90        120       150 
ASPECT ANGLE (deg) 

180 

Figure 10. Aspect-angle dependence of the laser radar cross section of a 10-cm-long Lambertian cone with a 
cone half-angle of 15. The separate contributions from the cone and the disk base are indicated. 

Next, consider the range-resolved laser radar cross section U(z). In general, U(z) is more difficult to 
calculate than a, but the solutions for U{z) tend to be more interesting because of the dependence on 
range. A specialized form of Eq. (14) results when the object is axially symmetric. The steps involved in 
determining this form are (1) transforming the integral to polar coordinates r and 0, (2) converting the 
5-function to an explicit function of r, and (3) performing the radial integration via the 5-function. The 
result does not depend on ß. Setting ß = 180 centers the range of integration around 0=0, which yields 

f/(z)=8^fy/(0)cos2eI-—
rnhh d(j) . 

J   . H,. cos a-sin a cos 0 
(18) 

Equation (18) requires some clarification. First, let us consider the meaning of the summation: For given 
values of azimuth angle <j>, range z, and aspect angle a, more than one value of the radius r can lie on the 
integration path. These values of r correspond to the discrete solutions ri of the integration-path equation 

z = -/;• sin a cos 0 + cos a h{rt) (19) 

Each solution contributes to U{z); hence, the summation in Eq. (18). The symbol hr in Eq. (18) denotes 
the derivative of h(r) with respect to r, evaluated at the point r = rt 
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The integration in Eq. (18) extends over values of the azimuth angle </> ranging between 0 to n such 
that all of the following conditions are satisfied: (1) a solution to Eq. (19) exists, which implies that the 
range plane intersects the object; (2) cos 6 > 0, which implies that the surface element faces the source; 
and (3) only the lowest-valued branch of the corresponding function /q, is taken when it is multivalued, 
which implies that the point is not shadowed by a point closer to the source. Integration over azimuth 
angles between =;rand 0 has been accounted for in Eq. (18) by using symmetry and doubling the result. 

The formula for the angle of incidence 6 given in Eq. (12) reduces to 

cos0 = 
hr sin a cos <p + cos a 

A/I+? 
(20) 

for axial symmetry. Equations (18)=(20) provide the basic framework for calculating the angular 
dependence of the range-resolved laser radar cross section for axially symmetric objects. In the following 
sections,these results are used to write solutions for the aspect-angle dependence of U(z) for disks, cones, 
cylinders, and truncated spheres. 

100 

-0.5 0 0.5 
RANGE (cm) 

Figure 11. Range-resolved laser radar cross section of a 1-cm-radius Lambertian disk at various illumination 
angles. 

3.4.1 Disk 

Let a disk of radius a be positioned with its center at the origin. It is relatively simple to apply 
Eq. (18) to this situation because the height function has a constant value; namely, h(r) = 0. Consequently, 
there are no shadow boundaries to contend with, and the integration path is a straight line. The azimuthal 
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range of integration is determined by setting r, = a in Eq. (19) and solving for 0. The resulting form for 

U(z) is elliptical in shape: 

U(z) = &nf(a) cot2a^a2 sin2a - z2 for |z|<|ösina|    . (21) 

This result is intuitive because the range-resolved laser radar cross section of a disk is proportional to the 
length of the straight-line integration path, which varies elliptically. Equation (21) is illustrated in 
Figure911. As the aspect angle a approaches normal incidence, the peak value of U(z) increases without 
bound, and the width of the ellipse approaches zero. In this limit U(z) reduces to a 5-function, as in 

Eq.9(7). 

3.4.2 Cone 

For generality, allow the cone to be truncated and denote the radii at the two ends by a t and a2. If 
the tip of the corresponding nontruncated cone is assumed to be at the origin, then the cone is represented 
by the height function h{r) = r cot ac for ax < r < a2. With these definitions, Eq. (18) for the range- 

resolved laser radar cross section becomes 

s    „    •      i i ff tana.+tanacos0 |  ,,„,.,. nn\ 
U(z) = 87cswac\Z\    - c-    f(0)d<t>    , (22) 

J [ 1 - tana,, tana cos<b } 

and the local angle of incidence in Eq. (20) reduces to 

cos0 = cosacsinacos0 + sinaccosa    . (23) 

Although Eq. (22) can be integrated analytically for certain choices of J[d), it is left in its integral form 
because it is compact, well suited to numerical integration, and valid for arbitrary choices of /(6). 

Before Eq. (22) can be applied, the limits of integration must be determined. This determination is 
often the most difficult part of the calculation of a range-resolved laser radar cross section because these 
limits generally vary with both the aspect angle a and the range value z. But once these limits are 
determined, they can be applied to arbitrary choices off{6). As illustrated in Figure912, two boundary 
types are associated with the azimuthal limits of integration for a cone. They are shadow boundaries and 
truncation boundaries. Shadow boundaries cause the region of integration A h in Eq. (14) to be pie-shaped, 
as illustrated in Figure 12(b). The half-angle of the illuminated segment of the pie is denoted by </>s. 
Truncation boundaries occur when the range plane cuts through the circle of radius av which is associated 
with the truncation plane, or through the circle of radius a2, which defines the cone base. The 
corresponding azimuthal limits of integration are denoted as 0^and <pbi, respectively. Note that <ps is 
independent of range but that 0^ and <pbi depend on range. 
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Figure 12. Limits of integration for calculating the range-resolved laser radar cross section for off-axis 
illumination of a truncated cone: (a) shadow boundaries and truncation boundaries for three separate range 
planes cutting through the cone; (b) the corresponding integration paths in ^-T] space. 

Before evaluating the shadow and truncation boundaries, an important feature of Eq. (22) should be 
observed the explicit dependence on z occurs only in the linear factor in front of the integral. Therefore, 
as long as the limits of integration do not depend on z, the U{z) curve will increase linearly with range, 
just as it does for the on-axis cone described by Eq. (10). As already noted, the limits of integration can 
exhibit range dependence only for those values of range and for those aspect angles where the range plane 
intersects one of the truncation planes. For every truncated cone there is a range of aspect angles, 
beginning with a = 0, such that there are no truncation boundaries. Thus, every truncated cone exhibits a 
linear dependence on z over some region of a-z space, and the longer the cone, the larger the angular 
region where this dependence occurs. This linear dependence on z produces a distinctive signature that 
can be used for identifying and characterizing conical objects. 

Now we describe how the two types of boundaries are determined. Shadow boundaries can be 
obtained by setting cosö equal to zero in Eq. (23) and solving for <p: 

(j>s= Re cos ^-tanc^cota) (24) 

The reason for taking the real part is that the inverse cosine becomes complex when a< ac and when a > 
7T= ac. In the first case, the entire cone is illuminated so that no shadowing occurs, and Eq. (24) reduces 
to <t>s = 7C. In the second case, the cone is completely unilluminated (only the inside of the cone is visible 
to the laser), so that complete shadowing occurs and Eq. (24) reduces to <j>s = 0. 

Truncation boundaries are determined by setting ri equal to a1 or a2 in Eq. (19) and solving for <p. 
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This yields 

= Re cos cotaccota-- 
ansma j 

(25) 

where n assumes the value 1 or 2. Taking the real part in Eq. (25) allows us to define <pbn for cases in 
which no intersection occurs between the range plane and the truncation boundary of the cone. The value 
assigned is the last value, 0 or n, that <j>b had as the range plane moved away from the object. 

Figure 13. Range-resolved laser radar cross section for a truncated Lambertian cone viewed at various aspect 
angles. The cone half-angle is 15° and the distance between the truncation planes is 10 cm. The range-reference 
point is located at the apex of the corresponding untruncated cone, which is located 5 cm to the left of the first 
truncation plane. There are no contributions from the disk-shaped regions formed by the intersection of the 
truncation planes with the cone. 

Now that the different boundary types have been analyzed, the next step is to choose the limits of 
integration that are appropriate for the given situation. By referring to Figure 12, one can show that the 
algorithm defined by 

ftsmin^.fy,^) (26) 

and 

02 = min[^,max(^,^2)] (27) 
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correctly handles all possible situations. Figure 13 contains plots of Eq. (22) for the range-resolved laser 
radar cross section of a truncated Lambertian cone illuminated at various angles. The cone has the same 
shape as the one in Figure 12. The cone half-angle is 15°, the distance between truncation planes is 10 cm, 
and the distance from the first truncation plane to the apex of the corresponding untruncated cone is 5 cm. 
Note that as pointed out above, the U(z) curves have a large linear region if the aspect angle is small, but 
this linear region eventually disappears as the aspect angle increases. 

3.4.3 Cylinder 

The cylinder does not lend itself to direct analysis by Eq. (18) because h(r) is ill defined in the 
associated coordinate system. Equation (22) for a cone, however, can be applied to a cylinder by taking 
the limit as ac approaches zero. A slight complication occurs when doing so. Because the origin of the 
coordinate system is at the apex of the cone, the range values of interest shift to infinity. To adjust for this 
shift, the equation is transformed to a coordinate system having its origin at the truncation point where r = 
av When the aspect angle a = 0, the range offset between the origins of the two coordinate systems is 
simply the axial distance from the apex of the cone to the truncation plane £0 =-axco\.ac. But as a 
increases, this offset is reduced by a factor of cos a. Thus, the coordinates in Eq. (22) are transformed by 
replacing z with z + ax cot ac cos a. For a cylinder of length L and radius a, Eq. (22) reduces to 

.    2       ^2 

U(z) = 8na-. : [cos^/fcos'^sinacos^)]^    , 
cosa\J L J (28) 

where 

= Re cos 
a sin a 

(29) 

and 

Re _i[ Lcosa-z cos       
^   asina 

(30) 

The limits of integration are obtained by using Eqs. (26) and (27) with <j>s=n/2. Note that U(z) for a 
cylinder is independent of range, regardless of the functional form off[6), as long as the range plane does 
not cross a truncation boundary. Thus, all cylinders have a region in z-a space where U(z) is independent 
of range; this region provides a distinctive range-resolved laser radar cross-section signature for 
cylindrical objects. Equation (28) is illustrated in Figure 14 for a 10-cm-long, 4-cm-diameter Lambertian 
cylinder illuminated at various angles a. To separate the curves for the different values of a from one 
another in range, U(z-£0cosa) has actually been plotted, where £0 = 5 cm. The range offset in the 
argument corresponds to measuring the range with respect to a point on the cylinder axis that is 5 cm 
outside of the cylinder. 
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Figure 14. Range-resolved laser radar cross section for a Lambertian cylinder viewed at various aspect angles. 
The length of the cylinder is 10 cm and its diameter is 4 cm. The range-reference point is located 5 cm outside of 
the cylinder to separate the various plots in range. There are no contributions from the disk-shaped endcaps. 

3.4.4 Truncated Sphere 

Equation (11) gives the general solution of the range-resolved laser radar cross section for a 
complete sphere. Although this solution does not depend on aspect angle, the solution for a truncated 
sphere does. Because the truncated sphere is an important component for building up composite target 
models, its angle-dependent range-resolved laser radar cross section is also described. If the center of the 
sphere is located at the origin and that the truncation plane is at a height h, then the value of h ranges 
between -a and a, with -a, 0, and a corresponding respectively to a single point at the pole, a hemisphere, 
and a complete sphere. For some values of z, the truncation boundary limits the range of the azimuthal 
integration so that it no longer covers a complete circle. Equation (11) is modified to account for the 
truncation boundary by replacing n with the actual angular half-range of integration, which varies 
between 0 and K. The new form is 

U(z) = —f[cos-\-z/a)]Re cos -1 zcosa-h 

■Ja2 -z2 sin ay 
for -a<z<0 (3D 

Spherical objects also have a distinctive signature. For any values of the truncation height h, there is an 
angular region, beginning with a = 0, such that U(z) is independent of viewing angle over certain values 
of z. Equation (31) is illustrated in Figure 15. 
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Figure 15. Range-resolved laser radar cross section for a 1-cm-radius Lambertian hemisphere viewed at various 
aspect angles. 

3.4.5 Composite Objects 

The preceding results are combined to obtain the aspect-angle-dependent range-resolved laser radar 
cross section for a Lambertian cylinder-disk combination and for a Lambertian sphere-cone-disk 
combination. The spherical and conical segments of the sphere-cone-disk are joined together such that the 
slope of the surface is continuous. Figure 16 shows 3D plots of the logarithm of the range-resolved laser 
radar cross section as a function of range and aspect angle for these two objects. The separate signatures 
for the disk, the cone, the cylinder, and the sphere are evident in these plots. 

It has already been pointed out that it is easier to obtain the autocorrelation of U{z) than U{z) itself 
by the wavelength-decorrelation method. Figure 16 also shows the autocorrelation functions of U(z) for 
comparison. One can clearly distinguish between the two shapes, given the aspect-angle dependence of 
the autocorrelation function. 
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Figure 16. Wavelength-decorrelation signatures for composite objects: (a) Lambertian sphere-cone-disk 
combination; (b) Lambertian cylinder with disk endcaps; (c) and (d) aspect-angle dependence of the range- 
resolved laser radar cross section for parts a and b, respectively; (e) and (f) autocorrelation functions of the 
range-resolved laser radar cross section for parts a and b, respectively. The magnitude of these signatures is 
plotted on a logarithmic scale covering four decades for parts c and d and two decades for parts e andf. 
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4.     THEORY FOR WAVELENGTH DECORRELATION 

It has been shown how the range-resolved laser radar cross section U(z) relates to an object's shape 
and angular surface-scattering properties. The next step is to show theoretically how U(z) is related to the 
fluctuating speckle intensity caused by scanning the laser frequency. This section begins by explaining 
why speckle intensity fluctuates as laser frequency varies; it then develops the theoretical foundation for 
extracting information about the scattering object. 

4.1     WAVELENGTH DEPENDENCE OF SPECKLE 

If the objects shown in Figure 2 are illuminated with a tunable laser, the corresponding speckle 
patterns appear to boil, or decorrelate, from the original pattern as the laser frequency varies. The 
frequency shift, or decorrelation frequency AvD, required to decorrelate the speckle pattern depends on the 
size, shape, and orientation of the object. For example, the speckle pattern corresponding to the ring 
decorrelates very slowly compared to the other two patterns. This large decorrelation frequency is due to 
the fact that the ring has a very small range extent, being illuminated at normal incidence. In general, the 
decorrelation frequency AvD is inversely proportional to the range extent L of the illuminated portion of 
the object. 

Refer to Figure 17 for a basic understanding of the wavelength dependence of speckle. In 
Figure 17(a) a seven-level step target is being flood-illuminated along the z-axis with a tunable laser. Our 
objective is to determine the frequency dependence of the speckle intensity at a distant point P lying on 
the negative z-axis. A scalar treatment of the optical field is sufficient for this purpose and for the analysis 
that follows. We also assume that the illuminating laser beam is monochromatic and suppress a harmonic 
time dependence. The complex amplitude of the optical field at the point P is the sum of the contributions 
from each of the seven levels. These contributions are represented by the phasors (solid lines) located 
below each level. The magnitude of these phasors represents the strength of the return, and the orientation 
represents the relative phase of each contribution. The relative phase is a combination of the phase due to 
wave propagation between scattering planes and a random component that accounts for the surface 
roughness. Figure 17(b) shows the resultant phasor obtained by placing the components end to end in the 
complex plane (solid lines). The optical intensity, or irradiance, is proportional to the magnitude-squared 
of the resultant, shown by the diamond in Figure 17(c). The phase of the resultant is given by the diamond 
in Figure 17(d). 

Now consider the effect that changing the laser frequency v has on the complex amplitude and the 
intensity at point P. Let <j> represent the component of the phase (for a given level) that arises from wave 
propagation. If 0 is measured with respect to the z = 0 plane (defined by the first level), the phase delay 
for propagation from this plane to a plane with range z is </> = IKZ/X = IKZV/C, where c is the speed of 
light. For a given range z, a change in frequency of A v introduces a phase shift, or phasor rotation, of 

2z 
A0 = 2K—AV (32) 

c 

for round-trip propagation between the two planes. Equation (32) can now be used to determine how 
much a given frequency change A v rotates each phasor in Figure 17(a). The dashed phasors in this figure 
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correspond to A v = c/(8L), which is the frequency shift required to rotate the phasor at the Z = L plane by 
90°. Because of the linear relation between phase shift and distance, the phasor at the L/2 plane is rotated 
by 45° and the phasor at the L = 0 plane is stationary. The new resultant is shown by the square in 

Figure 17(b). 

(a) STEP TARGET (b) 
253948-20 

RESULTANT 

l^UX- 

Figure 17. Frequency dependence of the on-axis speckle intensity from a step target: (a) step target withphasors 
indicating contributions from each step for two frequencies, (b) path of resultant complex amplitude in the 
complex plane, (c) frequency dependence of intensity, and (d) frequency dependence of phase. 

Because the magnitude increases, so does the intensity in Figure 17(c). The phase in Figure 17(d) also 
increases because the resultant in Figure 17(c) rotates in the counterclockwise direction. Observe that a 
rotation of 90° at the z = L plane was insufficient to decorrelate the speckle intensity. The curved path in 
Figure 17(b) represents the trajectory that the resultant complex amplitude takes as the frequency varies. 
As illustrated by the circles in Figures 17(b)-17(d), a rotation of 360° is adequate for decorrelation. For 
this value, the phasor at z = L/2 is 180° out of phase (even though the phasor at z = L is back in phase), 
producing a different resultant. If a 360° rotation is used as the basis for defining the decorrelation 

frequency, then A vD takes the value 
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AV
°=TL • (33) 

As an illustration of Eq. (33), the decorrelation frequency for an object with a range extent of 10 cm is 
1.5 GHz. Note that AvD also corresponds to the longitudinal mode spacing of a laser cavity of length L. If 
the step target consisted of only two levels separated by the distance L, as in a laser cavity, the speckle 
intensity would go through one complete cycle, returning to the original value for each increment of AvD. 
The trajectory in Figure 17(b) closes on itself because there is a finite number of equally spaced levels. 
The number of oscillations in intensity that occur before the pattern repeats itself is the number of discrete 
steps, that is, six. 

In the physical model that has been given for the frequency dependence of speckle, the resultant 
complex amplitude is the sum of the contributions from individual scattering planes. These contributions 
are represented by phasors that rotate as the frequency varies. The rotation rate of a given phasor is 
proportional to the distance z from the reference plane. Mathematically, this picture of the frequency 
dependence is equivalent to a Fourier transform of the distribution of the scattering strength along the 
z-axis. The kernel of the Fourier-transform integral is exp(tA0), which varies according to range z by 
Eq. (32). The Fourier-transform relation will be discussed more thoroughly and the equations written 
explicitly in Section 4.3. 

Another observation about the wavelength dependence of speckle is that the fluctuating speckle 
intensity produced by scanning the laser frequency is band-limited, or has a highest frequency of 
oscillation, so that the speckle intensity cannot change any faster than this highest-frequency component. 
Large oscillation frequencies correspond to large range offsets between scattering cells. Therefore, the 
cutoff frequency that bandlimits the speckle-intensity sequence is just the decorrelation frequency A vD 

that was derived for the total range extent L in Eq. (33). By the Nyquist sampling theorem, one must 
sample the speckle-intensity sequence at least twice during each of these highest-frequency oscillations. 
This leads to the conclusion that the laser-frequency step size between samples in the wavelength- 
decorrelation technique must obey the expression 

Avstep<^-    . (34) 

For example, an object with a range extent of 10 cm would require a laser-frequency step size of 
750 MHz or less. 

42    SPECTRAL DENSITY 

The Introduction stated that there is a fundamental relation between the spectral density of the 
speckle signal and the autocorrelation function of the range-resolved laser radar cross section of the 
illuminated object. This relation will now be derived from basic principles. As in Section 3, the speckle 
intensity is quantified by using the irradiance E. The analysis is divided into two parts. First, a model is 
established for calculating the irradiance E{i) at the receiver in terms of the physical properties of the 
object; this model is then used to perform the statistical calculation of the spectral density. 
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The spectral density of E(t) is defined in terms of the Fourier transform of E(t), 

oo 

E(f)= JE(t)exp(-i27tft)dt    , (35) 

by 

GE(f) = 
E(f)2 

(36) 

where 

T = j\w(t)\2dt (37) 

is the effective scan duration and w(t) is a dimensionless window function, ranging between zero and 
unity, that specifies the temporal shape and the duration of the transmitted signal irradiance. If w(f) turns 
on and off abruptly, then T is simply the scan duration in the usual sense. Typically, w(t) tapers to zero at 
the edges of the signal for the purpose of decreasing the side lobes. In this analysis, the scan duration is 
assumed to be long compared to the time it takes light to traverse the range extent of the object. 

This model for the irradiance at the receiver differs from previous models for analyzing the 
wavelength dependence of speckle in that there is no prediction of angular-scattering effects from 
assumed surface statistics. Instead, these surface-correlation effects are taken into account directly 
through the functional dependence of/(ö), which can be readily measured in practice. This approach 
greatly simplifies the calculations. The resulting analysis, which is a hybrid between radiometry and 
physical optics, proceeds as follows. 

First, the surface of the object is broken into N small uncorrelated area elements Aj and the 
principles of radiometry are used to calculate the contribution to the speckle-averaged irradiance at the 
receiver from each individual element. The magnitude of the complex amplitude at the receiver arising 
from an individual surface element on the object is obtained by taking the square root of the irradiance 
from that element. The phase is introduced by considering path lengths and assigning each scattering cell 
a random phase offset 0 that is uniformly distributed over 2K radians. The N contributions V}{f) to the 
total complex amplitude V(t) at the receiver are then added coherently, as in physical optics. Finally, the 
irradiance E(f) is obtained by squaring the magnitude of the complex amplitude. 

This model for E(t) is based on the following reasoning. The area Aj of each surface element is large 
enough to determine the angular scattering (that is, large compared to the wavelength and the surface 
correlation length) but small enough so that the resultant complex amplitude V(t) at the receiver would not 
change significantly if the elements were further subdivided. For example, the range extent Ly of the 
individual surface elements must be small enough so that the corresponding decorrelation frequency 
AvD = c/(2L) from Eq. (33) is large compared with the total frequency scan of the laser. Because 
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objects of interest are large on a wavelength scale, the surface area can be divided into many individual 
cells that each satisfy these requirements. 

The first step in calculating E(t) is to define the transmitted signal; its complex amplitude is 
expressed in the form 

VT(t) = ^JE0w(t) exp[/0r(O]    . (38) 

In this equation E0 represents the final target irradiance after the transmitted beam has propagated over the 
distance R. As explained, variations in the transmitted irradiance with time are accounted for through the 
window function w(f). The phase <^t) is obtained by assuming that the initial laser frequency is v0 and 
that v increases linearly in time at the rate y, such that v = v0 + yt. Through application of the relation 
d(j>/dt = 27CV, 

<pT(t) = 27t\v0+¥-X (39) 

is obtained, which completes the description of the transmitted signal. 

Having defined the transmitted signal, the irradiance at the receiver can now be found. Because a 
monostatic and far-field configuration is assumed, one need only consider rays that propagate parallel to 
the z-axis. For the jth scattering cell, the round-trip propagation time from the transmitter back to the 
receiver is t0 +tj, where tQ = 2R/c is the round-trip propagation time to the z = 0 plane (from which the 
object height function is defined) and tj = 2hj/c is the round-trip propagation time between the z = 0 
plane and the y'th scattering cell. The time dependence associated with the contribution V{i) is the same as 
the time dependence of the transmitted signal VT{t) but at the earlier time t - tQ - tj. By the procedure 
outlined above, the total complex amplitude at the receiver is 

N       

V(t) = Jw(t-t0) ^(EJ) expj/^a -t0 - tj) + <t>j]}    . (40) 

Equation (40) assumes that the pulse duration T is long compared to the largest value of u and that w{t) is 
slowly varying, except possibly at the edges, to replace w(t -10 -tj) by w(t -10) and move it outside of the 
summation. The expected irradiance (EJ^ from the ;'th scattering cell is found by substituting its cross 
section, obtained from Eq. (4), into Eq. (1) and rearranging terms to yield 

(^} = fMö,)C0SV;    • (41) 

The irradiance E(t) at the receiver is the magnitude-squared of V(t) in Eq. (40). 

To perform the statistical analysis, the magnitude-squared in the computation of E{t) must be 
expanded into a double summation. This is done by using two different summation indices [j for writing 
V(t) and k for writing its complex conjugate] and multiplying to yield 
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N   N 

E(t) = w(t-t0)^^(Ej)(Ek)exv\i[<l>T(t-t0-tj)-<l>T(t-t0-tk) + <t>j-<!>k]}    .    (42) 
j=\ k=\ 

The significance of a linear scan becomes apparent when Eq. (39) for 0j(O is substituted into Eq. (42); the 
quadratic terms cancel, which leaves a linear dependence of phase on time t: 

$T{t-tQ-tj)-<l>T{t-t(i-tk) = 2n{tk-tj)[v(i+Y{t-tQ)\ + 7tY(t?-tk
2). (43) 

These linear phase factors correspond to frequency offsets in the Fourier-transform domain. The size of 
these offsets is proportional to the axial propagation time tk - tj and, hence, proportional to the range 
offset hk - h: between scattering cells. Thus, the intensity signal carries information about range. The 
other phase terms in Eq. (43), which do not depend on time, are unimportant and cancel out later in the 
analysis. 

To proceed with the evaluation of the spectral density defined in Eq. (36), take the Fourier 
transform of Eq. (42), square its magnitude, apply the expected-value operator, and divide by the effective 
scan duration. This yields 

1 y=i k=\ 1=1 m=\ 

xexp[-i2KV0(tj-tk-tl+tm)]exp[-i7ty(tj
2-tk

2-tl
2+tm

2)] (44) 

XÜ(f + fj-fk)Ü*(f + fl-fm)      , 

where the notation f: = yt: has been used for compactness. Note that frequency offsets are related to 
range offsets through fj = 2yhj/c. Again, the magnitude-squared has been expanded in Eq. (44) by 
doubling the number of summations, this time to four. The summation is expanded to write the spectral 
density as a linear combination of the function exp[i(0/--0it-0/+0„,)] so tnat tne expected-value 
brackets can be moved inside the summation to act on this function alone. 

The next step is to apply known statistical properties of the random process 0 • to evaluate the new 
expected value and to simplify Eq. (44). Two assumptions about 0. specify its statistical properties: (1) It 
is uncorrelated from cell to cell and (2) it is uniformly distributed over In radians. These assumptions 
completely specify 0 • and make it possible to write the expected value in terms of Kronecker ^functions 
as 

(exp[i(0y - fa - <Pi + 0m)]) = Sjk 5lm + Sji Skm - Sjklm     . (45) 

By definition, a Kronecker 5-function is unity when its subscripts are equal, and zero otherwise. 
Equation (45) can be derived by applying the two assumptions listed above. By the first assumption, the 
expected value in Eq. (45) can be expressed as the product of the expected values of the individual 
factors, as long as the indices are all unequal. But, by the second assumption, 

(expO>,.)) = 0    , (46) 
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and the product of the expected values is zero. The only way for the expected value in Eq. (45) to be 
nonzero is if the phases add to zero, in which case the expected value is unity. For the phases to add to 
zero for every realization of the random process, the indices for positive and negative phases must be 
equal in pairs. Equation (45) covers all the possibilities. 

By applying Eq. (45) to Eq. (44), the quadruple summation can be reduced to 

GE{f) = - 
\w (f)f N N 

Zfc>  -Z<*/> 
u=i    )   ;=i 

N   N 

+ IZhYti 
m+fj-fk)\ 

(47) 
;=1 k=\ 

The double summation can be further reduced by observing that 

i2 
\ü(f + fj-fk)\  =\ü(f)\2*ö(f + fj-fk) = \w(f)\2*[S(f-fj)+ö(f-fk)]    , (48) 

where the asterisk denotes convolution and the five-pointed star denotes cross-correlation. Equation (48) 
allows the double summation to be written as an autocorrelation of two single summations, convolved 
with the Fourier-transform magnitude-squared of the window function. 

The next step is to interpret the meaning of the resulting three types of single summations. The first 
summation in Eq. (47) is the easiest to interpret. The sum of the ensemble-averaged contributions to the 
irradiance is simply the total irradiance, which can be expressed in terms of the object's cross section a 
through Eq. (1), yielding 

N 

7=1 
AnR1 (49) 

The magnitude of the second summation depends on the number of surface cells N used in modeling the 
object. Note that because the strength of the individual components (E-S falls off as 1//V as the object is 
divided into smaller surface patches, the magnitude of the individual terms in the series goes as l/N . 
Because the series contains TV terms, the magnitude of the summation is inversely proportional to N. Thus, 

limf(£,)2 = 0 
N-*< 

(50) 
7=1 

and this term can be dropped because only objects that have many uncorrelated scattering cells are being 
considered. The third summation can be made to resemble Eq. (6) for the range-resolved laser radar cross 
section if it is converted to an integral by taking the limit of large N. The result is 

S»f(Bj)w-A)-.A^»ft) 
N-+ 

;=i 
4nRz2y 

(51) 

27 / 

The factor involving the speed of light c and the scan rate /arises from converting the 5-function from 
a function of frequency /to a function of range z. 
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The remaining quantity to be interpreted in Eq. (47) is the Fourier-transform magnitude-squared of 
the window function, divided by the effective scan duration T. In the limit of large T, this function 
becomes a 5-function of frequency and the convolution does not blur the signature. It is convenient to 
define a related quantity that is a function of range z; namely, 

2y \w(f)\2 
(52) 

c 

This quantity can be interpreted as the range-resolution impulse response of the system. In the limit as the 
scan bandwidth B = yT approaches infinity, this impulse response also reduces to a <5-function; that is, 
W(z) = <Kz). Again, the factor of 2y/c in Eq. (52) accounts for converting the 5-function from a function 
of frequency to a function of range. 

With these observations, Eq. (47) can be rewritten in the form 

GEififJXt = [^)^^ + Wl(z)*Ru(z)]    , (53) 

where the autocorrelation function is given by 

Ru{z)=\u(z')U{z + z')dz'    . (54) 

It is not necessary to take the complex conjugate of the first U(z) in the definition of R^z), as in the 
general definition of an autocorrelation function, because U(z) is always real. In Eq. (53), the spectral 
density of the fluctuating speckle irradiance consists of two terms: (1) a dc-like component that is 
proportional to the square of the object's total cross section a and (2) a term that is proportional to the 
convolution of the system impulse function Wz(z) with the autocorrelation function R^z) of the object's 
range-resolved laser radar cross section U(z). Both components are multiplied by a factor that accounts 
for the received signal strength. 

As the length of the scan increases, the system impulse function becomes more localized. This 
localization causes the dc component in Eq. (53) to be more localized and also improves the resolution to 
which the autocorrelation function R^z) can be determined. Because the system impulse response 
reduces to a 5-function in the large-bandwidth limit, the convolution can be dropped in this limit. In 
general, however, the width of the impulse response determines the range resolution. As an illustration of 
Eq. (52), let us assume that the window function turns on and off abruptly. Then T is simply the time it 
takes to complete the scan, and B is simply the total frequency scanned by the laser. The range-resolution 
impulse response evaluates to 

Wz(z) = ^-smc2^fzj    , (55) 
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where sinc(x) = sm(7Dc)/(nx). If the resolution Az is defined to be the value of z where the sine function 
has its first null, that is, x = 1, then 

*-k ■ (56) 

As expected, the range resolution improves as the scan bandwidth increases. Equation (56) is used to 
define range resolution.for arbitrary window shapes, where the effective bandwidth B corresponds to the 
effective scan duration T defined in Eq. (37). 

The main advantage of the wavelength-decorrelation technique is that the high effective bandwidth 
of a tunable laser can be used to obtain range resolutions that far surpass conventional methods. For 
example, a range resolution of 1 mm can be achieved by scanning the laser over a bandwidth of 150 GHz. 
This bandwidth is a small frequency excursion for a tunable laser, and submillimeter range resolutions 
can readily be achieved. 

A simple rule for relating the number of speckle oscillations that occur during a scan to the range 
resolution can now be obtained. Recall that a change in frequency of AvD corresponds to one oscillation 
of the speckle intensity. Consequently, a total of Ns = B/AvD oscillations of the speckle intensity occur 
for a frequency scan of length B. Likewise, for a range resolution of Az, an object of range extent L can be 
divided into Nz = L/Az range-resolution cells. The expression 

N=JL = N=± (57) 
s    AvD       z    Az 

is arrived at by combining Eq. (33) for the decorrelation frequency A vD that corresponds to a given range 
extent L with Eq. (56) for the range resolution Az that corresponds to a given bandwidth B, Thus, the 
number of range-resolution cells Nz is equal to the number of speckle-intensity oscillations Ns. Equa- 
tion (57) gives an intuitive way of determining how well an object is resolved in range. 

Now return to Eq. (53). The dc component in this equation represents the fact that an intensity is 
nonnegative. If the signal were ac coupled or if the data were preprocessed by subtracting the mean, this 
component would be eliminated. Let us denote the zero-mean signal by a prime; that is, 

E'(t) = E(t)-(E(t))    . (58) 

The Fourier transform of this signal also has zero mean and can be written in an analogous manner as 

E'(f) = E(f )-(£(/))    . (59) 

It can be shown that the spectral density of the zero-mean signal takes the form 

GE<f)\fJ^={-^i^W^Rv^    ■ (6°) 
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From either Eq. (53) or Eq. (60), the spectral density of the speckle irradiance provides a way to measure 
the autocorrelation function R^z) of an object's range-resolved laser radar cross section to a resolution 
determined by the scan bandwidth. 

43    RANDOM-PROCESS REPRESENTATION 

In the preceding calculation of the spectral density of the fluctuating speckle intensity, the complex 
amplitude V(t) is represented by Eq. (40), which is derived using a discrete scattering-cell model. We 
converted from summations to integrals allowing the number of cells N to approach infinity. An 
alternative approach introduced here streamlines further analysis of the statistical properties of the 
wavelength dependence of speckle. In this approach, a representation of the random process V(t) is 
constructed in which the limiting operation has already been performed. Thus, the new representation of 
V(f) is based on an underlying random process that is continuous,not discrete as is ty. 

The first step in constructing this new representation is to define an auxiliary complex amplitude 
Vs(t) that is similar to V(t) but stationary. Stationarity means that statistical moments, such as the average 
and the autocorrelation function, are independent of offsets in time. Because the nonstationarity in V(t) 
arises from the time dependence of the transmitted signal, it can be removed by dividing Eq. (40) by the 
time variation associated with V-^t- tQ). Thus, 

N       

Vs(t)= lim Xv(£/> exp{/[M'-'o-',)-M'-'o) + 0;]} (61> 

and 

V(t) = ^w{t-10) exp{i[<l>T(t - t0)]}vs(t)    . (62) 

To construct a representation for V£t) that does not require the limiting procedure, one must first 
know the statistical properties of Vs(t) that are to be duplicated. Because the complex amplitude is a 
superposition of many independent contributions and because none of these contributions dominates, the 
central limit theorem applies, and the real and imaginary parts of Vs(f) are normally distributed. A unique 
property of a normal, or Gaussian, random process is that it is completely determined by its first-order and 
second-order moments. The first-order moment is simply the mean, which by Eq. (46) is 

(Vs(t)) = 0    . (63) 

Two types of second-order moments must be considered. One is the usual statistical autocorrelation 
function, defined as 

RVs(t) = (v*(t')Vs(t + t')}    , (64) 

and the other does not include the complex conjugation. These two second-order moments behave quite 
differently. In particular, for Vs(t) the second type of moment vanishes, regardless of the arguments; that 
is, 
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(Vs(t')Vs(t + t')) = 0    . (65) 

Equation (65) indicates that Vs(t) is circular. Circularity means that the real and imaginary parts of the 
random process are uncorrelated and have equal variance [46-49]. Consequently, contours of constant 
probability are concentric circles centered on the origin of the complex plane. (A nonzero-mean random 
process can also be circular, but the contours of equal probability are centered around its mean.) In the 
theory of speckle, our assumptions about 0- lead to what is known as Gaussian speckle [46,47] or, more 
precisely, to a complex amplitude of the optical field that is represented by a zero-mean complex circular 
Gaussian random process. 

Equation (65) follows directly from a similar property for the random process 0-; namely, 

(exp[ity-+fc)]) = 0    . (66) 

As in Eq. (45), the expected value in Eq. (66) vanishes when the indices are unequal, but here it also 
vanishes when the indices are equal because the two phases are not subtracted and do not cancel. If the 
phases were subtracted, then the expected value would be unity when the indices were equal. Therefore, 
this expected value can be expressed as a Kronecker 5-function; that is, 

(exp[i(0;.-^)]) = 5;jt     . (67) 

Equation (67) can be used to evaluate the autocorrelation function Rv(t), yielding 

N 

1 Rv(t) = Urn ^(Ej)exp(-i2Kfj t)    . (68) 

The next step is to express Eq. (68) in terms of the range-resolved laser radar cross section U(z). 
This can be accomplished by noticing that the left side of Eq. (51) is the Fourier transform of the right 
side of Eq. (68) to within a sign flip in the frequency argument. Thus, the autocorrelation function Rv(t) 
can be written as 

w-j&w 
c 

where the Fourier transform 

Ü(fz)= jU(z)exp(-i2nfzz)dz (70) 

is a function of spatial frequency. Because time and spatial frequency are related by a proportionality 
constant through 

fz=^-t    , (71) 
c 

39 



the fluctuating speckle intensity can be represented either as a function of spatial frequency or as a 

function of time. 

The random process Vs(t) has now been completely characterized. In summary, it is a stationary 
complex Gaussian random process that is zero mean [Eq. (63)] and circular [Eq. (65)] and whose 
autocorrelation function is proportional to Ü(fz) [Eq. (69)]. The new representation of V/0 is obtained 
by requiring that all these specifications hold. This representation is 

V 4OTC    
J Z

   C 
—oo 

where g(z) is a stationary complex Gaussian random process that is zero mean, 

(g(z)) = 0    , <73> 

circular, 

(g(z')g(z + z')} = 0    , (74) 

and 5-correlated, 

{g*(z')g(z + z')) = S(z)    . (75) 

By using Eqs. (73), (74), and (75), one can verify that Eq. (72) satisfies Eqs. (63), (65), and (69), 
respectively. The new representation is known to be Gaussian because a linear combination of Gaussian 
random processes remains Gaussian. 

The various components in Eq. (72) will now be interpreted. The factor in front of the integral 
accounts for the dependence of the received signal strength on the target irradiance and the target range. 
The integration represents a summation over the contributions to Vs(t) from different range planes. As 
described in Section 4.1, one can think of the individual contributions as phasors and of the integral as the 
phasor sum. The magnitude of the phasor for a given range plane is proportional to the square root of the 
laser radar cross section for that plane—hence the square root of U(z) in Eq. (72). The Gaussian random 
process g(z) introduces a random phase angle and a random magnitude to the phasor to account for the 
fact that the speckle from the individual range planes is Gaussian. The complex exponential introduces 
rotations of the phasors, with the rotation rate being proportional to the distance from the z = 0 plane and 
proportional to the frequency shift Av = yt as explained in Section 4.1. In effect, scanning the laser 
frequency linearly in time results in a Fourier transformation of the quantity -JU(z)g(z). Equation (72) 
shows the fundamental role that Fourier transforms play in the wavelength dependence of speckle. 

The random-process representation given in Eq. (72) is convenient for statistical calculations. It can 
be manipulated, either analytically or by computer simulation, to study input-output relations associated 
with a given signal-processing algorithm or to study higher-order statistics such as the bispectrum without 
first going through the discrete scattering-cell argument. To carry out this analysis, one must know the 
corresponding moments of the random process g(z). These moments can be evaluated by applying the 
complex Gaussian moment theorem [50] to a 5-correlated zero-mean random process. All odd-order 
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moments of g(z) vanish, as do all even-order moments that do not have an equal number of conjugated 
and nonconjugated variables. The remaining moments obey the general rule 

{g*(zi) g*(z2)- g*(zM) g(zM+1 )■■■ g(z2M)) = 

2_,8(zi - zM+p)5(z2 - zM+q)- ■ • 8(zM - zM+r) 
(76) 

where n denotes a summation over the Ml possible permutations (p, q, ..., r) of (1, 2  M). 
Equation (76) reduces to Eq. (75) for M = 1 and to 

(g*(zi) g*(z2) g(z3) g(z4)) = 5(zx - z3) S(z2 - zA) + ö(zi - zA) 8{z2 - z3) (77) 

for M = 2. Equation (77) is analogous to Eq. (45) and is used in deriving Eq. (53) when using the 
continuous random process g(z) instead of the discrete random process ^. 

4A    COHERENT DETECTION 

By Eq. (53), spectral analysis of the fluctuating speckle irradiance £"(?) = | V(r)| provides the 
autocorrelation function R^z) of the object's range-resolved laser radar cross section U(z). But Eq. (72) 
for the random-process representation of Vs(t) is written in terms of U(z). This leads to the hypothesis that 
U(z) is recoverable through appropriate analysis of the complex-valued return signal V(t). Because optical 
frequencies are so high (300 THz for a wavelength of 1 fim), however, the rapid phase fluctuations 
resulting from the harmonic time dependence of V(t) cannot be measured directly. Optical detectors 
generally measure the magnitude-squared of V(t); obtaining the phase of V(t) requires coherent detection. 

The first inclination might be to use heterodyne detection to eliminate the high-frequency phase 
fluctuations that occur at the carrier frequency. (Heterodyne detection is a form of coherent detection 
where the return signal is mixed with a monochromatic reference beam that is shifted in frequency.) 
Heterodyne detection by itself, however, is insufficient; because the carrier frequency is changing, the 
reference-beam frequency must also be changing. To entirely eliminate rapid phase variations, the return 
signal V{t) must be mixed with a reference beam that is a copy of the transmitted signal, delayed by the 
round-trip transit time t0. In terms of Eq. (62), this procedure corresponds to multiplying the complex 
exponential in Eq. (62) by its complex conjugate exp[-i<j>T(t -t0)]. [Set the window function w(t) for the 
reference signal to unity.] This coherent-detection approach corresponds to matched filtering or stretched 
processing [25]. 

The random-process representation for the coherently detected signal can now be written. Because 
complex amplitudes are being dealt with rather than intensities, the notation for the window function is 
changed to the quantity a(t) = ~Jw(t). Then the coherently detected signal becomes 

Vc(t) = V(t)exp[i<l>T(t-t0)] 
_ - (78) 

-\a(t-t0) f ^U(z)g(z)exp(-i27:fzz)dz\f_2I.t 
Aide J H   c 
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The spectral density for the coherently detected signal is 

2\ 

Gv(f) = 
W) 

(79) 

where the effective scan duration is 

rfl=jW)|2^   • (8°) 
—oo 

By using the random-process representation given in Eq. (78) and by applying the fact that the underlying 
random process g(z) is 5-correlated [Eq. (75)], the spectral density can be written in the form 

where 

A^^I^L 
T 

(82) 

c 

is the range-resolution impulse response of the system. As before, the impulse response reduces to a <5- 
function in the large scan bandwidth limit, and the convolution with the impulse response can be dropped 
in Eq. (81) in this limit. Thus, the spectral density of the coherently detected signal provides a 
measurement of the object's range-resolved laser radar cross section U(z), not just the autocorrelation 

function Ry(z). 

Note that Eq. (81) contains a sign flip between the frequency /and the range z for coherent 
detection, but there is no sign flip in Eq. (60) for direct detection. Actually, Eq. (60) could have been 
written with the sign flip because the spectral density is an even function for direct detection. Thus, the 
relation between frequency and range 

f = -K (83) 
c 

actually covers both situations. The sign flip in Eq. (83) occurs because Eq. (72) has a negative sign in the 
complex exponential, but a positive sign is needed to make the integral look like an inverse Fourier 
transform of a function of frequency. 

We consider three general approaches to creating the coherent-detection reference signal required 
for direct measurement of U(z). The first approach, and the one used in the measurements in Section 5, is 
to place a diffuse range-reference plane in the vicinity of the object so that it is also illuminated by the 
laser beam (see Figure 18). The range-reference plane produces a delayed copy of the transmitted signal 
at the receiver that mixes coherently with the return signal from the object. By Eq. (81), the spectral 
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density of this coherently detected signal provides a direct measurement of U(z). It is also useful to 
consider the function of the range-reference plane from the point of view of direct detection. Assume that 
a range-reference ring is located behind the object at position z0, as shown at the top of Figure 18. This 
reference ring produces a sharp spike, or a 5-function, in the U(z) curve shown in the center of Figure 18. 
As usual, the spectral density of the directly detected signal produces the autocorrelation function of U(z), 
but U(z) now contains the additional 5-function component. In calculating the autocorrelation function for 
this combination graphically, one would choose a particular range-offset value (for example, za), replicate 
the original U(z) function with this range offset, multiply the original curve and the shifted curve point by 
point to obtain a product curve, and integrate to obtain the area under this product curve. The result for the 
offset value za is shown in the curve at the bottom of Figure 18. This procedure may be repeated for 
different values of range offset to fill out the autocorrelation-function curve. 

Figure 18 shows that for range-offset values between za and zQ, the 5-function traces through the 
U(z) curve for the triconic and replicates its functional form. Observe that the range-reference plane must 
be separated from the target by a distance greater than the target's range extent L; otherwise, the desired 
U(z) curve will overlap with the central autocorrelation curve R^z). Because autocorrelation functions of 
real quantities are even functions, the replicated U(z) curves on either side of the origin are mirror images 
of each other. If the reference plane is located behind the target, as depicted in Figure 18, then the U(z) 
curve on the left side has the correct orientation; if the reference plane is located in front of the target, the 
curve on the right side must be chosen. 

The use of a range-reference plane is limited to situations where the object is readily accessible. For 
inaccessible objects at relatively short ranges, it may be feasible to implement coherent detection by using 
the second approach. The reference beam is produced in this approach by splitting the laser beam before it 
is expanded and running the unexpanded beam through a delay line of appropriate length. Near the 
detector array the reference beam is expanded and collimated for uniform illumination of the array. 
Because the reference beam is self-contained, this method could be used in a remote-sensing application, 
where there is no physical access to the target. Because of the requirement for a delay path, this approach 
becomes increasingly difficult to implement as the propagation distance increases. An additional 
complication is that the required time delay varies if the object is moving radially. 

The third approach is to produce a reference beam having a constant frequency shift relative to the 
transmitted beam, rather than sending the reference beam through a delay line. The size of the frequency 
shift for this approach would be equal to the product of the scan rate y and the round-trip propagation time 
to the virtual range-reference plane. A disadvantage of this approach is that it requires a coherence length 
that is long compared with the distance to the target rather than the range extent of the target. 

Because of the difficulties encountered with coherent detection at long ranges and because of the 
reduced hardware requirements for direct detection, development began on direct-detection-based 
methods for obtaining U(z). 
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Fj'gMre 7& Pictorial illustration of how a range-reference plane produces the range-resolved laser radar cross 
section. 

4.5    PHASE RECOVERY 

In considering how the direct-detection wavelength-decorrelation technique could be extended to 
the measurement of U(z), note that by the autocorrelation theorem R^z) contains the same information as 
the magnitude of the Fourier transform of U(z). If the phase <j>(fz), which is defined such that 

Ü(JZ)= Ü(fz)\exp[i<t>(fz)] (84) 

were known, then Ü(fz) would be completely determined and U(z) could be found through inverse 
Fourier transformation. Therefore, methods that yield U(z) must provide the Fourier phase information. It 
would be particularly interesting if 0(/z) could be found by processing the speckle intensity data. The 
hardware complexities and other difficulties associated with coherent detection could then be traded for 

more sophisticated signal processing. 

Two general approaches exist for obtaining phase information from the intensity signal. The first 
approach is to take the autocorrelation function R^z), obtained from calculating the spectral density, and 
attempt to recover the phase by applying well-known iterative phase-retrieval algorithms [51,52]. In these 
algorithms, known constraints are applied iteratively in the spatial and Fourier-transform domains. The 
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constraints in the spatial domain are that U(z) is a nonnegative function with finite support, that is, zero- 
valued outside of its range extent. In the Fourier-transform domain, the constraint is that the Fourier 
magnitude is known. Iterative phase retrieval has been applied to wavelength-decorrelation data with 
good success [37], but in general the method is not guaranteed to converge to the correct solution and 
does not use all available information. For these reasons other methods for recovering <f>(fz) were 
investigated. 

The second general approach is to analyze the original data by using more sophisticated signal- 
processing techniques in the hope that additional information about the phase can be extracted from the 
intensity signal. The basis for this optimism is that U(z) appears explicitly in Eq. (72) and information 
about the Fourier phase <j>(fz) may have been lost in taking the magnitude-squared when the spectral 
density defined by Eq. (36) was calculated. By using the random-process representation of the signal from 
Section 4.3, any potential signal-processing algorithm can be tested to see if it yields more information 
about the Fourier phase. The first inclination might be to modify Eq. (36) by not taking the magnitude 
when squaring or to use different frequency arguments for the two factors. It can be shown, however, that 
the spectral density is the only second-order moment of E(f) that is nonzero. The next logical choice is 
to calculate a third-order moment. 

The bispectral density is a third-order moment and the natural extension of the spectral density to 
two dimensions [53-55]. The application of bispectral signal processing to wavelength-decorrelation data 
is described in detail in the literature [37]. In summary, this work shows that bispectral analysis allows 
recovery of the Fourier phase of U(z) to within a linear phase factor and to within a global sign flip. The 
linear phase factor corresponds to an arbitrary range offset so that the distance to the target cannot be 
determined. The global sign flip corresponds to a sign ambiguity in the direction of increasing range. 

Because the bispectral density is a higher-order moment than the spectral density, it will be 
estimated with less accuracy than the spectral density for the same number of realizations of the random 
process. Consequently, the Fourier phase will be determined less accurately than the Fourier magnitude. It 
was found that an effective application of bispectral analysis was in calculating an initial estimate of U(z) 
to be used in the iterative phase-retrieval algorithm. 

An interesting parallel between spectral analysis and bispectral analysis points to another potential 
application of bispectral analysis. Just as calculating the spectral density of the fluctuating speckle 
intensity yields the autocorrelation function of U(z), calculating the bispectral density of the fluctuating 
speckle intensity yields the real part of the triple correlation function of U(z). The triple correlation 
function is an extension of the autocorrelation function to two dimensions and contains information about 
the Fourier phase that is lost in the autocorrelation function. Even a highly speckled estimate of the real 
part of the triple correlation function arrived at through a small number of realizations of the speckle 
intensity may be useful for pattern matching or automatic object-recognition algorithms. 
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5.     WAVELENGTH-DECORRELATION MEASUREMENTS 

Up to this point the report has concentrated on the theoretical aspects of wavelength decorrelation. 
Wavelength decorrelation will now be investigated from an experimental point of view, beginning by 
describing the laboratory setup, then verifying the fundamental concepts of wavelength decorrelation 
through a series of laboratory measurements. At the end of this section, some potential applications of the 
wavelength-decorrelation technique in target discrimination are explained. 

5.1    LABORATORY LAYOUT 

Figure 19 shows a schematic diagram of the optical setup. Because the objective was to prove the 
wavelength-scanning concept, off-the-shelf equipment was used whenever possible. The commercially 
available tunable laser that best fit the requirements was a Coherent, Inc., 899-29 Ti:sapphire ring laser 
pumped by a Coherent, Inc., Innova 200 argon-ion laser. The Ti:sapphire is an actively stabilized single- 
frequency ring laser that can produce a coherence length greater than 100 m. This coherence length is 
more than adequate because it is large compared to the range extent of targets of interest. (Because the 
wavelength-decorrelation technique can be implemented by using direct detection of the speckle intensity, 
the total propagation distance to and from the target can be much greater than the coherence length of the 
laser, which makes this technique attractive for remote-sensing applications.) 

LASER POWER METER 

TITAN1UM:SAPPHIRE LASER    ipl      ARGON-ION LASER 

BEAM SPLITTER 

SMALL OFF-AXIS 
PARABOLIC MIRROR 

LARGE OFF-AXIS 
PARABOLIC 

MIRROR 

TARGET 

Figure 19. Schematic of optical system. 
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The Ti: sapphire laser can scan continuously in frequency over a range of approximately 30 GHz, 
which implies, by Eq. (56), a range resolution of 5 mm. It also operates in a computer-controlled 
frequency-stepping mode that uses an internal wavemeter for feedback. In this mode, it can be stepped 
over a range of more than 15 THz to yield a range resolution of better than 10 fim. The stepping mode is 
slow compared to the scanning mode; the stepping mode was chosen, however, to demonstrate 
submillimeter range resolutions in the initial measurements. 

After the beam exits the Ti:sapphire laser, it is directed into the beam-expanding telescope. A small 
fraction of the power is diverted into a power meter before entering the telescope to monitor any 
fluctuations in laser power during a scan. The telescope simulates far-field illumination by flood- 
illuminating the target with an expanded collimated laser beam. This telescope consists of a pair of off- 
axis parabolic mirrors that provide a beam-expansion ratio of 25 x and a maximum beam diameter of 
22.5 cm. The expanded collimated beam illuminates a target assembly that incorporates a Newport Corp. 
PM500 computer-controlled rotation stage for precise angular positioning. 

The telescope also serves as the collector for the receiver. Backscattered light from the target is 
collected by the large off-axis parabolic mirror (as shown in Figure 19) and reflected toward the pinhole 
mirror at the focal point of the telescope. The pinhole mirror directs the backscattered light into the 
detector leg of the telescope, at the same time passing the strong outgoing beam through the pinhole 
without scattering stray light into the detector. Thus, the pinhole mirror serves as a low-scatter, high- 
efficiency beamsplitter for observing the speckle pattern in the neighborhood of the monostatic 
observation direction. The pinhole also acts as an optical spatial filter, which is typically used for 
improving the spatial quality of a laser beam. 

Because a far-field configuration is being simulated, the speckle pattern must be observed at the 
focal plane, or Fourier plane, of the large parabolic mirror. Here, parallel incoming rays converge to 
localized points of light, each having a position corresponding to the direction of propagation of the rays. 
Only rays that propagate parallel to the telescope axis (which include the outgoing beam and exactly 
retroreflected light) pass through the pinhole. Only backscattered light traveling in directions near the 
monostatic observation direction reaches the pinhole mirror. 

The detector cannot be placed at the focal point because it would block the outgoing beam. 
Therefore, the pinhole mirror reflects the light away from the telescope axis so that the speckle pattern 
can be imaged onto the detector array with a lens, as depicted in Figure 19. Besides relaying the speckle 
pattern at the focal plane to the detector plane, the lens provides a magnification or demagnification M of 
the speckle pattern for optimal use of the detector array. 

A Photometries Ltd. scientific-grade CCD camera was selected for the detector because of its low 
noise, high linearity, and high dynamic range. The CCD contains 512x512 pixels that are 27 jim x 27 fjm 
in size. The speckle size on the CCD array is an important consideration; it must be larger than the pixel 
size so that speckle-intensity variations can be resolved. By replacing the distance R in the formula 
d± = ÄR/D for the speckle size d± with the focal length / of the lens or mirror, this formula can be 
applied to the situation when the far field is simulated with a lens or a mirror. An additional factor of M 
must be included to account for magnification of the speckle pattern in the relay optics of the detector leg. 
Therefore, the appropriate expression for the speckle size at the detector plane is dL = XMf/D. In our 
optical system, the focal length /of the primary mirror is 2 m, and the operating wavelength A of the laser 
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is approximately 0.75 /im. Consequently, for a transverse target size of D = 5 cm and a magnification of 
M = 8, the average speckle size at the detector plane is approximately 240 /im. Thus, the speckle lobes are 
well resolved, and the total number of speckles on the CCD array (or realizations of the random process) 
is greater than 1000 in this situation. 

The disadvantage of the Photometries CCD camera is that it requires over one full second to read 
out the entire array. This slow framing rate, along with the slow frequency-stepping rate of the laser, 
causes a typical 1024-point scan to take approximately 1 hr. Any motion of the speckle pattern arising 
from mechanical vibrations or air turbulence during this period will degrade the measurements. For this 
reason, the entire optical assembly is mounted on a vibration-isolated optical table, and the optical 
assembly is enclosed within a turbulence shroud. Future increases in the data-acquisition rate will greatly 
reduce the effects of turbulence and vibrations. For example, the system described is inefficient because 
the full 512 x 512 array is read and then decimated to a 32 x 32 array to sample each speckle 
approximately once on average. Little advantage is gained by processing the information from every pixel 
(as long as the light level is high) because uncorrelated estimates are necessary for averaging. 

52    DEMONSTRATION OF FUNDAMENTAL CONCEPTS 

The optical setup will now be used to demonstrate the basic relations between the wavelength 
dependence of speckle and the physical properties of the object being illuminated. The natural procedure 
for investigating wavelength decorrelation experimentally is to illuminate various objects with the tunable 
laser, observe the effect of varying the laser frequency on the speckle intensity, and look for any 
differences in behavior that might be linked to physical differences between the objects. It is assumed that 
the magnification of the lens in the detector leg is sufficient for producing a spatially well-resolved 
speckle pattern on the CCD array. Figure 20 illustrates the frequency dependence of the speckle intensity 
(at a single pixel in the CCD array) for three objects: a 4-cm-radius sphere, a 10-cm-long cone, and a 
10-cm-long triconic. The cone and the triconic are illuminated nose-on. The frequency scan length is 
100 GHz, which corresponds to a very small frequency modulation of approximately 0.025% of the 
carrier frequency. 

Observe that the speckle intensity in Figure 20 fluctuates radically as the laser frequency varies. 
The term wavelength decorrelation applies because the speckle intensity decorrelates as the frequency or 
wavelength of the laser is changed. The decorrelation frequency A vD is a measure of the frequency offset 
at which one can no longer make a reasonable estimate of the new speckle intensity given the value of the 
original speckle intensity. 

Let us investigate the differences among the three frequency scans. The most obvious distinction is 
the longer decorrelation frequency AvD for the sphere, which has an illuminated range extent L equal to 
4 cm compared with the cone and triconic, which both have an illuminated range extent L equal to 10 cm. 
These plots indicate an inverse proportionality between range extent and decorrelation frequency and 
experimentally confirm Eq. (33); that is, the calculated decorrelation frequencies of AvD = 3.75 GHz for 
the sphere and AvD = 1.5 GHz for the cone and triconic agree well with the measured intensity scans. 

Next, compare the details of the curves for the cone and the triconic. Although both objects have the 
same decorrelation frequency, a higher proportion of the high-frequency component is found in the curve 
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corresponding to the triconic. This fact suggests that a relation exists between the object shape and the 

spectral content of the fluctuating intensity sequence. 

SPHERE 

Av (GHz) 

CONE 

100 
Au (GHz) 

TRICONIC 

Av (GHz) 

Figure 20. Speckle intensity versus laser frequency. These plots illustrate that the statistical properties of the 
fluctuating speckle intensity are related to the size and the shape of the illuminated object. As the illuminated 
range extent L increases, the decorrelation frequency c/(2L) decreases. The spectral makeup of the curves 
depends on the shape of the object. 

To illustrate the information obtained through spectral analysis, the sharp-tipped triconic shown in 
Figure 21 will be used. The triconic is coated with retroreflective paint to provide a strong return signal 
relative to the scatter from the supporting structure. A triconic was chosen because it produces an 
interesting nose-on illumination signature that is also relatively easy to interpret. The lengths Lx, L2, and 
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L3 of the three segments, beginning with the nose, are 3.5 cm, 4.0 cm, and 2.5 cm, respectively, and the 
cone half-angles ac , ac^ and aC} are 20°, 0°, and 25°, respectively. For this series of measurements, the 
laser-frequency step size Avstep is 500 MHz to satisfy the Nyquist condition for sampling, as given in 
Eq. (34). The total scan length B is 500 GHz, which yields a theoretical range resolution of approximately 
0.3 mm. 
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Figure 21.   Triconic target model and corresponding theoretical range-resolved laser radar cross section for 
nose-on illumination. 

Figure 22(a) is a plot of the estimated spectral density of the fluctuating speckle intensity obtained 
at a single pixel in the CCD array. Although the curve is highly speckled, several spectral features can be 
extracted. For example, the spectrum appears to have finite support, or to be zero-valued outside a certain 
range of frequencies, indicating that the fluctuating speckle signal is band-limited. There is also a region 
and its mirror image containing a null in the data. (This null arises because the lengths Lx and L3 of the 
two conical components of the triconic are both smaller than the length L2 of the cylindrical component.) 
A better estimate of the spectral density can be obtained by averaging the results from additional pixels. 
Figures 22(b), 22(c), and 22(d) contain plots for averages of 10, 100, and 1024 pixels, respectively. These 
plots demonstrate that the estimate of the spectral density smoothes out substantially as more averages are 
performed, but the smoothing effect is nonlinear. The degree of smoothing is actually proportional to the 
square root of the number of speckles sampled. As previously mentioned, calculating the spectral density 
for every pixel would not improve the estimate of the spectral density significantly because the intensity 
at neighboring pixels is correlated when the speckle is oversampled. 

The final estimate of the spectral density shown in Figures 22(d) and 23 has an interesting shape 
that is related to the shape of the object. In interpreting this spectral density; first consider the meaning of 
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the abscissa. Normally, a spectral density is calculated for a function of time. Consequently, the spectral 
density is a function of frequency. Although the fluctuating speckle signal can be treated as a function of 
time, the more basic parameter is the laser-frequency offset A v. If the scan is smooth and continuous, 
these two quantities are related through the scan rate yby Av = yt. In our measurements, however, the 
frequency is stepped, and the time between steps varies from step to step. Therefore, the signal is treated 
as a function of laser-frequency offset. Consequently, this spectral density is a function of time because 
now a Fourier transform of a function of frequency is being taken. Note that the time of 0.67 nsec from 
the origin to the end of the curve in Figure 23 corresponds to the propagation time for light to travel 
the 20-cm distance from the tip of the cone to the base and back again. This fact indicates that the 
spectral-density curve contains range information. The range is obtained by multiplying half of the time 
offset by the speed of light; the factor of one-half accounts for the round-trip path length. The resulting 
range scale for the abscissa is shown at the bottom of Figure 23. 

Now that the abscissa has been related to the range z, the information content carried by the shape 
of the curve is investigated. Because the strength of the intensity return from a radar is proportional to the 
target's cross section and because the spectral-density signature is a function of range z, this signature 
should contain information about the range-resolved laser radar cross section U(z) of the target. The 
spectral-density signature is clearly not a direct measurement of U(z), however. Some properties of the 
spectral-density curve are now noted that help relate it to the range-resolved laser radar cross section: 
(1) It has a width equal to twice the range extent of the target, (2) it is an even function, and (3) its highest 
value occurs at the origin. These are all properties of autocorrelation functions. These observations lead 
experimentally to the hypothesis, already derived in Section 4, that the ensemble-averaged spectral 
density is proportional to the autocorrelation function Rv{z) of the range-resolved laser radar cross 
section U{z). 

To confirm this hypothesis experimentally, U(z) must be determined separately. Figure 21(b) 
contains a theoretical plot of U(z) for on-axis viewing of a Lambertian triconic with the appropriate 
dimensions. The null in the middle region occurs because the surface of the cylindrical segment is not 
illuminated for nose-on viewing. The theoretical autocorrelation function of this particular range-resolved 
laser radar cross section appears in the central region of the autocorrelation curve shown at the bottom of 
Figure 18. A close similarity is observed between this central region and the averaged spectral density 
shown in Figure 22(d). 

To compare these functions more closely, J[d) must be known for the triconic at the angles of 
incidence for the two conical components; that is, 0X = 70° and 03 = 65°. A technique for measuring^ 0) 
is illustrated in the Appendix. The figure in the Appendix shows the monostatic properties for a 
retroreflective paint that is similar in behavior to the 3M 7210 retroreflective paint used to coat the 
triconic. Note that the fiß) function curves upward at the edges and that /(70°) is larger than /(65°) by 
approximately 50%. Another consideration in comparing experiment with theory is beam uniformity. In 
this measurement, the illuminating beam was nearly Gaussian, with an intensity drop of approximately 
25% at the perimeter of the target. After accounting for the effect of a nonconstant/( 6) and the effect of 
beam nonuniformity on U(z), the autocorrelation function of U(z) was calculated by computer. Figure 23 
compares this autocorrelation function with the averaged spectral density in Figure 22(d). The excellent 
agreement between experiment and theory indicates that the phenomenology for wavelength decorrelation 
is well understood. 
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Figure 22. Estimated spectral density of the fluctuating speckle intensity produced by illuminating a 10-cm-long 
triconic target nose-on with a frequency-scanning laser: (a) 1 average; (b) 10 averages; (c) 100 averages; 
(d) 1024 averages. These curves illustrate the smoothing effect of averaging the individual spectral-density 
estimates obtained from multiple pixels in the CCD array. 
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Figure 23. Comparison of the averaged spectral density displayed in Figure 22(d) with the autocorrelation 
function of the theoretical range-resolved laser radar cross section. Radial falloff in the intensity of the 
illuminating beam and non-Lambertian scattering from the surface of the triconic are accounted for in the 
theoretical curve. 

53    MEASUREMENTS OF RANGE-RESOLVED LASER RADAR CROSS SECTION 

We have shown both theoretically and experimentally that the wavelength-decorrelation technique 
allows measurement of the autocorrelation function Rv(z) of the range-resolved laser radar cross section 
U(z) of a target. As shown in the bottom of Figure 16, Rv(z) may be useful by itself for object-recogni- 
tion purposes. We would also, however, like to be able to measure U(z) directly because U(z) can be more 
easily related to the physical properties of the object. As explained in the section on bispectral analysis, 
methods that yield measurements of U(z) must provide the Fourier phase <t>(fz) in addition to the Fourier 
magnitude \Ü(fz) of the range-resolved laser radar cross section. Two techniques for measuring U(z)—a 
range-reference plane technique and bispectral signal processing—will now be demonstrated. 

As described above, a range-reference plane provides a simple means for implementing the 
coherent-detection approach in a laboratory setting where the scattering object is physically accessible. 
Figure 24 is a typical laboratory setup with a range-reference ring located behind a spherical object. 
Figures 25 and 26 show experimental results obtained by using the range-reference-plane technique to 
measure U(z) for off-axis illumination of a cone and a cylinder, respectively. The laser-frequency step 
size is 1 GHz, and the total scan length is approximately 1 THz. This scan length results in a theoretical 
range resolution of 0.15 mm. Theoretical predictions of U(z) are shown for comparison; good agreement 
was achieved in the overall shape of these curves. The high-frequency oscillations in the data are the 
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result of approximating an ensemble average with a finite number of averages as well as with granularity 
in the retroreflective surface coating. 

To further illustrate the high range resolution achievable using the wavelength-decorrelation tech- 
nique, a step target with a number of flat surfaces separated by various distances, as shown in 
Figure 27(a), was constructed. This object has nine levels with a ratio of 1.4 between successive step 
heights. The individual steps range in value between 0.5 mm and 8.5 mm with a total range span of 
24.6 mm. Figure 27(b) shows experimental results for a scan length of 2 THz. The resulting theoretical 
range resolution is 0.075 mm. All nine levels in the target are accounted for in the U(z) curve, and even 
the 0.5-mm step is well resolved, which clearly demonstrates submillimeter range resolution. 

A disadvantage of using a range-reference plane is that the number of effective averages is less than 
one might initially expect. This lower number occurs because the surface of the reference plane must be 
diffuse, or rough on a wavelength scale. If the surface of the reference plane were optically smooth, it 
would produce a single bright spot at the detector plane, and the mixing between the reference signal and 
the target signal would be limited to a small region of the detector array. Although using a rough-surfaced 
reference plane does cause the reference signal to spread over the entire detector array, it also results in a 
speckled reference signal. Furthermore, because the reference plane has a small range extent when illumi- 
nated at normal incidence, the speckle-intensity pattern from the reference plane remains fairly constant 
over the entire frequency scan. It is known that the intensity distribution of a Gaussian speckle pattern 
obeys a decaying-exponential probability law [46]. Therefore, a large fraction of the area of the speckle 
pattern is dark, but there are also regions with intensity levels that are many times the mean. 
Consequently, the reference signal is weak over a large portion of the detector array. The strong reference 
signal from the bright regions will tend to dominate and reduce the effective number of speckle averages, 
resulting in higher fluctuations in the estimate of U(z) than would be otherwise expected. 

The reference-plane technique can be modified so that the number of effective averages is not 
reduced. Ideally, the range-reference plane would be replaced by a single range-reference point; then there 
would be no speckle and no degradation in the averaging. The problem with using a single range-refer- 
ence point is that it has zero laser radar cross section. Specular points from curved polished surfaces do 
have large cross sections, however, and the range-reference technique has also been implemented by 
using specular range-reference points with improved results. 

The bispectral signal-processing technique will now be illustrated. As described in the section on 
bispectral analysis, information about the Fourier phase <j>(fz) is actually carried by the fluctuating inten- 
sity signal, but this information is lost when the magnitude-squared of the Fourier transform is taken when 
calculating the spectral density. Bispectral signal processing, however, retains this phase information. 
Figure 28 presents reconstruction results for a 5-cm-long triconic target [37]. The estimates of U(z) 
(including postprocessing using one-dimensional phase retrieval) are indicated for both simulated and 
experimental data. These plots show good agreement with each other and with the theoretical plot of the 
range-resolved laser radar cross section for this particular object. 

In addition to size and shape information, the range-resolved laser radar cross section also yields 
information about surface coatings [56]. Consider first the case in which the shape is known to be 
spherical. The setup shown in Figure 24 was used to measure U{z) for a 5-cm-diameter sphere. Figure 29 
compares the results obtained for two different surface coatings, 3M 7210 retroreflective paint and Krylon 
1402 heat-resistant paint. The theoretical U(z) curve for a Lambertian surface is shown for comparison. 
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Figure 24.  A spherical target mounted in front of a range-reference ring. This type of setup provides a simple 
means for direct measurement of the range-resolved laser radar cross section. 
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Figure 25. Experimental and theoretical range-resolved laser radar cross section for off-axis illumination of a 
cone at 45°. The cone has a length of 2.5 cm and a cone half-angle of 15°. 
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F/gwre 26.  Experimental and theoretical range-resolved laser radar cross section for off-axis illumination of a 
cylinder at 35°. The cylinder has a length of 2.5 cm and a diameter of 1 cm. 
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Figure 27. Demonstration of submillimeter range resolution: (a) nine-step range-resolution target mounted in 
front of a range-reference ring; (b) experimentally measured range-resolved laser radar cross section. The step 
size increases by a factor of 1.4 between steps, beginning with a smallest step size of 0.5 mm. 

There is a marked difference in the measured U(z) of the sphere for the two coatings. First, U(z) for 
the retroreflective paint is larger than U(z) for the heat-resistant paint by approximately 20 dB. Second, 
there is a difference in the shape of these two curves. In particular, U(z) for the heat-resistant paint rises 
sharply for values of z near the pole, where the angle of incidence 8 is small, which indicates thaif{d) is 
larger for small angles of incidence. This result agrees with the independent measurement of f(ff) 
presented in the Appendix, confirming that the wavelength-decorrelation technique can provide useful 
information about surface materials. 

For the sphere, it is particularly easy to extract the surface-scattering information because each 
value of the range z maps into a single value of the angle of incidence 6. This fact allows one to invert 
Eq. (11) for the range-resolved laser radar cross section of a sphere and to write j{6) explicitly as a 
function of U(z): 
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The above reasoning can also be applied to any axially symmetric object that is illuminated along the axis 
of symmetry. The range-resolved laser radar cross section then takes the general form given in Eq. (9), 

which can be solved forf{0). 
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Figure 28. Reconstructions of the range-resolved laser radar cross section of a triconic target by using bispectral 
analysis of the speckle intensity: (a) simulated data; (b) measured data. The smooth line in part a represents the 
theoretical curve. 

In the above situations, on-axis illumination of an axially symmetric target made it possible to 
determine fi&) from a single measurement of U(z). An axially symmetric object is not needed, however, to 
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obtain useful information about fid). As a general rule, the object shape determines the position in range 
of the discontinuities in the U(z) curve, and differences in the angular-scattering properties from object to 
object produce slower variations and differences in the magnitude of the U(z) curve. Therefore, if two 
objects are known to have the same shape, variations in U(z) between these two objects can be related to 
differences in their surface-scattering properties. In addition, if the shape is known, surface properties can 
be estimated by determining the dominant angles of incidence contributing to a given value of range. 
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Figure 29. Measured range-resolved laser radar cross section of a sphere for two different surface materials: 
(a) 3M 7210 retroreflective paint; (b) Krylon 1402 heat-resistant paint; (c) theoretical result for a Lambertian 
surface. Each value of range z on the sphere corresponds to a unique value of the angle of incidence 6, which 
allows f( 6) to be measured. 

5.4    APPLICATIONS TO DISCRIMINATION 

The wavelength-decorrelation technique offers information about the details of a target that can be 
used for target-discrimination or target-recognition purposes. In the simplest implementation of 
wavelength decorrelation, a single detector could be used to estimate the range extent L of the target by 
measuring the decorrelation frequency AvD and relating it to L through Eq. (33). Variations of L with time 
could then be related to the target's shape and angular dynamics. 
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Variations of the speckle intensity with laser frequency carry much more information about the 
target than its range extent L alone. For example, by simply calculating the power spectrum of the 
intensity variations from a single detector, a speckled estimate of the autocorrelation function of U(z) 
similar to the curve shown in Figure 22(a) is obtained. Even though curves from a single detector are 
highly speckled, it does appear that they will be useful in many pattern-recognition or target-classification 
applications. For example, these curves could be compared with a library of autocorrelation functions for 
various targets at different viewing angles, as illustrated by the curves shown in Figures 16(e) and 16(f). 
If speckle smoothing is required, it can be achieved by filtering out the high-frequency content (with an 
accompanying loss of resolution). Smoothing can also be achieved without giving up range resolution by 
using an array of detectors, as illustrated by the results in Figure 22. Figure 22(b) shows a significant 
improvement for a number as small as 10 detector elements. 

The next level of sophistication in extracting target information from speckle intensity is to 
determine the functional form of the range-resolved laser radar cross section U(z) rather than just its 
autocorrelation function. For relatively short propagation distances, coherent-detection-based techniques 
may be feasible. For long propagation distances, however, direct-detection-based techniques such as 
iterative phase retrieval or bispectral analysis may be required for recovering the Fourier phase. Both of 
these phase-recovery techniques are based on ensemble-averaged quantities (or smoothed quantities) and 
therefore require sampling many speckle lobes to reduce statistical fluctuations to acceptable levels. The 
minimum acceptable number of detector elements required for estimating U(z) for discrimination 
applications has not yet been determined. 

As mentioned in Section 4, another approach to discrimination based on bispectral analysis has 
reduced requirements on the number of detector elements. This approach is to develop automatic-target- 
recognition algorithms based on features in the triple correlation space of U(z). The advantage of this 
approach is that it retains the Fourier-phase information carried by the intensity signal, but it does not 
require the additional steps and the large number of detector elements necessary for smoothing the triple 
correlation function in the process of recovering the Fourier phase. 

Given that the range-resolved laser radar cross section U(z) can be determined, its functional form 
offers information about the size, shape, and surface-scattering properties of a target that is useful for 
discrimination purposes. Some ways of extracting target information from the functional form of U(z) 
will now be discussed. Section 3 showed that basic geometric shapes (such as the sphere, the disk, the 
cone, and the cylinder) have distinctive signatures. These signatures might be used as a means of 
identifying targets by their shape or determining the component shapes making up a target. For example, 
one could distinguish between the conical target in Figure 25 and the cylindrical target in Figure 26 from 
their measured range-resolved laser radar cross sections. In general, a cone and a cylinder can be 
identified by the sloped straight line and the flat straight line, respectively, in their U(z) signatures. 

Let us look more closely at how the theoretical U(z) curves in Figure 25 and Figure 26 are related to 
the shape of the target. In Figure 25, the discontinuity in the slope of the U(z) curve occurs at the range 
value z where the range plane no longer intersects a complete cone. As z increases past this point, the 
curve decreases rapidly at first, then falls off gradually to zero at the value of z corresponding to the last 
illuminated region of the cone. Similar statements apply to the cylinder in Figure 26. Observe that the 
disk-shaped end cap on the cylinder produces a large, elliptically shaped hump in the U(z) curve. The end 
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points of this hump clearly mark the boundaries of the disk in range. As a general result, then, 
discontinuities in the slope of the U(z) curve, or discontinuities in the Uiz) curve itself, are related to 
physical points or regions on the surface of a target. The position of these discontinuities in range can be 
used to extract information about target dimensions. Thus, much can be learned about the size and shape 
of a target from the functional form of its range-resolved laser radar cross section measured at a single 
aspect angle. As described, knowledge of the functional form of U(z) also provides information about the 
angular-scattering properties.of surface materials. This information caniielp determine the type of surface 
materials covering different regions of the target. 

In many instances, the aspect angle of the target changes as a function of time. As the number of 
aspect angles increases, the shape and dimensions of the target can be determined with more certainty and 
increasingly complicated targets characterized. Figure 30 shows a set of measurements of U(z) for a 
2.5-cm-long triconic target model illuminated at angles of 0°, 65°, 70°, 90°, and 180°. These particular 
angles were chosen because they correspond to on-axis illumination of the triconic and to broadside 
illumination of each of the segments of the triconic. The abrupt jumps in U(z) correspond to the 
reflections from the perpendicular surface components. Because features of a range-resolved laser radar 
cross-section signature can be related to physical properties of the target, these features might serve as a 
basis for automatic-target-recognition algorithms. 

The applications to discrimination described thus far are based on knowledge of the range-resolved 
laser radar cross section U(z) or on quantities that can be derived from U(z), such as the range extent L, 
the autocorrelation function of U(z), and the triple correlation function of U(z). Because U(z) is an 
ensemble-averaged quantity that is independent of the microscopic surface detail of a particular target, it 
is necessary to obtain different realizations of the random process to determine U(z). It has been shown 
that an effective means for obtaining these realizations is to use additional detector elements located in the 
vicinity of the monostatic direction. Although this approach provides the necessary realizations for 
ensemble averaging, additional information about the 3D structure of the target can be extracted if one 
keeps track of the position in space of the detector elements (see Section 6). 

Additional applications to discrimination based on the material in Section 6 are now described. One 
of the simplest techniques (see Section 6.1.2 on remote orientation sensing of planar surfaces) is to 
observe any global translation of the speckle pattern that occurs as the wavelength is scanned. For a 
nonrotating target, the direction and speed of speckle translation provide information about the orientation 
of the target with respect to the radar line of sight. From the direction of speckle motion, one can 
determine which end of the target is closer to the laser radar and which way the target is pointing 
azimuthally. From the speed of speckle motion, one can estimate the target's aspect angle. 

The next level of sophistication in the signal processing is to form a 3D data array by stepping the 
laser in frequency and sampling the speckle pattern at each frequency. The 3D Fourier transform of this 
data set yields the 3D autocorrelation function of the target shape (see Section 6.1.1). This autocorrelation 
function is rich in target information; in particular, its support is closely related to the shape of the target. 
Given a library of target shapes, it would be relatively straightforward to match the support of the 
measured autocorrelation function to the support of the autocorrelation function of objects in the library. 
This procedure could determine the target orientation and target size as well as confirm the target identity 
through verifying its shape. 
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Figure 30. Range-resolved laser radar cross section of a triconic target illuminated at various aspect angles a: 
(a) target dimensions; (b) a = 0°; (c) a = 65°; (d) a = 70°; (e) a = 90°; (f)a= 180°. 

Finally, a 3D target image can be formed by using coherent detection to retain the Fourier-phase 
information or by recovering this information through advanced signal processing. A concept for 3D 
phase retrieval based on the support of the autocorrelation function is described in Section 6.1.3. 

Because of the slow data acquisition rate of the laboratory system, measurements have been limited 
to stationary targets. Much faster scans are necessary for rotating targets. Whether the wavelength-based 
techniques described here will someday be applied to moving targets at large distances will depend on 
future developments in the area of high-power frequency-agile lasers. 
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6.     3D IMAGING 

This section will demonstrate two general techniques for 3D imaging based on the wavelength 
dependence of speckle. The first technique, referred to as speckle-pattern sampling, is based on the 
concept of sampling the 3D Fourier space of the object. The second technique, referred to as the image- 
speckle technique, obtains lateral image information through conventional imaging and range information 
from the wavelength dependence of speckle formed at the image plane. 

6.1    SPECKLE-PATTERN SAMPLING 

Speckle-pattern sampling is a direct extension of the wavelength-decorrelation technique for 
measuring U(z). As with wavelength decorrelation, speckle-pattern sampling obtains range information 
from the wavelength dependence of speckle. The difference is in the way that the signal is processed from 
different pixels within the detector array. Wavelength decorrelation is based on a statistical approach 
where the signal from individual pixels serves to produce an ensemble of realizations of a random process 
for averaging purposes. Speckle-pattern sampling, on the other hand, is a direct approach; it keeps track of 
the pixel location and uses this information to resolve the object laterally. 

Because speckle-pattern sampling is a direct approach, the resulting 3D image is speckled in nature. 
This speckle, however, does not present a significant problem in most cases because we are trying to 
determine the location of the scattering point, that is, the size and shape of the object's surface rather than 
the scattering amplitude of individual points on the surface. Speckle may cause dropouts in the 
reconstruction of the surface, but an effective means of reducing the number of dropouts is to subdivide 
the data into two or more smaller sets and to form 3D images from each set (with a corresponding loss of 
resolution). These images can then be combined to reduce the total number of dropouts. In this sense, 
speckle-pattern sampling becomes statistical in nature, but the number of realizations possible in practice 
is very limited because of the amount of data required for each image. 

A basic speckle-pattern sampling measurement proceeds as follows: the speckle pattern is measured 
with a CCD array at each of a set of equally spaced laser frequencies, the individual frames are stacked to 
form a 3D data array, and a 3D Fourier transform is performed on this data array. This process yields the 
3D autocorrelation function of the 3D image of the object. Just as the range-reference-plane 
implementation of wavelength decorrelation allows the determination of U{z) rather than its 
autocorrelation function, a reference point can be used in speckle-pattern sampling to produce the 3D 
image rather than the autocorrelation function of this image. 

The preceding description of a speckle-pattern-sampling measurement applies to low-resolution 3D 
imaging. As the frequency-scan length of the laser and the solid angle subtended by the detector array 
increase, the resolution of the 3D image increases, and there is mixing of the wavelength dependence and 
the spatial dependence of the speckle pattern. More sophisticated data acquisition and signal processing 
are then required. 

Section 6.1.1 contains a general treatment of speckle-pattern sampling; this treatment not only 
covers these high-resolution effects but it also treats near-field effects caused by noncollimated 
illumination and detector arrays located in the near-field of the object. Section 6.1.1 also illustrates the 
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technique through a series of 3D imaging measurements based on speckle-pattern sampling. Section 6.1.2 
describes and demonstrates a simplified technique based on the speckle-pattern sampling concept for 
remote measurement of the normal vector to a surface. Section 6.1.3 describes the basis for a 3D phase- 
retrieval technique that has the potential for eliminating the need for a reference point in some 
applications. This technique is illustrated for a discrete set of scattering points. 

6.1.1 3D Imaging 

The mathematical framework for 3D imaging will now be developed. In Figure 31, Ps is a 
monochromatic point source of wavelength A at (xs, ys, zs) and Pr is a reflective reference point located 
near the object at {x,, yr zr). The objective here is to write the resultant complex amplitude V(xd, yd, zd, A) 
for the optical field at the observation point Pd due to scattering from the object's surface h. To do so, 
consider first the contribution from a scattering point Ph located at (xh, yh, zh) on the surface. Assume that 
single scattering dominates so that light travels from PstoPhtoPd without being scattered from Ph to 
other points on the surface before reaching Pd. The phase delay at Pd due to this propagation pathlength is 
obtained by adding together the distance Rsh from Ps to P hand the distance Rhdfrom Ph to Pd and 
multiplying the sum by the wavenumber k = 2njX. The resulting contribution to the complex amplitude 

at/^is 

Vh(xd>yd'Zd>X) = sixh^h^h)^V -;¥(« sh+Rhd) (86) 

where g(xh, yh, zh) is a complex scattering function whose magnitude represents the strength of the 
contribution from Ph and whose phase accounts for any phase change caused by scattering. The complex 
amplitude V{xd, yd,zd, A) resulting from the entire surface is obtained by summing the individual 
contributions from all scattering points. Because the scattering function is zero-valued at locations where 
there are no scattering points, this summation can be written as an integral over all space: 

V(xd,yd,zd;h) = J J\g(xh,yh,zh) exp -i-7-{Rsh+Rhd) dxhdyhdzh (87) 

where 

R
Sh = iixs -xhf+(ys-yhf+{is ~ zh f (88) 

and 

Rhd=iixh-xd) +{yh-yd) +{zh-zd) (89) 

If the height profile of the scatterer is represented by h(x,y), then the scattering function can be 

written in the form 

g(x, y, z) = a(x, y) S[z - h(x, y)] (90) 
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where a(x, y) is the complex amplitude of the given contribution to V(xd, yd, zd\ A). Our primary objective 
in 3D imaging is to recover the functional form of h(x, y); recovery of a(x, y) is a more difficult problem 
that is actually of less interest. 

► z 

Figure 31.  Coordinate system for the analysis of 3D imaging showing the source point Pg scattering point Ph, 
reference point Pr, and observation point Pd. 

Some comments are in order about the interpretation of Eq. (90). First, let us consider shadowing 
effects. Shadowing of one surface region by another is accounted for by requiring that a(x,y) be zero- 
valued for points on the surface that are not simultaneously illuminated by Ps and viewed by Pd. 
Therefore, there is an implicit dependence in a(x, y) on the position of points Ps and Pd. This dependence 
of a{x, y) on Ps and Pd also includes the factors 1/Rsh and 1//?M to account for the falloff of field strength 
with distance from the source point Ps to the scattering point Ph and from Ph to the observation point P^ 
respectively. (In most practical situations, the points Ps and Pd are far enough from the object so that one 
can replace Rsh by Rs and RM by Rd, where Rs is the distance from Ps to the origin and Rd is the distance 
from the origin to Pd.) Besides the dependence on distance, a{x,y) also includes a factor that accounts for 
the angular dependence of the scattering strength. [In the spirit of Sections 3 and 4, this angular 
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dependence of scattering could be written in terms of the BRDF of a surface patch at Ph, but this level of 
detail is unnecessary for the reconstruction of h(x, y).] 

The complex amplitude VJixd, yd,zd, X) corresponding to the reference point Pr is obtained by 

substituting 

g(x,y,z) = gr 8(x - xr)S(y -yr)S(z-zr) (91) 

into Eq. (87). Without loss of generality, Pr can be placed at the origin of the coordinate system. Then the 
distances Rsr and Rrd in the complex exponential can be replaced by Rs and Rd, which are the distances 
from Ps to the origin and from the origin to Pd, respectively. The resulting expression for the contribution 
to the complex amplitude from the reference point P r is 

Vr(xd,yd,zd;h) = grexp ~-iY(Rs+Rä) 
(92) 

The total complex amplitude at the observation point Pd is the sum of V from Eq. (87) and Vr from 
Eq. (92). The quantity measured at the observation point is the magnitude squared of this total complex 

amplitude: 

I(xd,yd,zd;X) = \Vr{xd,yd,zd;X)+V{xd,yd,zd;X)\ =/1 + /2+/3 + /4 (93) 

where 

h=\8rf        . 

i2=\v(xd>yd>Zd>%i 

I3 = grexp 
.2K 

{Rs+Rd) V(xd,yd,zd;?i) 

(94) 

(95) 

(96) 

and 

(97) 

Proceeding further with the analysis and exploring the meaning of the four terms in Eq. (93) 
requires approximation of the distances given by the square roots in Eqs. (88) and (89). First consider the 
distance Rhd between the scattering point and the observation point in Eq. (89). If Rhd is written in the 

form 

p     p L.Xh+yh+Zh- 2xh*d - tyhyd- 2^d xhd 
tt 

(98) 

expanded in a binomial series, and the terms kept up to second order in Rh, where Rh is the distance from 
the origin to the scattering point, the approximation 
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R   =/?     xhxd + yhyd + zhzd ^x2
h+yl+z2

h    {xhxd + yhyd + zhzd) 
M      d Rd 2Rd 2R] K   ) 

is obtained. A corresponding expression for the distance Rsh between the source point and the scattering 
point is obtained by replacing the subscript d with the subscript s in Eq. (99). 

The first two terms on the right side of Eq. (99) correspond to the usual far-field approximation, 
except that the integration is normally limited to the x-y plane so that zh = 0. The combination of the first 
three terms can be made to look like the standard Fresnel approximation 

{xh-xd?<yh-yd?+zd ~ zd + (WXW (loo) 
2zd 

by setting zh = 0 and approximating Rd by zd in some instances. The standard Fresnel approximation is 
inherently paraxial in nature, that is, valid only for small values of xd and yd. The advantage of Eq. (99) is 
that it is equally valid for all observation directions, being a wide-angle Fresnel approximation . 

Let us compare the range of validity of the far-field approximation and wide-angle Fresnel 
approximation. A validity condition for the far-field approximation can be obtained by requiring that 
second-order terms in Rh jRd introduce phase errors of less than KJ2 for any direction of observation and 
any offset direction of Rh from the origin: 

Rä>~^-     ■ (101) 

The corresponding condition for the wide-angle Fresnel approximation is obtained by requiring that 
fourth-order terms in Rh/Rd satisfy the same restrictions: 

R3
d>^     ■ (102) 

Large observation distances are required to satisfy the far-field condition for practical object sizes. For 
example, with a wavelength of X = 0.8 ^m, an observation distance of Rd = 250 m is required for Rh = 
10 mm. The wide-angle Fresnel approximation, however, is valid at a distance of Rd = 185 mm. 

Equation (99) and the corresponding expression for Rsh can now be substituted into Eq. (87) to 
proceed with the evaluation of the terms It-I4 in Eqs. (94)-(97). Rather than using the full wide-angle 
Fresnel approximation at this point, we begin with the far-field approximation as given by the first two 
terms in Eq. (99). Although the far-field approximation places severe restrictions on object size for 
practical observation distances, it does provide the framework for introducing the basic principles of 3D 
imaging. The size restrictions can be overcome in practice by illuminating the object with collimated light 
and placing a Fourier-transform lens in front of the detector array to simulate far-field observation. Later 
the full wide-angle Fresnel approximation will be used to study near-field effects and to show that good 
images can be obtained much further into the near field than would be expected by Eq. (101). 
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With the far-field assumption, Eq. (87) becomes 

.In 
V(xd,yd,zd;X) = exp 

.In 

{Rs+Rd) j j j g(xh,yh,zh) 

x exp< -i 
X 

*d 
xh\— + 

\Rs      RdJ ♦4Mh \Rs      RdJ 

(103) 

■dxhdyhdzh 

The coordinates (xs, ys, zs) for the source point and (xd, yd, zd) for the observation point occur in Eq. (103) 
in terms of the direction cosines ls = xs/Rs, ms = ys/Rs, ns = zs/Rs, ld = xd/Rd, md = yd/Rd, and 
nd = zdIRd . Therefore, except for the implicit dependence of g(x, y, z) on Rs and Rd to account for the 
falloff of field strength with distance, the integral in Eq. (103) is independent of observation distance Rd 

and source-point distance Rs, as long as these points are in the far field. Note that the integral in Eq. (103) 
is the 3D Fourier transform of g(x, y, z), allowing us to rewrite Eq. (103) as 

V(xd,yd,zd;X) = exp ~-i^(Rs+Rd) §\Jx 'JyJz) (104) 

where the tilde represents a Fourier transform and the spatial frequencies fx, fy, and/z are related to the 
direction cosines and the wavelength by 

f =J'+ld 
X 

ms+md 
fv=~ 

(105) 

(106) 

and 

fz = 
_   ns+nd (107) 

In writing these equations note that the values of fx,fy, and fz are not independent; any two of the 
three direction cosines determines the third direction cosine through the relations ld +mj+nd =1 and 
l2s+m2

s+n2
s =1. Substitution of Eq. (104) into Eqs. (95) and (96) yields 

h=\g(fxJrfJi 

and 

h = S*g(fxJrfz) 

Equation (93) then takes the form 

I{xd,yd,Zd\X) = \gr\   +\g(fx,fy,fz)\   +g*g(fxJrfz) + grg*(.fxJrfz) 

(108) 

(109) 

(HO) 
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Figure 32. Interpretation of the 3D Fourier transform of a speckle-pattern-sampling data set: (a) object scene; 
(b) components in image space representing the 3D Fourier transform of the four terms in Eq. (110). 

The significance of the four terms /j-/4 in Eq. (110) is explained by performing an inverse Fourier 
transform to convert from Fourier space to object space. The inverse Fourier transforms of the individual 
terms are illustrated in Figure 32. The scattering surface, shown in Figure 32(a), is located below and to 
the right of the reference point. Because Ix is a constant, its inverse Fourier transform is a 3D <5-function 
located at the origin of object space in Figure 32(b). By the autocorrelation theorem, the inverse Fourier 
transform of I2 is the 3D autocorrelation function of g(x, y, z). The support of this autocorrelation function 
is shown in the region surrounding the origin in Figure 32(b). The inverse Fourier transform of 73 gives 
the desired quantity g (x, y, z), multiplied by g*, which occurs in the lower right-hand quadrant. Because 
IA is the complex conjugate of 73, its inverse Fourier transform is grg*(-x,-y,-z). This term corresponds 
to the inverted image in the upper left-hand quadrant of Figure 32(b). 

It is evident from Figure 32 that the desired image will be separated from the central autocorrelation 
function and from the inverted image if the object is far enough away from the reference point. Given that 
this condition is satisfied, the image can be isolated by selecting the appropriate region of the inverse 
Fourier transform. It is sufficient for the object to be removed from the reference point by the object's 
illuminated range extent or by its cross-range extent in any cross-range direction. Another approach is to 
use a strong reference point just outside of the object that produces 73 and 74 terms that swamp out the 
autocorrelation term 72. Yet another technique for isolating the image term is to incorporate a phase shift (/> 
in the reference beam [33] and to measure the speckle pattern using two different phase-shift values 0 = 0 
and K. By subtracting these two frames for each value of X, the 7j and 72 terms cancel, leaving terms 73 and 
74. The advantage of this approach is that the reference point can be located closer to the object so that 
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Fourier space can be sampled at a lower sampling rate while achieving the same resolution. Still more 
sparse sampling of Fourier space is possible if the reference point can be located inside of the object or 
can be made to appear so. Then by using the additional phase-shift values of 0 = n/2 and 3^/2, the IA 

term can also be eliminated. 

Having shown that the undesired terms can be eliminated, let us concentrate on the 73 term from 
here on. By Eqs. (105)-(107), the Fourier space of /3 can be sampled by varying the observation 
directions ld and md and the wavelength X. To find the values of ld, md, and X necessary for sampling a 
given point in Fourier space, Eqs. (105)-(107) are used to write X in terms of the spatial frequencies fx, fy, 

and/,: 

7-   *lsfx+msfy+nsfz all) 
A~    l      f2+f2 + f2 

Jx ^ Jy TJz 

Then by rewriting Eqs. (105) and (106) as 

ld=-ls-Xfx (112) 

and 

md=-m5-Xfy      , (113) 

X from Eq. (111) can be substituted into Eqs. (112) and (113) to express all three quantities ld, md, and X 
in terms of the desired spatial frequencies fx, fy, and fz. Once 73 has been sampled correctly in Fourier 
space, I3(fx, fy, fz) can be inverse Fourier transformed to obtain the image: 

oo 

P(x,y,z) = jjjh(fx,fy,fz)exp[i27t(fxx + fyy + fzz)]dfxdfydfz     . (114) 
—oo 

As previously mentioned, this image is given by 

P(x,y,z) = g*g(x,y,z) (115) 

for far-field sampling of 73, which is the basic result on which 3D imaging is founded. 

The remainder of Section 6.1.1 treats the sampling of Fourier space in greater detail, discusses 
image resolution, categorizes aberrations resulting from incorrect sampling of Fourier space, describes the 
effect of near-field sampling of /3 on the image in Eq. (115), and demonstrates 3D imaging through a 
series of measurements. 

Ewald Sphere. Equation (111) is of particular interest because it is the basis for the Ewald-sphere 
construction (Figure 33) mentioned in Section 1; for a constant wavelength A, Eq. (Ill) describes the 
surface of the Ewald sphere of reflection, which is a sphere of radius l/X in (fx,fy,fz) space with one point 
of the surface of the sphere passing through the origin and the center of the sphere offset in the direction 
of incoming illumination from Ps. One way of sampling Fourier space is to keep X constant and to vary 
the direction of illumination, then, as shown by the limiting sphere in Figure 33, it is possible to sample a 
volume in Fourier space of twice the radius of the Ewald sphere of reflection. 
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In the applications considered here, however, the illumination direction is fixed and Fourier space is 
sampled by changing the radius of the sphere through control of the laser wavelength A. For the purpose 
of this discussion, assume that the source point lies on the positive z-axis; then ls = ms = 0 and ns = 1 and 
Eq. (Ill) simplifies to 

A = — Ifz 
/;+/;+// 

(116) 

X 

A 

EWALD 
SPHERE OF 
REFLECTION 

LIMITING 
X   SPHERE 

►f, 

CONSTANT X 
CONTOURS 

Figure 33. Ewald-sphere construction for the sampling of a scattering object's 3D Fourier space. Constant X 
contours lie on the surface of the Ewald sphere of reflection. The limiting sphere is obtained by varying the 
illumination direction. 
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Let X0 be the nominal wavelength about which X is varied, then by Eq. (116) the spatial frequency fZa 

where the Ewald sphere corresponding to XQ touches the negative fz axis is f^ = -2/X0. Thus, in 
sampling 3D Fourier space there is an offset in the fz direction of twice the radius of the Ewald sphere. To 
produce uniform steps in fz in the sampling of Fourier space, one must be able to vary the radius of the 
Ewald sphere in a linear manner. Consequently, we control the laser frequency v = c/X, which is 
proportional to the sphere radius, rather than the wavelength X. Furthermore, in practice it is more 
convenient to monitor the frequency shift A v from the frequency v0 = c/XQ than the absolute frequency 
v = v0 + A v. Given these preferences, the radius of the Ewald sphere is written as 

J__J_    Av 
A       Ar. c 

(117) 

Equation (116) can now be recast in the form 

( 
AV: A/z + 

f?+fP 
z   4+Afzy 

(118) 

where Afz=fz-fZo is spatial-frequency offset from /v Equation (118) gives the frequency shift Av 
required to sample a given point in Fourier space. 

Finally, the position (xd, yd) of the observation point can be related to the spatial frequencies fx and 
f by writing Eq. (112) as 

fx = ~ 
xd 

XR, 
(119) 

andEq. (113) as 

/»=" 
md 

A 
_   yd 

XR, 
(120) 

For completeness, Eq. (107) is rewritten as 

fz=~ 
\ + nd _    1 

1 + Jl- 
2  ,    2 

Ri 
(121) 

Resolution. In a 3D imaging measurement, Fourier space is sampled by measuring the speckle 
pattern over the surface of the detector array as the laser frequency is stepped. The larger the scan length 
and detector-array size, the larger the volume of sampled Fourier space and the better the resolution that is 
achievable. As the volume of sampled Fourier space increases, however, the range and cross-range 
information begin to mix and cause aberrated images if unaccounted for. We now use Eqs. (118)—(120) to 
address the issue of image resolution and to investigate aberrations caused by improper sampling of 
Fourier space. 
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First, let us assume a low-resolution measurement defined as one producing images with range and 
cross-range resolution-cell lengths that are large compared with the wavelength A. For these 
measurements, the ranges of Av, xd, and yd in Eqs. (118)-(120) are limited. Consequently, the quadratic 
term in Eq. (118) can be neglected and the ÄRd factor in Eqs. (119) and (120) can be considered constant. 
With these assumptions, expressions for the resolution-cell size can be written by calculating the width of 
the 3D point-spread function corresponding to the size of the sampled region of Fourier space. Let the 
length of the frequency scan be denoted by B and the length of the detector array in the x and v directions 
be denoted by wx and wy, respectively. Then from Eqs. (118)-(120), the ranges of Fourier space that are 
sampled in the fx,fy, and/z directions, respectively, are Fx = wx/(XQRd), Fy = wy/(X0Rd), and Fz =2B/c. 
The corresponding resolutions (obtained by Fourier transforming a 3D rect function having these widths 
in the three dimensions and selecting values of the arguments of the resulting sine functions that 
correspond to the first null) are 

Ax = — = -JL-ä-      , (122) 
Fx ™x 

Ay = — = ^L-jL     , (123) 
Fy      wy 

and 

""■k'ia    ■ <124) 

Equation (124) is equivalent to Eq. (56), which was derived previously in the treatment of the 
wavelength-decorrelation technique. The resolutions given by Eqs. (122)-(124) also correspond to the 
spacing between planes in image space that result from using FFTs to calculate the 3D Fourier transform. 

For comparison of the transverse resolution given by Eqs. (122) and (123) with conventional 
imaging, rewrite Eq. (122) in terms of the half angle 6d of light received by the detector array as 

^dr^      • <125> 
If 8d is interpreted as the cone half angle of light received by a microscope objective, then Eq. (125) is the 
standard expression relating image resolution to the numerical aperture N.A. = sinOd of a microscope. 
Thus, conventional imaging and speckle-pattern sampling have similar resolution capabilities for general 
images. 

Speckle-pattern sampling, however, actually provides the capability for enhanced resolution of 
objects consisting of a small number of separated points. For example, the distance between a reference 
point and an object point can be measured to a resolution better than the grid spacing given by 
Eqs. (122)-(124) by taking advantage of the phase information inherent in the interference pattern. One 
approach to extracting this information is to subdivide the voxel representing the image of the point by 
calculating a discrete Fourier transform (DFT) at points inside this voxel and to search for the location 
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where the maximum value of the DFT occurs, thus determining the location of the scattering point. A 
similar procedure can be employed for opaque diffuse scattering objects considered in this report that are 
represented by a height function h(x, v). Improved range resolutions have been demonstrated by 
performing a DFT in the z direction on data sets where speckle frames have been Fourier transformed in 
the* andy directions using a 2D FFT. 

Finally, let us consider sampling requirements for nonaliased imaging. Equation (34) for the 
maximum frequency-step size -allowed for an object of range extent ^(including the reference point) is 
repeated here for convenience: 

Avst   <—      . (126) step     4L 

Corresponding expressions for the maximum pixel dimensions px and py of the detector array in the x and 
y directions (assuming no decimation of pixels in a frame) are given in terms of the cross-range extents Dx 

and D of the object (including the reference point) as 

px<^A (127) 
2D. 

and 

pvÄ      . (128) 
y     2Dy 

Aberrations. Equations (118)—(120) are now examined for the effects of continuing to sample on a 
rectangular grid in measurement space as resolution increases. Techniques are also described for 
correcting the resulting aberrations in the 3D image. These aberrations are divided into three types, 
referred to as wavelength aberration, detector-plane distortion, and depth-of-field aberration. 

Wavelength aberration: Wavelength aberration and detector-plane distortion are tied to the XRd 

scaling factor in Eqs. (119) and (120) that relates position (xd, yd) in the detector plane to spatial 
frequencies (fx, f) in Fourier space. Any variation of this scaling factor during the process of sampling 
Fourier space causes image degradation. Wavelength aberration is image degradation caused by varying X 
during a measurement to achieve range resolution. This variation is minimal for the short frequency scans 
used for low-range-resolution measurements but becomes a problem as the range resolution increases. In 
terms of the measured speckle pattern, wavelength aberration manifests itself as a wavelength-dependent 
speckle size. As X increases, the entire speckle pattern expands about the z-axis. This expansion causes 
speckle lobes to shift outward with a rate proportional to the radial distance r from the origin of the 
observation plane. 

To investigate the effect of wavelength aberration on 3D images, consider its effect on a single 
scattering point located at (xh, yh, zh). Through Eq. (117), the phase error in the Fourier kernel introduced 
by wavelength aberration can be written as 
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A0 = 27r^Wt>^L      . (129) 
c Rd 

This phase error varies during a measurement according to the values of the parameters xd, yd, and Av 
used to sample Fourier space. The maximum extent of this variation is obtained by setting xd = wx, yd = 
wy, and Av = B and taking the absolute value of the coordinates of the scattering point. Relating wx, wy, 
and B to the resolutions Ax, Ay, and Az through Eqs. (122)-(124) and requiring that the variation of the 
phase error be less than n/2 results in the following condition for insignificant wavelength-aberration 
effects: 

MM<-^-  . (no) 
Ac    Ay    2X0 

As a representative case, we take a point along the jc-axis and setyA = 0 to obtain 

kl<^     ■ (13.) 

Thus, for a range resolution of Az = 100 pm and a wavelength of AQ = 0.8 /zm, there can be only \xh \/Ax = 
62.5 resolution cells between the scattering point and the reference point before wavelength-aberration 
effects begin to become significant. 

Now, let us investigate the effect of wavelength aberration by considering the 2D image formed by 
Fourier transforming a single speckle frame. If a speckle frame is acquired at the mean frequency 
v0 = C/XQ , then the scaling factor that places this image point at the correct position (xh, yh) in the 
transverse plane is \ftd. The application of this same scaling factor to frames at a different wavelength X, 
however, produces the erroneous image position (xhX0/X,yhXQ/X), which is written in terms of the 
frequency offset Avas [xh(\ + Av/v0),yh(l + Av/v0)]. Thus, scanning the laser frequency causes the 2D 
image point to move along a radial line in the transverse plane, and the total blur widths in the x and y 
directions for a frequency scan of bandwidth B are 

•*blur = xh ~= xh T7~~       • (132) 
V0 2Az 

and 

B Xn 
yb\m = yh—=yh^T-    ■ (133) v0 2Az 

The total length of the radial blur line caused by wavelength aberration is given by 

rh\at = rh — = rh^-      , (134) 
V0        2Az 
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where rh - (x\ +y\ )1/2 is the transverse distance between the scattering point and the reference point. The 
full 3D image has the same transverse structure. 

Equations (132)—(134) show that the size of the blur caused by wavelength aberration is 
proportional to the transverse distance of the scattering point from the reference point. Therefore, the 
location of the reference point in the transverse plane plays an important role in determining the severity 
of wavelength-aberration effects and the optimal location for the reference point is near the center of the 
object. A comparison of Eqs. (131) and (132) shows that the blur size corresponding to the condition for 
insignificant wavelength aberration is *blur = Ax/4 

The second forms of Eqs. (132)—(134) explicitly show an inverse relation between the range 
resolution Az and the degradation in cross-range resolution caused by wavelength aberration. These 
results indicate that it is necessary to correct for wavelength aberration to simultaneously achieve high 
range resolution and high cross-range resolution for an object with large cross-range extent. 

There are two general techniques for achieving wavelength-aberration compensation: digital 
compensation of speckle-size changes and optical compensation by varying the size of the speckle pattern 
at the detector plane. The second technique can be implemented by using a lens to adjust the speckle size, 
as described in Section 5, or by varying the distance to the detector plane such that RdX is fixed. For 
example, a range resolution of Az = 100 ßm at A0 = 0.8 /zm corresponds to a change in wavelength of 
0.4% of the nominal wavelength. Thus, wavelength-aberration correction could be accomplished by 
changing the distance Rd from the reference point to the detector plane by 0.4% during the frequency 
scan. 

Detector-plane distortion: Detector-plane distortion is also governed by Eqs. (119) and (120). This 
aberration corresponds to a nonconstant value of Rd, typically as a result of sampling on a flat detector 
plane with constant zd value rather than on the interior surface of a sphere of radius Rd. Another way of 
describing this difference is that the radial position rd of pixels goes as tan0^ = rd/zd for flat detector 
arrays, rather than as sin0rf = rd/Rd, as required by Eqs. (119) and (120). 

Detector-plane distortion is insignificant for measurements with low cross-range resolution because 
the maximum value of dd is so small that the difference between sinö^ and tandd is negligible. One can 
determine when detector-plane distortion begins to become a problem by looking at the phase error it 
introduces in the interference pattern from the reference point and a scatterer at location (xh, yh, Zf). If 
wavelength aberration has been corrected, the phase error caused by detector-plane distortion is 

A<t> = T~(XhXd+yhyd) 

(        1 O 
4xJ+yJ+3 Zd 

(135) 

The maximum variation of the phase error is determined by calculating A 0 at detector coordinates of 
(-wx/2,-wy/2) and (wx/2,wy/2) and taking the difference. The following condition for negligible 
detector-plane distortion is obtained by converting to resolutions Ax and Ay through Eqs. (122) and (123), 
allowing a maximum phase variation of n/2, expanding the result in a series for small XQ/Ax and 
A0/Ay, and keeping lowest order terms: 
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Ax    Ay    AQ v X7+V       • (136> 
As a representative case, assume the scattering point lies on the ;t-axis and that Ax = Ay, yielding 

1 *'    X\     8sin30rf 

Equation (137) indicates that the effects of detector-plane distortion are more pronounced for object 
points that are farther away from the reference point and that these effects are negligible unless high 
resolution is required over large fields of view. For example, with XQ = 0.8 jxm. and Ax = 40 /xm, a field of 
view of xh =100 mm is achievable without deleterious effects from detector-plane distortion. The number 
of resolution cells possible without distortion is given by the ratio |*A|/At = 2500, which is as high as the 
number of pixels per side likely in a detector array. Consequently, detector-plane distortion is not a 
problem for this situation. Detector-plane distortion becomes a problem, however, for microscopic 
applications with high cross-range resolutions. For example, with AJC = 4 jim, the maximum field of view 
without distortion effects is \xh\ = 100 ßm and the ratio |*/,|/AC is 25, which severely limits the number of 
resolution cells in the transverse direction. 

Correction of detector-plane distortion can be accomplished digitally, optically, or through the use 
of specialized detector arrays. A well-designed 3D imaging system would simultaneously correct for 
wavelength aberration and detector-plane distortion. In many practical situations, a Fourier-transform lens 
could be used to simulate far-field detection. This approach provides the opportunity to correct for 
detector-plane distortion in the design of the Fourier-transform lens and to address wavelength aberration. 
One approach is to design a zoom Fourier-transform lens with variable focal length/that is varied during 
the frequency scan such that Xf is constant. Another approach is to design a Fourier-transform lens that 
is achromatic in the sense that Xf is constant [57-58]. 

In designing a Fourier-transform lens, the object is assumed to be at infinity and the entrance pupil 
is at the scattering object. Parallel rays passing through the entrance pupil at an angle 0d must produce a 
sharp focus at a point of height fsmdd on the detector plane. There is no requirement that the object be 
placed at the front-focal plane for this application because phase errors due to curvature do not affect the 
measured intensity. 

Depth-of-field aberration: This aberration results from sampling Fourier space on the surface of the 
Ewald sphere rather than on straight parallel planes. Depth-of-field aberration is embodied in the second 
term in Eq. (118). This term, written as 

Avoffset-~2 

fft+fy2) 
4+A/J (138) 

gives the frequency offset value Avoffset that is necessary at the given values of fx,f and Afz to sample 
3D Fourier space on a plane rather than on the surface of the Ewald sphere. The result of depth-of-field 
aberration is to degrade image points having large range offsets zh from the reference point; hence, the 
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term depth-of-field aberration. The first step in calculating the maximum range offset that can be achieved 
without degradation from this aberration is to write an expression similar to Eqs. (129) and (135) for the 
phase error that this aberration causes in 73 for a scattering point at (xh, yh, zh): 

A<p = 2n^- \-ld_ 
R. 

= 2x 
dj 

1- 
2        2 

4+yd 
R2d 

(139) 

The maximum phase error occurs at xd = wx/2 and yd = wy/2. By requiring this phase error to be less 
than 7i/2, writing wx and w in terms of the transverse resolutions Ax and Ay, expanding the result in a 
series for small AQ/AX and A0/Ay, and keeping the lowest order terms, 

kl<- 
i     i 

■+- 
AQ^AJC      Ay 

(140) 

is obtained. A simplified expression is obtained by setting Ax= Ay: 

h\< h Ax' 

A0     4 sin 6d 

(141) 

Note the similarity between Eq. (141) and Eq. (137). Because Eq. (141) goes as sin" 9d rather than 
sin-3 6d, depth-of-field aberration is more sensitive to the value of the cross-range resolution than is 
detector-plane distortion. 

Depth-of-field aberration is a result of the fact that the region of Fourier space sampled by a single 
speckle frame lies on a curved surface—the Ewald sphere of reflection—in Fourier space. For a small 
enough range of spatial frequencies fx and/j,, the sampled region approximates a plane and depth-of-field 
aberration is negligible. The range of spatial frequencies over which this planar approximation is valid is 
determined by how rapidly the 3D Fourier transform fluctuates in the/z direction. Because this fluctuation 
is slower for objects with smaller range extents, the planar approximation is valid over larger ranges of fx 

and £ (and hence smaller values of Ac and Ay) for these objects. This behavior is summarized by the 
condition for negligible depth-of-field aberration in Eq. (141). 

Equation (141) places stringent requirements on the maximum range extent allowable without 
degradation from depth-of-field aberration. For example, with AQ = 0.8 /im, a cross-range resolution of Ax 
= 4 /im yields a maximum range extent of \zh\ = 20 /im. With Ax = 40 /im, the maximum range extent 
increases to \zh\ = 2 mm. By relaxing the cross-range resolution to Ar = 400 /im, a range extent of \zh\ = 
200 mm is achievable without depth-of-field aberration compensation. This depth-of-field behavior is no 
different than that from conventional imaging, where the lateral resolution determines the depth of field, 
or from raster scanning with a laser spot, where a tight laser focus at one plane implies a large spread in 
the spot size at other planes. An advantage of forming 3D images by speckle-pattern-sampling is that this 
aberration can be corrected in the data processing to yield high-resolution images over large volumes in 
image space. 

Equation (138) provides the key for correcting depth-of-focus aberration. The compensation 
technique builds up the information required for each flat plane in Fourier space from previous speckle 
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frames. The correct frequency offset value for each pixel is calculated by Eq. (138) and the corresponding 
frame-offset number is determined. An interpolation filter is used because previous frames will generally 
not provide the exact frequency offset that is required for each pixel. [If the total fz sampling range is a 
small fraction of the nominal spatial frequency fz , then the A/z dependence in Eq. (138) can be dropped 
and the frequency offset for a given (fx,fy) will remain constant over the entire frequency scan.] As lateral 
resolution improves, sampling over larger ranges of fx and/j, is required, and the frequency-offset value 
increases, making the compensation technique more difficult to implement. This technique, however, 
greatly improves image quality for images having range extents beyond the aberration-free limits. 

Near-Field Effects. In developing the basic principles of 3D imaging, the observation point Pd and 
the source point Ps have been assumed to be located in the far field of the scattering object. Consequently, 
only the first two terms have been kept in the approximation for Rhd given by Eq. (99) and the 
corresponding expression for Rsh. Because of the rather large distances required for the validity of the far- 
field approximation, near-field effects will now be investigated by retaining all four terms in the wide- 
angle Fresnel approximation. The resulting form for 73 corresponding to Eq. (109) is 

/ = 8*\ \\s{xh,yh^h) 

xexp .it (lsxh+msyh+nszhf | {ldXh+mdyh+ndzhf    / 2    2+ 2/J_. J_? 
(142) 

In XexPy^[xh{h+ld) + yh(ms+md) + zh{ns+nd)]\dxhdyhdz, 

The integral in Eq. (142) is the 3D Fourier transform of the product of the complex scattering function 
g(x, y, z) and a complex exponential that incorporates near-field effects. As Rs and Rd increase, the points 
Ps and Pd move into the far field and the complex exponential approaches unity, leaving a straight Fourier 
transform as given by Eq. (109). 

An alternative form of Eq. (142), expressed in terms of g(fx,fy,fz), is obtained by calculating the 
Fourier transform of the complex exponential factor and applying the convolution theorem: 

00 . 

L    V  A A A J      , (143) 

xH{fx-j;jz%,ms,Ri,ld,md,Rd-X)dfx-df;dfz' 

where 
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and Rs and Rd are unit vectors. In the limit as Rs and Rd approach infinity, H becomes a 3D 5-function 
located at the origin of Fourier space and Eq. (143) reduces to Eq. (109). H can be interpreted as an 
impulse-response function in Fourier-space that varies with the wavelength X and the positions of the 
source point Ps and the observation point Pd. 

Equations (142)-(144) are general expressions valid for arbitrary source-point directions. If it is 
assumed that the source point lies on the positive z-axis so that ls = ms = 0 and ns = 1, as in the far-field 
analysis, then Eq. (142) reduces to 

in h = S*\ \\g{xh,yh,zh)e^ 
—oo 

x expj i-r-[xhld + yhmd +nh{i + nd)]\ dxh *9h dz 

and Eq. (144) becomes 

H(f;j;j;;ls = 0,ms=0,R/Jd,md,Rd;X) = -^j= 
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Either Eq. (145) or Eq. (146) can serve as the basis for studying near-field effects in 3D imaging. Both 
forms are listed for reference; the following analysis, however, is based solely on Eq. (145). 

Before proceeding with the analysis of Eq. (145), it should be observed that the complex 
exponential containing the near-field effects in Eq. (145) is neatly separated into an /^-dependent term 
and an ^-dependent term. Therefore, it can be inferred that the /^-dependent term contains near-field 
effects caused by noncollimated illumination of the scattering object by the source point and that the Rf 
dependent term contains near-field effects caused by the fact that the scattered light reaching the 
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observation point is noncollimated. These two effects may be treated separately or in combination by 
independently choosing whether the observation point and the source point satisfy the far-field condition. 

To find the image P(x, y, z) corresponding to Eq. (145), it is necessary to evaluate the inverse- 
Fourier transform given by Eq. (114). Doing so, however, requires that /3 be expressed as a function of 
the spatial-frequency variables^,.,/,, and fz. It will be advantageous to rearrange the argument of the 
complex exponential in Eq. (145) as 

.2   .2   .2 
4+yl , {ldXh+mdyh+ndzh) -xh-yh-zh 

ÄRS ÄRd 

-? /i l2 ,^ldxh+mdyh_     xj+yj { 

- lii-ld-md 7^ Zh T~~ 
J_     1 "l, {xhld+yhmdf-z2
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Then, by using Eqs. (105) and (106) to convert ld and md to spatial frequencies £ and/,, Eq. (145) can be 
written as 

h = 8*\ Jj8(xh,yh,zh) expj /7T— (fxxh+fyyh) -(f2 + f2)z2
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Finally, the A dependence can be eliminated from Eq. (148) through the use of Eq. (116): 
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Note that Rs and Rd are free parameters in Eq. (149) that can be varied independently of fx, f, and fz. 
Therefore, there is a choice as to how these parameters behave during a measurement. In practical terms, 
one must consider both the detector geometry and any motion of the detector as a whole (or motion of 
individual elements of the detector) during a frequency scan. One may also allow the source point to 
move along the z-axis during a frequency scan. 
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Let us first consider detector geometry. The two most obvious choices are to hold either Rd constant 
or zd constant during the measurement so that the speckle pattern is sampled on the interior surface of a 
sphere or on a planar surface, respectively. Equation (149) is suitable for sampling on the surface of a 
sphere as it stands. To apply it to a flat detector array, Rd is expressed in terms of detector plane distance 
zd and spatial-frequency variables as 

K, _,— _ Zd 

nd     7l-/j- md 
= Zd 

fx+fy+fz 
-f'-fy+fz 

(150) 

There are also two natural choices for the variation of Rs and Rd. One is to keep these quantities fixed; the 
other is to hold the products RSX and RdX constant during the measurement. It will be shown that there 
may be an advantage to the latter choice in some situations. 

Now that I3 is expressed as a function of spatial frequency, we can perform an inverse Fourier 
transform of Eq. (149) to obtain the image P(x, y, z) and observe any aberrations that appear in this image. 
Equation (149) is quite a general result for 3D imaging because no additional assumptions have been 
made beyond placing the source point on the z-axis and using the wide-angle Fresnel approximation. 
Evaluation of the inverse Fourier transform of Eq. (149) is complicated by the fact that nonlinearities in 
spatial frequency appear in the arguments of the complex exponentials. If not for these nonlinear terms, 
the inverse Fourier transform could be evaluated immediately. 

An understanding of the dominant near-field effects can be gained by linearizing the spatial- 
frequency dependence in Eq. (149) so that it becomes a paraxial expression. This equation has already 
been organized in a manner that highlights the linear terms; the significance of the grouping of the three 
complex-exponential factors in Eq. (149) is that, to lowest order in fx,fy and Afz, the second factor is linear 
infx and f and the third factor is linear in Afz; the first factor contains higher-order dependence and 
additional cross terms. The linearized form of Eq. (149) is 

h = g*j \\g(xh>yh^h) exp -i2n(fxxh+ fyyh) 

x exp^ -i27tfz V 

2      2 4+yi 
(151) 

1      1 
zs      zd J 

Equation (151) is written for constant zd because zd and Rd are equivalent to first order and constant-zd 

measurements are more likely in practice. Also, Rs and zs have been interchanged because they are equal 
by the assumption that the source point lies on the z-axis. 

Before evaluating the image corresponding to Eq. (151), validity conditions for Eq. (151) are 
calculated by determining the maximum object-point offset from the reference point that is allowed. This 
is done by requiring the phase error caused by nonlinear terms to be less than fx = l/(2Ax) for maximum 
spatial-frequency values of fx = l/(2Ax) and fy = l/(2Ay). For a practical frequency scan, A/z is a fraction 
of fz so that Afz can be set to zero. The resulting conditions imposed by the source-point distance zs and 
the observation distance zd obtained by setting Ax = Ay and yh = 0 are 
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(153) 

and 

v Ao 
(154) 

An attractive feature of Eqs. (152) and (153) is that |*Ä| is proportional to Ac. Because the number of 
pixels in a given direction in the detector array determines the maximum number of transverse points 
|*/,|/Ac that can be resolved in that direction in the image, it is not necessary to have a value of |*/,|/Ac 
from Eqs. (152) and (153) that is larger than the number of pixels along an edge of the detector array. For 
example, even a small source-point distance of zs = 100 mm and observation distance of zd = 100 mm 
yields a |JCä|/AJC ratio of 500 and a |z/,|/Ac ratio of 350 for A0 = 0.8 /mi. Thus Eqs. (152)-(154) place 
relatively minor restrictions on practical imaging systems. 

Now that it has been shown that aberrations caused by the nonlinear terms can be neglected for 
many practical applications, Eq. (151) can be substituted into Eq. (114) to evaluate the image P(x,y, z). In 
doing so, it is assumed that the values of zs and zd remain constant throughout the measurement. The 
resulting image is 

z-zh + 
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(155) 

For far-field observation with collimated illumination, Eq. (155) reduces to the original result given in 
Eq. (115). 

For far-field observation with noncollimated illumination, Eq. (155) becomes 

( 
P(x,y,z) = grg x,y,z + 
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■s     J 
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2        2 
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The second form of Eq. (156) is obtained by relating g(x, y, z) to a(x, y) and h(x, y) through Eq. (90). 
From this form it is clear that the effect of noncollimated illumination of the scattering object and far-field 
observation is to distort the surface of the image. This distortion is caused by the curvature of the 
outgoing beam, which produces different pathlengths to different points on the z = 0 plane. These 
pathlength differences introduce z shifts in the image that increase with the distance in x and y from the 
origin. The quadratic dependence in Eq. (156) is due to the Fresnel approximation of a spherical wave of 

85 



radius Rs. There is a factor of 4 rather than 2 in the denominator because the pathlength difference 
corresponding to the height function h {x, y) is doubled, being a round-trip measurement. Correction of 
image distortion due to noncollimated illumination and far-field observation is a straightforward process 
that can be accomplished digitally. Because there is no coupling between the x, y, and z coordinates, the 
correction consists of simply adding a value to h(x, y) that is a function of position (x, y) and source 
distance zs. 

The difficulty with evaluating Eq. (155) for near-field observation is that there is a coupling of xh, 
yh, and zh in the 5-functions. The conditions that Rh «zd and Rh «zs, however, can be used to 
uncouple these ^-functions and to approximate Eq. (155) as 

P(x,y,z) = g*rjjjg(x',y',z') 
-co 

x S(x'-x + *shift)<S(y' - y + yshift)<5(z' - z + zshift) dx'dy'dz' 
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and 

zshift -" (160) 

Then the general result corresponding to Eq. (156) that encompasses both noncollimated illumination and 
near-field observation is 

P(x, y, z) = gr g(x - xsm, y - yshift, z - zshift) 

= g*a(x- xshift, y - ysm) S[z - zshift - h(x - x$m, y - yshift)] 
(161) 

Equation (161) is an important result stating that the dominant near-field effect for constant values of zs 

and zj is a distortion in the 3D image. Because this distortion can be removed computationally, high- 
quality 3D images can be achieved much further into the near field than the far-field condition given by 
Eq. (101) would lead one to believe. 

Next, let us explore the option of varying zs and zd during a measurement. First, consider moving 
the source point along the z-axis such that the product Xzs remains fixed. Inspection of the second 
complex-exponential factor in Eq. (151) shows that keeping kzs fixed will eliminate phase variations due 
to wavelength changes in the quadratic curvature term in this complex exponential. Therefore, this 
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component is only dependent on xh and yh and can be absorbed into the a(xh, yh) factor without distorting 
the surface profile h(xh, yh). Thus, keeping h.s fixed is an optical means of correcting for the curvature 
due to noncollimated illumination. Likewise, fixing Xzd eliminates the distortion caused by near-field 
observation; it also, however, introduces a phase error by causing zh/zd in the first complex exponential 
in Eq. (151) to vary during a frequency scan, but this phase error is negligible, provided the conditions in 
Eqs. (153) and (154) are satisfied. The resulting image obtained by fixing Xzs and Xzd is 

P(x,y,z) = grg 
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(162) 

Although nonlinearities in the distortion have been removed, the image is still distorted such that range- 
plane magnification varies with range. This remaining distortion can readily be corrected in the data 
processing. An additional advantage of keeping Xzd fixed is that wavelength-aberration compensation 
occurs automatically. Equation (162) is the basis for an optically simple 3D microscope that requires no 
lenses. 

In summary, it has been shown that the original far-field theory for 3D imaging based on Eq. (109) 
can be extended well into the near field. The dominant near-field effect for most practical situations is 
image distortion, which can be corrected to produce accurate high-resolution images. An important 
benefit of near-field imaging is that noncollimated illumination and near-field observation can be used for 
larger objects where it is more difficult or more expensive to produce a collimating optic large enough to 
illuminate the object and to form its far-field speckle pattern at the detector plane without vignetting 
effects. 

Measurements. The speckle-pattern-sampling technique for 3D imaging is now illustrated with 
laboratory measurements obtained using the optical system in Figure 19. The advantage of this system is 
that it produces collimated illumination and simulates far-field observation so that near-field effects are 
entirely eliminated for objects up to 225 mm in diameter. 

Section 5 has already demonstrated how range information is obtained from the wavelength 
dependence of speckle. Figure 34 illustrates that cross-range information can also be obtained from 
speckle by Fourier transforming a speckle frame acquired at a single wavelength [59,60]. The object 
scene depicted in Figure 34(a) consists of the familiar nine-step target from Figure 27 and a specular 
reference point, illuminated along the axis of the step target. Three of the steps have been masked to make 
a more interesting object. The reference point is produced by a concave spherical mirror with a 75-mm 
radius of curvature located 25 mm to the right and 12.5 mm above the top right comer of the target. 
Figure 34(b) is the magnitude of the Fourier transform ofa512x512 speckle frame from this object 
scene. The four components of Eq. (110) are evident in this figure. Because the reference point is 
separated from the step target in the transverse direction by more than its cross range extent of Dx = Dy = 
19 mm, the desired image (lower left) is isolated from the autocorrelation function (center) and the polar- 
symmetric image (upper right). 
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Let us now consider image resolution. Because of the long focal length Rd =f= 2 m of the primary 
mirror and the small collecting area wx = wy =16 mm of the pinhole mirror, the cross-range resolution at 
AQ = 0.8 /urn for this optical system is limited to Ax = Ay = 100 jim by Eqs. (122) and (123). The image in 
Figure 34(b) actually has a transverse resolution of Ax = Av = 280 /an, which corresponds to a speckle 
magnification by the lens in Figure 19 of M = 2.4 and a detector size of the CCD array of wx = wy = 
13.8 mm. This transverse resolution also corresponds to 68 pixels along the width of the target. 

None of the three aberrations associated with errors in the sampling of Fourier space need to be 
corrected in Figure 34. Wavelength aberration is not an issue because the object is unresolved in range, 
being constructed from a single frame at constant wavelength. Detector-plane distortion can be entirely 
ignored for any image made with this optical system because it is negligible by Eq. (137) for even the best 
cross-range resolution and the largest object diameter allowed. By Eq. (141), depth-of-field aberration for 
the transverse resolution of Ax = Av = 280 /im begins to be a problem for points that are offset from the 
reference point in range by more than \zh\ = 100 mm. This condition is easily satisfied because the range 

extent of the nine-step target is only 24.6 mm. 

Figure 34. Cross-range-resolved image of nine-step target with three masked steps: (a) object scene consisting of 
target and reference point being illuminated into the page; and (b) image obtained from 2D Fourier transform of 
single speckle frame. 
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If the image in Figure 34 had been formed with the system's maximum transverse resolution of 
Ax = Ay = 100 [im, the maximum allowable range offset from the reference point would have been 
reduced to \zh\ = 12 mm and the image would have been aberrated. The effect of depth-of-field aberration 
is to blur the 2D image of each object point by an amount that increases with the range offset zh of that 
object point from the reference point. Thus, without correction of depth-of-field aberration, the only plane 
in perfect focus is the plane cutting through the reference point. In this regard, depth-of-field aberration is 
analogous with the limited depth of field encountered in conventional imaging. The higher the resolution, 
the more rapidly the image degrades in range. 

Figure 35. 3D image of nine-step target obtained by speckle-pattern-sampling technique. Range resolution and 
cross-range resolution are obtained from the wavelength dependence and the spatial dependence of the speckle 
pattern, respectively. 

A comment is in order about how the value of the range offset zh should be interpreted when 
implementing the reference point with a curved mirror. In the theoretical analysis, the reference point is 
the point from which the reference beam is scattered. Therefore, for a curved mirror, the reference point is 
not located at the surface of the mirror but at the focal point, either virtual or real, from which the light 
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appears to emanate. Consequently, for a concave spherical mirror of radius R that is illuminated with a 
collimated laser beam, the reference point is located in front of the mirror by the distance R/2. Because 
the light actually strikes the surface of the mirror, however, there is an extra propagation pathlength 
difference that must be accounted for in the z direction. In consideration of these facts, zh is measured 
with respect to the location of the focal point and the total range extent L includes the location of the 

actual surface of the mirror. 

Now that we-have demonstrated how cross-range resolution is obtained from the speckle pattern, 
we demonstrate 3D imaging by combining range information (as illustrated by Figure 19) with cross 
range information (as illustrated by Figure 34) to produce the full 3D image of the nine-step target shown 
in Figure 35. For this measurement the 75-mm-radius concave mirror was placed 30 mm behind the 
bottom step and 10 mm to the side of the target. The desired image component can be isolated in the 3D 
Fourier transform because the surface of the mirror is offset in range from the target by more than its 
range extent. A 256 x 256 region of the CCD array was selected and the speckle magnification was set at 
M = 2.5, yielding a transverse resolution of Ax = Ay = 575 (im. The total frequency span of the 
measurement was B = 320 GHz, which produced a range resolution of Az = 470 /xm. For these resolutions 
and the given object scene, wavelength aberration and depth-of-field aberration are negligible. 

By Eq. (126), the maximum frequency step size allowed for the range extent L = 55 mm is Av^ = 
1.4 GHz. An actual value of Av^ = 1.25 GHz was used in this measurement, so that the given scan 
bandwidth of B = 320 GHz was achieved with a 256-frame measurement. The height values displayed in 
Figure 35 were obtained from the magnitude of the 3D Fourier transform by selecting the voxel having 
the highest value in each column. The step heights in the image agree with the step heights of the target to 

within the resolution of the measurement. 

To demonstrate the high range resolutions that are achievable with the speckle-pattern-sampling 
technique, a second range-resolution target was fabricated by milling five steps of various heights in an 
aluminum plate. The distance between successive levels varies from 25 pm to 125 ^m in 25-fim 
increments for a target range extent of 375 fim. The transverse dimensions of the entire target and of 
individual steps are 50 mm x 75 mm and 15 mm x 50 mm, respectively. Note that even the 25- pm step is 
well resolved in range in the 3D image displayed in Figure 36. 

The reference point in Figure 36 is a concave 75-mm-radius spherical mirror located 8 mm to the 
side of the middle step and recessed into the metal so that the surface of the mirror is 395 fim below the 
bottom level of the target. The measurement consisted of 256 speckle frames with laser-frequency steps 
of AVste = 60 GHz between frames, yielding a total frequency span of B = 15.3 THz and a range 
resolution of Az = 9.8 fim. The target was tilted slightly with respect to the illumination beam so that the 
raw image contained several discrete range steps of value Az along the length of each step. The DFT 
technique for subdividing voxels described in Section 6.1.1 was used to enhance range resolution in 

Figure 36 and to eliminate range steps. 

The speckle frames used in Figure 36 were taken from a 256 x 256-pixel region of the CCD array 
and subdivided for averaging into four 128 x 128 subarrays. The height values in Figure 36 are the 
weighted average from these measurements. The cross-range resolution from the individual arrays is Ax = 

Ay = 700 ^m. 
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The minimum radius of curvature that would yield a sufficient reference beam strength relative to 
the high return from the bare metal steps was 75 mm. Thus, the value of zh that should be used in 
Eq. (141) for calculating whether depth-of-field aberration is significant is approximately half of this 
value, zh = 37.5 mm. Because of the large transverse resolution for this measurement, the allowable range 
offset zh from Eq. (141) is many times this value so that depth-of-field aberration can be ignored for this 
measurement in spite of the relatively large value of zA. 

Figure 36.  3D image of five-step target demonstrating a range resolution of better than 10 pm. The step sizes 
vary from 25 \imfor the top step to 125 fimfor the bottom step. 

Wavelength aberration, on the other hand, is a significant aberration for this measurement; by 
Eq. (131), it degrades the image for object points with transverse offsets from the reference point of only 
4 mm. Therefore, wavelength aberration had to be corrected in the measurement. This correction was 
accomplished by varying the speckle magnification during the frequency scan by changing the lens and 
detector positions in Figure 19 such that MX remained constant. 

The final measurement, Figure 37, is the 3D image of a 50-mm-long triconic being illuminated 
along the axis of symmetry. The streamers below the triconic represent the fact that the base of the 
triconic is not illuminated so that there are no scatterers to terminate the vertical lines. No aberration 
compensation was required here. Figure 37 is included to stress the fact that the imaging technique applies 
to quite general objects and that flat range steps are not required. 
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Many methods for 3D imaging are described in the literature and have been incorporated into 
practical systems [61]. In general, these methods are based on one or more of the following principles: 
physical contact, triangulation, time of flight, interference, or carrier modulation. The speckle-pattern 
sampling technique has several advantages over other techniques: It is noncontact-based and can image an 
entire object at once without the need for raster scanning; it can measure complex and irregular shapes 
having discontinuities and steep-sloped surfaces, where techniques such as Moire interferometry run into 
difficulty; and its range resolution does not degrade with distance from the object, as is the case for 
techniques based on triangulation. 

Figure 37. 3D image of a 50-mm-long triconic obtained by the speckle-pattern-sampling technique. 
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These advantages lead to many potential applications, such as inspection of turbine blades and 
complex gears; microscopic metrology of hardness indenters, Diesel injectors, and cutting tools; reverse 
engineering and digitization of clay models; large-scale metrology of airframe and autobody panels; 
inspection and assembly-line automation; and forensics. The three basic enabling technologies for the 
realization of these applications (and of applications of techniques yet to be described) are fast, rugged, 
compact, moderate-power, low-cost frequency-scanning lasers; high-readout-rate, megapixel, inexpensive 
CCD arrays; and fast, compact, low-cost, parallel-processing computers. At MIT Lincoln Laboratory, 
research is under way that is pushing the state of the art in each of these areas. Prototype imaging systems 
are now being designed and developed for specific applications ranging in size from microscopic to large 
scale. 

6.1.2 Remote Orientation Sensing 

An additional application of speckle-pattern sampling that can be implemented with reduced system 
requirements and without the use of a reference point is remote measurement of the normal vector to a flat 
surface. This measurement technique takes advantage of the fact that, for a flat surface, a change in laser 
frequency produces a global translation of the speckle pattern at the detector plane. The angle of incidence 
and the plane of incidence of the laser beam are determined from the rate and the direction of speckle 
translation, respectively. 

This phenomenon will now be investigated in more detail. The first step is to write an expression 
for the measured speckle intensity with no reference point by setting gr = 0 in Eq. (110), which leaves 
only the second term of the original four terms: 

l l2 

I(xd,yd,zd;^) = \g(fx,fy,fz)\      . (163) 

The inverse Fourier transform of Eq. (163) with respect to the spatial frequency variables is the 
autocorrelation function 

oo 

^4c(*>v,z) = J jjg*(xh,yh,zh)g(x + xh,y + yh,z + zh)dxhdyhdzh (164) 
—oo 

of the complex scattering function, which has been identified previously as the central region in 
Figure 32(b). 

We proceed with the evaluation of Eq. (164) by using Eq. (90) to write the complex scattering 
function in terms of the complex amplitude a(x,y) and the height profile h(x,y). Given that the laser 
beam illuminates the object along the negative z-axis, the height function for a flat plate can be expressed 
in terms of the angle of incidence 6h and the azimuthal angle (f>h as 

h(x,y) = h0-xcos<j)htanOh-ysm(l)htandh      , (165) 

where h0 is the height of the planar surface at x = y = 0. The resulting expression for the autocorrelation 
function given by Eq. (164) is 

93 



PAC(x,y,z) = 8(z + xcos<j)htandh+ysm(t>htaneh) 

~ . (166) 
xj ja*(xh,yh)a(x + xh,y + yh)dxhdyh 

—DO 

The 5-function in Eq. (166) limits the autocorrelation function to a planar region of space passing through 
the origin of the coordinate system and having the same orientation as the original scattering surface. 
Consequently, a measurement of the orientation of the scattering surface could be performed through the 
standard speckle-pattern-sampling technique but without using a reference point. 

There is a simpler approach to determining the orientation, however, that does not require the 
acquisition of a series of speckle frames at incremental laser-frequency shifts. This approach is based on 
measuring the speckle motion in the detector plane caused by varying the laser wavelength. To develop 
the theory governing this approach, we first evaluate Eq. (163) for the planar height profile given by 

Eq. (165): 

\g(fxJrfzf = \ä(f* ~ fz ^eh oos(j)h,fy - fz tmeh sin^)f      . (167) 

Equation (167) is an expression for the speckle intensity at the detector plane in terms of spatial- 
frequency coordinates. It is useful for determining the effect that tuning the laser frequency has on an 
individual speckle lobe. Mathematically, the£ andfy coordinates of a speckle lobe are tracked by keeping 
the arguments of a constant as/z is varied through changing the wavelength. Thus, for the first argument 

4 - fZ] tan0, COS0, = 4 -4 tan0A cos0,       , (168) 

and for the second argument 

4 - 4 tan6h cos<t>h = 4 - 4 tan6h cos^       , (169) 

where the subscripts 1 and 2 denote speckle measurements at wavelengths Xx and A^ respectively. The 
orientation of the scattering plane can be determined by solving Eqs. (168) and (169) for 6h and 0Ä. In 
terms of the spatial-frequency differences 

*-'*-'«-H ■ <170) 

and 

Af _ f _ f  
1+

AM.-»4 I+M-"4 (172) 

of a speckle lobe at the two wavelengths, these angles can be written as 
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tan 
n     ^Af?+Afy

2 

6h~    H\ 
(173) 

and 

tan0„ = ^-     .                                                                                                  (174) 
A4 

Equations (173) and (174) are general results for calculating the angle of incidence 6h and the plane of 
. incidence <j)h given the original direction cosines (ldi,mdi) of a speckle lobe at wavelength Xx and the new 

direction cosines (ld ,md ) that this speckle lobe takes at wavelength X^ 
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Figure 38.   Remote angle-of-incidence measurements for a flat plate being illuminated by a tunable laser at 
various angles. As the laser frequency offset Av increases, the speckle pattern shifts from the original position. 
The magnitude p of the shift increases with angle of incidence. 

- 

If wavelength aberration, detector-plane distortion, and depth-of-field aberration are negligible or 
have been corrected, Eqs. (170)-(172) can be written in terms of the location (xd, yd, zd) of the speckle 
lobe on the detector plane and the frequency shift A v as 
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A/ =
y^~y^      t (176) 

Af)Zd 

and 

(l      O 
A/z=2 

/lj      A2 
= -2^-     . (177) 

c 

Eqs. (173) and (174) then simplify such that every speckle lobe shifts by the same amount and in 
the same direction in the detector plane. From Eq. (173), the magnitude of this shift is 

rd = -2zd—tzndh     , (178) 
vo 

and from Eq. (174), the direction of this shift is 

* = *».- (179) 

Thus, the angle of incidence 6h and plane of incidence (j)h can be determined remotely by measuring the 
magnitude and direction, respectively, of the speckle shift caused by tuning the laser frequency. 

To apply Eq. (178) to the determination of dh in practice, the detector distance zd must be known. 
This requirement can be circumvented, however, by placing a Fourier-transform lens in front of the 
detector array. Then, zd is replaced by the focal length / of the Fourier-transform lens and the 
measurement is insensitive to object distance. The object distance allowed by a Fourier-transform lens is 
limited, however, because the range of spatial frequencies accepted by the lens decreases with increasing 
object distance. 

Laboratory measurements were performed using the optical system shown in Figure 19 to verify 
this technique for remote sensing of angular orientation of flat surfaces. In these measurements, a flat 
plate was mounted on a system of rotary stages that enabled control of the angle of incidence 6h and the 
plane of incidence <j>h and the plate was spot illuminated with a beam from the Ti:sapphire laser. The 
general behavior predicted by Eqs. (178) and (176) was readily observed; as the laser frequency varies, 
the entire speckle pattern shifts in the direction <j>h with a rate that increases with increasing 6h. 

To make more quantitative measurements, the laser frequency was stepped by a known amount and 
the CCD frames compared at the two frequencies by calculating a 2D cross-correlation of the speckle 
frames. The magnitude and the direction of offset from the origin of the cross-correlation peak provided a 
measurement of rd and 0. Figure 38 is a family of plots of the magnitude of the speckle shift (in units of 
pixels p) versus laser-frequency shift Avfor angles of incidence 6h ranging between 10° and 70° in 10° 
increments. In this figure, the p versus A v curves are straight lines and the slope of these lines is 
proportional to tanöA, as predicted by Eq. (178). A series of measurements with constant 6h and variable 
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<j)h was also performed. The linear relation between 0 and </>h predicted by Eq. (179) was confirmed in 
these measurements. 

Although no attempt was made to optimize the measurement technique or to access the accuracy to 
which the angles 6h and <j>h can be measured in practice, it does appear that this technique offers the 
capability for accurate, real-time, remote measurements of surface orientation. (A by-product of the 
technique is a means for estimating the flatness of a surface by the strength of the cross-correlation peak.) 
This technology has many-potential applications in robot vision and machine vision where surface- 
orientation information can greatly aid in the interpretation of object scenes. 

6.1.3 3D Image Recovery from Autocorrelation Support 

Knowledge of the 3D autocorrelation function would suffice in some pattern-recognition 
applications. But full knowledge of the 3D image is desired in many situations. For remote objects, where 
a reference point is impractical and where large target distances make it difficult to produce a virtual 
reference point through coherent detection, it would be highly desirable to be able to recover the missing 
Fourier-phase information from the 3D autocorrelation function. In speckle-pattern sampling, however, 
the function for which the autocorrelation function is known is complex, so there is not the typical 
constraint required for iterative phase retrieval—that the function being recovered is real and nonnegative. 

The new 3D-image-recovery concept described and illustrated here is based on knowledge of the 
support of the 3D autocorrelation, support meaning the region in space where the function is nonzero 
valued. The development of robust algorithms based on this concept is currently an area of active research 
and no general solutions have been found. A framework is provided, however, for further development in 
this area and the general concept is illustrated by recovering the height values of a 25-point array of 
scatterers from its measured autocorrelation support. 

The mathematical framework is introduced by assuming that the scattering function g(x, y, z) 
consists of a set of N discrete scatterers at locations (x■, y,-, z,), where the subscript represents the j"1 

scatterer. (In practice, these scattering points can represent resolution cells in the 3D image of a 
continuous surface.) Following Eq. (91), the complex scattering function for this collection of points is 
written as 

N 

8(x,y,z) = ^gjS(x-Xj)8(y-yj)S(z-Zj)     . (180) 
j=i 

The measured quantity is the autocorrelation function of g(x, y, z), which can be calculated by substituting 
Eq. (180) for g{x,y, z) into Eq. (164) and using the <5-functions to evaluate the integrals: 

N   N 

W-y.^XX«^^^; -^)^+)'rÄ)%+^-^)    • (181) 

The meaning of Eq. (181) can be clarified by using Eq. (180) to eliminate one of the summations. There 
are two forms for the result, depending on which summation in Eq. (181) is eliminated: 
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N 

PAd
x>y>z) = £*Js(* + Xj,y + yj,z + z}) 

j=1 . (182) 
N 

= ^8jg*(-x + Xj,-y + yj,-z + Zj) 
7=1 

The two expressions in Eq. (182) have simple interpretations. The upper form expresses the 
autocorrelation function as the summation of N copies of g(x, y, z), with successive copies being shifted 
such that each of the N scattering points is at the origin of the coordinate system for one of the copies. 
More specifically, the/h copy is shifted so that its y'th point is located at the origin, and the weighting 
factor for this copy is the complex conjugate of the scattering amplitude gj for that point. Similar 
statements apply to the lower form in Eq. (182), except that the autocorrelation is expressed here as the 
complex conjugate of the summation of shifted copies of the inverted function g(-x,-y,-z). Once again, 
the shifts successively place each of the N scattering points at the origin. 

Figure 39 illustrates the above relation between the location of scattering points [Figure 39(a)] and 
the support of the autocorrelation function [Figure 39(b)] for a nine-point scattering object. In 
Figure 39(b), it is possible to pick out each of the nine copies of the scattering function as well as each of 
the nine copies of the inverted scattering function displayed in Figure 39(d). [Figure 39(c) will be referred 
to later in the description of the recovery algorithm.] The technique to be described below recovers the 
support of g(x, y,z),OTof g(-x, -y, -z), to within an arbitrary spatial offset, by extracting one of the N 
copies from the autocorrelation function. 

To formalize the notation, a support operator S is defined such that 

S[f(x,y,z)] = < ■ U«) 
[1    f(x,y,z)*0 

Thus S produces a new function that is unit valued wherever the function that it is operating on is nonzero 
and zero valued elsewhere. Let 

Sgm) = %g(x,y,z)] (184) 

represent the support of the scattering function. The vector notation R = (x,y,z) is used for the argument 
of 5 to simplify the equations that follow. It is necessary to define the support of the autocorrelation 
function in a statistical sense, 

SAC(R) = s[{\PAC(x,y,z)\}]     , (185) 

to avoid the situation where overlapping points from different copies of g(x, y, z) might cause the 
autocorrelation function to add to zero. In practice, this situation corresponds to having speckle dropouts 
in the autocorrelation function that make it difficult to determine the support of the autocorrelation 
function in all regions of space. [One solution to this problem is to approximate the ensemble average in 
Eq. (185) by averaging the magnitude of PAC from two or more measurements.] 
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Figure 39.   Illustration of the shift-intersection concept for recovering the 3D image from the support of the 
autocorrelation function. 

Now that Sg and SAC are defined, SAC can be written in terms of Sg by referring to Eq. (181) and 
using the following facts: S[gß = 1 for each of the N points, S[ab] = S[a]S[b], and components in the 
summation cannot add to zero. The resulting expression for SAC is 

SAC(R) = S 
N 

J>,(R + Ry) 
L;'=1 

= s£sg(-R + R;.) 
J=1 

(186) 

Equation (186) states what was already observed and what was illustrated in Figure 39: that the support of 
the autocorrelation function is the support of the sum of the supports of the various shifted copies of g 
making up the autocorrelation function. 
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The information available to work with from the measurement is the location of the support points 
for SAr. These locations can be enumerated in terms of the locations R,- of the N scattering points as 

R;7fc ~ R£ 
(187) 

where the subscripts j and k each range from 1 to N. The points Rjk are not all distinct; in fact, there are 
always N degenerate points Ru = R2,2 = ...R^ located at the origin. In terms of shifted copies of the 
scattering function, Rjk in Eq.{ 187) can be interpreted as the ^ point on the 7th copy of g(x,y,z)oras 
the ;'* point on the k^ copy of the inverted function g(-x,-y,-z). Enumerating points in the 
autocorrelation-function support according to Eq. (187) is a useful tool for the analysis that follows, even 
though it presupposes that the problem at hand has been solved so that the proper indices can be assigned 

to each point. 

The recovery technique for extracting a single copy of the scattering function involves taking the 
intersection, or overlap, of a series of shifted copies of the autocorrelation function support with shift 
values selected from among the points Rjk. To motivate this approach, consider the intersection of a 
single shifted copy of the autocorrelation function with the original autocorrelation function. Through the 
use of Eq. (186), the support of the shifted autocorrelation-function can be written as 

SAC(R-R#) = S^(R+R;) + 5X(R-R#+R,) 

= S 

l*k 

N 
(188) 

Sg(-R + R*) + X V-R + R;* +R'} 

In Eq. (188), the / = k term and the / = ;' term have been separated out of the summation in the upper and 
lower forms, respectively. Equation (188) is now multiplied by the unshifted autocorrelation-function 

support and the result written as 

SAC(R)SAC(R-Rjk) = S 
N 

Sg(R+Rj) + SAC(R)^Sg(R-Rjk +R,) 

= 5 
N 

Sg(-R+Rk)+SAC(R)Zsg(-R + Rjk + R,) 

(189) 

It is unnecessary to multiply the separated terms in front of the summations by SAC because these terms 
are completely contained within SAC. Equation (189) shows that for any shift Rjk there are at least two 
copies of S that survive unaffected by the shift-and-multiply operation, namely, the 7th copy and the k™ 
inverted copy. Equation (189) also indicates that many points not contained within these two copies are 
likely to be eliminated because of the offset between SAC and its shifted replica. 
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Figure 39(c) shows the effect that applying a single shift-and-multiply operation can have on 
reducing the number of points. In this instance, the shift corresponds to placing the leftmost point of SAC 

in Figure 39(b) onto the point of symmetry of the unshifted version of SAC and taking the intersection. 
Note that this single shift has eliminated all points except for those that are in S and its inverted copy. In 
Figure 39(d), the inverted copy of Sg has been reconstructed by applying one or more of the remaining 
shifts from Figure 39(c). 

A single shift-and-multiply operation is insufficient for determining 5 except, for instance, in the 
trivial case of a flat rectangular plate with Rjk taken as one of the corners of SAC. In general, a technique 
is needed for selecting additional shift values from R -t that will further reduce the number of points in 
SAC while leaving a single copy of Sg intact. As stated previously, the first shift is completely arbitrary; let 
us denote it by Rjik . Equation (189), however, shows that once the first shift has been chosen, the second 
shift must lie either on thej^ copy of Sg or on the kfi inverted copy of 5 for one of these copies to 
remain positively intact. Thus, the second shift normally breaks the symmetry by eliminating points from 
one of these two copies. The third and subsequent shifts must then all lie on either the j ft copy of S or 
on the fcj"1 inverted copy of Sg, depending on which one survived the second shift-and-multiply operation. 

Assume, for the time being, that a means exists for correctly choosing subsequent shifts and that all 
N shifts have been applied that correspond to the particular copy of S being extracted. If the symmetry 
was broken such that the regular copy of Sg is reconstructed, the result of applying all N shifts is 

SAC (R ~~ R/. ,i) $AC (R ~~ R;\ ,2) • • • $AC (R ~ R u, N ) 

= S 
N   N 

sg(R+R;.)+niX(R-RM+R,) 
*=11=1 

l*k 

(190) 

It is not necessary to write SAC(R) explicitly on the left side of the equal sign in Eq. (190) because one of 
the N factors degenerates to this form. In deriving Eq. (190) from Eq. (188), the following sequence of 
equalities have been used: 

f[S[S(a) + S(bk)] 
*=i 

= S 

= s 

= s 

S(a)N +S(a)N-1fjS(bk) + ... + flS(bk) 
k=i *=i 

S(a)\l + f^S(bk) + ...) + flS(bk) 

N 

S(a) + Y[S(bk) 
t=i 

J k=\ 

(191) 
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The expression corresponding to Eq. (190) for reconstruction of the inverted copy of Sg is 

5AC(R-RU,)5AC(R-RU)...5AC(R-R^) 

= S 
N   N 

Sg(-R+Rki) + YY£sg(-R+Rjki +R,) 
;=1 /=1 

I*} 

(192) 

Equations (190) and (192) state that applying all N shifts corresponding to a given copy, or inverted 
copy, of S leaves that copy or the inverted copy intact, respectively. These equations also state that there 
may be additional points left over that survived all N shifts but do not lie on the given copy of Sg or the 
inverted copy of Sg respectively. For surfaces with sufficient complexity, points not on Sg will probably 
not survive all N shift-and-multiply operations, and Eqs. (190) and (192) represent acceptable solutions to 

the recovery of Sg. 

A case where extra points remain is a flat rectangular plate with a hole in it. In this situation, there 
is insufficient information from SAC alone to determine information about this hole, causing the hole to fill 
in in the reconstruction. It is likely, however, that the boundaries of the hole can also be reconstructed by 
using additional information available from the measurement, that is, the values of the product g*gk for 
each of the points R;A. Indeed, it may be possible to also determine gj in general situations by 
combining the technique described here with other phase-retrieval techniques. 

Now that the result has been described of correctly choosing a sequence of shifts that lie on the 
support of the copy of Sg being reconstructed, some ideas are presented that help determine these shifts. 
Note that in practical situations it is not necessary to apply all N shifts; the copy of Sg often reconstructs 
for a small subset of these shifts. Although no general solution has yet been found for determining shifts, 
there has been success in certain cases where there is a priori target information. The following makes 
some general observations about choosing shifts, then describes and illustrates the solution for a 

special case. 

Recall that all points on the copy of Sg being recovered must have survived all previous shift-and- 
multiply operations. Therefore, the first general observation about choosing new shifts is that they must 
come from the pool of candidates that have survived all previous shifts. The number of points in this 

candidate pool decreases as the algorithm proceeds. 

Thus far it has been assumed intrinsically in the mathematics that scattering from the N scattering 
points is dominated by single scattering. An additional assumption that aids in selection of shift values is 
that there is only one scattering point for each transverse location (x, y) in the illumination beam. (This 
assumption is equivalent to the opacity condition for surface scattering that has been used throughout the 
report.) The advantage of these two assumptions is that the function to be recovered is known to be single 
valued. The above two conditions can be verified by inspecting SAC along the z-axis of the coordinate 
system. If these conditions are satisfied, the support SAC is limited to the point z = 0 along the z-axis, as 
depicted in Figure 39(b). This test works because there can be no overlap between the scattering object 
and a copy of the scattering object that is translated in the z direction for the given conditions. In practice, 
there may be some spread of the support SAC about the z = 0 point on the z-axis. For example, there may 
be multiple scattering between points that are in close proximity, or, in the case of a continuous surface, 

102 



one transverse resolution cell may extend over more than one longitudinal resolution cell for steep-sloped 
surfaces. In these cases, it is still possible to apply the shift-and-multiply algorithm as long as there is a 
vertical tolerance for determining whether two points overlap. 

The following is an example of a situation where it has been demonstrated with simulated and 
measured data that subsequent shifts can be determined in a straightforward manner. In this example, the 
above two assumptions are coupled with knowledge of the lateral support of Sg. The object consists of an 
MxM array of scattering points located on a square grid, with every grid point occupied by a scattering 
point. The relative height values of the individual points are desired. The lateral support of SAC for this 
scattering function consists of a 2M - 1 x 2M - 1 array. After the first shift, it is often possible to pick out 
two MxM blocks in the lateral support of the product of SAC and its shifted replica. These blocks 
correspond to the lateral support of the copy of Sg and of the inverted copy of Sg that survived the first 
shift-and-multiply operation. 

The value of the second shift is determined by selecting a lateral position within one of these blocks 
that contains only one point. This point must be a correct shift because it is known that every grid point in 
the scattering function contains a scattering point. Application of this point as a shift eliminates many 
points in the MxM block that was not selected. Any additional lateral positions in the surviving MxM 
block containing a single point can also be applied as shifts, producing more lateral positions with single 
scattering points. In all cases tested, this algorithm converges correctly to a copy of Sg or an inverted copy 
oiSg. 

The results of this algorithm are now described for the reconstruction of the pin heights for the 5 x 5 
array depicted in Figure 40. The tops of the individual pins were rounded to simulate point scatterers by 
making the light appear to emanate from the virtual focal point. The heights of the 25 pins were set at 
values obtained by a random number generator with the height difference between the highest and lowest 
points being 10 mm. The measurement was performed using the optical system described in Figure 19 
without a reference point. The data array consisted of 256 128 x 128-pixel speckle frames with a 
frequency increment of 5 GHz between frames, yielding a total bandwidth of B = 1.28 THz and a range 
resolution of Az = 117 ^m. The autocorrelation-function support SAC was obtained by performing a 3D 
FFT of the data array and decimating the result to a 9 x 9 x 256 array such that each position in the 9 x 9 
lateral support array of SAC was accounted for. The magnitude of the FFT was retained to allow for 
varying the threshold value in estimating SAC. 

The maximum number of points that should be in SAC for ideal data from a 25-point scatterer is 601, 
accounting for a degeneracy of 25 at the origin. To produce all support points that should be in the 
estimate of SAC it was necessary, however, to set the threshold level low enough so that three or four times 
this number of points occurred in the estimate of SAC. These extra points did not seem to have much of a 
negative impact on the speed of convergence of the algorithm. In summary of the results, the relative 
height values for all 25 pins were reconstructed successfully for both the normally oriented object and the 
inverted object. The reconstruction results were in close agreement with the actual settings, with a 
maximum height error for a typical reconstruction of approximately Az/2 = +60 fxm and a standard 
deviation of the height error of 37 fjm. 
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Fz'gwre 40. Photograph of a 25-point scattering array used to demonstrate the shift-intersection concept for 3D 
phase retrieval. 

The success demonstrated with recovery of pin heights and the similarity between a rectangular 
array of scattering points and a continuous surface being imaged with a finite number of pixels encourage 
further research on the application of the general technique to more complicated objects. One approach to 
be investigated for applications where the conventional image is available is using this image to determine 
the lateral support of Sg. 

62    IMAGE SPECKLE 

The imaging techniques described thus far are based on speckle occurring in the radiation pattern of 
the scattering object. Two additional 3D-imaging techniques based on image speckle (speckle present in 
the conventional image of a coherently illuminated object) are now described. In these techniques, range 
information is obtained from the wavelength dependence of speckle, transverse information through 

conventional imaging. 
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6.2.1 Reference-Plane Technique 

Figure 41 is a basic optical configuration for the reference-plane implementation of the image- 
speckle technique for 3D imaging. In this figure, a collimated laser beam from a tunable laser is divided 
by the beamsplitter into a beam that illuminates the scattering object and a beam that illuminates the 
reference plane. Scattered light from the object and the reference plane is recombined by the beamsplitter 
and imaged by the lens with magnification M onto the detector array. Thus, a scattering point Ph with 
transverse coordinates {xh, yh) is imaged onto the detector at coordinates xd = Mxh and yd = Myh (It is 
assumed that the imaging system has sufficient depth of field to cover the range extent of the object and 
any range offset of the reference beam. The system may also be telecentric so that any defocus error does 
not affect the apparent position of a surface point). Because all imaging systems have a finite point-spread 
function, the light that reaches a given image point on the detector comprises light scattered from a small 
surface patch surrounding the corresponding object point. Consequently, interference between these 
components makes the image formed at the detector plane speckled. The average speckle size equals the 
imaging system's point-spread function width. Thus, the object's transverse resolution is the speckle size 
divided by the magnification M. 

Let us next consider how range resolution is achieved. If the range origin of the object's height- 
profile function is defined to be at the reflected image of the reference plane into object space, then the 
optical pathlength difference between the object beam and the reference beam for an image point at 
detector coordinates (xd, yd) is 2zh; the factor of 2 accounts for the round-trip pathlength difference. As the 
laser frequency is tuned, this pathlength difference causes the two components to alternate between 
constructive and destructive interference, producing a periodic modulation of the speckle intensity. The 
rate of modulation is proportional to the pathlength difference 2zA. The frequency change AvD required to 
induce one complete oscillation of the speckle intensity is 

AvD = -^      . (193) 

Thus, measuring the speckle intensity as a function of laser frequency allows determination of zh. 

To address the accuracy to which zh can be measured, first assume a simple intensity measurement 
that counts only the number of complete intensity oscillations. If B is the total bandwidth of the frequency 
scan, the number of oscillations that occur over the entire frequency scan is B/AvD. By equating the 
number of intensity oscillations with the number of resolution cells zh/Az and substituting the expression 
for AvD from Eq. (193), 

Az = — (194) 
IB 

is obtained, which is the same expression given in Eq. (56) for wavelength decorrelation and in Eq. (124) 
for speckle-pattern sampling. Thus, these three techniques have similar range-resolution characteristics. 
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Figure 41. Conceptual diagram for reference-plane implementation of image-speckle technique. 

Once again, Az is the discrete spacing between range planes obtained by using an FFT to calculate 
the whole number of speckle oscillations. For high-quality measurements, it is possible to further 
subdivide the resolution cell by accounting for the phase of the intensity oscillation, provided that the 
spread in zh over a lateral resolution cell is smaller than Az. (As explained in Section 6.1.1, maximizing 
the DFT is one such technique for enhancing range resolution.) For example, a typical frequency scan of 
B = 15 THz for a diode laser produces a raw range resolution of Az = 10 /xm; a subdivision of the period 
of oscillation by one part in ten would yield a range resolution of 1 ßm. 

The main advantage of image-speckle techniques over speckle-pattern sampling is that there is 
already a one-to-one correspondence between points in the detector array and points in object space. 
Therefore, it is not necessary to do a 2D Fourier transform of each speckle frame to obtain the transverse 
information, nor is it necessary to sample the entire speckle pattern to obtain a high-resolution image of a 
single object point. These facts allow one to select individual image points or regions of interest in the 
image without processing or collecting data from points in between, greatly reducing the system demands 
when only sparse imaging is required. 

A disadvantage of image-speckle techniques in general is that the depth of field of the 3D image is 
limited to the depth of field of a conventional imaging system. The speckle-pattern-sampling condition in 
Eq. (141) for negligible depth-of-field aberration can be applied to conventional imaging if zh is 
interpreted as the depth of field. Because depth of field goes as the square of the transverse resolution, the 
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unaberrated range extent of a 3D image becomes severely limited for images with high transverse 
resolutions. For example, by Eq. (141), a transverse resolution of 10 fim limits the depth of field to 
125 jum at A0 = 0.8 fim. In speckle-pattern sampling, depth-of-field aberration can be corrected in the 
processing. Correction of depth-of-field effects in the image-speckle technique, however, requires the 
acquisition of a series of images at different focal positions. 

Figure 42.   3D image of firing-pin indentation on a cartridge casing obtained using the reference-plane 
implementation of the image-speckle technique. 

Figure 42 is a 3D image illustrating the reference-plane technique for imaging the firing pin imprint 
on a cartridge casing. This image is representative of a class of applications of the 3D imaging techniques 
described in Section 6 to forensics. 

6.2.2 Two-Source-Point Technique 

The reference-plane technique depicted in Figure 41 becomes impractical to implement for large 
objects because of the need for a correspondingly large reference plane and beamsplitter. Although 
variations of this technique that overcome these size restrictions are possible, these variations require 
relatively long separated paths for the object beam and the reference beam, making them sensitive to 
turbulence and vibration. 

107 



An image-speckle-based technique is now described that is well suited to 3D imaging of large 
objects. The key to this technique is that the reference beam is implemented automatically; refer to Fig- 
ure 43 for a description of the technique and an explanation of its principle of operation. A laser beam 
from a tunable laser is split into two parts, producing two coherent source points at positions Px and P2 

that are separated by the distance Rx2. (A convenient means for producing the two source points is 
through fiber-optic cables.) For the purpose of this explanation, the origin of the coordinate system is 
placed halfway between points Px and P2 so that these points are located at the coordinates (xx,yx,zx) and 
(-^-•y^-^). The beams from these source points have sufficient divergence and are pointed so that 
they simultaneously illuminate the region of interest. 

Transverse information is obtained in the same manner as for the reference-plane technique. Once 
again, the image is speckled due to surface roughness and coherent illumination., and the z-axis is defined 
to be parallel to the optical axis of the imaging system. Consider the point Ph lying on the surface of the 
object at position (xh,yh,zh). The coordinates xh and yh of this point are known, to within the transverse 
resolution of the optical system, by the location xd and yd of its image on the detector array. If the 
coordinate zh corresponding to each value of xh and yh could be determined, then the desired 3D image 

would be obtained. 

Let Rlh and R2h be the distance from the points Px and P2 to the point Ph, respectively, and let s be 
the pathlength difference between these two distances, that is, s = R2h- Rlh. (For the purpose of this 
discussion, consider the optical pathlengths from the split in the optical fiber to the ends of the two fibers 
to be equal.) The measurement of zh is based on determining the value of s for each value of xh and yh. To 
determine s, consider the effect that tuning the laser has on the speckled image. On average, 
approximately half the light reaching a given point in the detector array comes from each of the two 
source points. If s is nonzero, tuning the laser produces relative phase delays between the contributions 
from these two points. As with the reference-plane technique, these phase delays cause the contributions 
to alternate between destructive and constructive interference, resulting in a modulation of the speckle 
intensity. Once again, the rate of modulation is proportional to the pathlength difference. The frequency 
change AvD required to induce one complete oscillation of the speckle intensity is now 

AvD = -     . (195) 
s 

The factor of 2 is absent in the denominator because s accounts for the entire pathlength difference, there 
being no additional pathlength difference incurred in propagation from the scattering point to the detector. 
The resolution in s obtained by counting whole intensity oscillations is 

As = -      . (196) 
B 

Note that there is a loss in resolution of a factor of 2 in Eq. (196) compared to Eq. (193). Therefore, a 
frequency scan of B = 15 THz produces a resolution of As = 20 Jim rather than 10 ßm. Enhanced 
resolution beyond this limit is also possible with the two-source-point technique through measuring 
partial oscillation cycles. 
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Now that it has been shown how s can be measured, the next step is to relate s to the desired 
quantity zh. This can be done by writing s in terms of zh and the known quantities (xh,yh) and (xuyuzi) 
as 

s = ^{xh + *,)* +{yh +yif +{zh + zlf -^{xh -xxf +{yh -ytf +{zh -zxf (197) 

and then solving for zh, which yields 

z*=- 

4(Vi +yhyih±U^{xhXl +yhylf+(s2 -4zl
2)(s2-R^2-4x2

h-4y2
h) 

s2-W 
(198) 

Thus, Zh is determined to within the ± sign ambiguity in Eq. (198). This ambiguity is readily resolved in 
practice. The correct sign depends on the relative positions of the source points and the object. 

OPTICAL 
FIBER 

1CCD 

Figure 43.   Coordinate system for the two-source-point implementation of 3D imaging using the image-speckle 
technique. 
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Uncertainties in the parameters in Eq. (198) can affect the accuracy of the measurement of zh. Let 
us first look at the effects of an uncertainty in s on the uncertainty in zh. To do so, we take the partial 
derivative of s with respect to zh and study how this derivative ds/dzh varies with the parameters 
(xh,yh,zh) and (xx, yx,zx). This procedure shows that the magnitude of this ratio varies between 0 and 2, 
where a value of 0 corresponds to complete loss of range sensitivity. A value of 2 is impractical to 
achieve in practice because the surface must lie directly between the two points, and only one side of the 
surface could be illuminated from each beam. For parameters as suggested by Figure 43, the derivative is 
approximately ds/dzh = 0.2 so that there is a loss in range sensitivity of a factor of 5. Thus, for a 15-THz 
scan with no attempt to extend the resolution beyond counting whole cycles, the range resolution would 

be Az = 100 fjm. 

The sensitivity of the measurement of zh to uncertainties in (xx,yvzx) and (xh,yh) will now be 
addressed. With a good mechanical design, uncertainties in (xx, yx, zx) are small and have minimal effects 
on zh. For large objects, there may be much greater uncertainties in the values of (xh, yh), or spreads in 
these quantities over a pixel, because of practical limits on transverse resolution over large fields. For the 
purpose of this discussion, let the two source points lie in the x-z plane. Then by calculating dzh/dyh , it 
can be shown that the measurement of zh is insensitive to errors in yh. Uncertainties or spreads in xh 

however, can have a much greater effect on zh; the magnitude of dzh/dxh is approximately equal to the 
magnitude of zh/xh. This ratio should be as low as possible to minimize errors in zh. Therefore, 
illumination angles with bisectors perpendicular to the camera axis offer the best immunity to errors in 
transverse position. These angles also offer good range resolution. 

As mentioned previously, the depth of focus decreases as the transverse resolution of the optical 
system improves, limiting the usable range extent of the technique. This difficulty can be overcome, to a 
certain extent, by sequentially focusing on different range planes and using only those pixels within the 
depth of field. For example, a 100-/im transverse resolution limits the depth of field to the order of 
10 mm; an object with a 100-mm range extent could be imaged at full resolution by focusing sequentially 
at 10 different ranges. To minimize the effects of depth of field, the z-axis should be defined in a direction 
that minimizes the range extent, that is, normal to the average surface plane. 

To increase the transverse area that can be imaged without losing transverse resolution, multiple 
cameras can be used to cover the whole area or individual cameras can be used for inspecting regions of 
interest. These cameras must be registered accurately in the transverse plane. For gently curved objects, 
the usable range extent can be extended by focusing the cameras individually. 

The two-source-point technique is well suited to the measurement of contoured sheet-metal parts 
such as airframe and autobody panels. For these aerodynamic surfaces, the whole surface can be 
illuminated from a fairly low angle, providing good range resolution and immunity to transverse position 
errors. Additionally, because these surfaces are smooth and well behaved, the spread in zh resulting from 
the variation of zh within a resolution cell can be reduced by relating the spread in s for a given pixel to 
the orientation of the surface element being imaged and curve fitting to a smooth surface. Furthermore, if 
the desired surface shape is known, either mathematically or through a physical master, then deviations 
from the ideal signature can be related to deviations from true form. 

Aside from its ease of implementation and robustness, another attractive feature of the two-source- 
point technique is that the pathlength difference s is limited in magnitude to the separation Rn between 
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the two source points. This fact limits the demands on the tunable laser by making the smallest frequency- 
step and coherence-length requirements independent of object size. Having two source points also does 
away with the need to adjust the path length of a reference beam for the given object and object position. 

Figure 44.   3D measurement of a triconic using the two-source-point implementation of the image-speckle 
technique. 

Figure 44 is a 3D image of a 50-mm-long triconic obtained using the two-source-point technique. 
The discrete range steps that are visible in the image can be removed by using a DFT to subdivide range- 
resolution cells. Two other phenomena were observed in the laboratory data. First, the degree of 
modulation of the speckle intensity varies from point to point in the image. The reason for this variation is 
that the speckled image is actually the interference pattern of two speckle patterns. If IY and I2 represent 
the speckle intensity at a given pixel from each beam alone with the other beam blocked, then the 
intensity of the speckle pattern formed by the combination will vary about the value Ix + I2 with amplitude 
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hi = 24hh- Thus' complete modulation occurs only when Ix = I2, and the amplitude of the sinusoidal 
component being extracted by the Fourier transform is 712. Consequently, some pixels will be more 
susceptible to noise than others and there may be dropouts in the data for pixels with small values of 712. 
In procedures such as curve fitting height values to a smooth surface, the result can be improved by using 

712 to weight the individual height values. 

The second observation is that turbulence affects the image speckle for large values of Rlh and R2h 

by causing the speckle pattern to twinkle with no change in laser frequency. This effect can cause 
significant degradation of the data for slow frequency scans but becomes much less of a problem as the 
scan rate increases. If desired, turbulence compensation could be achieved by putting a monochromatic 
probe beam through the same path, or nearly the same path, calculating the phase offset necessary to keep 
the speckle pattern constant, and applying this compensation to the frequency-dependent data. 
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7.     SUMMARY 

This report has demonstrated techniques for using the wavelength dependence of laser-speckle - 
intensity patterns to determine information about the size, shape, and surface properties of a scattering 
object. Both statistical and deterministic approaches to this inverse-scattering problem are considered. In 
the statistical approach, known as the wavelength-decorrelation technique, fluctuations in the speckle 
intensity caused by changing the laser frequency are analyzed statistically and yield a measurement of the 
range-resolved laser radar cross section U(z) of the object for the given viewing angle. The functional 
form of U(z) is directly related to the object's size and shape as well as to the angular-scattering 
distribution of its surface materials. The extended tuning range of commercially available tunable lasers 
has been used to achieve submillimeter-range-resolution measurements of U(z) in laboratory 
demonstrations. These measurements agree well with calculations of U(z) based on the known shape of 
the object and on measured angular-surface-scattering properties. The wavelength-decorrelation technique 
has been implemented using both direct detection and a form of coherent detection that uses a range- 
reference plane (or a range-reference point) located near the object. The direct-detection approach 
requires additional signal processing, such as bispectral analysis, to recover the Fourier phase of U(z). 

The deterministic approach, referred to as the speckle-pattern-sampling technique, relates the 
detailed structure of the speckle-pattern intensity to the 3D distribution of scatterers on the object's 
surface. Excellent agreement has been demonstrated between the resulting 3D images and known object 
shapes. This 3D imaging technique requires either coherent detection or 3D phase retrieval. In the 
laboratory demonstrations, coherent detection was implemented using a reference point located near the 
object. A concept for 3D phase retrieval was also demonstrated on an array of point scatterers. In the 
speckle-pattern-sampling technique, longitudinal and lateral information is obtained through the 
wavelength dependence and spatial structure of the speckle pattern, respectively. The longitudinal 
resolution of an image is determined by the frequency scan length, whereas the lateral resolution is 
determined by the solid angle subtended by the detector array. As the resolution improves, these two 
effects mix so that more sophisticated sampling and data analysis are required. This 3D imaging 
technique is scalable from the microscopic regime to the large-scale regime, but the resolution-cell size 
becomes limited for larger objects because the number of resolution cells is restricted by the size of the 
3D Fourier transform that can be processed by the computer. 

An additional application of the wavelength dependence of speckle was demonstrated for the 
remote measurement of the normal vector to a surface. Because this technique is based on measuring the 
direction and magnitude of the shift in the speckle pattern caused by tuning the laser, it can be 
implemented with a simplified system. 

A second class of 3D imaging techniques based on image speckle obtains the lateral information by 
conventional imaging and the longitudinal information from the wavelength dependence of image 
speckle. These image-speckle techniques have the advantage that high lateral resolution can be 
maintained over a large surface area by using additional cameras and individual regions of the surface can 
be inspected at high resolution. A disadvantage is that the depth of field is limited the same way as for 
conventional imaging. These techniques also require a reference beam. A particularly simple 
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implementation of the image-speckle technique using two point sources was described in which the 

reference beam is introduced automatically. 

There are many potential commercial applications of the wavelength dependence of laser speckle in 
advanced manufacturing, dimensional metrology, machine vision, industrial inspection, and robotics. 
Work is currently under way to adapt this proven technology to these applications, including development 
of a fast frequency-scanning laser, a parallel processor engineered for real-time digital signal processing, 
and prototype demonstration systems designed for specific applications. 
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APPENDIX 
ANGULAR-SCATTERING MEASUREMENTS 

To understand and predict laser radar target signatures, it is important to be able to measure the 
angular-scattering properties of surface materials. For a monostatic radar configuration, the surface- 
scattering properties can be characterized by the monostatic reflectance distribution function ftff). 
Basically, fiff) describes the variation with angle of incidence 0 of the strength of the backscattered 
radiation from a flat-shaped material sample. If the return signal is measured in units of laser radar cross 
section a and if the surface area of the sample is A, then,/( 0) can be written as 

f(6) = —2—    . 
4JTCOS 6A (A-l) 

Equation (A-l) is obtained by applying Eq. (4) to the calculation of <rfor a flat plate and solving for/0). 
The division by cos 0 in Eq. (A-l) accounts for two separate cos0 obliquity factors. One obliquity factor 
arises from the decrease in target irradiance £ocos0 (measured normal to the surface element) as 0 
increases. The other obliquity factor accounts for the smaller projected area Acos0 of the surface with 
respect to the receiver at larger values of 0. Equations (5) and (6) show how fiO) enters into the 
calculation of the laser radar cross section a and the range-resolved laser radar cross section U(z). 
Equation (3) gives the local angle of incidence 0 in terms of the height function 1\(x, v) that specifies the 
target shape. 

The following describes two methods for measuring/(0). The first method is to flood-illuminate a 
flat-shaped sample of the surface material with a uniform beam and to measure the laser radar cross 
section <r as a function of the angle of incidence 0. The resulting values of a are then substituted into 
Eq. (A-l). Although the optical system shown in Figure 19 was designed to measure a target's monostatic 
speckle pattern, it is also useful for measuring a because it provides for flood-illumination of the target 
and detection of the return signal in the monostatic direction. When using this system to measure a, the 
laser frequency is fixed and the integrated intensity at the detector plane is measured rather than tuning 
the laser and resolving the individual speckles. The value of a is determined by comparing the result with 
the reading for a calibrated target with known a. 

The first method has two problems that limit its accuracy. First, because the surface sample is 
flood-illuminated, the incident beam also strikes the background and the supporting structure. The 
resulting unwanted contributions to the return signal affect the accuracy of the measurement. Second, a 
uniform illumination beam is difficult to produce. This fact results in uncertainty in the total power 
incident on the surface sample, which causes inaccuracies in the measurement of G. 

Both of these difficulties can be overcome by spot-illuminating the sample material so that the 
entire beam strikes the target. Let Pt be the total incident power on the surface sample. For spot- 
illumination, it is necessary to have an expression for/0) based on knowledge of P(, rather than on the 
assumption that the surface is uniformly illuminated with irradiance E0. If the strength of the return signal 
is specified in terms of the radiometric intensity / = dP/dQ, where dP represents the power collected by a 
receiver subtending a solid angle of dQ. with respect to the scatterer, an expression corresponding to 
Eq. (A-l), but for spot illumination, can be written as 
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f(e) = 
ptcose 

(A-2) 

The cos0 obliquity factor in Eq. (A-2) accounts for the decrease in surface irradiance with increasing 
angle of incidence 0. Only one obliquity factor occurs in the spot-illumination mode (in contrast with the 
flood-illumination mode) because the projected area of the illumination spot remains constant. Because 
the actual illuminated area of the surface sample is proportional to cos_10, either a large sample or a small 
beam is required to make measurements at large aspect angles. 

One approach to measuring f{6) by spot-illumination is to measure the radiometric intensity / and 
the incident power P, separately and substitute them into Eq. (A-2). A better approach is to use a surface- 
material standard. The standard should be diffuse and highly reflective so that it approximates a 
Lambertian surface. Then,./(0) at normal incidence will then be close to the ideal value of f(0) = l/K. 
The system calibration factor is determined by relating the instrument reading for normally incident 
illumination of the standard to the known flO) value of the standard. Readings at angles other than normal 
incidence are divided by cos0 in accordance with Eq. (A-2). 
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Figure A-l. Measured f( 6): (a) Newport HC-560 retroreflective paint; (b) Newport HC-563 white diffuse paint; 
(c) alodined aluminum; and (d) Krylon 1402 heat-resistant paint. 
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Figure A-l contains measurements of/(0) obtained using the spot-illumination mode and the optical 
system depicted in Figure 19. In these measurements, flat samples of the surface material are placed in an 
angular positioner at the target location and illuminated by a HeNe laser with X = 0.633 /mi. The 
measurements of flfi) in Figure A-l are for Newport HC-560 retroreflective paint, Newport HC-563 white 
diffuse paint, alodined aluminum, and Krylon 1402 heat-resistant paint. The dashed line represents a 
theoretical Lambertian surface with f{6) = 1/K. All of the measurements of/(Ö) curve upward for large 
values of 0, even though the cos 6 obliquity factor has been properly accounted for. The white diffuse 
paint most closely resembles a Lambertian surface. For monostatic purposes the retroreflective paint can 
be modeled as a Lambertian surface with a gain of approximately 20 dB. 
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