Grant Number: DAMD17-94-J-4255

Title: Magnetic Fields and Breast Cancer Risk

Principal Investigator: Dr. Stephanie London

Contracting Organization: University of Southern California
Los Angeles, California 90033

Report Date: October 1995

Type of Report: Annual

Prepared For: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Distribution Statement: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Magnetic Fields and Breast Cancer Risk

Dr. Stephanie London

University of Southern California
Los Angeles, California 90033

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for public release; distribution unlimited

We will begin the second of four years of data collection on a nested case-control study of the possible association between magnetic field and breast cancer risk in African-American and Latino women in Los Angeles County. The research questions being addressed as follows:

Primary:
1. Is residential exposure to magnetic fields, as assessed by wiring configuration coding in homes occupied over the past 10 years before diagnosis, associated with the risk of breast cancer. Wiring configuration coding is a method that uses data on the types and distances to nearby outdoor electrical wiring to impute magnetic field levels in homes.
2. Do higher exposures to alternating current (AC) magnetic fields, as assessed by 7 days of measurements, increase a woman's risk of breast cancer.

Secondary:
1. Do particular combinations of the alternating current (AC) magnetic field and the direct current (DC) magnetic field, increase the risk of breast cancer. The AC field results from our use of the 60 Hz electric power supplied by utilities; the DC (or static) field results from the earth's magnetic field but is altered by the environment within residences. This hypothesis was prompted by observations of biologic effects at particular combinations of the AC and DC fields in several experimental systems.
FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

[Signature] 9/20/95
PI - Signature Date
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Cover</td>
<td>page 1</td>
</tr>
<tr>
<td>SF 298 Report</td>
<td>page 2</td>
</tr>
<tr>
<td>Foreword</td>
<td>page 3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>page 4</td>
</tr>
<tr>
<td>Introduction</td>
<td>pages 5-6</td>
</tr>
<tr>
<td>Body of Report</td>
<td>pages 6-8</td>
</tr>
<tr>
<td>Conclusion</td>
<td>page 8</td>
</tr>
<tr>
<td>References</td>
<td>pages 9-10</td>
</tr>
</tbody>
</table>
Introduction

Primary Specific Aims:

1. One primary specific aim is to determine if residential exposure to magnetic fields, as assessed by wiring configuration coding, is associated with the risk of breast cancer. Wiring configuration coding is a method that uses data on the types and distances to nearby outdoor electrical wiring to impute magnetic field levels in homes. Specifically, we will test whether subjects who have lived over the past 10 years in homes with wiring configurations associated with higher exposure to magnetic fields have an increased risk of breast cancer.

2. Another primary specific aim is to determine whether higher exposures to alternating current (AC) magnetic fields, as assessed by 7 days of measurements, increase a woman's risk of breast cancer. Measurements will include 6 days of measurements in the bedroom of the current residence and 1 day of personal monitoring.

Secondary Specific Aim:

1. The secondary specific aim is to test the hypothesis that particular combinations of the alternating current (AC) magnetic field and the direct current (DC) magnetic field, increase the risk of breast cancer. The AC field results from our use of the 60 Hz electric power supplied by utilities; the DC (or static) field results from the earth's magnetic field but is altered by the environment within residences. This hypothesis was prompted by observations of biologic effects at particular combinations of the AC and DC fields in several experimental systems.

Significance:

Major differences in breast cancer rates between low incidence countries in Africa and Asia and high incidence countries in Northern Europe and North America (Parkin 1992), as well as the rise in incidence over time (Devesa et al., 1987), suggest that some correlate of industrialization influences breast cancer risk. Although many factors correlate with industrialization, including changing reproductive patterns, increasing exposure to magnetic fields produced by the electric power system could play a role (Stevens et al., 1992). Support for this conjecture comes from the laboratory in the form of a plausible biologic mechanism linking EMF exposure to enhanced risk of breast cancer (Stevens et al., 1992). Central to the hypothesis are laboratory studies of the effects of magnetic field exposure on pineal function, in particular melatonin production (Kato et al, 1993), and the inhibitory effects of melatonin on mammary carcinogenesis (Hill and Blask, 1988). Melatonin, a hormone crucial to regulation of circadian rhythms, also plays a role in control of the reproductive cycle (Tamarkin et al., 1985). In addition, more recent data suggest that magnetic field exposure, at levels close to those observed in homes, may decrease melatonin's inhibitory action on breast carcinogenesis (Liburdy et al., 1993).
While epidemiologic data are sparse, there is evidence that occupational exposure to magnetic fields, as approximated by job title, is a risk factor for breast cancer in both men (Matanowski et al., 1991; Tynes and Andersen, 1991) and women (Savitz and Loomis, 1994). Further, there is data that female breast cancer risk is associated with higher residential exposure as assessed indirectly by wiring configuration coding (Wertheimer and Leeper, 1987).

There are laboratory and theoretical data that suggest that certain combinations of AC (time varying) and DC (static) magnetic fields may have enhanced potential for causing biological effects (Blackman and Most, 1993). These are generally referred to as magnetic-resonance hypotheses. While there are few epidemiologic data suitable for examining these hypotheses in relation to cancer risk, one recent study suggests that combinations of the AC and DC field are associated with the risk of childhood leukemia in Los Angeles (Bowman et al., 1995). Because of this exciting result, we included measurements of dc magnetic field in the home to address secondary aim # 2 above.

Methods of approach:

This is a nested case-control study. The base population is a cohort study of African-American and Latino women in Los Angeles County. Exposure assessment is by means of wire configuration coding combined with direct measurements of AC and DC magnetic fields. More detail is found in the Body of this report.

Body of the Report

The study is funded by the ARMY for 4 years, we are presently nearing the end of year one of data collection. There are essentially no changes in the study methods over that proposed in the original submission. In this study, we are assessing exposure to magnetic fields in three ways:

1. **Wiring configuration coding**, in which data on the types and distances to nearby outdoor electrical wiring (i.e: transmission and distribution lines) are used to impute magnetic field levels in all homes in Southern California occupied by subjects in the past 10 years. We are using a protocol developed for an NCI funded study of childhood leukemia which has been extensively tested. This is a modification of the Wertheimer Leeper wiring configuration which has been associated with the risk of childhood cancer in a number of studies (Wertheimer and Leeper, 1979) but has not been well studied in relation to breast cancer. Wire coding involves drawing a map of the type of power lines running with 150 ft of the house and their distance from the house (250 for transmission lines). The wire coding is being done in a blinded fashion and computer algorithm after specified data are abstracted from the map.
2. **Direct recordings of alternating current (AC) magnetic fields** in the home over 7 days using Emdex magnetic field meters (Enertech Consultants, Campbell CA). The meter takes measurement every 120 seconds. The meter is worn by the subject for the first day and then placed at the bedside. After recording, we download the data to a laptop computer, check and then store the data for analysis.

3. **DC (static) magnetic field measurements** at several locations in the home using a Fluxgate magnetometer (Walker Scientific, MA). These are made along with corresponding spot measurements of the AC magnetic field at three locations in the bedroom (2 locations on the bed -- where the subjects' head lies and where the chest lies), as well as in the bathroom, kitchen and living room.

A questionnaire regarding residential history and sources of magnetic field exposure at home (such as appliances) as well as history of occupational exposure to magnetic fields and exposure to light at night (a potential confounder) is also administered. The questionnaire was based largely on a questionnaire used in a recently completed study of magnetic fields and breast cancer in Seattle (NCI funded). However, we benefited from feedback from those investigators regarding which questions on their questionnaire did work as well as others.

The study is a case-control study nested within a cohort study of risk factors for breast and other cancers among African-Americans and Latinos in Los Angeles County directed by Dr. Brian Henderson. The cohort study is funded by the National Cancer Institute (CA 54281). The base population for the nested case-control study consists of the cohort of approximately 54,000 Latino and African-American women aged 45-74 years who responded to a 26 page mailed questionnaire which includes information on known risk and suspected risk factors for breast cancer and detailed dietary history. The cohort was recruited from computer files of the Department of Motor Vehicles (for persons under age 65) and the Health Care Financing Administration (for persons over age 65). The nested case-control study of magnetic fields and breast cancer includes all incident cases of female breast cancer diagnosed within the cohort over 4 years. Women with incident breast cancer are identified through the population based tumor registry for Los Angeles County. Controls are a random sample of women in the cohort who do not have breast cancer.

Cases and control are contacted to participate in the measurements and questionnaire. Women who chose not to take the time to actively participate in measurements can be included because exposure can be indirectly assessed by wire configuration coding the home occupied at the time of diagnosis. In addition, data on risk factors for breast cancer are available on all subjects from the baseline cohort study questionnaire.
Quality control:

Emdex meters and magnetometers are formally factory calibrated every 6 months but we calibrate the weekly at the office using equipment designed by our engineering consultant, William Kaune, and thus would identify any faulty machines (no problems to date). Wire coding is done blind. Wire coders were trained by William Kaune and adhere to a standard protocol for drawing maps. The actual wire code is assigned by a computer algorithm to eliminate potential bias.

Study progress:

This is a 4 year epidemiologic study. This first year was devoted to setting up all study protocols and pilot testing and then finalizing the protocols in the field. This has been successfully accomplished and we began enrolling real study subjects in the spring. Data entry screens have recently been completed and questionnaire and spot measurements data are currently being entered into the computer. Data reduction software is being written to generate summary statistics from the large volume of data generated by the Emdex 7 day recordings. Because of the long term nature of this project, we are not able to present results at this time. We have enrolled 56 cases and 74 controls. There have been essentially no changes in the methods originally proposed. Participation rates are at the level we had predicted in the original submission which is substantially better than standard population based case-control studies in these ethnic groups. This is a benefit of the nested case-control study design.

Conclusion

Epidemiologic studies of this type take time to complete. We are not yet able to draw conclusions.
References

