
77 '77

$77

0111

SEMANTIC INTERPRETATION OF AN

ARTIFICIAL NEURAL NETWORK

.7,' THESIS

Stanley Dale Kinderknecht
Captain, USAF

770

DEAT7ET77,'H IR O C

7','..ERSIT

A7,f Y

777 FORC INTTT7F7EH OO

Wriht-atersn irficeBae, hi
MATE~WT7N 7*,w =

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

I QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

AFIT/GCS/ENG/95D-07

SEMANTIC INTERPRETATION OF AN

ARTIFICIAL NEURAL NETWORK

THESIS
Stanley Dale Kinderknecht

Captain, USAF

AFIT/GCS/ENG/95D-07

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/95D-07

SEMANTIC INTERPRETATION OF AN

ARTIFICIAL NEURAL NETWORK

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Stanley Dale Kinderknecht, B.S.

Captain, USAF

December 1995

Approved for public release; distribution unlimited

Acknowledgements

This paper reflects long, arduous hours of research and writing. Although not always

enjoyable, breaking ground on something that had never been accomplished before proved

exhilarating. I could not have reached this far nor achieved this much without intimate

guidance and supervision provided by my committee.

I would like to thank my advisor, Dr Steve Rogers, for his strong commitment to

the goals for which I strove. For unwavering belief in me and my potential to succeed, I

would like to thank my readers, Dr Eugene Santos, Jr. and Maj Gregg Gunsch. Without

their meticulous perusal of this developing document-as well as their constant words of

encouragement-achieving my research goals and producing a truly exemplary document

would not have been possible.

Most emphatically, I sincerely wish to thank my wife, Lisa, whose patience and

understanding proved infinite. Finally, I want to thank my six children, Christopher,

Corwin, Candace, Cian, Collin, and Cameron, for their involuntary acceptance of my

pursuit of a Master's degree. Their calls for "Dad" went unanswered altogether too often.

After a year and a half, I gladly focus my thoughts and attention back to them, my loving

family.

Stanley Dale Kinderknecht

ii

Table of Contents

Page

Acknowledgement s. ii

List of Figures. vi

List of Tables. viii

Abstract. x

1. Introduction. 1-1

1.1 What is Intelligence?7 1-1

1.2 Expert Systems 1-2

1.2.1 Rule-Based Expert Systems 1-2

1.2.2 Artificial Neural Networks. 1-3

1.2.3 Mind vs. Brain 1-4

1.2.4 Hybrid Systems-Expert Networks. 1-5

1.3 Problem Statement. 1-7

1.4 Scope of Research 1-7

1.5 Thesis Organization. 1-7

IT. Related Research. 2-1

2.1 Common Hybrid-Net--+Rule Base. 2-1

2.2 Special Architectures 2-1

2.3 Examples. 2-2

2.4 Why this method7 2-4

111. A Closer Look at Fu. 3-1

3.1 Implementing Fu as a Net Interpreter. 3-2

3.2 A Modicum of Modification. 3-5

iii

Page

3.3 Problems/ Limitations. 3-8

3.3.1 Special Architecture 3-8

3.3.2 Ad Hoc Approach. 3-8

3.3.3 Discrete Inputs and Outputs. 3-8

3.4 Meta Knowledge. 3-9

3.5 Bottom Line. 3-10

IV. Knowledge Mathematics 4-1

4.1 Concept Overview 4-1

4.2 Intuition. 4-2

4.3 Problems 4-11

4.4 Mathematical Derivation 4-14

4.4.1 Binary Output. 4-14

4.4.2 Shortcut Regions. 4-17

4.4.3 General Region 4-20

4.4.4 Winner Takes All. 4-21

4.4.5 Observations 4-22

V. Decision Boundaries Abound 5-1

5.1 What is a Decision Boundary? 5-1

5.2 Finding a Decision Boundary. 5-1

5.3 Discriminant Function. 5-2

5.4 Decision Boundaries, Symbolic Knowledge, and You 5-4

5.4.1 Linearly Separable Data 5-7

5.4.2 General Rule Derivation. 5-8

5.4.3 Step 1: Training 5-9

5.4.4 Step 2: Partitioning. 5-9

5.4.5 Step 3: Pairing 5-10

iv

Page

5.4.6 Step 4: Bound points. 5-11

5.4.7 Step 5: Transitivity 5-21

5.4.8 Step 6: Subsuming. 5-22

5.5 Results. 5-23

5.5.1 Limitations 5-24

5.5.2 A Note on Optimization 5-25

VI. Conclusions and Recommendations 6-1

Bibliography BIB-i

Vita. VITA-i1

V

List of Figures

Figure Page

1.1. Expert Network Architectures 1-6

3.1. Multi-Layer Perceptron 3-6

3.2. Two-Feature Iris Clustering 3-11

4.1. Single-Node Perceptron 4-2

4.2. Perceptron Activation Plot 4-3

4.3. Rule Space Partitioning 4-5

4.4. Two-Input Iris Activation 4-6

4.5. Perceptron Architectures 4-6

4.6. MLP Activations by Layer 4-8

4.7. Linearly Separable by Hand 4-9

4.8. Linearly Separable Data 4-10

4.9. Linearly Separable by Training 4-12

4.10. Neuron Output Behavior 4-13

4.11. Squashed Output Function 4-15

4.12. Three-Input Activation Plane 4-18

5.1. Decision Boundary Point 5-2

5.2. Articulated Decision Boundary 5-3

5.3. Discriminant Function vs. Inputs 5-4

5.4. Unfortunate Vector Pairing 5-5

5.5. Line Segment Rules 5-6

5.6. Superfluous Rule Elimination 5-7

5.7. Linearly Separable Decision Boundary 5-8

5.8. Misclassified Point Bounding 5-11

vi

Figure Page

5.9. Linearly Separable Data: Bounding First Point 5-13

5.10. Linearly Separable Data: Bounding Second Point 5-14

5.11. Sample XOR Data 5-14

5.12. XOR Data: Bounding First Point 5-15

5.13. XOR Data: Bounding Second Point 5-16

5.14. XOR Data: Complete Bounding 5-17

vii

List of Tables
Table Page

3.1. Fu Rules .. 3-7

3.2. Fu's Iris Rule Set 3-9

4.1. Rule Dependencies 4-4

4.2. Small Complex Region Rule Set 4-23

5.1. Decision Boundary XOR Rule Set. 5-17

5.2. Stair-Step Rule Partitions 5-19

5.3. Stair Step with Link Partition 5-19

viii

AFIT/GCS/ENG/95D-07

Abstract

Recent advances in machine learning theory have opened the door for applications

to many difficult problem domains. One area that has achieved great success for stock

market analysis/prediction is artificial neural networks. However, knowledge embedded in

the neural network is not easily translated into symbolic form. Recent research, exploring

the viability of merging artificial neural networks with traditional rule-based expert sys-

tems, has achieved limited success. In particular, extracting production (IF.. .THEN) rules

from a trained neural net based on connection weights provides a valid set of rules only

when neuron outputs are close to 0 or 1 (e.g. the output sigmoid function is saturated).

This thesis presents two new ways to interpret neural network knowledge. The first, called

Knowledge Math, extends the use of connection weights, generating rules for general (i.e.

non-binary) input and output values. The second method, based on decision boundaries,

utilizes the inherent border between output classification regions to draw symbolic inter-

pretation. The Decision Boundary method generates more complex symbolic rules than

Knowledge Math, but provides valid feature relationships in the uncertain regions around

the midpoints of the neuron output functions. The main result is a complementary rela-

tionship between Knowledge Math and Decision Boundaries, as well as subsymbolic and

symbolic knowledge representations for a general multi-layer perceptron.

ix

SEMANTIC INTERPRETATION OF AN

ARTIFICIAL NEURAL NETWORK

L Introduction

Recent advances in machine learning have opened the door for applications to many

difficult problem domains. In particular, artificial neural networks have achieved great

success for stock market analysis and prediction. However, neural networks lack an expla-

nation facility that make traditional expert systems more desirable in these tough domains.

It would be nice to somehow merge these two contrasting approaches, achieving the benefits

of both.

This paper addresses the problem of augmenting a neural network with an expert sys-

tem explanation capability. First, the strengths and weaknesses of each machine learning

technique must be well understood. Although seemingly opposed, artificial neural networks

and expert systems are fundamentally two successful applications of machine intelligence.

1.1 What is Intelligence?

Winston defines artificial intelligence (AI) as the study of the computations that

make it possible to perceive, reason, and act [23]. The ultimate Al goal, then, is to make

a machine think and act like a human. However, the mechanisms with which humans

(or any other species) perform these cognitive tasks are not well understood. On the one

hand, the human brain contains a vast, interconnected network of neurons. Although the

simplified physical properties of these brain cells can be modeled[16], precisely how they

account for thought, memory, or intelligence remains a mystery. On the other hand, the

mind is a nebulous inferencing device, though its operation is grounded in well-ordered

logic and rules. Nobody knows exactly how one can account for the other.

With their limited understanding of human cognition, researchers have found this

lofty goal-construction of an artificial person-difficult (if not impossible) to achieve. Still,

their dream has elicited a huge amount of research in a broad range of domains, including

1-1

robotics, vision, natural language recognition, and reasoning. While the quintessential goal

still seems largely untenable, emergent technologies, such as expert systems, are beginning

to enjoy commercial and academic success.

1.2 Expert Systems

The human brain stores all kinds of knowledge, from the most trivial bits of informa-

tion to abstract concepts and complex ideas, in an easily accessible manner. The quest for

a tool which makes the representation of a large amount of knowledge possible, as well as

consistent and effectively usable, is one of the basic problems of artificial intelligence[22].

Expert systems, computer systems that emulate human decision-making, represent very

successful approximate solutions to the classic Al problem of programming intelligence[7].

Basically, there are two main approaches to expert system design based on two distinct

classifications of knowledge representation: symbolic and subsymbolic.

1.2.1 Rule-Based Expert Systems. A conventional expert system maintains

knowledge explicitly as a set of human-understandable facts and rules (i.e. as symbolic

knowledge). Such an expert system consists of three essential parts: a rule base, a working

memory, and an inference engine. These are roughly analogous to a human's long-term

memory, short-term memory, and cognitive processing, respectively. Rules reside in the

rule base. Facts entered by the user or inferred by the system exist in the working mem-

ory. The inference engine matches rule antecedents within the rule base against facts in

the working memory. A match causes a rule to fire; the rule's consequent represents an

action to be performed and/or a new fact to be inserted into the working memory.

A rule-based expert system inferences over a set of production (IF ... THEN) rules.

Production rules represent a "natural" encoding of human knowledge; much of human

problem solving can be expressed in this form[15]. In fact, IF ... THEN rules simplify

knowledge acquisition. Experts generally express their experiences in a way that translates

readily into production rules. For example, an expert's statement

When it rains, the sidewalk gets wet.

1-2

can be directly encoded as the production rule

IF it is raining, THEN the sidewalk is wet.

Due to the explicitness of the knowledge, the system works well with inaccurate and

incomplete information, such as when employing confidence factors. Such systems are

relatively easy to create, and validation of the knowledge base is straightforward.

1.2.2 Artificial Neural Networks. Artificial neural networks (or, simply, neural

nets) represent an Al computational paradigm radically different from rule-based expert

systems. Like its biological counterpart, an artificial neural net is composed of independent

processing elements called neurons. Unlike a rule-based expert system, a neural net does

not represent a piece of knowledge, such as a fact or a rule, as an atomic, isolated entity

(i.e. an element in a database, or an address in memory). Instead, knowledge is distributed

mathematically across the network in the form of weighted connections between neurons.

Thus, the neural net's knowledge is not inherently discernible; rather, it is implicit, or

subsymbolic. Generally, identifying an individual neuron's role in a network is difficult.

The neural net knowledge base is created automatically by a learning algorithm.

Neural nets implicitly discover fundamental relationships (rules) embedded in a set of

training data. Learning procedures can be derived and their properties mathematically

analyzed because in these systems, knowledge representations are extremely impoverished

[17]. Working with incomplete information, and providing justification of inference, is

limited or even impossible. Validation of completed system is dependent on statistical

analysis and performance.

1-3

While both approaches have enjoyed notable success in a number of problem domains' ,

limitations inhibit either from becoming the general AI tool researchers desire. However,

by mapping a new problem domain to one of these opposing strategies, one could achieve

a reasonable implementation. Which, then, should be chosen?

1.2.3 Mind vs. Brain. Traditional expert systems and neural nets seem to

be diametrically opposed in their functionality. Neural nets attempt to model physical

attributes of the brain; expert systems model the abstract notion we call intelligence.

That is, a neural net can be viewed as our organic computer's hardware; an expert system

represents our biological software. While this analogy suggests some implicit connection,

our meager silicon implementations remain disjoint. Nowhere is the contrast between the

symbolic and subsymbolic paradigms more dramatic than in learning.

Expert systems, built through knowledge extraction and rule-based development,

impose rigid descriptions of facts and rules. An articulate human expert must extract

regularities from his experience and express them in the comprehensible, explicit form of

rules. Learning a new concept entails creating something like a new schema. Because

schemata are such large and complex knowledge structures, developing automatic proce-

dures for generating them in original and flexible ways is extremely difficult[17]. Large

systems require careful design and can be unwieldy and difficult to maintain if not care-

fully developed and designed[22]. However, they work well on ordinary digital computers.

The average development time is 12 to 18 months [1][22].

Neural nets, built through training with data examples, require many input vectors

whose expected outcome are known. On the other hand, no expert is needed. Neural nets

learn, through well-defined learning algorithms, to classify items based on input features.

'Successful application areas of these machine intelligence paradigms include:

e Traditional (i.e. rule-based) expert systems have achieved significant success in such diverse areas
as configuration and control, monitoring/diagnosis, tutoring/instruction, and planning[7].

* Neural nets are particularly useful in any application that can be mapped to a pattern matching
activity (i.e. drawing conclusions from a set of input "features"). Neural nets have been applied suc-
cessfully to target recognition, radar signal processing, and text-to-speech conversion, and hold great
potential for vision, voice recognition, on-line system diagnosis, mission planning, and optimization

problems[16].

1-4

Neural nets implicitly discover essential rules embedded in the training data. A new schema

comes into being gradually, as the strengths of neurons slowly shift in response to environ-

mental observation, and new groups of coherent neurons slowly gain important influence

in the processing[17]. Large systems need long-term, computationally exacting learning,

with uncertain results[22]. For all but the smallest networks, the best performance comes

from the use of accelerator-assisted or specialized parallel chip boards[l]. Development

time is as little as a few weeks or months, and additional learning is possible[I][22].

Drawing a conclusion in a rule-based system consists of matching facts in its working

memory against rules in the rule base. A firing rule often injects new information into

the working memory, causing a new state of the world; for every change in the state of

the world, the exhaustive search through the rule space must begin anew. Alternatively,

a neural net performs, for any arbitrary input vector, a constant number of mathematical

calculations to draw its conclusion. That is, a decision is always found in constant time

(O(1))2. Thus, as the size of the rule-base increases, an equivalent neural net will be faster

(especially if implemented in hardware).

Is it possible to combine these ostensibly disjoint AI techniques-rule-based expert

systems and neural networks-to solve the stock market prediction problem efficiently and

effectively? In particular, can this hybrid expert network realize the capabilities of both

types of systems while minimizing the deficiencies of either?

1.2.4 Hybrid Systems-Expert Networks. Rather than contradictory, the advan-

tages and disadvantages of rule-based and neural approaches to expert system design, like

the human brain and mind, are in fact complementary[22]. It seems natural to conflate

these two concepts, integrating advantages of both. Caudill suggested some general models

of such hybrid systems, shown in Figure 1.1[1].

The most appropriate model to use depends on the nature of the problem domain.

Rule-based expert systems are good when an expert is available, articulate, and explicitly

cognizant of his decision processes. Neural nets are good when the expert does not know for

2This is true for a static neural net. Especially during training, the net architecture may be dynamic-
nodes may be added or removed. In this case, the execution time depends on the number of neurons, n;
the net operates in linear time (O(n)).

1-5

Problem

Neuo Rule-Based
NerlNelseork Explanation

Networksystemo

If user asks for
explanaion

Answer Epaao

a) Divide and Conquer c) Explanation by Confabulation

Rule-based System

Roe-asdSylesTrained Extrted Role-basedI

Nua NerlNeural Rls Sse
Nelseork Nelsoork Network Ros Sals

b) Embedded Neural Network d) Artificial Expert

Figure 1.1 Expert Network Architectures. Four basic models of combining neural nets

with traditional expert systems, including: (a) Divide and Conquer. Partition the prob-

lem into subtasks and apply the most appropriate method to each; (b) Embedded Neural

Network. As noted in Section 1.2.2, neural nets perform pattern matching extremely well.

Matching the state of the world to rule antecedents (IF clauses) is inherently a pattern

matching activity. Use the net within the rule base; (c) Explanation by Confabulation.

Augment a normal neural net with a small rule base for a limited explanation (or, more

precisely, a rationalization) facility; and (d) Artificial Expert. A trained neural net acts

as an expert; extract semantic rules from the subsymbolic net to populate a rule-base.

certain which features and relationships are crucial, which are redundant and superfluous,

and what knowledge is actually contrary.

Consider a stock market predictor. Analysts (more or less) successfully predict the

market every day based on certain sets of indicators, such as short-term and long-term

trends. Some of these analysts are truly expert, in that they predict correctly significantly

more often than they are mistaken. However, even these experts can readily express neither

the importance of individual indicators (features), nor the relationships between them. An

expert system that could learn these fundamental relationships would be a great benefit,

suggesting a strong mapping of this domain to artificial neural networks.

However, neural nets provide little or no explanation capability. The ability to ex-

plain itself is crucial in an expert system. Humans typically fear and distrust computers.

1-6

More importantly, if a neural net cannot explain itself, then the important features and

relationships (from the computer's point of view) cannot be ascertained. Hence, the net

will not help to increase domain knowledge.

Due to the explicit nature of the knowledge, rule-based systems have perfect expla-

nation abilities. Is it not possible to provide a rule base-like explanation facility while

taking advantage of a neural net's learning potential?

1.3 Problem Statement

The purpose of this research is to elicit rules from an artificial neural network. In

particular, a trained neural net will be augmented with an explanation facility. When a

user applies an input vector, the net will not only provide an output classification but in

response to user prompting, will supply salient input relationships in the form of rules as

well.

1.4 Scope of Research

This research presents a new method of interpreting the subsymbolic net knowledge,

based on decision boundaries. A standard multi-layer perceptron will be used as a basis

for symbolic interpretation. The net will be trained normally over a variety of illustrative

problem domain, and the trained net will be augmented with an ability to explain the

output classification in symbolic form.

1.5 Thesis Organization

The following chapter describes much of the current research into combining neural

nets and expert systems. Fu's method of translating the neural net into a set of symbolic

rules is explored more deeply.

In Chapter IV, a method called Knowledge Math is explored. Knowledge Math

extends Fu's concepts, utilizing not only connection weights, but also the input values,

to establish a means to interpret rather than translate an artificial neural network. In

particular, the neuron input and output values are not restricted to binary representations.

1-7

As a result, symbolic rule generation is possible for individual input vectors in certain

regions of the input space.

Then, Chapter V describes the Decision Boundary method. This method provides

a symbolic interpretation ability for the regions near the midpoints of the neuron output

functions, which remain ambiguous in the Knowledge Math method.

Finally, conclusions and recommendations are summarized in Chapter VI.

1-8

II. Related Research

Hybrid models proposed in recent literature are invariably compromises, either pre-

ferring explanation abilities and work with incomplete information to the detriment of an

automatic adaptability, or preferring a neural network architecture that sacrifices explicit

work with information.

What kind of model provides the greatest potential for meeting the needs of an

artificial stock market expert network?

2.1 Common Hybrid-Net--* Rule Base

Of the four hybrid approaches presented by Caudill[1] (see Section 1.2.4), the Ar-

tificial Expert offers the advantage of rule-based inferencing and explanation capabilities,

while capitalizing upon an artificial neural network's ability to train without an expert. In

fact, many researchers have recently exploited this concept. In such a hybrid system, a set

of production rules is extracted from a trained neural net. This rule set, which may need

to be manually refined or extended, forms the basis of a traditional rule-based system.

According to Caudill, the rule-extraction process is tedious, and the results may not

be quite what one might expect[l], but it is possible to perform. However, an intuitive

symbolic representation of subsymbolic knowledge is not obvious. As mentioned in Sec-

tion 1.2.2, one cannot look to the role of individual neurons in identifying an inference

chain. How, then, are researchers able to extract semantic rules from a neural net? By

and large, researchers build into their nets the extraction capabilities. In other words, their

systems employ special net architectures.

2.2 Special Architectures

One problem in integrating both neural and rule-based approaches is the creation of

the knowledge base when only some rules and the example data are available. McMillan,

Mozer, and Smolensky[13], Samad[18], and Yang and Bhargava[24] proposed heuristics

to construct the neural knowledge base from explicit rules. Similarly, Frasconi et al[3],

Handelman, Lane, and Gelfand[8], and Hruska, Kuncicky, and Lacher[9] considered hybrid

2-1

learning, when neural network weights are initialized from explicit rules (e.g. using linear

programming), and learning from examples is then viewed as a refinement process to cover

uncertainty.

Rather than providing an explanation facility to a trained neural net, however, this

work addresses the viability of predetermining the initial neural net structure from a rule

base. A net constructed in this manner may better serve the rule-extraction process.

However, the ease of interpretability is bought with a decrease of generalization ability.

2.3 Examples

Towell, Shavlik and Noordewier[21] claimed a knowledge- based neural network could

outperform a standard backpropogation network, as well as other related learning algo-

rithms (including symbolic and numerical ones) in certain domains, suggesting a means

of increasing domain knowledge. Domain knowledge, in the form of Boolean rules, was

initially incorporated into a neural net. After training, refined rules were extracted from

the network. However, only knowledge about what had changed was made available; it

was still impossible to discern why certain changes occurred.

Similarly, Yeung and Fong proposed a rule-mapped neural network model, incorpo-

rating domain knowledge initially[26]. They later advocated a technique to trigger modifi-

cations on the symbolic knowledge base using network performance[25]. They presented a

tool, called a knowledge matrix, to symbolically interpret the network's response to an in-

put. Consequently, they maintain learning is made more controllable and comprehensible.

Gallant[6] suggested a means of generating a knowledge base from a trained neural

net, and an "inference engine" to interpret the knowledge base. His method uses a simple

neural net model with better interpretation of knowledge representation but with a weaker

learning algorithm.

Fu[4] recognized a bidirectional linkage between the net and the rule base. In his

model, useful domain attributes and concepts were first identified and linked in a way

consistent with initial domain knowledge, and then the links were weighted properly so

as to maintain the semantics. In this manner, Fu attested, a rule-based system could be

2-2

mapped into the neural net, and the net's knowledge could be transferred back into a rule-

base. However, this last transformation was not obvious. In [5], Fu supplied an algorithm

to perform this latter translation; rules were formed based on searching through all possible

combinations of neuron input weights. He recommended several pruning heuristics to make

this exhaustive search feasible.

Kane and Milgram[10] explored logical rule extraction by forcing certain neurons to

realize elementary logical operations (i.e. AND, OR, or NOT). They constrained connec-

tion weights to a finite set of values and forced all neurons to operate in the saturated part

of their output function (i.e. for the sigmoidal neuron, the output was arbitrarily close to

a binary 0 or 1). A truth table generated for each neuron indicated what the saturated

output should be, based on combinations of inputs, to achieve the chosen logical operation.

Associated rules were directly observed from the truth table.

Both Fu and Kane constrained the neuron outputs to 0 or 1, even though the actual

output of an activation function (e.g. the sigmoid function) is a real value in the interval

[0,1]. The hard-limiting 1 or 0 activation forces the associated rule to either fire or not

fire. However, in a rule-based system it is often desirable to associate uncertainty with

the rules. That is, based on premise strengths, the consequent may be true with a certain

probability (certainty factor). The real-valued input weights provide a natural means of

describing this uncertainty.

Fuzzy logic deals with the uncertainty of verbal expression[27]. Fuzzy rules are

production rules whose certainty factors are classified into broad categories. For instance,

a rule consequent may be true with a HIGH, MEDIUM, or LOW likelihood. According to

Zadeh, fuzzy logic is an excellent means to combine artificial intelligence methods[28].

Mitra and Pal[14] described an expert network model based on a fuzzy multi-layer

perceptron. Their system inferred the output class membership value (e.g. HIGH, MEDIUM,

or LOW) and generated a measure of certainty expressing confidence in the decision. In the

case of partial inputs, this model was capable of querying the user for the more important

input feature information needed. The inferencing procedure utilized connection weight

2-3

magnitudes. The trained neural net constituted a knowledge-base for the given application

domain, from which fuzzy production rules were extracted.

Tazaki and Inoue[20] implemented an architecture enabling automated extraction of

fuzzy rules using a multi-layer perceptron with a planar lattice structure on the hidden

layer. Each lattice neuron in the hidden layer was assigned a fuzzy proposition composing

a fuzzy rule. The network learned structurally with generation/annihilation of neurons.

As a result, fuzzy rules could be extracted.

2.4 Why this method?

Special architectures restrict the applicability and generality of the neural net and,

thus, the expert system as a whole. In particular, discarding the neural net in favor of

the resulting rule base ignores the benefits of the net, such as computational speed'. Fur-

thermore, the rule base is at best an approximation of the precise knowledge distributed

across the net. Researchers supporting the Artificial Expert paradigm have suggested the

extracted knowledge base performed as well as, or even better than, the original neural

net[21] [6][5]. They view the symbolic rules, not as an approximation, but as a generaliza-

tion of the neural net knowledge. However, given the neural net's goal of generalization to

the training data, this result seems unlikely in a general net.

Is it not possible to train a general (even a generic) neural net to learn a problem

domain (say, stock market prediction), and, once trained, use the neural net with some

measure of explanation capability?

The following chapters present the evolution of a technique to extract symbolic knowl-

edge from a trained neural net. Unlike this previous work, the goal of this research is to

avoid the need to form a stand-alone rule base or artificially constrain the net architecture.

From a general net, symbolic rule relationships are discovered.

A unique approach to soliciting symbolic information from a subsymbolic net em-

ploying the concept of decision boundaries is presented in Chapter V. First, however, the

1A large rule base is slow and difficult to maintain. A neural net (particularly implemented in parallel
hardware) takes a constant number of calculations (i.e. constant time within a static net, linear time with
respect to the number of neurons in a dynamic architecture) to find an output for a given input vector.

2-4

special architecture approach is extended in an attempt to interpret net knowledge symbol-

ically for an arbitrary input vector. Chapter III examines Fu's rule generation technique

more closely.

Although Fu employs a special architecture and forms an independent rule base, his

methodology is founded on some of the basic neuron mathematical properties. That is,

he coaxes semantic meaning from actual knowledge distributed throughout the net. This

seems a good place to begin an attempt to provide an explanation facility to the net.

2-5

III. A Closer Look at Fu

Fu[4] describes an intelligent hybrid system that combines the two fundamental Ar-

tificial Expert notions: injecting symbolic knowledge into the net and eliciting meaningful

rules from the net. Established production rules determine initial neural net connections

and weights. Domain attributes and concepts are identified and linked in a way con-

sistent with initial domain knowledge, and the links are weighted properly to maintain

the semantics. Hidden units and additional connections are introduced as appropriate.

This primitive structure evolves through self-adaptation. Finally, the trained neural net,

a refinement of the initial knowledge base, is translated back into rules.

The rule-based inference system is mapped into the neural net in the following man-

ner. Data attributes or variables are assigned input units, intermediate concepts or hy-

potheses are assigned hidden units, and target concepts or final hypotheses are assigned

output units. Hidden and output neurons represent conjunctive units. All initial rules

must be rewritten into the form

IFalanda 2anda 3THEN3 (3.1)

This results in a set of simplified rules, each having an antecedent (premise) consisting

of one or more conditions, and a single consequent. The premise is assigned a hidden

neuron. Each condition corresponds to an assigned attribute or concept (input node). The

consequent corresponds to an output concept node. If the premise consists of a single

condition, the corresponding input node can be connected directly to the output node

representing the rule's consequent; no hidden node is needed.

During training, the rule strengths are adjusted via two rounds of back propagation.

Between rounds, hidden units are clustered based on similarity of their input weight vectors.

When the network performance gets stuck, new hidden units are added to generate new

concepts and rules.

Finally, the revised neural net is translated into rules. The translation algorithm

heuristically searches the rule space distinguishing between positive and negative attributes.

3-1

Positive attributes link to the concept with positive weights, and negative attributes link

with negative weights. Confirming rules, with an asserted conclusion, C, are generated by

exploring combinations of positive attributes in the presence of various negated attributes.

Similarly, disconfirming rules, with a negated conclusion, -,C, account for combinations of

negated attributes with various positive attributes.

Initial knowledge strength affects the model design for revising the knowledge. If

there is no initial knowledge at all, the net degenerates into a typical, randomly weighted,

fully-connected multi-layer perceptron. If the initial knowledge is strong, it can be mapped

into the net without adding any hidden units or connections. As a result, no additional

rules will be extracted.

Fu's translation approach accounts for the distributed nature of the net knowledge.

Of the weighted connections, the weights provide key information; the neuron inputs are

binary. How can the input weights alone lead to symbolic rules?

3.1 Implementing Fu as a Net Interpreter

Fu suggests that a rule generated from a neural net has the production form

IF the premise, THEN the conclusion. (3.2)

Specifically, the combination of weights at each neuron, along with the neuron output,

realizes a production rule. The neuron output, y, is a function of the weighted inputs:

Y= f(w1 * X1 +w2*X2+ ... +w, *Xn +0). (3.3)

Fu exploits the notion of a neuron firing. That is, when the neuron's activation

function is greater than 0, the output is a binary 1; otherwise, it is a 0.

The binary nature of Fu's net is essential, since he considers only combinations

of weights to form his rules. That is, he assumes a given weight wi, associated with

neuron input xi, either fully contributes or fully fails to contribute to the neuron output

(and the resulting rule). This discrete ON/OFF property of the weights suggests binary

3-2

input values; otherwise, his rules would be increasingly more inaccurate as the activation

function approached 0. In the latter case, an input that should contribute only a little

(either positively or negatively) to the neuron's firing potential would in fact be assumed

to contribute as much as possible or not at all.

While this binary functionality can be achieved by a hard limiter non-linearity for

each neuron, hard limiters have two serious disadvantages:

* hard-limited nets are notoriously hard to train, and

* strict binary functionality restricts the general utility of the net.

The sigmoid can be forced to perform a quasi-binary role (as noted in Appendix ??).

By supplying a large "steepness" coefficient, A, one can virtually guarantee the neuron

output, y, will always be "close" to 1 or 0. As the steepness increases, however, the

sigmoid more closely approximates a hard limiter, with the same drawbacks. The trick

is to find some A that will allow good training while providing a strong enough binary

characteristic'.

Assuming binary inputs, the output must also be binary by the following argument.

A neuron input must come from either (1) a network input, or (2) the output of another

neuron. It follows naturally that to ensure all inputs are binary, all outputs must also be

binary 2. Furthermore, each input weight, wk, either contributes or fails to contribute to

the output, based on whether xi is a 1 or a 0. Ordering the inputs such that all 1 inputs

are listed first (i.e. Vk,1[xk = 1 A x, = 0] -* Xk before x1), the neuron equation becomes

y=wl*(1)+...+wk*(1)+Wk+l*(O)+--.+wk+*(0)+ k+l=n (3.4)

Each contributing weight can be either positive or negative. Positive weights, w+ , in-

crease the likelihood the neuron will "fire" (its output will be a 1), while negative weights,

'It is virtually impossible to realize a true ON/OFF system. For example, IC chip voltage levels range
roughly between 0 an 1 volt, with two distinctive cut-off thresholds defined (e.g. TTL ON/OFF thresholds
of 0.3 and 0.7 V) to "unambiguously" delineate a 1 representation from that of a 0. Theoretically, the
null-area in between covers an area where the transistor will essentially never operate. A similar argument
can be applied to neuron output if the sigmoid is steep enough.

2This is not strictly true in the output layer, depending on the method of output classification. For the
time being, assume the output class is binary encoded (e.g. 3 output neurons can represent up to 23 = 8
output classes). Thus, even network outputs have a binary functionality.

3-3

w-, decrease this potential. Finding a neuron rule consists of searching for some combi-

nation of positive and negative weights such that the total contributing weight (positive

contributors minus negative contributors) exceeds the neuron threshold 0, ensuring the neu-

ron fires'. Letting wi represent a contributing weight and wj represent a non-contributor,

Equation 3.4 becomes

y=w++...+w++w +...w-+ i+j=k. (3.5)

A neuron rule consists of a series of antecedents, each reflecting a contributing or non-

contributing weight. That is, contributing weight wi corresponds to an asserted antecedent

Aj, while the non-contributor, wj, corresponds to a negated antecedent, Aj. Mapping

weights to antecedents ({w} -- {A}) and the output y to the consequent C, a specific

neuron rule can be expressed as

IFA + +...+ A + -,A- +...+ -A,- THEN C (or --C). (3.6)

Finding the neural net rules consists of collapsing the set of neuron rules to relate

input antecedents (antecedents associated with net inputs) to output consequents (conclu-

sions associated with net outputs). In this light, hidden nodes can be considered inter-

mediate conclusions; however, they contain no semantic value because of the distributed

nature of the knowledge base, and they must be removed. To collapse neuron rules4 :

1. FIND A RULE CONTAINING A HIDDEN NODE ANTECEDENT, AH,. IF NO SUCH

RULE EXISTS, THEN DONE.

2. FIND ALL RULES WHOSE CONSEQUENT REFERENCES THE HIDDEN NODE (CHi).

3. FOR EACH RULE FROM (2), GENERATE A NEW NET RULE REPLACING AHj IN

(1) WITH THE ANTECEDENTS IN (2).
4. Go TO (1).

'A neuron output of 1 results in a rule with an asserted consequent, called a confirm rule ([y = 1] - C).
Conversely, a 0 output indicates a negated consequent in a disconfirm rule ([y = 0] - -C).

4 For sake of clarity, let the antecedent/consequent subscript indicate the input/output. For instance,
A11 indicates a weight associated with the first input, while AH3 represents a weight associated with an
input from the third hidden node. Note that the consequent indicates the neuron associated with the
rule, such as CH2 or Col. Although this restricts the MLP architecture to a single hidden layer, Cybenko
showed that this is sufficient for most real-world problems[2]; at the very least, it will suffice for purposes
of illustration.

3-4

Note that a hidden node antecedent must match a hidden node consequent exactly.

That is, an asserted antecedent AH, will match only to a confirming rule with the positive

consequent CH,. Similarly, a negated antecedent -1AHi matches only a disconfirming rule

with negative consequent CH,. Thus the neuron rules

RI: A, 1 A -A 1 2 CHI

R2: A 3 -- CH1

R3: A 1 4 A -'A - CH2

R4: A1 5 A -A 14 -CH

R5: AHl A -iAH2 --+ COI

become the neural net rules

RI: A 1 A A1 5 A --A12 A -AI 4 --* C0 1

R2: A1 3 A A1 5 A -1A4 --* COI

Disconfirming neuron rule R4 contains a negated consequent -- CH2 that is not

matched to any antecedant in the neuron rule set. Hence, it is simply ingored.

3.2 A Modicum of Modification

How, then, could this methodology be used to supply an explanation capability to a

working neural net? Implementing Fu's system completely, one can visualize the creation

of a neural net explainer, as in the Explanation by Confabulation model (see Section 1.2.4).

The net-derived rules form the basis of a small, separate rule base, such that the neural net

is used in normal day-to-day activity. When the user wants an explanation, the rule-base

is tasked to draw a likely explanation.

However, rationalization may be unacceptable to the user. A better solution is to

construct these neuron rules, not as a set of all possible rules that must be collapsed, but

as a single input to output "chain" representing a unique rule for a particular input vector.

For binary net inputs, there exists a finite number of unique input vectors (2', where m

is the number of inputs). Another way of looking at it is that there are as many unique

rules (an upper bound anyway) as there are "bins" in the binarized input space.

Consider the neural net in Figure 3.1. If the inputs can be binarized, a single rule

can be constructed in this manner:

3-5

we 0 0 = 0.= 01 a

W2=.3H

0 = 0.7 -.

Figure 3.1 Multi-Layer Perceptron. With the neuron bias, 9, and the weight, wl,
associated with each neuron input, x0.

1. FOR EACH HIDDEN NODE, CONSTRUCT THE single NEURON RULE BASED ON

BINARY NET INPUTS. FOR EXAMPLE, HIDDEN NODE H1 IS RELATED TO THE

INPUTS I1 - 1,12 - 0 BY THE RULE A11 A -iAj 2 -* CH1.

2. DETERMINE EACH HIDDEN NODE OUTPUT AND, THUS, WHETHER THE NEU-

RON RULE IS confirming oR disconfirming. FoR THIS EXAMPLE, ONLY IN-

PUT 11 CONTRIBUTES. SINCE Wi 1 - -0.2 IS LESS THAN THE THRESHOLD
H1 --- 0.3, TlE OUTPUT IS A 0 (THE RULE IS DISCONFIRMING, AND THE

CONSEQUENT IS NEGATED (-7CH1)).

3. REPEAT THESE TWO STEPS FOR (ANY ADDITIONAL HIDDEN LAYERS AND)

THIE OUTPUT LAYER.

For this net, table 3.1 shows the complete set of rules resulting from all possible

combinations of inputs5 .

Although Fu discusses translating the neural net into rules, he is really compiling a

rule base from net knowledge. Alternatively, this algorithm suggests a means of perfoming

a translation for every input vector. As shown in Table 3.1, meaningful information can be

5 The table considers only those rules where all inputs are present (as either an asserted or negated

antecedant). Inputs that are not strong enough to affect the resulting output class become "don't cares",
and can be ignored. Fu considers such rules to be more general; fewer input features are restricted to being

either a 1 or a 0.

3-6

Inputs I Neuron Rule Activation Class [Conclusion

I, = 0 -11 A -1I1 - H1 0 < 0.3 H1 E classO -111
12=0 -1! 1 A-1 2 -- H 2 0 < 0.7 H 2 E classO -H 2

-I1 A 2I2 -- H 3 0 > -0.2 H 3 C classl H3
H 3 A -,H, A -,H 2 - 01 0.3 > 0.1 01 C classl 01
H3A-,HA-,H2-'02 0.3 > -0.1 0 2 E classi 02

.- 01 A 02 Input: binary 00
-I, A -J2 0Output: binary 11, class 3

I,=- 0 1 2 A -I,- H1 0.4 > 0.3 H 1 E classl H1

12=1 1 2A-I,-H 2 0.3 < 0.7 H 2 E classO H2
12 A -I, - H 3 -0.1 > -0.2 H 3 E classi H3
H1 A K 3 A -H 2 --) 01 0.4 ± (-0.1) > 0.1 01 E classl 01
H, A K 3 A --H 2 -- 02 (-0.5) + 0.3 < -0.1 02 E classO -02

...'. I/1/2 --+ 01 A -102 Input: binary 01
I Output: binary 10, class 2

/i i I A- 2-- H1 -0.2 < 0.3 H, C classO 7H,
12=0 11 A- 2-- H 2 0.5 < 0.7 H 2 eclassO 7H2

I, A -12 -- H 3 0.3 > -0.2 H3 E classl H3

H3 A -,H A -,H2 -01 0.3 > 0.1 01 C classl 01
H3A-HA--H2--02 0.3 > -0.1 0 2 e classl 02

I, A -12 -i 01 A 02 Input: binary 10
Output: binary 11, class 3

I=1 !A1 2 - H, (-0.2)+0.4 < 0.3 H E classO -H,
12 = 1 11 A12 - H 2 0.5+0.3 > 0.7 H 2 E class/ H 2

1 A 12 -- H 3 0.3+ (-0.1) > -0.2 H 3 E class) H 3

H2 A H3 A -H,- 0 1 0.2+0.3 > 0.1 0 1 E classl 01
H 2 AH 3 A -,H, 02 0.4+0.3 > -0.1 02 E classl 02

" hA 12 -0+ 1 A 02 Input: binary 11
Output: binary 11, class 3

Table 3.1 Fu Rules. For the neural net in Figure 3.1, all possible combinations of
binary inputs are translated into a complete set of specific rules.

3-7

generated in this manner. While this seems to be a plausible method, several limitations

exist, to this modification as well as Fu's method in general.

3.3 Problems/Limitations

3.3.1 Special Architecture. The completeness of the algorithm, Fu suggests, can

be considerably improved by using a special procedure to train the neural network[5]. In [4],

he describes a special training procedure to accomplish this, which involves clustering hid-

den units and nullifying small weights. In other words, a special net architecture provides

the infrastructure for his rule generation. As noted in Section 2.2, special net architectures

limit the generality of the expert network and the rule-generation mechansim.

3.3.2 Ad Hoc Approach. Injecting rules into a neural network is fairly straight-

forward; interpreting connections and weights in a meaningful manner poses a much greater

challenge. Fu's method of extracting rules becomes an exhaustive search (either explicit

or implicit with heuristics) of the rule space.

In[5], Fu expresses a series of pruning heuristics to find a consistent set of rules more

quickly. However, this method remains inherently ad hoc. The number of rules generated

for each neuron is limited by an arbitrary k-wide beam search; a full set of rules (every

possible combination of positive and negated attributes) would result in an exorbitant

number of rules at each neuron. Folding rules to contain only input conditions in the

premise and output actions in the consequent would otherwise become an impossible task.

Fu freely admits that in some domains all available attributes must be involved in

any decision and general rules simply do not exist[5].

3.3.3 Discrete Inputs and Outputs. Another limitation is the implicit assumption

that all inputs and outputs are binary. As already.noted, a steep enough sigmoid function

or a hard limiter can provide this binary output response. However, how general is this? A

more general output classification approach is a winner-take-all strategy, with one output

node per output class. In this case, the outputs are not discrete. Rather, the output

whose value is largest determines the output class. There is no midpoint, nor boundary,

3-8

R1i IF petal-length < 2.7 THEN iris is setosa
R2 IF 2.7 < petal-length < 5.0 A 0.7 < petal-width < 1.6 THEN iris is verisicolor
R3 IF petal-length > 5.0 THEN iris is viginica
R4 IF petal-width > 1.6 THEN iris is viginica
R5 IF septal-length > 3.1 A 2.7 < petal-length < 5.0 THEN iris is versicolor

Table 3.2 Fu's Iris Rule Set. For the iris data set, Fu extracted only these rules[5].

nor cut-off between "firing" and "not" firing. Quite the contrary. An output of, say, 0.3

can identify the output class if this value is larger than all other outputs; similarly, a large

value, say 0.8, may not cause a an output "1" (i.e. a larger output can and will determine

the class).

Even if the binary encoded output is acceptable, binary inputs are harder to justify.

Even with a steep sigmoid/hard limiter, this only applies to inputs that come from hidden

node outputs. Net inputs will typically be real-valued, and they may or may not be between

0 and 1. With some combination of normalization, quantization, and binarization, it is

possible to map the real-valued features to a sequence of binary inputs. Theoretically, the

net can be trained normally6 and rules can be generated. However, precision is lost in

quantization, based on the number of bins used.

3.4 Meta Knowledge

Finally, Fu draws conclusions that are not arrived at naturally from his rule-generation

process in [5]. Consider his iris results, summarized in Table 3.2. In terms of input bina-

rization, the inequalities suggest a clustering of the inputs into a number of "bins", such

as

petal-length < 2.7 0.7 < petal-width _ 1.6 septal-width > 3.1
2.7 < petal-length < 5.0 petal-width > 1.1 (3.7)

petal-length > 5.0

For example, rule R1 indicates the existence of a single bin containing all test vectors

with petal-length < 2.7. While this may, in fact, occur, the input presented to the net is

6With the added binarization preprocessing step for each input vector.

3-9

the binary representation of the bin. The number of bins (clusters) dictates the number

of net inputs:

#inputs = [log2#bins]; (3.8)

Conversely, the number of net inputs available can determine the maximum number of

clusters. Figure 3.2 shows a simulated clustering of the iris training data among two input

features. With three bins, [log 23] = 2 inputs are required. An input vector falling into

the first bin would be presented to the net as, say, binary 00. The resultant rule, such as

IF-iAI, A -iAI 2THEN Col. (3.9)

can be mapped back into "real" space by substituting the mean vector feature values:

IF petal-length = a 00 A petal-width = 00 THEN Col. (3.10)

This rule is fundamentally concrete. To draw Fu's abstract inequality,

IF petal-length < 2.7 THEN iris is setosa,

one must conclude that meta-level knowledge interpretation is taking place of which Fu

fails to mention. In the input plot in Figure 3.2, it is not difficult to see graphically or at

a higher level that a boundary for input class "00" exists at about 2.7. Likewise, from a

series of rules such as

RI: IF petal-length = 2.7 THEN iris is setosa

R2: IF petal-length = 2.5 THEN iris is setosa

R3: IF petal-length = 1.8 THEN iris is setosa

one can draw the higher level concept

RI: IF petal-length < 2.7 THEN iris is setosa.

3.5 Bottom Line

Fu does not provide enough implementation information to verify his results. Al-

though assumptions can be made and success can be achieved under certain conditions,

3-10

+

+ "clustpr1 <,
+ ++ "cluster2' +
+ "cluster3"

0.8 + + . "clustermeans" x
X

+ +
+

+ +
+

0.6+ +

"a Po
Q .'4 .- " ,-.a x E

0.2

0 I I I I

0 aO0 0.2 0.4 0.6 0.8
petal-length

Figure 3.2 Two-Feature Iris Clustering. The three clusters represent three input
bins; for any input vector, the corresponding bin's binary code is presented
to the net. But the binary value can only be translated back into the mean
vector feature values. Thus, precision is lost.

the steep sigmoid model is not terribly general. Isn't there a way to expand upon Fu's

efforts-recognizing the importance of the mathematical nature of the net knowledge-to

form a more general net-interpretation model?

3-11

IV. Knowledge Mathematics

Fu begins with the neuron activation function

n

wax+ 0 = 0, (4.1)
i=1

imposing the restriction that all inputs, xi, must be binary. What happens when the inputs

vary through some range, say (0,1)1? In particular, can this lead to a viable rule-extraction

technique, with which to augment a general neural net with an explanation capability?

4.1 Concept Overview

Despite its limitations, Fu's method has some definite strong points. In particular, it

attempts to utilize the actual, subsymbolic knowledge held in the inter-neural connections.

However, it only explores one aspect of the net's knowledge-the neuron activation func-

tion. Furthermore, it contorts these individual bits of knowledge, coercing the activation

function into producing the kind of information Fu wishes to see.

In reality, the net knowledge is much more complicated than Fu accounts for. In gen-

eral, neuron inputs and outputs are not binary. Therefore, in interpreting the net knowl-

edge, it is desirable to account for the real-valued nature of these inputs and outputs. Also,

the neuron activation is typically squashed by some neuron output function-typically a

sigmoid or hyperbolic tangent-that does not act as a binary encoder 2 .

Perhaps it is possible to extend Fu. More fully exploiting the mathematical associa-

tions within the net might provide a more exact symbolic knowledge representation. Such

a method would be inherently less ad hoc, less arbitrarily approximate.

1This range bounds the outputs of sigmoidal neurons and, thus, any inputs into which these nodes feed
(e.g. for all but the first hidden layer nodes). Net inputs, on the other hand, range through (Imin, Inax).

2 Actually, the neuron output may be "squashed" with a linear function. In this case, the output of the
neuron is simply the neuron activation. In fact, it has been shown that the most general MLP configuration
employs sigmoids on the hidden layer and linear neurons on the output layerodr. rogers conversation-who
for real?. However, linear neurons do not work well without sigmoidal or tanh nodes. In particular, linear
neurons on the first hidden layer are superfluous (sounds like another great cite-but who?).

4-1

4.2 Intuition

Consider the simple perceptron3 in Figure 4.1a. Assuming a standard sigmoid, with

A 1, the neuron output equation is

1

Y 1+ e-(wix 1 + W2X 2 +-) (4.2)

ir

0.8 -

0.4 -

0.2 -0 =+1 0

0 I.
-10 -5 0 5 10

a

(a) Simple 2-Input Perceptron (b) The Sigmoid Function

Figure 4.1 Single-Node Perceptron. The output of the net in (a) is a function of
the neuron activation: y = f(wIx1 + w 2x 2 + 0). A common output function

is the sigmoid, whose behavior is shown in (b)

In this case, a binary encoded output is not unjustified. The utility of a neural net is

contingent upon it realizing at least two classes. With only one output neuron (indeed, only

one neuron, period!), the perceptron output must be quasi-binary. That is, the sigmoid

midpoint (0.5) represents the boundary between classes (see Figure 4.1b). Since the output

function passes through 0.5 when the activation goes through zero, the activation function

provides all the information needed to interpret the net behavior.

3 A perceptron is the simplest net, consisting of a single neuron or a single layer of neurons. This basic
architecture can correctly classify any linearly separable data[17]; more complex functions require more
intricate architectures, such as the multi-layer perceptron used throughout this thesis.

4-2

The activation function is

0.5x, + 0.5x 2 - 1 = 0. (4.3)

Note that this equation has the form

Ax + By + C = 0. (4.4)

That is, the activation function is linear in terms of the inputs. Plotting this function, one

can readily observe that it divides the input space into two sections, as in Figure 4.2a.

I I

12 12,MAX -

.. -. 12,M IN -

I I1,MIN 1,MAX

(a) Activation Line (b) Rule Regions

Figure 4.2 Perceptron Activation Plot. The neuron activation inscribes a line
through the input space in (a), effecting the three rule regions shown in (b).

In this example, the rule space is partitioned into three distinct rule regions (see

Figure 4.2b). When ii < a, the output belongs to Class 0 regardless of the value of i2.

Similarly, if ii > /3, the neuron output (0 E Class1) depends only on the first input.

However, when a < il < /, the output could belong to Class 0 or Class 1, depending

upon which side of the activation function line the input vector lies. Thus, an input in this

region depends on a relationship between il and i2, determined by the activation function.

The defining rules are summarized in table 4.1.

4-3

Region I Dependency Rule

ii <a Output depends only on il Simple:IF il < a THEN -iO
il > # Output depends only on i 2 Simple:IF ii >)3 THEN 0

IF il > a A il < / A
il < -IZ2i2 -

w lO
W 1

THEN -0
a <ii </3 Output depends on il and i2 Complex IF ii > a A il < #3A

21 > -IL22 -_g_

THEN 0

Table 4.1 Rule Dependencies.

The activation line disects the input space bounding box. The bounding box is the

input region bounded between ij,min and il,max in the il direction, and i2,min and i2,max

along the i2 feature axis. For all neurons but those in the first hidden layer, the bounding

box inscribes a square (for two dimensions) from 0 to 14. Note that the activation line cuts

this box in one of four ways (illustrated in Figure 4.3):

1. If the activation line traces a side of the box, or lies entirely outside the box
(touches the box 0, 1 or many times), it does not cross any side. In this case,
the output is constant (always 1, or always 0).

2. If the line crosses exactly two sides (any two), the input space is partitioned
into three rule regions. Two of the regions are bounded by only one input.
The third realizes a relationship between the two inputs.

3. If the line cuts one side and one corner, the bounding box is cut into two
regions: one is bounded by one input; the other is a relationship between the
two inputs.

4. If the line passes through two opposite corners (which can be viewed as crossing
all four sides), the entire bounding box represents a single region whose rule
is an input relationship.

It is possible to generate Fu-like rules from the net in the following manner. Suppose

Figure 4.2 represents a solution to a two-input subset of the iris problem. Letting il be

petal length and i 2 be petal width, the effective input feature ranges and the activation line

'This assumes a sigmoid output function. A tanh node is "bounded" between -1 and 1.

4-4

.......I....

121 12 12 12
(a) No crossings. (b) Two crossings. (c) Three crossings. (d) Four crossings.

Figure 4.3 Rule Space Partitioning. The activation line separates the input space

into (a) 1, (b) 3, (c) 2, and (d) 1 rule regions. Some regions generate simple
rules; others are complex input relationships.

behavior, illustrated in Figure 4.4, might be 5 :

il,min 1.2 il,max 6.2

i2,min 0.7 i2,max 1.6 (4.5)

a = 2.7 - 5.0

Two of Fu's iris rules (see Section 3.4) can be read directly from Figure 4.4:

IF petal-length < 2.7 THEN iris is setosa (4.6)
IF petal-length > 5.0 THEN iris is viginica

An additional rule, describing the complex region 2.7 < il < 5.0, turns out to be a

somewhat more complicated relation between il (petal length) and i2 (petal width):

IF petal-length > 2.7

A petal-length < 5.0
A petal-width > 0.7 (4.7)
A petal-width < 1.6
A petal-length > (0.4)petal-width-0.36

THEN iris is verisicolor

Therefore, it would appear that the neuron activation, without arbitrary restrictions

on the neuron inputs, might be sufficient to extract semantically viable rules. Moreover,

"The effective input ranges can be ascertained from the training data. Training data that is repre-
sentative of the problem domain will result in accurate input ranges. This illustrates one aspect of the
importance of an appropriately general training set.

4-5

II I I

1.6 -_ --

:/\

a.

0.7 --

1.2 2.7 5.0 6.2
Petal Length

Figure 4.4 Two-Input Iris Activation. A two-input subset of the iris problem might
produce an activation such as this, relating inputs, petal length and petal width
to output classes (e.g setosa, versicolor, or viginica).

W2 A 0 = -0.3

X2 W2 W2=0.3 H2 3=0301 Otu

(a) Simple 2-Input Perceptron (b) Multi-Layer Perceptron

Figure 4.5 Perceptron Architectures. A simple perceptron in (a) containing only
one neuron vs. a multi-layer perceptron with one hidden layer in (b).

4-6

because these rules utilize more of the embedded neural net characteristics, they may

better represent the subsymbolic knowledge than those discovered via Fu's method.

Does this concept extend to a general multi-layer perceptron?

Consider the multilayer perceptron (MLP) with one hidden layer in Figure 4.5b. Like

the simple perceptron, all neuron activations are linear with respect to the neuron inputs6.

For the hidden nodes, the activation is a function of the network inputs il and i2.

Considering only the neuron activations, each hidden node partitions the input space into

one or two sections (up to three rule regions), according to the guidelines in Section 4.2.

With one such activation line per hidden node, the total number of input-space lines equals

the number of hidden nodes Nh. The hidden node activations that cross the bounding box

help partition the input space into intuitive rule regions (see Figure 4.6a).

Similarly, the output layer node activations (only 1, in this case) realize linear par-

titions of the "hidden" space (Figure 4.6b). Is it possible to conflate the two and identify

the consequential input regions inscribed by the hidden node activations, as implied by

(Figure 4.6c)?

Figure 4.7a shows an MLP to ideally classify linearly separable data7 . In this case, all

data vector values lie within the range (0,1) with a class separation as shown in Figure 4.8a.

This "perfect" net results in an absolute bounding of the implicit rule regions. Graph-

ically, one hidden node separates the "top" data from the "bottom", and the other sepa-

rates "left" data from "right". Together they divide the input space into four potential rule

regions (Figure 4.7b). The output node activation line cuts diagonally through the hid-

den space bounding box (Figure 4.7c). Figure 4.8b shows the input data with the hidden

node activations and the superimposed diagonal output line. Note that the combination

of hidden and output activations correctly and efficiently isolates the two data classes.

6 Actually, planar (or even hyperplanar) in terms of an general n-dimensional neuron input space.
7The simple perceptron in Figure 4.5a can correctly classify this data much more efficiently; this archi-

tecture is presented for illustrative purposes only.

4-7

12,MAX i2MAX

H01

12,MIN H2,MIN

11,MIN 11,MAX H1,MIN H1,MAX

(a) Hidden Node Activations. (b) Output Node Activations.

12,MAX ---------------
I HHI-

H2 -

10

12,MIN -

I1,MIN I1,MAX

(c) Superimposed Output Activation.

Figure 4.6 MLP Activations by Layer. Each node of the MLP in Figure 4.5 has
one activation line. Thus, the hidden layer inscribes two lines through the
input space, (a), and the output node activation traces one line through the
"hidden" space, (b). In (c), the output activation is superimposed over the
input space, suggesting a means of distinguishing pertinent rule regions.

4-8

Net 1=
Input I =r

= 0.5

Not

N 01 outpu II'

I010.1

0 -.- 0.5

(a) "Perfect" Linear Separator.

H1 - 01- . H1 -
H2 0.. H2-""". I 01 -...

'1. '1, """ 1'

0.5 -- 0.5"',

''0'

0 0-~ 0
0 0.5 1 0 1 0 0.5 1

(b) Hidden Layer. (c) Output Layer. (d) Superimposition.

Figure 4.7 Linearly Separable by Hand. An ideal MLP can be constructed by hand to
partition the linearly separable data in Figure 4.8 such that the hidden and output
activations occur as in (b) and (c), respectively. In this case, the superposition of
the output activation over the hidden lines (in (d)) clearly discriminates class 0 from
class 1.

4-9

+ +

+ Class 0o+ Class 1 +
++ * + ++

0 +
+ + 1 + +++++

+ +
+++

+ +

+ +

+ + + ++ +

+

0.5
0 0 0
0

00 0

0 0
000

0 0

0 0 *0 0 0

0

00
0

0 00

0 0. 1

F) e ample Dta

cleary be eaa
e

d wit a staih lie a ipeere ni ufcett

classify thi domin I(bte hdenadotuacitosofheMPn

++ * 01 .

4-1

"",+ + +

+ H + -+

...... + + +...

+ +"'.•.+ + + + ++ +

"'.,4-

0.5 0 0 ' .

0 0

0 0 0 -

0 0 00 0 S•",

S 00 0 0 0 ""

0 0 S",

0 0.

I1

(b) Ideal Linearly Separable Data Bounding

Figure 4.8 Linearly Separable Data. Since the two clusters of data in (a) can

clearly be separated with a straight line, a simple perceptron is sufficient to

classify this domain. In (b), the hidden and output activations of the MLP in

Figure 3.3.3 tightly bound and correctly classify this data.

4-10

Figure 4.9 shows the activations of an actual 2-2-1 MLP trained against this data

set. Although the regions bounded by the activations are not as clean as the handmade

case, the output classification is nicely bounded none-the-less8 .

This appears too good to be true! Something must be wrong, or semantically inter-

preting the subsymbolic net would be straightforward.

4.3 Problems

The problem, of course, is that the neuron activation is squashed by a nonlinearity

function, typically a sigmoid or tanh. The sigmoidal neuron output is

y 1 o . (4.8)

I - e =i E +

Recall the simple perceptron activation of Section 3.3.3, plotted again in Figure 4.10a.

Figure 4.10b shows the neuron output, y, plotted against its two inputs, ii and i2. The

exponential term "shifts" the activation line, creating a region of uncertainty about the

midpoint. That is, because of the relative steepness of this part of the graph, it is hard

to distinguish precisely where one class ends and the other begins. Input vectors near this

boundary are subject to misclassification.

The magnitudes of the weights, w, and w2, and the neuron bias, 0, determine the

location and slope of the activation line. Note that these correspond to the coefficients

of the general line equation (A = wi,B = w2, and C = 0). Furthermore, the side of

the activation line corresponding to each output class depends on the sign of the weights.

Consider the following two sets of constraints and the resulting activation equation:

8 Actually, Figure 4.9 shows that hidden node H1 is doing most of the work, not surprising since a single
neuron can discriminate linearly separable data.

4-11

1,1 ,1,

... 1' "0' '0'

0.5
0.5

0/..-0.

.0 . -'..

0 0.5 1. 0 0.5 1 0 0. 1
11 HI

(a) 12 < -1.301 + 0.96 -- (b) 12 > 0.1011 + 0.40 -- '0 H 2 < 5.28H1 - 2.68 --
(2 > -1. 3 0 I + 0.96 0 12 < 0.1011 + 0.40 0 H2 > 5.28H - 2.68

_2+ H2 H 1
++ ++ H2

++-I+ + H2+ +++ +++++ 01
+

+ + +'0' . ++ +++

0 .5 -----.....

0
0 0.5

%I1

(d) Logical class 0 and class 1 regions.

Figure 4.9 Linearly Separable by Training. Figure 4.7 suggested superimposing the

output activation over the input space could isolate the output class clusters. How-

ever, a real application produces the counterintuitive regions as demonstrated here.

4-12

.

0.8

0.6

0.4 0.75

0.5

0.8
0.2 0.25 s o .li ..° .

00
0 0.2 0.4

0 0.2 0.4 0.6 0.8 1

0.6 0.2

0.8

1 0

(a) wJ1 + 2 + 0 = 0 (b) Y 1+e_ ,'_-,2_o

Figure 4.10 Neuron Output Behavior. A neuron activation function inscribes a line
through the feature space in (a). This line corresponds to the midpoint of
the squashed output in (b).

4-13

w = 1 w = -1

W2- 1 W2 - 1
9 - -1 9 - 1

(4.9)

ii+i 2 -1 = 0 -il-i 2 +1 0

i2 = -ii + 1

Although both activations trace the same line through the 0 - 1 bounding box (Fig-

ure 4.11a), the neuron output plots (Figures 4.11b,c) clearly show that flipping the signs

of the weights and biases is sufficient to flip the side of the activation line corresponding

to class 0 and class 1.

Thus, the rule regions are not as clearly defined as Section 4.2 suggested, and con-

flation of multiple layers is not graphically obvious.

Perhaps mathematics may provide answers that the graphs alone cannot.

4.4 Mathematical Derivation

It behooves one, then, to attack the interpretation problem using the precise math

of the net, avoiding the need to predict or approximate rule regions based on offseting

activation functions. A general net-interpretation technique must account for the neuron

squashing functions as well. Still, as Fu might contend, binary outputs provides a good

place to start.

4.4.1 Binary Output. Consider an arbitrary sigmoid-sigmoid MLP with N output

neurons. Assuming the outputs are binary9 , the N outputs can realize up to 2 N output

classes. Like the simple perceptron, the output neuron sigmoid can be ignored; the 0.5

midpoint represents the cut-off between (borrowing from Fu) the neuron "firing" and "not

firing". In other words:

y o, > 0 .5 1 = w iX i + 0 > O - O i A 1
yo, >0 5 -* i (4.10)

Yo, < 0.5 -- Z i'~wjxj+0 <0 Oi 0

9As explained previously, forced binary outputs yield a less general net. However, for the sake of
illustration, this is a good place to begin. Section 4.4.4 will look at the more general, non-binary outputs.

4-14

x K

K

K\.

_q \

K

K
K

1
I1

(a) Activation line corresponding to: x + y 1 0

-0-y+10=.0

0.4 080.4 10.8
0.2 0.2

1o

0.. 0.4 0.2 0,4

0.4 0

0.6 0.,2 0.6 02

0.8 0.8

1 0

(b) Neuron output: y (c) Neuron output: y

Figure 4.11 Squashed Output Function. Despite inscribing the same activation line,
the activation equations in (a) realize opposite output classifications, (b) and
(c).

4-15

This simplification results not from any arbitrary approximation, but from knowledge

of the neural net functionality. The advantage is that this corresponds to the activation

function passing through zero, and the activation is linear with respect to the hidden nodes.

Thus, the need to consider the sigmoid exponential term in the output layer is bypassed.

Again, the line inscribed by the activation equation partitions the "hidden" space

bounding box into as many as three rule regions (see Section 4.2 to recap). Unless the line

fails to cut the bounding box1", the rule space will be partitioned into one "general" rule

region, and zero, one, or two "shortcut" regions.

This concept may seem counterintuitive. In symbolic expert system terminology,

"general" means less restrictive. Bounding input ranges is clearly more restrictive than

letting them range freely; hence, a region bounded by a single input (i.e. only one input

range is bounded) provides a more general rule than one in which two (or more) input

ranges are tied. However, while the rule associated with a short-cut region may be more

general, the region typically covers a small section of the input space. In fact, the area

covered by short-cut rules generally decreases as the dimensionality increases.

Suppose Figure 4.11a describes the activation of the simple two-input perceptron

(Figure 4.5a). If the perceptron contains three inputs instead of two, then the bounding

box becomes a bounding cube, through which an activation plane passes (see Figure 4.12a).

Figure 4.11a becomes one side of the cube say, when i3 = 0). This activation plane can

either:

pass "straight through", cutting the opposite side exactly the same, or
"slant" to one side or the other, cutting the opposite side parallel to the first.

Figures 4.12b and c demonstrate this slanting effect, where the area governed by

simple regions (bounded by just one input shrink with respect to an extra dimension.

Figure 4.12b shows the activation equation of the two-input perceptron, now representing

the side of the bounding cube corresponding to i3 = 0. On this side of the cube, the first

simple region is bounded by il < a. But Figure 4.12c shows the opposite side of the cube

(i 3 = 1). Notice that the area bounded by the first region shrinks to ii < -/. Between 7

"°Trivially, if the activation line does not cross the bounding box, the rule space contains one simple rule
region-the output is always 1 or always 0, regardless of either input value.

4-16

and a, the input vector lies within the cube in an area in which the value of i3 will affect

the resulting output class.

As "special case" regions, the shortcut regions lend themselves well to straightforward

rule generation; hence, they provide a good place to attempt symbolic interpretation.

4.4.2 Shortcut Regions. Shortcut rules correspond to rule regions bounded by

a single input. For the output layer, the neuron inputs are outputs from hidden nodes.

Thus, an output node shortcut region is one bounded by a single hidden node. Consider

the output activation with two shortcut rules:

H, > a -0 01 (01 € class 1) (4.11)

and

H 2 > /3 - 01 (01 E class 1). (4.12)

Writing H, (in Equation 4.11) and H2 (in Equation 4.12) in terms of the inputs, I,

and 12, according to the neuron activation functions", results in linear input-to-output re-

lationships; semantically viable rules seem to be emerging. However, node 01's inputs (the

outputs from H, and H2) are not binary. To precisely interpret the net knowledge with-

out taking any unnecessary liberties, the hidden node activation function in not sufficient.

Accounting for an output sigmoid, Equation 4.11 becomes

"This assumes the binary input restriction imposed by Fu.

4-17

0.
0.2

0.4

(a) Activation plane cutting through a
three-input feature space.

1 1

000

0 a 1] 0 7' 8I1

(b) /1-12 plane at I3 0 (c) /1-12 plane at 13

Figure 4.12 Three-Input Activation Plane. (a) shows an activation plane cutting a
bounding cube. The sides of the cube corresponding to 13 = 0 and 13 = 1 are
shown in (b) and (c), respectively.

4-18

1±4- e-(wH,1I+wH +8 l) > a (4.13)
1

1 e- (WHjI1+WH
j

2
I
2+8Hl) > - (4.14)

a1
e

- (
HlII

w
1+WH112+0Hj) > - - 1 (4.15)

-(WHjl I 1 + WH1 2 + OH 1) > In(--1) (4.16)
a

WH 11I1± +WH 1 22 OH1 < -In(- - 1) (4.17)
a
1

WH,1I1 + WH 1 2I2 < -In(- - 1) -OH (4.18)
a

Equation 4.18 can be rewritten as

WH 1 1I1 + WH 121 + n (+ -I) I+ OH <0. (4.19)

Identifying the constant coefficients,

A = WH 1

B = WH1 2 (4.20)
C In(-'-)+OH1

it is easy to recognize a linear relationship established between net inputs and net outputs.

Thus, the output and hidden relationships have been conveniently conflated, despite the

sigmoid non-linearity! Equation 4.19 acts as a hidden node activation, similarly disecting

the input space into two sections. The inequality in Equation 4.19 dictates which side of

this line corresponds to the output class (class 1 in this case).

Figure 3.3.3 shows the input space partitioned by this pseudo-activation shortcut

line. The input space is sectioned into three rule regions; Only two-one shortcut and

one general region-apply to this rule, as indicated. Region (identifies an input space

shortcut region in this shortcut space, leading to the simplest input-to-output relationship,

a short-shortcut rule:

I, < 01. (4.21)

4-19

The general region (Region () demarcates the boundary between 01/in class 0 and

01 E class 1. The implicit relationship between I, and 12 in this region determines the

general shortcut rule

[1 1 ,< n0)-WJ2 - 01. (4.22)I1 >1 (_] ^ L 1 2

Thus the hidden space shortcut region, H1 < a, provides simple short-shortcut rules

and nice, linear general input relationships relating net inputs to the net output 01 C class

1. A similar derivation will result in clean rule relationships for shortcut region, H2 >/3.

Will this concept extend to the general region of the output activation?

4.4.3 General Region. The complex region indicates an area of the graph relating

01 to both hidden nodes H1 and H2. In this general region, the output can belong to either

Class 0 or Class 1, depending on which side of the activation line the input falls12 . Thus,

the general region rule has the form

[H1 > a] A [H2 < /] A [wo,H 1 + w 0 1 2H 2 + 001 >0] -01 (4.23)

The simple relations, H1 > a and H2 < /3, can be rewritten easily according to the

shortcut rules in Section 4.4.2. Technically, these elements of Equation 4.23 are superfluous;

recognizing the bounding box crossings (a and /3) merely provides a means of identifying

simpler-and potentially faster shortcut-rules. The key component in this general rule

equation is the activation line, wo 1 H1 +Wo 1 2H 2 +00, > 0. The bounding box is an artifact

of the neuron input ranges. i1,min il,max, i2,min, and i2,maX will vary for different types of

inputs, (i.e. output of a linear or tanh node vs. the sigmoid). Moving the sides of the box

(varying imin and imax changes the bounding box crossings, but, the neural net has learned

the activation line; this line extends indefinitely and will cover any finite crossings. Thus,

conflating the hidden space equation into the input space requires focusing only on the

activation line. Rewriting the hidden nodes in terms of the inputs yields

12 Again for clarity: the input vector for this output neuron is composed of the output from each hidden
node. That is, this neuron's input space corresponds to the net's hidden space.

4-20

w0 1 H1 + w0 1 2 H 2 + 001 = 0 (4.24)

wO 1 1H1 + wo 1 2H 2 = -00, (4.25)
1 1

w 1 1 + -(WHl111+WH 1 212+0H1) + WO 1 2 1 + e-(WH 2 1I1+WH2 2I2+0H
2) = -1 (4.26)

1(,-(wHjl1l+WHj212+0Hj)) + 1(-_(wH2l-l+wH 2 12+eH2)) 1 1 1427
WOil W 0 i 2 -Wil -oi -- (427

Wo, IW012W0
1 1 W0 1 2 01

The derivation quickly degrades. Because the exponential terms are different, no

common logarithm can be applied to Equation 4.27 to get rid of them. Therefore, unlike

the shortcut regions, this rule cannot be collapsed mathematically into a nice (e.g. linear)

relationship between inputs and output; the relationship between the inputs, I, and 12, and

the output, 01, in this region does not produce easily understandable rules. The resulting

rule represents a complicated, convoluted association of I and 12. What is the semantic

value of this?

Despite this limitation, the nice interpretability of the shortcut regions is hard to

ignore. The Knowledge Math method has the advantage of not generating an entire,

separate rule set; this technique attempts to find applicable net knowledge on a per-input-

vector basis. Additionally, this method does not restrict the output classification to be

binary encoded.

4.4.4 Winner Takes All. Consider again the MLP in Figure 4.5b. In the winner-

takes-all classification scheme, the output neuron with the largest value determines the

output class. The second largest output value determines the threshold for which the

winning neuron will get to classify the vector. For example, suppose the net classifies a

particular input vector, fj, such that

01 = 0.7 (4.28)

02 = 0.4

01 is greater than 02; therefore, the output belongs to Class 1 and not Class 2.

However, the precise value of 01 is not paramount; 01 would "win" for any value 01 > 02.

Thus, the value of 02 becomes the cutoff threshold for the resulting rule, rather than the

sigmoidal midpoint, 0.5. For symbolic interpretation, 02 can be assumed constant. The

4-21

rule then becomes

IF 01 > 02 THEN output E class 1 (4.29)

and the applicable rule regions can be derived as in Section 4.4.1 above, starting with the

threshold value.

01 02 (4.30)
1

1+± e(woiiHi+wo12H 2 +0o1) 02 (4.31)

1 + e - (wol H1+w0 1 2H2+0ol) - 1 (4.32)
02

- - 1 (4.33)

-(woiH1 + W0 1 2 H 2 + 0o) = In 02 - 1) (4.34)1
wolH 1 -± W0 12 H 2 + 00, = -In - 1) (4.35)1

w0 1 H1 + W0 12H 2 + In (- 1 + 001 = 0 (4.36)

(4.37)

Once again, a pseudo-activation line results. This line cuts the hidden space bounding

box into two sections and up to three rule regions, just as before. Shortcut regions can

be conflated with the input space, furnishing good symbolic rule relations. Thus, for the

Knowledge Math rule generation method, the winner-takes-all strategy is equivalent to

the binary encoded output scheme. It is unfortunate that this technique cannot be easily

applied to the complex rule regions.

4.4.5 Observations. The shortcut regions, in fact, may be sufficient to approxi-

mate the net. When the area bounded by the general rule is small enough"3 , the shortcut

regions will correctly interpret virtually all input vectors. The complex region can be ig-

nored if the line through the input space is "vertical" enough. This leaves two shortcut

regions of interest: Region @ , whose output belongs to class 0, and Region(, where

1 3The slope of the rule line is either very steep (mrule _ 1) or very shallow (mrule -- 0), or the line barely
cuts one corner of the bounding box.

4-22

Region Rule Type Rule
Region (short-shortcut: I, <y - 01

general shortcut: [11 >] A [I, < -I (-ln(-I) - 01 - --+
short-shortcut: 11 > 6 -- 01

general shortcut: [Ii < 6] A [1, > -(-In(!) - 01 - w~jI2

Table 4.2 Small Complex Region Rule Set. For this special case, when the
area covered by the complex rule region is small, the shortcut rules sufficiently
interpret the net. Assuming the activation line in Figure 3.3.3 to be virtually
vertical, these "nice" rules completely describe the associated net.

the output is class 1. As described above, the shortcut regions provide semantically pleas-

ing input-output rules. Since these shortcut regions describe every possible output class

(two, in this case), the shortcut rules provide a viable set of interpretations for every input

vector. Consider a vector, Ij, very close to the activation line (i.e. the points lies within

Region (2)). Because the area covered by Region a is presumed small, 1j must also lie

very close to Region (I) or Region a, and the appropriate shortcut rule will aptly explain

the classification of fj. Table 4.2 displays the entire rule set associated with the net in this

case.

Also, clustering the test data can help determine the likelihood of an arbitrary input

vector falling into the general rule region 4 . If the input almost never falls into this com-

plex region, the region can be ignored for rule-generation purposes, no matter how much

bounding box it consumes15 .

However, vectors within this general region will not be explained by any rule. As

more vectors fall within this region, the resultant symbolic knowledge degenerates into

an approximation. There is simply no guarantee that the general region will play an

insignificant role.

Ultimately, these conditions exemplify special cases; the Knowledge Math method,

like Fu's method before it, fails to satisfactorily interpret a general neural net.

4 Assuming the test set is truly general and representative of the input domain.
15Realistically, the more area the region occupies, the greater the probability the region will catch an

input vector. One might argue that increasing the region size will increase the number of vectors that lie
within, suggesting a practical upper limit on the complex region size.

4-23

How, then, can accurate and useful rules be extracted from a general neural net?

A general net interpreter must account for the complex rule regions around the implicit

boundary between output classes.

4-24

V. Decision Boundaries Abound

Lee and Landgrebe introduced a means of mapping the boundary separating input

vectors recognized as belonging to one output class, from those belonging to another[11].

Stewart exploited these decision boundaries to determine pertinent features in predicting

financial futures[19]. A decision boundary describes a surface through the input space that

precisely separates output classes; the activation lines exploited thus far approximate this

surface. Being an innate artifact of the neural net, the decision boundary seems rife for

symbolic rule exploitation. Perhaps this concept provides a way to extract meaningful

relationships in the complex rule regions not covered by the Knowledge Math method.

5.1 What is a Decision Boundary?

A decision boundary denotes a border between two or more output classes. That

is, it partitions the input space into independent classification or decision regions, loosely

equivalent to the rule regions found previously. Unlike the activation lines, whose clas-

sification boundary is ambiguated by the output sigmoid or tanh function, the decision

boundary represents the exact inter-class border. The neural net can correctly classify two

input vectors adjacent to and on either side of this boundary. Thus, the decision bound-

ary identifies the exact location where the output classification changes from one class to

another.

Lee's and Landgrebe's decision boundary provides a means of precisely mapping the

decision regions. In terms of symbolic interpretation, the decision boundary connotes a

separation of encapsulated rule regions. Can this concept be finessed to discover semiotic

relationships within the complex rule regions?

5.2 Finding a Decision Boundary

Consider two input vectors. Suppose the vectors are correctly classified by the net

into different classes. A line drawn between them must cross the decision boundary at

some decision point (see Figure 5.1). Pairing various combinations of class 1 and class 2

points in this manner, one can begin to identify the decision boundary curve (Figure 5.2a).

5-1

Ideally, an infinite number of points in one class paired with an infinite number of points

in another will enumerate an infinite number of decision points, completely delineating the

decision boundary (Figure 5.2b).

12.....................".----------

Pc~oit

Figure 5.1 Decision Boundary Point. Graphically, the decision boundary traces a
curve through the input space; a line between opposing points P1 C class I
and P2 C class 2 intersects the decision curve at a decision point.

Of course, the world is not ideal. Slightly less than an infinite number of test vectors

will be available for any potential problem domain, implying the decision boundary may

not be fully articulated by the set of decision points. Despite these decision boundary

gaps (Figure 5.2b), the decision points may never-the-less provide enough information to

symbolically interpret the complex regions.

Neuron activations do not solely establish the decision boundary because the input

space becomes uncertain around the steep sigmoidal (or tanh) midpoint. If the activation

line is insufficient, how, exactly, might one find the more precise decision boundary point

between two input vectors?

5.3 Discriminant Function

A discriminant function, h(x), can be defined relating input vectors to output classes.

In a winner-takes-all output classification strategy, for instance, an input Pi will belong to

5-2

Ii I1

(a) Incomplete Boundary (b) Ideal Boundary

Figure 5.2 Articulated Decision Boundary. A finite amount of training data will
lead to an incomplete mapping of the decision boundary by the finite set of
decision points (a); invariably, there will be gaps. Ideally, an infinite number
of decision points will fully articulate the decision boundary function (b).

class 1 iff 01 > 021. Similarly, 02 will be greater than 01 for Pj E class 2. This suggests

a simple discriminant function:

h(x) = 01 - 02. (5.1)

Now, for a class 1 vector with 01 > 02, h(x) > 0. For a class 2 vector, 01 < 02,

causing h(x) < 0. See Figure 5.3. At some point Pho between Pi and P, 01 = 02 and

the discriminant function is 0. Because neither output is larger, neither output class will

claim Ph.. Therefore, h0, identifies a single point between classes.

Graphically, the 1-12 input plane cuts through "discriminant space" at h(x) = 0 as

shown in Figure 5.3. Note that all vectors belonging to class I (e.g. P) appear on one side

of the input plane while all class 2 points (including P2) appear on the other. Stepping

along the input space line between P1 and P2 traces the h(x) curve2 . At h0 , where h(x) = 0,

the curve crosses the input plane. In other words, the discriminant function is zero at a

1Assume for now that there are only two output classes, class 1 and class 2.
2For clarity, the line segment joining P and P2 in the input space is really the projection of h(x) onto

the 11-12 plane.

5-3

h(x)

12

Figure 5.3 Discriminant Function vs. Inputs. The discriminant function, h(x)
01 - 02, plotted as a function of two input features, I and 12. At ho, h(x)
passes through zero. This point on the 1i-42 input plane, Pho, represents a
point on the decision boundary.

point on the 11-12 plane. The decision boundary point is an actual point in the input space,

with input feature values Il,ho and I2,ho.

Stepping along the discriminant function, h(x), to find the "zero crossing" can be

accomplished by any numerical root finding method3 , such as bracketing, bisection, or the

secant method.

This decision boundary more precisely accounts for subsymbolic knowledge embedded

within a neural net. Just as Knowledge Math seems a better method than Fu's because

it utilizes more aspects of the net knowledge base, the decision boundary could be an

even better source of net interpretation. How, then, can it help find rule-type symbolic

information? Won't it find complicated, messy rules like those occurring for the Knowledge

Math complex rule regions?

5.4 Decision Boundaries, Symbolic Knowledge, and You

The vector-pair line intersects the decision boundary curve at exactly one point, h0 ,

where the discriminant function passes through 0. Moreover, the tangent of the decision

3Provided there is only one root, which implies the output classification changes just once.

5-4

boundary at this point produces a line or plane that is virtually guaranteed to separate

the point, Pi E class 1, from its partner, P G class 2.

This condition fails only if both points lie on the tangent line, which is very nearly

impossible. If any P could be coupled with any P, a meandering decision boundary curve

could result in the situation illustrated in Figure 5.4. Pairing two points near a sharp bend

in the boundary might, in fact, lead to a tangent line that passes through both points!

However, this is an extremely rare case. More importantly, vector pairs can easily be

selected ensuring this does not occur. In fact, in a well-trained net with a fairly extensive

training set, such pairings can be discarded without general loss of fidelity.

12

o °

Figure 5.4 Unfortunate Vector Pairing. When point Pi pairs with Pj, the resulting
vector-pair line intersects the decision boundary as shown. This line also
corresponds to the tangent to the decision boundary at the decision point, so
the tangent line passes through P and P. Thus the tangent rules fails to
bound P from neighbor Pj.

Thus, this tangent represents a rule bounding its corresponding point, P, in the

same manner that activation rules explained input vectors on either side of the activation

line in Chapter IV. If every point is paired up with a neighbor in a different class, then.

every point will have an associated decision point and a tangential rule bounding it to

its class. A series of points associated with an encapsulated region will realize of set of

rules totally bounding this section from any other. Each rule will be a linear relationship

5-5

between inputs. For example, the tangent rule governing P will have the form

Ap, 1 + Bp, I 2 + Cp, < 0 - Pi C class 1. (5.2)

Since a group of such lines together form a rule set describing an output class decision

region, the need to distinguish complex regions from shortcuts disappears. Essentially, the

rule set contains a series of line segments, bounded where one tangent rule line intersects

a pair of others (Figure 5.5).

©
Qi

2 R

p2

Figure 5.5 Line Segment Rules. Tangent rule R1 separates P from Q1. This rule
can be a member of the rule set bounding Region (); in this case, it is valid
only between the first intersection on either side by another tangent rule (R 2

on the "left" and R 3 on the "right").

Although each rule in the rule set represents a nice, linear relationship of the inputs-

a beneficial characteristic of the Knowledge Math shortcut regions-a decision region con-

tains an arbitrarily large number of training vectors. If there are N 1 points in Region (,

then at least N 1 rules govern the decision region' .

Too many rule relationships restrict the viability of the complete rule set. However,

several tangent rules may be very similar. In fact, one rule may sufficiently approximate

two or more of them. This is key to the decision boundary's knowledge interpretation role.

One point's rule may bound another point. Consider the two points with their assigned

neighbors in Figure 5.6a. Although points P and P2 have unique bounding rules (R1 and

R 2 , respectively), the rules are virtually identical. Furthermore, either rule sufficiently

4 If vectors are allowed to pair with more than one neighbor, more than N rules per region could result.

5-6

bounds both points, as demonstrated in Figure 5.6b. R1 not only separates P from its

neighbor, Q1, but it isolates P2 from Q2 as well. Similarly, R 2 separates P and P2 from

Q, and Q2. One of these rules may be essential (either R1 or R2); the other is superfluous

and can be discarded from the decision region rule set.

12 Q, Q2 12 (D1 Q2

PIP2 PI P2

I1 I1

(a) R 1 separates P from Q1, and R 2 sepa- (b) R 2 can be discarded; R 1 sufficiently
rates P2 from R 2. bounds P and P2 .

Figure 5.6 Superfluous Rule Elimination. R1 and R2 separate both P and P2 from
their respective neighbors, Qi and Q2. Thus, one of the rules (R2, in (b)) can
be discarded from the bounding rule set.

Conceivably, a single rule might bound any number of other points in the same class.

Because of this, perceived gaps in the decision boundary are not crippling. Articulated

points on either side of the gap may sufficiently approximate missing rules associated with

potential decision points within the gaps, provided the training vectors are fairly well

distributed throughout the input space and the gaps are not terribly large5 . The goal,

then, is to find some subset of tangent rules that sufficiently bounds a decision region.

5.4.1 Linearly Separable Data. For an illustrative example, consider the linearly

separable data from Chapter IV (shown again in Figure 5.7a). Pairing every class 1 point

with a class 2 neighbor (and vice versa) results in a finite series of points approximating the

decision curve (Figure 5.7b). However, as inferred from the graph, the individual tangents

5Large gaps around "bends" in the decision curve could reduce the precision of the bounding rule set.

5-7

combine to form a single straight line suggested by the points themselves. Hence, as

expected in linearly separable data, a single rule bounds this domain. It is not coincidental

that this decision boundary rule closely mimics the activation line in the Knowledge Math

model. As pointed out in Section 4.2, a simple perceptron will sufficiently learn this data,

and its single activation line correctly interprets the net knowledge. In other words, the

activation line is, in fact, essentially the decision boundary for linearly separable data.

+ Class 0 Class 0 *
+ Class 1 + N ClassO I

* t\ Boundaiy Poirts +
+ + + + + + +

+ + + + + +
+ + +

*i + + .,: ,. %. : + -0.
+ + + +++ ++

0

X

.e P C

°o ° 0 0, 0 N. ¢

(a) rLinearlydSearablebDatad(byArticulatedsDcision Boundar

Is it this easy to find a set of bounding rules in a general case? Well, no. A general

decision boundary inscribes a curve through the input space. Within an encapsulated

decision region, individual tangent rules can be slightly-or even significantly-different.

General rule sets can be found in the following manner.

5.4.2 General Rule Derivation. First, consider the task of pairing vectors. Intu-
ition suggests that pairing i E class 1 with every vector in class 2 (statistically, about

2

the test vectors) will produce as complete a mapping of the decision boundary as possible.

However, too many vector pairings can effect an exorbitant number of tangent rules, an

unnecessarily complex and ugly semantic description, and user head implosion.

5-8

Since tangent rules can cover holes in the decision boundary map, it may be more

logical to pair vectors as infrequently as possible. All vectors must be paired at least once;

this ensures that all training cases are verifiably accounted for. A point P may or may not

be covered by some rule in the decision region rule set. It is difficult to be certain unless

Pi has some neighbor to be separated from. Is it sufficient to pair a vector exactly once?

Assuming two output classes, P E class 1 can pair up with any correctly classified

class 2 vector. Joining Pi with its nearest class 2 neighbor, Qj, virtually eliminates the

possibility of both points lying on the tangent line. For a well-distributed training set,

nearest neighbor Qj will be very close to the boundary curve; the continuous curve will

likely not bend sharply enough to cause this condition. Moreover, choosing a nearest

neighbor suggests the tangent line will be almost perpendicular to the vector-pair line.

Because the two lines are their most perpendicular, P, is bounded as well as it can be.

Likewise, all points in an encapsulated rule region will be as well-bound as possible. Thus,

some sufficient subset of these will nicely and efficiently bound the entire region.

The general decision boundary net interpretation process is accomplished as follows.

5.4.3 Step 1: Training. Train the net normally. The semantic interpretation

goal remains: to interpret a general net (or, at least, a general multi-layer perceptron).

Therefore, neither restrictive architecture constraints nor special learning rules need be

applied. The goal requires, first and foremost, a working neural net that can be coaxed

into explaining itself. Standard backpropagation will work as well as anything.

5.4.4 Step 2: Partitioning. Partition the training set according to output

classification. After training is complete (i.e. the error is sufficiently small), split correctly

classified input vectors into separate output class sets. Unless the net is 100% accurate,

some vectors will be misclassified. That is, P known to belong to class I may be determined

by the net to be in class 2. This misclassification implies Pi exists on the wrong side of

the border. Is it possible to pair Pi with another vector?

Since Pi is really a class 1 vector, it should be paired with a partner from class 2.

However, Pi's nearest class 2 neighbor, Qj, lies on the same side of the boundary as Pi.

5-9

The discriminant function, h(x), between P and Qj will not cross the h = 0 input plane.

The vector pair line will not intersect the decision boundary between the vectors; indeed,

it may not intersect the boundary at all. Thus, no decision point can be ascertained.

Another option is to accept the net's contention and pair Pi with some nearest Qj

belonging to class 1. While the vector-pair line will cross the decision boundary between

the points, the resulting tangent rule does not correctly bound P. For instance, a rule

bounding misfit P1 in Figure 5.8 will have the form

12 > mpi,tanI 1 + bpl,tan. (5.3)

Clearly, this rule bounds class 2 vectors, while the opposite rule

12 < mpItanl" + bpl,tan. (5.4)

bounds neighbor Q, (and all other class 1 points). This kind of coupling may identify a

unique decision point whose value is limited. A better alternative is to ignore the vector

completely. Assuming the training data is expansive enough, the exclusion of misclassified

vectors will not adversely affect the completeness of the decision boundary map, or the

ability to generate complete rule sets encompassing each decision region.

5.4.5 Step 3: Pairing. Finding point Pi's nearest neighbor requires calculating

the Euclidean distance to all points in every other class. From the vector difference

PiQj = Qj - A (5.5)

= (Qj,,, - Pi,1 ,, QjI2 - Pj,. 2 ,..., Qj,,. - P,r,), n = # input features

the distance from P to Qj can be found:

distance j(5.6)

= (piQ)2 + (piQ)l + ... + (piQj)l

5-10

* * " Class 1 A
Class 2 *

12 * *

A *A A
A

A A A A
A~ ~ P.&

Figure 5.8 Misclassified Point Bounding. P1 , a known class I point, falls on the
wrong side of the decision boundary. Pairing P with a properly classified
class 1 point, Q1, finds a decision point and a tangent rule. However, the rule
line incorrectly bounds P to the class 2 side of the decision region.

The closest Qj becomes Pi's nearest neighbor; the line between them will intersect

the decision boundary. The tangent constitutes a rule line (or rule plane) bounding P

from Qj.

5.4.6 Step 4: Bound points. The decision point falls somewhere on the vector-

pair line between P and Qj; the tangent to the decision boundary at this point represents

Pi's bounding rule. Every point within a decision region has an associated decision point

and, hence, its own rule.

In the extreme, every input vector could realize a unique rule. Assuming the training

data spans the breadth of the problem domain, this could be sufficient to interpret any

potential input vector. Consider a new vector Pnew determined by the net to belong to

class 1. In this case, symbolic interpretation involves finding the closest same-class training

vector, P. If the training data is reasonably dense, the training points will be close to-

gether, implying Pnew will be very near some P. That is, P's rule will separate Pnew from

the nearest class 2 point, bounding Pnew to the appropriate decision region. However, this

effects a large number, NT, of independent rules (NT = the number of training vectors).

5-11

Each pirule is applicable to a very small segment of the input space around its associ-

ated training point. Furthermore, finding Pnew'S closest relative requires computing the

distance to every same-class training point. Performing the necessary Euclidean distance

calculations for every input vector is expensive.

The net-interpretation goal is to find some sufficient set of rules bounding vectors

within a decision region from all vectors without. Combining and/or discarding individual

rules could lead to a subset of these NT rules encapsulating the entire rule region. The

resulting rule subset is sufficient if all of the points within the region are bounded (separated

from its nearest neighbor) by some rule'. That is, every vector should ultimately belong

to some rule space partition as well.

5.4.6.1 Partitioning. There are two types of rule space partitions applicable

to the bounding process: rule partitions and link partitions. These entities and selected

operations on them represent bounding primitives necessary to construct an algorithm to

find a rule set bounding all the points in a decision region.

Rule Partition. A rule partition identifies a point (called the ruler of the partition)

whose tangent rule bounds every point in that partition. Typically, a new rule partition,

HP, is created when no existing partition's rule adequately separates P from its nearest

neighbor Qj. Thus, P is the first point inserted in 11p; P becomes the ruler of Hlp and

P's rule becomes the partition rule. Thereafter, another vector Pk that can be bound

from its nearest neighbor by P's rule may be placed in partition ip; Pk's individual rule

is discarded.

In simple problem domains, rule partitions could be enough to bound all decision re-

gions. For instance, consider the linearly separable data and the resultant decision bound-

ary in Figure 5.4.1. Pick a point, P1, in class 1 and find its nearest neighbor, Q,. P1

establishes a rule partition, 111, whose tangent rule, in fact, describes the decision bound-

ary (see Figure 5.9).

6Also, no point from a different class can be contained within the bounded region.

5-12

12

QI Bounding Partitions

Partition II
P1 Rule 12 < 1- I,

Ruler P1

Members P

Ii

(a) P pairs with Q, (b) Resulting Partition

Figure 5.9 Linearly Separable Data: Bounding First Point. Pairing P1 with its
nearest neighbor and finding the intersection of this vector-pair line with the
decision boundary results in the tangent rule shown in (a). Since this is the
first point bounded, a new rule partition is created with P as the ruler (b).

Next, pair another class 1 vector, P2 , with its nearest neighbor, Q3. Ill's rule (i.e.

P1 's rule) separates P 2 and Q,3; therefore, P2 can be added to 11, leaving only one partition,

as shown in Figure 5.10. In fact, all subsequent class 1 points can be included in the H,

resulting in one symbolic rule describing all of class 1. Similarly, a single rule will classify

all of class 2. In fact, except for some small error, e, inherent in the root finding algorithm,

these two rule lines are exactly the same, and the net can be summarized by the simple

rule set:

I/ < 12l +cp -01
A , , (5 .7)

B- 12+ ' 01

However, in more complex problem domains whose decision boundary curves are

more complicated, independent rule partitions are not enough.

Partition Link. Consider the XOR data distribution and the resulting decision

boundary in Figure 5.11. Since a single line is not sufficient to separate class 0 from

class 1, at least two rules are necessary to bound any of the four decision regions.

5-13

12

Q Bounding Partitions
Q" Partition H

P1, 'r/
Rule 12 < 1 -11

Ruler P
Members P1 , P2

II

(a) P 2 pairs with Q6 (b) Resulting Partition

Figure 5.10 Linearly Separable Data: Bounding Second Point. In (a), P2 paired
with nearest neighbor Qp results in the same tangent rule as P1. Thus, Ill's
rule bounds P2 as well as P 1. Hence, P2 is placed into 11; a new partition is
not created.

04 C~0
+ ++ + +4++#t, class 0 *t I, qa sO , ,

+ c la s s las+ 1 + o °

+ + * B ndaryG 8s ,
+ ++

+ ++ + +G +.............." ;

S G +0
S+ + 0 + ++ +

+ + + +
0

G
+ +++ + + ++

+ +++ ++
+ ++

+ + +

I1 I

(a) Sample Data (b) Decision Boundary

Figure 5.11 Sample XOR Data. Pairing class 0 points with class 1 nearest and
class 1 points with class 0 neighbors, such as those in (a), produces the set
of decision boundary points described in (b).

5-14

In Figure 5.12, the first point is bounded. P1 C class 0, in Region , is paired up

with its closest neighbor, Q, E class I (in Region®). Point P is ideally bounded by the

rule
7:

I, < 0.5 --* P1 C class 0, (5.8)

or

IF I < 0.5 THEN -i0. (5.9)

Thus, a new rule partition H1 is created for P1.

12

Bounding Partitions
Partition 11

Rule I, < 0.5
P1 Ruler P1

"- o% Members P

(a) P pairs with Q, (b) Resulting Partition

Figure 5.12 XOR Data: Bounding First Point. P1 pairs with Q, in Region (),
resulting in the "vertical" tangent rule shown in (a). A new rule partition,
111, is created to bound this initial point in (b).

Now consider P2, whose nearest neighbor Qp is a class I point in Region() (Fig-

ure 5.13). P2 is not separated from Qo by Rule 5.8; II1 does not bound this point. A new

partition, 112, must be created for P2, with the ideal tangent/partition rule:

12 < 0.5 --* P 2 E class 0, (5.10)

or

IF 12 < 0.5 THEN -,O. (5.11)

7The actual rule line may "lean" somewhat; the accuracy of the neural net approximation depends on
the completeness of the training data.

5-15

',2 ~Bounding Partitions
Partition H,

Rule 11 < 0.5
Ruler P1

\ Members P1

Partition HI2
"I Rule 2 < 0.5

Ruler P2
II Members P2

(a) P 2 pairs with Qq (b) Resulting Partitions

Figure 5.13 XOR Data: Bounding Second Point. P2 pairs with Q3 in Regiona.
The resulting "horizontal" tangent rule is shown in (a). Hi's rule does not
separate P 2 from Qp; hence, a new rule partition is created for P2, as shown
in (b).

Notice in Figure 5.13 that the rules of 1i and H2 describe different sides of the box

containing Region (1) . Clearly, P and P2 lie in the same encapsulated decision region.

However, if the partitions remain independent, Hi's member set will be recognized as

disjoint from that of H2.

Thus it becomes necessary to introduce the concept of a link within a partition. i1's

rule does not separate P 2 from its neighbor, Qp; nor does H2's rule separate P from Q,.

However, Hi's rule does separate P 2 from P's neighbor, just as H2's rule separates P from

P 2's neighbor. A dependency exists between 1, and 112. partitions 1 and 2.

To handle this dependency, a link set is added to the rule partition structure; be-

tween every pair of rule partitions that meet the dependency criteria, a link is established.

Figure 5.14 illustrates partition links, such as the one between 11, and H2. Notice that the

eight rule partitions describing pertinent domain rules are no longer independent; pairs of

partitions are linked, resulting in four rule sets bounding the four XOR decision regions

(one set per region). Table 5.1 summarizes the resulting rules.

5-16

11 Bounding Partitions

Partition H Partition 113
Rule I, < 0.5 Rule 1, > 0.5

Ruler P1 Ruler P3

Members P Members P3

Links 112 Links H4

12 Partition H2 Partition 114
D P3 CD Rule 12 < 0.5 Rule 12 > 0.5

P4 Ruler P2 Ruler P4

Members P2 Members P4

-- Links I Links 1
P2 P1

[[Partition H5 Partition H7
Rule I, > 0.5 Rule 12 > 0.5

Ruler Q, Ruler Qp
Members Qc, Members Qp

Links 1 6 Links H8

Partition H6 Partition 118
Rule 12 < 0.5 Rule 1, < 0.5

Ruler Q6 Ruler Q7
Members Q6 Members Qy

Links 115 Links 17

(a) P1, P2 , P3 , and P 4 are mutually (b) Entire Partition Set
paired with Q,, Qp, Qy, and Q6,
bounding all four regions 9 .

Figure 5.14 XOR Data: Complete Bounding. Two points in each region paired
with neighbors as shown in (a) results in the linked partitions in (b).

RI IF (I, < 0.5) A (12 < 0.5) THEN 0 E class 0
R2 IF (11 >0.5) A (12>0.5) THEN 0 E class 0
R3 IF (I, >0.5) A (12 <0.5) THEN 0 E class I
R4 IF (I, <0.5) A (12>0.5) THEN 0 E class 1

Table 5.1 Decision Boundary XOR Rule Set. The four pairs of linked rule parti-
tions in Figure 5.14 result in this set of rules governing the XOR domain.

5-17

Thus, linearly separable and XOR domains are partition adequately with rule parti-

tions. However, even incorporating inter-partition links, rule partitions are not necessarily

enough to correctly interpret decision regions.

Link Partition. Consider the Stair-Step problem. Although the input space is divided

into only two decision regions, the decision boundary is much more complicated than those

of linearly separable or XOR problems. Notice the single step around P1, P2, and P3 . This

section of Region (1) appears very much like one of the XOR quadrants; it behaves similarly

as well. That is, P and P2 will be placed into separate rule partitions (H1 and 112) with

a link between them. P3 adds no new information and can be bound by either partition.

P3 might be placed in Hi; P3's rule is discarded.

Likewise, Pa and Pb, on another step, are placed into separate, linked partitions 113

and 114), respectively. Either 113 or 114 will contain P,.

According to the bounding mechanisms discussed thus far, these two sections (i.e.

two partition sets, {111,112} and {1I3,114}) will remain independent of each other. There

exists no established way to link these two sets together. Note, though, that Px can be

bounded by both H1, and 113, suggesting a link should exist between these rule sets, as has

already been intuited. However, inserting Px in either Hl1 or 113 discards all knowledge

about Px, including this necessary link. Thus a new type of entity is required: a link

partition.

A link partition behaves much like a rule partition. However, it does not include

a rule or ruler. It contains only a set of member points and a set of links to those rule

partitions that can bound the points contained within. Thus, before Px is bounded to a

partition, two independent rule sets exist (see Table 5.2). Px elicits the creation of a new

link partition, 115, with links to Il and 113. After bounding Px, all the partitions are linked

(Table 5.3).

Now, an association can be traced between the old rule sets, {111,112} and {113,114}),

enabling their conflation into a single set 111,2,113,114}). Note that 115 exists only to link

the other partitions together. It contains no rule information; hence, 115 is not a member

of the bounding rule set.

5-18

Bounding Partitions

Partition I1I Partition Hf
Rule I, < 0.5 Rule I, < 0.5
Ruler P Ruler P

Members P Members P
Links H12 Links 112

Partition 112 Partition 112
Rule 12 < 0.5 Rule 12 < 0.5
Ruler P2 Ruler P2

Members P2 Members P 2

Links I1 Links 1,

Table 5.2 Stair-Step Rule Partitions. Bounding points P1, P2, P3, Pa, Pb, and P,
in A simple stair-step problem results in two independent sets of partitions:
H11, 112 and 113, 14.

11 Bounding Partitions

Partition H, Partition 111
Rule I, < 0.5 Rule I, < 0.5
Ruler P Ruler P

Members P, Members P,
Links IH2 Links 112

Partition 112 Partition 1112

Rule 12 < 0.5 Rule 12 < 0.5
Ruler P2 Ruler P2

Members P2 Members P2

Links 11 Links 111
Partition 112

Rule 12 < 0.5
Ruler P2

Members P2

Links II1

Table 5.3 Stair Step with Link Partition. Recognizing that PX can be bounded by
independent rule partitions 11 and 113, PX is placed into a link partition. As a
result, all of the rule partitions are linked together.

5-19

Still, the concept of partitions is not complete. Utilizing rule and link partitions, and

linking and bounding points as described thus far, an arbitrary decision region may still

not be bounded correctly.

Link Breaking. Consider the Island Problem in Figure 3.3.3. (include points 1,2,3,4).

In this problem, two independent class 0 "islands" are completely surrounded by a class 1

4ea".

Initially, P is placed into its own rule partition, Il1. Although P2 requires a new rule

partition, 112, fIl's rule separates P2 from I1l's ruler's (Pi's) neighbor. Also, 112 separates

P from P2's neighbor. Therefore, a link is established between l and 112, just as before.

However, 11 and 112 should not be linked in this case. This problem must be resolved.

Now bound P3. Since neither Ill nor H12 separates P3 from its neighbor, P3 requires

a new rule partition, 113. 113 can now be linked to Ill, but not 112. That is, 113 can be

linked to only one element of the rule set {1it,112}. Since l is already linked to 112,

an inconsistency exists. Breaking the H1l-112 link and recompeting all three partitions for

applicable links can solve this problem. Before any link is established (or reestablished),

consistency between Hl, 112, and 113 must be maintained.

Thus, the ability to break and recompete links becomes the final element necessary

to bound vectors within decision regions. With this set of vector-bounding primitives (see

Table 3.3.3), a bounding algorithm can be constructed.

5.4.6.2 Algorithm. Too many rules are simply too much. An algorithm to

bound vectdrs within decision regions could attempt to find an optimal bounding; however,

it is unclear exactly what "optimal" means here (see Section 5.5.2 below). To develop an

appreciation for this difficulty, start with the basics. The algorithm presented here finds a

solution. While it may not the best solution, it is the easiest. More importantly, it provides

clues about how the bounding problem might be optimized.

Train net as usual (e.g. with backpropogation)
Partition correctly classified test vectors into separate sets, Sk (i.e. one set per output class).
Find nearest neighbors, Qj, for all vectors, P, in each output class set, Sk. ,

For each vector P E each class set, Sk ,

Calculate the Euclidean distance to every vector in all SI, 1 $ k

5-20

Remember nearest neighbor, Qj
Tag Qj to P1o

Partition all points in each set into a rule or link partition ,
For each point Pk,i in Sk
Is the point already bounded? That is, does it already belong to a partition?
If so, continue with next point
If not ,,

Find all rules that can bound it , ,
Look at each rule partition
Does the partition's rule separate Pk,i from its neighbor Q1,k?
Add up "yes"'s

How many established rules (i.e. existing rule partitions) can bound Pk,i?
If more than 1, then the point links affected rule partitions, ,

3 a link partition whose links are exactly the same as point's bounders?
If yes, add point to that link partition
If no, create a new link partition, adding all bounders to the new partition's
links

If exactly 1, then the point belongs to the appropriate rule partition-insert
it
If none, then the point belongs to a new rule partition ,

create a new rule partition
check other rule partitions for applicable links ,

Does the other partition's rule separate me from his neighbor?
Does my rule separate the other partition's point(s) from my neighbor?
If yes to both, establish link between them

At this point, every correctly classified training datum is included in some partition,

according to the constraints detailed above. The set of partitions describe every deci-

sion region; dependent partitions bound individual regions. However, before bounding is

complete, a final check must be made to ensure the links are complete and consistent.

5.4.7 Step 5: Transitivity. In the algorithm, a new rule partition is immediately

linked to any other appropriate rule partition. However, transitivity is not enforced at the

time. Obviously, if HA is linked to HB and HB is linked to Hc, then HA should be linked

to Hc as well.

In particular, link partitions contain rule partitions that should be linked but have

not been. This is not enforced during bounding because of the potential need to severe

and reestablish links.

'OQj is Pi's nearest neighbor, but Pi may or may not be Qj's.

5-21

After bounding is complete, transitivity is accomplished by stepping through the

partitions ensuring link consistency. Now, independent rule sets, bounding encapsulated

decision regions, can be readily ascertained. However, the rule sets may be laden by lots

of rules; ideally, superfluous rules should be culled out.

5.4.8 Step 6: Subsuming. Subsumption represents an obvious optimization. In

the simple algorithm presented here, order matters. For instance, the order that points

were partitioned in the Island Problem constituted the need to break and recompete links.

Picking the points in a special order (say, P 1, then P3, followed by P2) could have avoided

this situation.

In general, the order in which points are bounded can impact which-and how

many-rules are contained within the final rule sets. Arguably, small is better. That

is, fewer tangent rules typically provide more semantically acceptable net explanations. In

an XOR problem, P and P2 can be partitioned as before, resulting in partitions II, and

H2 which totally describe Region (1) with the rule:

I, <0.5 A 12 < 0.5 -- 0 C class 0. (5.12)

P3 , in the "corner" of Region (, can then be added to either partition or produce its own

link partition. On the other hand, Figure 3.3.3b shows the same domain, but the points

are bounded in reverse order. Now, P3 is bound first. Without any existing partitions to

bound the point, a new rule partition must be created (1). However, H does not bound

P2 or P1. Separate rule partitions are needed for each of these points, resulting in the

rule:

1 < 0.5 A 12 < 0.5 A 1, < mpI2 + bp -- 0 E class O. (5.13)

Clearly, Rule 5.12 is more palatable. More importantly, rule partition H is super-

fluous in the latter case and can be subsumed. As a post-processing step, find and remove

those partitions such as H whose ruler can be separated from its neighbor by another rule

in the rule set. Continue this until the rule set can be reduced no further.

5-22

After all training vectors have been bound, the transitivity check has occurred, and

rules have been subsumed as appropriate, the augmented net is ready for general use. All

decision regions have been described by a set of rules. Any vector applied to the net during

normal use will be classified and, if requested, an explanation (based on the rule set) can

be provided to the user.

5.5 Results

Use the net. All the rule generation pre-processing is complete. Give it a vector.

Ask for an explanation. The net will classify the input. If asked to supply an explanation,

the expert network will further determine in which decision region the vector lies. This

region has a unique rule set associated with it. The net supplies these rule relationships

to the user.

Note that the input vector can be misclassified11 . In this case, incorrect rules will be

given to the user. If the net believes a vector Pi belongs to class 1, for instance, the rule

set describing the appropriate class 1 region will be returned. That is, the explanation

facility will be no more accurate than the net.

In some cases, a misclassified vector's rules may not make sense, and the user may

be able to determine that a misclassification has occurred. In other cases, where the user

cannot distinguish good rules from bad, the user must rely on the statistical accuracy of

the net to accept the solution and explanation. However, humans are typically wary of

computers; it would be preferable that the net and, hence, the decision region rule set

always correctly explained every input.

Actually, the nature of the rule reduction presented here is such that the governing

rules are only an approximation of the rule region. The fewer number of rules in a rule

set, the less precisely bound the decision region. Is this good enough? Remember that the

net itself learns only an approximation of the input domain; a more expansive training set

will result in a better trained net. However, there is always the potential, for any problem

laThis is an artifact of an imperfectly trained net, or a lack of generalization in the training data, not a
result of the rule generation process.

5-23

domain, that an obscure input vector will invariably be misclassified, no matter how well

or how general the net is trained. This risk is assumed by artificial neural net users.

Similarly, the rule sets approximate the inherent decision regions of the net. Thus,

a rule set is typically an approximation of an approximation. Like the net itself, the rule

sets can bound the decision region tightly, catching virtually every potential input vector.

Still, it is conceivable that a vector may get classified correctly by the net, while not being

covered by any rule.

For example, consider a bounding rule, R 1, slightly offset from the "ideal" rule,

I, < 0.5. Such a rule could have been chosen because of the order in which the points were

bounded, or perhaps the net has not learned the domain very strictly. In either case, P"

might be classified correctly. That is, the net will claim P, is a class 1 point. However,

when searching for an explanation, Pc, is class 1 but lies technically within a class 2 decision

region. What can the net do? It can: (1) return the wrong answer (the class 2 rule set), (2)

provide an error message in lieu of a rule set, or (3) find the closest class 1 decision region.

The first two should be avoided; the latter is easily accomplished (though not necessarily

quickly) by finding the nearest class 1 point P and returning Pi's bounding rules. This

is quite clean; uninterpreted points will likely fall very close to a decision region of the

appropriate class.

Therefore, the Decision Boundary net-interpretation method generates decent sym-

bolic rule-relationships in the complex regions not covered by Fu or Knowledge Math.

Along with Knowledge Math, it seems to provide a means of fully interpreting a general

neural net. In fact, this method alone produces rule sets bounding every input vector. It

would seem, then, that the decision boundaries provide the explanation facility desired in

a neural net. However, this approach suffers from limitations as well.

5.5.1 Limitations. First, the rule sets may be heavily laden with rules. Every

training vector within a decision region can realize a unique rule. In the extreme case,

the number of rules in the rule set will be the same as the number of training vectors

enclosed within a decision region (i.e. the rule set contains one rule per vector). Since the

number of vectors bounded within a given region can be arbitrarily large, the rule set can

5-24

easily become semantically unwieldy. Multiple rules corresponding to rule relationships

that cover very small regions can be cumbersome and ugly.

The bounding algorithm addresses this by providing a mechanism to subsume super-

fluous rules. As a result, the size of the rule set is reduced as much as possible. Although

this attempts to reduce the impact of one limitation, it brings up another.

The resultant rule subset may not tightly approximate the decision boundary curve.

As the approximation becomes looser, the chance of finding an uninterpretable vector (i.e.

P is classified as class 1 but falls outside the class 1 bounding rules) increases. As was

suggested previously, P can be adequately explained by finding its closest relative, Pj,

within a class 1 decision region. As long as Pi is close to P, Pj's rule set will sufficiently

cover P as well.

However, as the rule set approximation of the decision boundary becomes less exact,

more vectors can lie in these uninterpretable areas. Finding Pi's closest relative requires

calculating the distance to every known class I point (or, at least, one such point in

each encapsulated rule region). The distance calculations are expensive; to perform this

frequently, the interpreter will take a performance hit.

Finally, order affects how well decision regions are bounded and how many rules are

required to adequately bound them.

As has already been belabored, order matters. The order in which points are bounded

within the bounding algorithm Despite the subsumption provided after the bounding algo-

rithm, which itself is an expensive exhaustive search, the algorithm provides no guarantee

that a "best" rule set is found. Indeed, it fail to define what a "best" rule set is! Even

in subsumption, order matters. In particular, the case of the ill-interpreted vector can

be made rare by subsuming in the right sequence (say, getting rid of the rule shown in

Figure 3.3.3 in favor of a more "vertical" one).

The other limitations can be readily handled; this one deserves a closer look.

5.5.2 A Note on Optimization. The concept of a set of "best" rules governing

a decision region is hard to define. "Best" implies something to be optimized, but what?

5-25

The number of rules? Ultimately, the definition of "best" must be the most semantically

acceptable to the user. But what is acceptable by the user? This may well be domain

specific. An engineering or scientific problem-or anywhere where precision is paramount-

a maximum number of rules or the tightest, most complex bounding of the decision region

may be in order. In many control applications, such as a virtual copilot, explanations

should be as easy (i.e. fewest rules) as possible. Stock market prediction, where the goal is

to guess whether the market will rise or fall, but where implicit relations between indices

are not easily determined, probably requires something in between.

Therefore, an optimization function is probably best supplied with a priori domain

knowledge. There are three basic forms such optimization could take: quickest, fewest, and

tightest.

The quickest rule set was more or less what was found by the algorithm presented

here. This is probably sufficient for many general problem domains. Certainly it works

well for toy problems, such as linearly separable or XOR data. But the choice of points to

bound is random; thus the method as a whole is ad hoc. There is no guarantee that the

resulting rules will most efficiently describe the enclosed regions. The size of the rule set

may be reduced by subsuming superfluous rules. Subsumption will "smallify" the rule set

into as semantically nice a set of rules as possible, based on the random ordering of points.

The fewest optimization suggests finding the minimum number of rules. Note that

this is an exhaustive search of a combinatoric rule space. Basically, all possible orderings of

the input vectors must be considered. Being a minimum number of straight-line rules, this

could provide even better semantics than the quickest algorithm described here. However,

such minimalistic rule set bound the decision region as loose as inhumanly possible. In the

worst case, this optimization implies finding the rule set that maximizes the area bounded

by the potential set of tangent rules. Thus the potential of losing outliers is increased.

Furthermore, the un-interpreted outliers may not be as so close to a region of the right

class, so the approximation necessary to explain the vector by the nearest neighbor's rule

set increases.

5-26

The final general means of optimization is to find the tightest rules. That is, find

the "best fit" of the decision region by some subset of tangent rules. Essentially, this rule

subset minimizes the enclosed input space area. This, too, could result in an exhaustive

search of the the straight line tangent rules. However, another approach is to find a single,

potentially quite complex function to inscribe a very tight approximation of the boundary

suggested by the set of decision points. For example, a curve fitting technique such as

minimum description length encoding (MDL) could be employed to find an approximating

function[12].

In general, tightest optimization implies finding few (possibly one) "nice" bounding

equation. For instance, consider the island problem. Each island can be approximated very

nicely by an ellipse. However, this ellipse equation is not as esthetically pleasing as straight

line rules. That is, it is harder to determine the nature of the rule relationship without

plotting it graphically. Even then, the rule may be complex enough that all semantic value

is lost.

Thus, to recapitulate, the quickest optimization, which happens to be the simplest

conceptually and implementation-wise, may be the best in the general case. Random rules

may be the best trade off between tight, ugly rules and pretty, loose rules.

5-27

VI. Conclusions and Recommendations

Fu established a good neural net symbolic interpretation foundation. However, he

traded precision and accuracy for an independent rule base that realized only an approx-

imation of the net. Although he claimed the rule base performed comparably with the

original net 1 , his method failed to address augmentation of the neural net with an expla-

nation facility. In particular, in an ambiguous domain such as stock market prediction,

the important information is not just the input features but the interaction among them.

Human experts may not know what input relations are important; the net could provide

rule relations, increasing domain knowledge.

The Knowledge Math mathematical extension of Fu, developed in this work, bet-

ter addresses net augmentation and rule relationships. This method employs a precise

knowledge interpretation, it is intuitively nice, and it provides very good special cases

(shortcuts).

The Decision Boundary method, also developed in this research, solves these complex

rule regions. Indeed, this method solves the whole implementation problem very well. It

is grounded not only on the precise knowledge of the decision boundary in the net, which

is only approximated by the activation lines used by Fu or Knowledge Math.

The rules generated by the Decision Boundary method may not be as nice as those

generated by the Knowledge Math method. In particular, multiple tangent line segment

rules bound any given decision region; with these, it may be hard to discern the rules'

semantic value. The Decision Boundary method could be augmented by Knowledge Math.

Knowledge Math can provide "quick" and "nice" rules for any existing shortcut rule region.

As noted in Section 3.3.3, these shortcut rules are, in fact, the most general rules and rule

relations possible in the net. These rules are simple to understand. A "quick check" of the

input space to determine if any shortcut rules apply could be very beneficial to the user.

If the vector lies within a Knowledge Math complex rule region, the Decision Bound-

ary method provides potentially less nice rules, but it will find essential relationships

governing the output classification in that decision region. It is important to note that

1In terms of accurate output classification; not in terms of speed or efficiency.

6-1

sometimes life, like rule relationships, is complicated. If the user really wants to know why

things are happenings as they are for an input that lies within the complex rule region,

then he is going to have to face the possibility of complicated rules.

In summary, the Decision Boundary method, or Knowledge Math in conjunction

with Decision Boundaries, will provide symbolic knowledge whose usefulness surpasses

Fu's, because it better utilizes subsymbolic net knowledge.

6-2

Bibliography

1. Caudill, Maureen. "Expert Networks," BYTE, 108-116 (October 1991).

2. Cybenko, George. Approximations by Superpositions of a Sigmoidal Function. Re-
search Note, Computer Science Department, Tufts University, October 1988.

3. Frasconi, P., et al. "An Unified Approach for Integrating Explicit Knowledge and
Learning by Example in Recurrent Networks." Proceedings of the IJCNN1. 811-816.
1991.

4. Fu, Li Min. "Knowledge-Based Connectioinism for Revising Domain Theories," IEEE
Transactions on Systems, Man, and Cybernetics, 23(1):173-182 (1993).

5. Fu, Li Min. "Rule Generation from Neural Networks," IEEE Transactions on Systems,
Man, and Cybernetics, 24(8):1114-1124 (August 1994).

6. Gallant, Stephen I. "Connectionist Expert Systems," Communications of the ACM,
31(2):152-169 (1988).

7. Giarratano, Joseph and Gary Riley. Expert Systems (Second Edition). PWS Publish-
ing Company, Boston, Massechusetts, 1994.

8. Handelman, D. A., et al. "Integration of Knowledge-based System and Neural Net-
work Techniques for Autonomous Learning Machines." Proceedings of the IJCNN1.
683-688. 1989.

9. Hruska, S. I., et al. "Hybrid Learning in Expert Networks." Proceedings of the
IJCNN2. 117-120. 1991.

10. Kane, Raqui and Maurice Milgram. "Extraction of Semantic Rules from Trained
Multilayer Neural Networks." IEEE International Conference on Neural Networks 3.
1397-1401. IEEE, New York, NY, 1993.

11. Lee, Chulhee and David A. Landgrebe. "Feature Extraction Based on Decision Bound-
aries," IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4):388-
400 (1993)..

12. Li, Mengxiang. Minimum Description Length Based 2D Shape Description. Technical
Report, Computational Vision and Active Perception Laboratory (CVAPL), Depart-
ment of Numerical Analysis and Computing Science, Royal Institue of Technology,
Stockholm, Sweden, October 1992.

13. McMillan, C., et al. "Learning Explicit Rules in a Neural Network." Proceedings of
the IJCNN2. 83-88. 1991.

14. Mitra, Sushmita and Sankar K. Pal. "Fuzzy Multi-Layer Perceptron, Inferencing and
Rule Generation," IEEE Transactions on Neural Networks, 6(1):51-63 (1995).

15. Newell, Allen and Herbert A. Simon. Human Problem Solving. Prentice-Hall, 1972.

16. Rogers, Steven K. and Matthew Kabrisky. An Introduction to Biological and Artificial
Neural Networks for Pattern Recognition. SPIE Optical Engineering Press, 1991.

17. Rumelhart, D. E., et al. Parallel Distributed Processing: Explorations in the Mi-
crostructures of Cognition. MIT Press, Cambrise, MA, 1986.

BIB-1

18. Samad, T. "Towards Connectionist Rule-based Systems." Proceedings of the IJCNN2.
525-532. 1988.

19. Stewart, James A. Nonlinear Time Series Analysis. Master's Thesis, Air Force
Institute of Technology, 1995.

20. Tazaki, Eiichiro and Norimasa Inoue. "Automated Extraction of Fuzzy Rules Using
Neural Networks with Planar Lattice Architecture." Moving Towards Expert Systems
Globally in the 21st Century edited by Jay Liebowitz, 1221-1227, Cognizant Commu-
nication Corporation, 1994.

21. Towell, G. G., et al. "Refinement of Approximate Domain Theories by Knowledge-
based Neural Networks." Proceedings of AAAI. 861-866. 1990.

22. Sima, Jifi. "Neural Expert Systems," Neural Networks, 8(2):261-271 (1995).

23. Winston, Patrick Henry. Artificial Intelligence (Thrid Edition). Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1992.

24. Yang, Q. and V. K. Bhargava. "Building Expert Systems by a Modified Perceptron
Network with Rule-transfer Algorithms." Proceedings of the IJCNN2. 77-82. 1990.

25. Yeung, Daniel S. and H. S. Fong. "A Knowledge Matrix Representation for a Rule-
Mapped Neural Network," Neurocomputing, 7:123-144 (1995).

26. Yeung, S., et al. "A Neocognitron-Based Chinese Character Recognition System."
Proceedings of the IJCNN3. 617-622. 1992.

27. Zadeh, Lofti A. "Fuzzy Sets," Information and Control, 8:338-353 (1965).

28. Zadeh, Lofti A. "The Role of Fuzzy Logic and Soft Computing in the Conception and
Design of Intelligent Systems." Fuzzy Logic in Artificial Intelligence, edited by E. P.
Klement and W. Slany. 1993.

BIB-2

Vita

Capt Stanley Dale Kinderknecht

Kansas. After high school, he attended Kansas State University, where he received ache-

lot of Science degrees in Computer Engineering and Flectrical Engineering in 1991. Upon

receving a commission through Air Force Reserve Officer Training Corps at Kansas State,

he was stationed at Wright-Patterson AFB, Ohio. After three years in Aeronautical Sys-

tems Center, he was accepted into the Master's program at the Air Force Institute of

Technology in June of 1993.

Stanley married LUsa Ann Bollig In 1987. In eight years together, they have jointly

produced six beautifl children: Christopher Stanley, Corwim James, Candace Nicole, Clan

Alexander, Collin Joseph, and Cameron Kenneth.

....M-OM" -- r

VITA-I

AEDA30(,423

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1995 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SEMANTIC INTERPRETATION OF AN
ARTIFICIAL NEURAL NETWORK

6. AUTHOR(S)

Stanley D. Kinderknecht

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Air Force Institute of Technology AFIT/GCS/ENG/95D-07
WPAFB OH 45433-6583

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

Abstract

Recent advances in machine learning theory have opened the door for applications to many difficult

problem domains. One area that has achieved great success for stock market analysis/prediction is artificial

neural networks. However, knowledge embedded in the neural network is not easily translated into symbolic
form. Recent research, exploring the viability of merging artificial neural networks with traditional rule-based

expert systems, has achieved limited success. In particular, extracting production (IF.. .THEN) rules from
a trained neural net based on connection weights provides a valid set of rules only when neuron outputs
are close to 0 or 1 (e.g. the output sigmoid function is saturated). This thesis presents two new ways to
interpret neural network knowledge. The first, called Knowledge Math, extends the use of connection weights,
generating rules for general (i.e. non-binary) input and output values. The second method, based on decision
boundaries, utilizes the inherent border between output classification regions to draw symbolic interpretation.
The Decision Boundary method generates more complex symbolic rules than Knowledge Math, but provides
valid feature relationships in the uncertain regions around the midpoints of the neuron output functions. The
main result is a complementary relationship between Knowledge Math and Decision Boundaries, as well as

subsymbolic and symbolic knowledge representations for a general multi-layer perceptron.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Neural Networks, Rule-Based Expert Systems, Rule Extraction 88
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Renort Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If S ee o n Technical
applicable, enter inclusive report dates (e.g. 10 Statmentso cJun8730Ju88).Documents."
Jun 87 - 30 Jun 88). DOE - See authorities.
Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses. DOE - Enter DOE distribution categories

from the Standard Distribution for

Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.

element number(s), project number(s), task NASA - Leave blank.
number(s), and work unit number(s). Use the NTIS - Leave blank.

following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications. Self-
perform ing the report. explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring/Monitoring Agency Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

*U.S.GPO1 993-0-336-043 Standard Form 298 Back (Rev. 2-89)

