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Abstract

The application of the multiresolution analysis developed by Mallat to signal classifi-

cation by Pati and Krishnaprasad and Szu, et al, is further explored in this thesis. Several

different wavelet-based feature extraction and classification systems are developed and im-

plemented. Methods which rely on the traditional dyadic wavelet decomposition and on the

adaptive wavelet representation are presented. Each of the classification systems is imple-

mented for a labeled data set of narrowband signals. Finally, classification results on the full

data set and on low frequency Fourier coefficients are provided as baseline comparisons for

our work.

xii



Adaptive and Fixed Wavelet Features for

Narrowband Signal Classification

L Introduction

Artificial Neural Networks (ANN) have shown success in solving classification prob-

lems. However, in designing a classification system there are several choices that needed to

made. First, a decision needs to be made on the particular neural network model and training

method. Then, a particular set of features are extracted using a particular extraction method.

Finally, a choice is made on method of validation which gives some bound on the classification

error rate. Unfortunately, there exist only loose guidelines which govern any of these choices

[1] [2]. Thus, decisions are often made which influence the classification success percentage

of the classifier based on little more than intuition or even random chance.

Recently, the theory of wavelets has emerged as an alternate time-frequency analysis

tool to the Fourier transform. Wavelets have been applied to a variety of problems, most

notably data compression and noise reduction. Hence, it is reasonable to investigate the

application of the theory of wavelets to the problem of feature extraction.

1.1 Background

In researching this thesis the goal was to build a classification system for pulsed narrow-

band signals; i.e., signals with slowly varying amplitude and phase. In particular, we would

like to be able to label and extract a single pulse from a stream of time samples and classify it

as being of a specific class. Since the extracted pulse may itself consist of many time samples,

it may not be feasible to work with the full set of data. it was therefore decided to concentrate

on the feature extraction process. As it is discussed in Chapter II, Pati and Krishnaprasad

[3] and Szu, et al, [4] offer two different approaches for representing signals in terms of a
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wavelet functions. The multilayer classification example in Kadambe and Srinivasan's article

[5] was used as a foundation from which to investigate the goal of a classification system for

narrowband signals.

1.2 Objective

Demonstrate the ability of a wavelet-based feature extraction and classification system

to classify narrowband signals using both adaptive and fixed wavelets.

1.3 Approach/Methodology

A wavelet-based feature extraction and classification system will be developed for

narrowband signals with a high ratio of data samples to features. Once the wavelet based

feature extraction and classification system is developed, it use will be demonstrated by

comparing it to the classification rate achievable by classification on all of the original data

and on features extracted with Fourier methods from the original data.

1.4 Equipment and Materials

This thesis requires no special materials or equipment. SPARC 5 and SPARC 20

workstations are used to support all programming. More specifically, LATEX is used to typeset

this document. Matlab is used for generating plots and some general purpose programming.

LNKnet is used for all multilayer perceptron applications. All general programming that is

computationally intense is done in the Kernighan & Ritchie C language.

1.5 Notation

We use the following notation throughout this thesis:

" C for the set of complex numbers.

" Z for the set of integers.

" Z+ for the set of non negative integers.
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* R for the set of real numbers.

* L2 (R) for the space of measurable, square-integrable functions:

L2 (R) = {f : R -* C If is Lebesgue-measureable and If(x) Idx < oo}.

(1.1)

If f E L2 (R), f is sometimes referred to as a finite-energy function.

* 12 (Z) for the space of square-summable sequences:

+00

12(Z)= a=(...,a-,,a0,a,.... akCC, E laa < . (1.2)
k=-oo

For matrices and operators A, we use the following notation:

e A = [a(i, j)] defines a matrix A whose element in the i-th row and j-th column is

given by a(i, j), where a is a function on Z+ x Z+ .

• AT for the transpose of the matrix A.

0 v = [v(i)] defines a column vector v whose element in the i-th row is given by v(i),

where v is a function on Z+ .

E n will denote the sum over all n E Z unless specific limits are given.

• The Fourier transform of f will be denoted by either f or F. It is defined as f(v) =

f+ f (x)e-i2 "'vdx for f e L 2(R) and as fk = E fne - i27rkn for f E 12 (Z).

1.6 Scope

This thesis is limited to the following:

1. A brief description of the mathematical theory of wavelets and multiresolution analysis

as applied to neural networks and the multilayer perceptron.

2. A development of a wavelet-based feature extraction and classification system.
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3. Development of the tools necessary to implement the wavelet-based feature extraction

and classification system.

4. An application of the wavelet-based feature extraction and classification system to real

world data to demonstrate the performance of the system.

1.7 Overview of Thesis

In Chapter II the current theory which leads to the development of methods to be

used in this thesis is reviewed. In Chapter III the methods are examined with regard to

their mathematical foundations and provide simple computational examples. A report on

experimental classification outcomes is provided in Chapter IV. Conclusions of this work as

well as recommendations for future work are discussed in Chapter V.
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II. Background Theory

2.1 Introduction

Chapter II contains a description of the various methods used in the field and builds the

methods for use in this thesis. It serves as a literature review.

2.2 Wavelet Neural Networks as Function Approximators

2.2.1 Pati and Krishnaprasad. Pati and Krishnaprasad [3] describe a network in

which the sigmoidal activation functions of a typical neural network are replaced by particular

shifts and dilations of a given mother wavelet. Thus, consider equation 2.1 where T, a closed

proper subset of R x R, is the set of all training pairs (x, y):

y f(x) : Wm,n0m,n(X), V(x,y) E T, Wm,n,X, YER, mE Z, n E Z+, (2.1)
m,n

where "--" is defined such that there exists c E R+ so that

E > If (X) - yl ,  (2.2)

and where Om,n is a wavelet such that

Omn(X) = 2-m/ 2 /(2-mx - n). (2.3)

Pati's network is similar to the general expression of the discrete wavelet transform. We

now have a network structure which is simply a projection onto a basis - an inner product -

where the basis is a wavelet basis. When we talk about learning a given "training" set, we are

really just projecting the training vectors onto the wavelet basis. Since an infinite basis cannot

be implemented, a finite subset over the compactly supported interval on which the training

data is defined is chosen. Furthermore, we also limit the set to a maximum dilation. Define I

as the finite set of all shifts and dilations (M, n). Then we now can approximate the training
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data by the finite set of shifts and dilations (M, n) E I and a corresponding set of coefficients

(or weights) { Wm,,n}(mn) EI C R [3].

The overall approximation error is determined by

E = E If(x) - yj' (2.4)
(x,y)ET

This error functional is nearly identical to that of the backpropagation algorithm with only one

important difference. It turns out that the error functional described above is convex in terms

of the weights Wm,n. This is quite different from the backpropagation algorithm, which, in

general, has a non-linear error surface.

Due to the convexity of the error functional, any minimizer is a global minimizer. Fur-

thermore, it is clear that simple iterative schemes such as gradient descent perform adequately

since there is no possibility of getting stuck in local minima. Pati further states that the weights

may be obtained by considering the fact that minimizing E as defined above defines a least

squares problem. The solution can therefore be determined by solving the system of linear

equations constructed by the first order optimality condition OE = 0 at the optimal weight
OWm,n

[3].

The authors present two network synthesis algorithms. The first algorithm involves

determining the set of wavelets for use as activation functions for the hidden layer neurons

by considering the time and frequency limits of the training data. Given that the training data

is bounded in both time and frequency, the exact shifts and dilations of the mother wavelet

can be determined which are necessary to adequately cover the time and frequency range

of the training data. This number is the upper bound of hidden layer neurons necessary to

approximate the functional relationship between x and y to any precision e. Unfortunately,

this method can be computationally intractable if the number of required wavelets is very

large; i.e., the time and frequency bounds are very large. The second synthesis algorithm

addresses this problem by starting out at a low dilation and gradually refining the set of

wavelets at higher dilation for the regions of the training data that exhibit localized high
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frequency behavior. The network coefficients must be learned for the initial dilation. Then

additional wavelets (neurons) are added wherever the coefficients exhibit a local minimum.

Finally, the network coefficients are learned once again for the augmented set of wavelets.

This procedure is repeated until the approximation error is less than e.

Note that the networks considered so far were for one dimensional training sets; i.e.,

(x, y) E I where x, y E R. Pati states that an extension to higher dimensions, (x, y) E I

where x E R n , y E R, is straightforward but potentially computationally expensive.

2.2.2 Zhang. In a paper presented at the 32nd Conference on Decision and

Control, Zhang [6] describes an implementation of a wavelet neural network based on Pati and

Krishnaprasad's [3] first synthesis algorithm and the orthonormal least squares minimization

method. Zhang proposes to build a candidate set of wavelets based from the initial infinite

set of all possible shifts and dilations of the mother wavelet by first truncating it to a finite set

based on some a priori knowledge about the training data. The criteria are given by the the

time and frequency support of the training data set. The resulting set is a subset of the regular

pyramid structure of wavelets usually associated with a dyadic multiresolution decomposition.

The goal is to select N wavelets from the candidate set, such that these N are optimal with

respect to approximation error [6].

Starting with the network equation

Z(x) = w'X'\(X), (2.5)
AcAA

where A C {1, 2, ..., M} is an index set which is used to label the candidate set of wavelets,

Zhang derives the criterion that needs to be maximized in order to minimize

E = : Iz(x) _ y12.  (2.6)
(x,y)ET

2-3



His method involves using the Gram-Schmidt orthonormalization method to determine the

N wavelets and their shift and dilation parameters. Finally, the weights are calculated by a

simple inversion of an upper triangular matrix.

2.2.3 Szu, Telfer and Kadambe. In contrast to the networks proposed by Pati and

Krishnaprasad and Zhang, Szu, et al, [4] do not fix the shift and dilation parameters, initially

choosing only a particular mother wavelet. After empirically determining the desired network

size, the weights, shifts, and dilations are adaptively calculated. Thus, whereas Szu's mother

wavelet may lead to an orthonormal basis using only integer shifts and dilations, it follows

that we will, in general, be dealing with a frame [4] [7] [8]. The following equation describes

what Szu calls the Adaptive Wavelet Representation (AWR) network:

N t-b
y(t) E = w~h( ); t = 1,...,T; wn,bn E R; an G R-{0}, (2.7)

n=1

where h C L2 (R) is a wavelet. Unfortunately though, this method leads to an error surface

which is non-linear. It is therefore possible to encounter problems associated with local

minima [4] [9].

2.2.4 Kadambe and Srinivasan. Kadambe and Srinivasan [5] take the AWR

network developed by Szu, et al, and use it in conjunction with a one-layer backpropagation

neural network to classify speech signals. Their approach is to first find a close approximation

to an input signal in terms of a fixed number of adaptive wavelets, where the approximation

represents the projection of the input signal onto the function space spanned by the adaptive

wavelets. Then, all parameters - the weights, shifts, and dilations - are fed to a one-layer

backpropagation neural network for classification. The interesting feature of this classification

system is also its downfall. The fact that each input signal is represented to a minimum squared

error by a number of adaptive wavelets whose parameters are used for classification is both

novel and promising - as shown in the article. However, the downside is that a non-linear

optimization problem, the AWR network, must be solved for each input signal during the
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testing phase. This means that this system may take a very long time during testing and will

certainly not be implementable in real time on today's computers.

This classification system forms the basis for research from which we develop our

classification system.

2.3 Pattern Recognition

Pattern Recognition is a discipline which utilizes a set of features or characteristics

measured from the object in order to classify a particular object. For example, at a tuna

processing plant it would be prudent to separate the tuna from all other fish that were also

caught in the nets. We could choose to examine the color of each fish under the assumption

that each tuna would fall within a certain color range most of the time, whereas other fish such

as salmon should be similar in color to each other but not to the tuna. The color measurement

is be distributed according to a class conditional probability distribution. If the distributions

are well separated, discrimination is simple. However, if the distributions overlap as in figure

2.1, then a decision boundary must be set. Depending on the measurement of color and the

decision boundary, the classifier labels the fish as one class or the other. The probability of

error is related to the class conditional probabilities of being on the wrong side of the decision

boundary for a given class.

A typical pattern recognition system is composed of several sections. The typical layout

is data gathering, segmentation, feature selection/reduction, and classification [10]. Figure

2.2 shows the typical pattern recognition system.

Segmentation is defined as separating the important data from all the data gathered.

In this thesis, after preprocessing the raw data by demodulating it according to the Double

Sideband-Suppressed Carrier demodulation algorithm, we segment the data by extracting

individual pulses. Features are measured or calculated from the data and then these are used

to make a decision on the class of the sample. There are often too many features in the

gathered data and hence it is necessary to process the data in order to reduce the number of

features to a manageable size. We concentrate our research on feature selection/reduction with
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wavelet methods and with Fourier methods for comparison. Clearly, good features lead to

good classification, and according to Parsons [11], good features meet the following criteria:

1. Vary widely from class to class.

2. Insensitive to extraneous variables.

3. Stable over long periods of time.

4. Easy to measure.

5. Uncorrelated with other features.

According to Foley [1], if the ratio of training samples per class to feature space

dimensionality is less than 3, then a classifier tends to memorize the training data. This

indicates, for example, that a feature space dimensionality of ten would need a minimum of

30 training samples to avoid memorizing the training data. Although his work centered on

Gaussian data and Gaussian classifiers this rule has become one of the rules of thumb in pattern

recognition. We have enough data samples to avoid breaking Foley's rule in this thesis.

Once the features have been chosen, a method of classification is required for the final

decision. In statistical pattern recognition, the optimal decision rule is the Bayes decision rule

that states the class of the sample in question is the class with the largest a-priori probability.

As illustrated in figure 2.1, this means the class decision is determinedby the higher of the two

class conditional distribution curves. In this thesis we use the multilayer perceptron for all

classification runs. The multilayer perceptron uses the training data to adjust its weights such

that it can approximate a wide range of function classes [2]. Furthermore, it has been shown

that the multilayer perceptron approximates the a-posteriori class conditional probabilities

and hence approximates the Bayes decision optimal decision function [12].

2.4 Summary

In this Chapter we presented a description of the various methods used in the field in the

form of a literature review. The following chapter contains the precise mathematical definition
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of the methods necessary to implement the wavelet-based feature extraction and classification

system.
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III. Models

3.1 Introduction

In this Chapter we present the mathematical models used throughout this thesis. An

example of every process using a sample from our data set is shown. Included in the

introduction is a brief outline of the methods employed in this thesis.

3.1.1 Method For Thesis. The original data consists of signed integer-valued

samples of the narrowband signal. We built one classifier to use as a reference using the raw

intermediate frequency (IF) pulse data samples.

For all other classifiers we extracted the amplitude and frequency information based

on the Double Sideband Suppressed Carrier demodulation algorithm [13]. Three feature

extraction and classification systems were considered:

1. Adaptive wavelet representation, classify on weights.

2. Fixed wavelet decomposition, classify on weights.

3. Fixed wavelet decomposition, classify on shifts, dilations and weights.

For each method the cases of amplitude and frequency data were handled separately.

3.1.1.1 Adaptive Wavelet Method- Weights. The wavelet decomposition of

a particular signal is used as an initial starting point for the adaptive wavelet representation

network-our feature extraction network. Sets of shift and dilation parameters are calculated

for each class of data. These sets are combined by union to form the master set of shift

and dilation pairs. This master set is used in conjunction with the AWR network to obtain

the weight parameters. These parameters are the features that are fed into the multilayer

perceptron.

3.1.1.2 Fixed Wavelet Method - Weights. Given either amplitude or fre-

quency data we chose a sample pulse from each class in the training data set. The N wavelets
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corresponding to the largest amplitude detail coefficients of the wavelet decomposition of the

sample pulses are saved. We then union the saved sets of N wavelets, forming our final set

of wavelets for feature extraction. Taking the wavelet decomposition on each pulse in both

training and test data sets, we keep only those weights which correspond to the wavelets in

our feature extraction set. The weights are the features for the neural network classifier.

3.1.1.3 Fixed Method - Weights, Dilations, Shifts. Given either amplitude

or frequency data, we take the wavelet decomposition of each pulse individually and save the

triples (weight, shift, dilation) associated with the N largest magnitude detail coefficients.

The weights, shifts, and dilations are the features for the neural network classifier.

3.2 Amplitude and Phase Extraction

Figure 3.1 is an example of an IF narrowband signal. We are interested in the amplitude

and phase of this signal for use in our classification system. We loosely follow the Double

Sideband - Suppressed Carrier demodulation outline given by Stremmler [13]. Consider the

representation of a signal

s(t) = a(t) sin(wot + 0(t)), t E R, (3.1)

where w0 is the known IF frequency and a(t) and 0(t) are assumed to be slowly varying

amplitude and phase functions, respectively.

If we operate on s(t) with the operators S and C defined as multiplication by sin(wot)

and cos(wot) respectively and use the trigonometric formulas for sin(A + B) and cos(A + B),

then we arrive at the following equations:

Sst =a(t)
Ss(t) := 2 [cos(O(t)) - cos(2wot + 0(t)] (3.2)

ast = (t)
Cs(t) = 2 [sin(O(t)) + sin(2wot + q$(t)] . (3.3)
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Figure 3.1 A Sample Pulse - Original IF Signal versus Time

Next define the low-pass filter operator L as multiplication by the characteristic function X(Z)

where z E [-wO/2, w0/2] and operate on Ss(t) and Cs(t). The result is given in the equations

below:

x~t) = ,(Ss)( a =(t)
x(t) L(Ss)(t) cos(O(t)) (3.4)

y(t) L(Cs)(t) 2 sinQo(t)). (3.5)

From x and y, we obtain

a(t) = 2/x 2(t) + y2(t), (3.6)

and

0(t) = arctan (y(t) x(t) 54 0. (3.7)
x(t) J
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We then used the following relation to calculate the frequency:

V do(t) (3.8)
dt

Figures 3.2, 3.3, and 3.4 are calculated from the original signal shown in figure 3.1 and depict

the amplitude, phase, and frequency plots respectively.

120

100

o 80
0

. 60

E
40

20

00 50 100 150 200 250 300

Time

Figure 3.2 A Sample Pulse - Amplitude Modulation versus Time

3.3 Multiresolution Decomposition

In this thesis we implement the multiresolution wavelet decomposition as a quadrature

mirror filter (QMF) with downsampling. For a detailed tutorial on wavelet analysis and

multiresolution algorithms developed by Mallat [14], consult Smiley [15] or Anderson [16].

3.3.1 Discrete Wavelet Decomposition Using The Daubechies 20-Tap Filter Wavelet.

Since we decided to implement the dyadic wavelet decomposition using the Daubechies

20-tap filter wavelet as a quadrature mirror filter, we high-pass filter the signal at a given

resolution, down-sample by a factor of two, and save the resulting detail coefficients. Each
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3-

2

1- -I

0 50 100 150 200 250 300

Time

Figure 3.4 A Sample Pulse - Frequency Modulation versus Time
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Figure 3.5 Extracted Signal, Amplitude Modulation, and Frequency Modulation versus Time
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detail coefficient represents the correlation of the signal with a particular shift of the wavelet

at this resolution. Next low-pass filter the signal and again down-sample by a factor of two.

The resulting coefficients represent the original signal at a coarser resolution level.

The detail coefficients were sorted in descending order of their magnitude. We then

selected a fixed set of wavelets corresponding to the detail coefficients at the top of the list.

The list of wavelets is be used by the adaptive wavelet representation network.

First, a multiresolution analysis (MRA) is defined. An MRA is a set of embedded

subspaces Vm C L2 (R) such that

... C V C Vo C V 1 C... (3.9)

These spaces are known as approximation spaces. They satisfy the conditions

n Vm {} and U Vm = L2 (R). (3.10)
mEZ meZ

Then, with the dilation factor 2,

f E Vm f(2.) E Vm-i. (3.11)

Finally, assume there exists a scaling function 0 E V0 such that the integer translations of

are orthogonal, and such that {0.,n} forms a basis for Vm. That is,

Vm = span{mn }nz, (3.12)

where

Omnn(x) = 2-m/2 0(2-mx - n). (3.13)
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Given the above definition, define the detail space Wm as the orthogonal complement

of Vm in Vmi-. Then

Wm I Vm, (3.14)

Wm C Vm-1, (3.15)

and

Vm E Wm = Vm-1. (3.16)

The wavelets are an orthonormal basis for the detail spaces:

Wm sPan{f/'mn}nEz, (3.17)

where

Omn(X) 2-m/2 0/(2-mx - n). (3.18)

The constant 2
- m/2 in equations 3.13 and 3.18 normalizes the energy of the corresponding

scaling function or wavelet.

Assume we have the two discrete filters, G and H, which correspond to the scaling

function 0 and the wavelet 0. Furthermore, assume the two discrete filters G and H satisfy

the following relation:

g(n) = (-1)1 -nh(1 - n), (3.19)

where g and h are the impulse responses of G and H respectively. Then by definition G is

the mirror filter of H. According to Mallat [14], we can calculate the detail coefficients at the

current approximation level m = 1 by

dm,k = 1 g(n - 2k)Cm,n. (3.20)

The approximation coefficients for the next level are determined by
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Cm+l,k = E h(n - 2k)cm.. (3.21)

Figure 3.6 depicts the decomposition algorithm with a flowchart diagram. Table 3.1 lists a

subset of the detail coefficients sorted by magnitude, along with the corresponding shift and

dilation parameters, for the multiresolution wavelet decomposition of the amplitude envelope

of the sample signal. Finally, figure 3.7 shows the data structure employed in the fast

decomposition algorithm.

_, C m-1 ,k H 2 C m,k

4. 2 Downsample by two

X Correlate with filter X

Figure 3.6 Diagram of Filtering Algorithm Representing One Level of a Wavelet
Decomposition.

3.3.2 Daubechies 20-Tap Wavelet Properties. Shown in figure 3.8 are the impulse

responses of the two filters described in the previous section for the Daubechies 20-tap wavelet.

Table 3.2 lists the filter coefficients.

3.4 Wavelet Neural Networks

In this thesis we used Szu's Adaptive Wavelet Representation (AWR) network to give

a representative set of wavelets for feature extraction purposes. Figure 3.9 depicts the AWR

network.
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Table 3.1 Largest 25 Detail Coefficients in Magnitude and Their Corresponding Shift and
Dilation Parameters from the Wavelet Decomposition of the Amplitude Envelope
of the Sample Pulse

Weight Dilation Shift
1 -5.305 256 0
2 -1.427 128 0
3 -1.376 64 0
4 1.125 64 64
5 -1.071 64 128
6 -0.7982 128 128
7 -0.6201 32 0
8 0.4249 32 32
9 -0.4222 32 224
10 -0.3694 16 0
11 0.3572 16 16
12 -0.3183 32 64
13 -0.2196 16 32
14 0.1909 8 8
15 -0.1803 8 0
16 0.1418 16 112
17 -0.1414 8 16
18 0.1301 32 128
19 0.1282 32 192
20 0.1209 16 224
21 -0.1147 16 192
22 0.1008 16 176
23 -0.09548 16 160
24 -0.08711 8 192
25 0.08438 16 48
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co,n = original signal

Cl ,n

CM~ 1 ,n

Cm,n Idm,n 90 S 0 SO

Figure 3.7 Data Structure for Fast Wavelet Decomposition Algorithm
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Figure 3.8 Scaling Filter H (top) and Wavelet Filter G (bottom) for the Daubechies 20-Tap
Filter Wavelet
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Table 3.2 Filter Coefficients for the Daubechies 20-Tap Wavelet

Scaling Filter H Wavelet Filter G
2.6670058e-02 1 .3264203e-05
1.8817680e-01 9.3588670e-05
5.27201 19e-01 1. 1646686e-04
6.8845904e-01 -6.8585670e-04
2.81 17234e-01 -1.9924053e-03

-2.4984642e-01 1.3953517e-03
-1.9594627e-01 1.0733175e-02
1.2736934e-01 3.6065536e-03
9.3057365e-02 -3.3212674e-02

-7.1394147e-02 -2.9457537e-02
-2.9457537e-02 7.1394147e-02
3.3212674e-02 9.3057365e-02
3.6065536e-03 -1.2736934e-01

-1.0733175e-02 -1.9594627e-01
1.3953517e-03 2.4984642e-01
1.9924053e-03 2.81 17234e-01

-6.8585670e-04 -6.8845904e-01
-1.1646686e-04 5.27201 19e-01
9.3588670e-05 -1.88 17680e-01
-1 .3264203e-05 2.6670058e-02
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Figure 3.9 Adaptive Wavelet Representation Network Diagram
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3.4.1 Szu, et al - AWR. Given an list of candidate wavelets obtained from the

discrete wavelet decomposition, we are interested in optimizing the function:

N bn
y) = E wh~ );t = 1,...,IT; wn, In E R; an E R -10} (3.22)

n=1

where h E L2(R) is a wavelet and {(t, s(t))}T=1 is the training data set. The free parameters

to be determined in equation 3.22 are a, b, and w, where:

a := a,, a2, •.•.•, an) .. , aN

bNT,b : 111 b2 1 ... , I bn , ... , ) bN ) ,

W : W1, W2, .. Wn) ... ) WN

Furthermore, define

y:= y(), y(2), ... , (t), ... , y(T)

and

b2 1 \ b2 ,bn " "N"

We want to minimize the functional

T

E = 1/2 -(s(t) - y(t))2. (3.23)
t=1

We choose to minimize E using the gradient descent minimization algorithm for the

variables a and b. Therefore we must find the partial derivatives of equation 3.23 with respect

to a and b. We see that for n = 1,.. N

OEi T t / n t n

-Z t - s(t))wnhI(t (3.24)
an t=l) a;',
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where the prime indicates the derivative of the function h, and

OE~ t T (t b__
= D O) - (t))Woh'( ) (3.25)

The resulting update for n = 1,... , N is as follows:

anew = aold (3.26)an n ?7a

bne b~d~ OE
bnew bold (3.27)

n n 7Obn'

where q7 G R is the stepsize parameter of the gradient descent update.

Since the error functional E is quadratic in terms of the weights w we can solve for the

optimal w analytically. Consider

y(t) = hT(t)w, Vt = 1,2,...,T (3.28)

and define

H [h(1) h(2) ... h(t) ... h(T)]. (3.29)

We want to minimize

Is- HTw112, (3.30)

where is the Euclidean norm. The general solution to this optimization problem is given

by

HHTw = Hs. (3.31)
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If HHT is invertible, then we can solve for w by multiplying both sides of equation 3.30 by

(HHT)- 1 resulting in the following expression for w:

w = (HHT)-iHs. (3.32)

If HHT is not invertible because the matrix has less than full rank, then we have many

solutions to equation 3.30. In this case we choose the w with the minimum Euclidean norm.

We return to the sample pulse. Using the wavelets that correspond to the 20 largest

magnitude detail coefficients from the discrete wavelet decomposition in Section 3.3.1 as

initial starting points for the shift, dilation and weight parameters a, b, and w, the adaptive

wavelet representation of the sample amplitude envelope are computed. Figure 3.10 shows the

original amplitude signal and the resulting approximation using 20 adaptive wavelets. Table

3.3 lists the final shift and dilation parameters after 21 training epochs of the AWR network on

the amplitude sample pulse, where an epoch is defined as one pass through the training data.

0.8 -

0.6

0.4-

0.21

0 20 40 60 80 100 120 140 160 180 200

Figure 3.10 Adaptive Wavelet Representation (dashed) and Amplitude Envelope of Sample
(solid) Pulse Using 20 Adaptive Wavelets
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Table 3.3 Shift and Dilation Parameters from the Adaptive Wavelet Representation Network
for a Sample Pulse

Dilation Shift
270.813 26.7246
127.395 2.11566
63.5368 -0.337342
63.5751 67.3347
65.6245 126.267
136.675 118.726
30.4872 0.0877888
31.7195 32.2841
32.0804 236.239
15.8336 0.983875
13.2896 15.1990
30.7247 64.0980
15.6767 33.2808
8.66702 10.1273
10.4481 3.69206
15.7139 112.395
7.18928 16.1474
30.5117 126.889
32.3301 187.669
16.0802 224.238
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3.5 Multilayer Perceptrons

The Multilayer Perceptron Network performs classifications by partitioning the feature

space into regions of interest, grouping patterns from the same class via linear decision

functions, d(X) E R where

d(X) =W 1 X 1 + W 2X 2  ...- -WNIXN-1 WN, X E RN-,W E RN. (3.33)

In a multidimensional feature space, d(X) can be positioned such that any pattern

vector, X, belonging to one class yields a positive quantity when the features are substituted

into d(X) while any pattern belonging to another class yields a negative quantity.

The characteristics of the linear decision functions can be modeled by nodes (figure

3.11) with sigmoidal activation functions

Y ,f(X) + e'XnWn+WN (3.34)

x

X2 W2 f - .y=f (x'W + WN)

N-i * N-I WN

+1

Figure 3.11 One Node with Sigmoidal Activation

The resulting network structure can be seen in Figure 3.12. Each input is weighted

and then the weighted inputs are summed at the nodes in the hidden layer and the bias term
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Figure 3.12 Multilayer Perceptron
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Xj+j = 1 is added. This bias term is added because without it the decision functions all must

pass through the origin. Figure 3.13 depicts an example two-class problem which could not

be solved with a multilayer perceptron without a bias term.

Feature 2

X X

X X X X = Class 1
X X = Class 2

o\
0

0 0
000 0

Feature 1

Figure 3.13 Two-Class Example which Demonstrates the Need for a Bias Term in a Multi-
layer Perceptron

For training we want to minimize the error functional

E = - Z-'(dk - yk), (3.35)
2 k=1

where dk is the desired output and Yk is the actual output. The weights must be updated using

gradient descent minimization algorithm. The generalized learning law is shown below:

OE
- OE' (3.36)W + = W - 71Tc , (.6

where, W + is the updated weight, W- is the old weight, and n E R+ is a constant. The

learning law is derived below after the output is defined for the sigmoid activation function.
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1
Yko f e(3.37)Yko= :x)=1 + e- '

where

J+1

Xk o (3.38)
j=1

3.5.1 Derivation. For the weights between the output layer and the hidden layer

we have

w2+ w2- - OE

+o .7 (3.39)

Then, analyzing the partial derivative term in equation 3.39 yields the following:

OE 0 1 -(dk yk)2}

&Woko =O ko 2f k=10 1
aWok 12(d - y l ) 2 +'''+ (d 2 o-Yko ) 2 +'''+ (dk--y )21

2k

= (dko - Yko)(- 1) OYko

joko09 + 6- ,jj+l jk T?
S-(dko - Yko)( (1 + e=i w o )-()

Jk jki+ - J + 1 2  x? )2  - J + 1 W 2, x 2 9 J + l

(dk- - Yko) j ko-(dko ~~~ ~ aj~k -j=)(1+e1 + ~o ) Xo

= -(dko - Yko)(Yko)(1 - X

and therefore the update rule is given by:
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Wo+ = W.- + 71(dko - Yko)(Yk o)(1 - Yko)(X ). (3.40)

Consider the weights between the input layer and the hidden layer:

e9EW.l'~ W.l' ? (3.41)
30Wiojo

Again, evaluate the partial derivative term of the above equation 3.41

aWilofo - 1 io (dk - Yk)

= k oo

K a- W
= -~~ (dk - Yk)a (1+eo

k=l iojo

K a J+l

E (dk - yk)(Yk)(1 Yk) E -- 2 k )

k=1 oio j=l

K 2 a

- -E(dk - Yk)(Yk)(1- Yk)(-W°k) ( 2 )

k=1 loj
K

- (dk - yk)(Yk)(1 Yk)(-W1 k)( )( .2-
k=1

and therefore:

K

030 Woj -+ n E (dk - Yk)(Yk) (1 - Yk)(Wo 1 - Xo)(Xo). (3.42)
k=1

3.6 Summary

In this chapter we have presented the mathematical methods necessary to implement our

wavelet based feature extraction and classification system. We have shown how to demodulate

a narrowband signal, wavelet decompose and optimize an adaptive wavelet representation of
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the signal, and update the weights of a multilayer perceptron. In Chapter IV we present our

results using these methods.
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IV Implementations and Results

4.1 Introduction

All results were obtained by performing cross-validation testing on the original data

files. Three data files for each of four classes of signals were given. For each class the files

were supposedly obtained from the same source. The data was therefore split into training

and testing sets by assigning two of three data files to the training set and the remaining file

to the testing set. All three permutations make up the complete cross-validation test suite (see

Table 4.1).

Table 4.1 Data Sets for Cross-Validation Testing per Class (i = 1, 2, 3, 4)

Permutation Training Data Testing Data

1 File il File i 2  File i3

2 File il File i 3  File i2

3 File i 2  File i 3  File i1

Figures 4.1, 4.2, 4.3, and 4.4 show a sample for each class from our data set. Each

figure displays the original signal along with its demodulated amplitude and frequency. To

register the data we normalize the amplitude envelope to a unit maximum, determine the half

amplitude point of the amplitude graph of the pulse, backtrack five samples, and then extract

enough samples so as to have a vector which encompasses the signal with a few samples of

noise at either end. The total number of samples extracted was 205. Figures 4.5 and 4.6 show

the the demodulated amplitude and frequency signals overlayed for all four classes.

4.2 Reference Experiments

Results are presented for three reference experiments in this section. The classification

was performed on the original narrowband IF signal, its amplitude modulation, and on its

frequency modulation.
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Figure 4.1 Class 1 Sample: Signal, Amplitude Modulation, Frequency Modulation versus
Time
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Figure 4.2 Class 2 Sample: Signal, Amplitude Modulation, Frequency Modulation versus
Time
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Figure 4.3 Class 3 Sample: Signal, Amplitude Modulation, Frequency Modulation versus
Time
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Figure 4.4 Class 4 Sample: Signal, Amplitude Modulation, Frequency Modulation versus
Time
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Figure 4.5 One Sample from Each Class: Amplitude Modulation versus Time

0.8

0.6

0.4

0.2

0

-0.2 1 '.\

-0.4

-0.6-

-0.8'
0 20 40 60 80 100 120 140 160 180 200

Figure 4.6 One Sample from Each Class: Frequency Modulation versus Time
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4.2.1 Original Data. Results for the original raw data are obtained from a network

with 205 inputs and 100 hidden nodes. Table 4.2 shows the confusion matrix and classification

percentages of the data set under cross-validation testing. The results obtained on the original

data are an indication of what is possible for this data set. Note that it is not always feasible

to classify based on all of the original data. This test is included here since the sample length

of a pulse was relatively short and it was thus possible to train a classifier on the original data.

Table 4.2 Original Data, 100 Hidden Nodes: Confusion Matrix and Classification
Percentages

Actual Assigned
1 2 3 4

1 272 28
2 20 280 1
3 10 12 308 2
4 2 368

Class Patterns Errors Percent
1 300 28 9.3
2 300 21 6.3
3 332 24 7.2

4 370 2 0.5

Testing Error 1302 75 5.8

Training Error 2604 108 4.2

Networks with 205 inputs and 25 hidden nodes were also considered. Table 4.3

shows the confusion matrix and classification percentages of the original data set under cross-

validation testing. These tables are included because the input node analysis presented in

section 4.9 revealed that 25 hidden nodes resulted in the best classifier in this particular case.

4.2.2 Amplitude Data. Results for the amplitude envelope data are obtained by

demodulating the original signal, keeping only amplitude information, and classifying the raw

amplitude information with a network of 205 inputs and 24 hidden nodes. Table 4.4 shows the
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Table 4.3 Original Data, 25 Hidden Nodes: Confusion Matrix and Classification Percentages

Actual Assigned
1 2 3 4

1 280 19 1
2 27 273
3 9 13 308
4 2 367

Class Patterns Errors Percent
1 300 20 6.7
2 300 27 9.0
3 332 22 6.6
4 370 2 0.5

Testing Error 1302 69 5.3

Training Error 2604 94 [ .7

confusion matrix and classification percentages of the data set under cross-validation testing.

The results obtained on the amplitude data are an indication of what is possible for this data

set. Note that it is not always feasible to classify on the raw amplitude data due to feature

vector dimensionality considerations.

4.2.3 Frequency Data. Results for the frequency data are obtained by demodulating

the original signal, keeping only frequency information, and classifying on the raw frequency

information with a network of 205 inputs and 24 hidden nodes. Table 4.5 shows the confusion

matrix and classification percentages of the data set under cross-validation testing. The results

obtained on the frequency data are an indication of what is possible for this data set. Note that it

is not always feasible to classify on the raw frequency data due to feature vector dimensionality

considerations.
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Table 4.4 Amplitude Data, 24 Hidden Nodes: Confusion Matrix and Classification
Percentages

Actual Assigned
1 2 3 4

1 290 8 1 1
2 24 275 1 1
3 9 12 311
4 _ 4 366

Class Patterns Errors Percent
1 300 10 3.3
2 300 26 8.7
3 332 21 6.3
4 370 4 1.1

Testing Error [ 1302 j 61 j 4.7 1
Training Error 1 2604 92 1 3.5 1

Table 4.5 Frequency Data, 24 Hidden Nodes: Confusion Matrix and Classification
Percentages

Actual Assigned
1 2 3 4

1 291 6 2 1
2 17 281 2
3 9 12 311

4 . 3 367

Class Patterns Errors Percent
1 300 9 3.0
2 300 19 6.3
3 332 21 6.3
4 370 3 0.8

Testing Error 1302 52 [ 4.0
Training Error 2604 96 [3.7

4-7



4.3 Fourier Transform - Weights

Since the Fourier transform is the defacto standard signal processing tool, classification

results using the Fourier transform to extract features for classification are presented in this

section.

4.3.1 Original. Using the original narrowband IF signal data a classifier was built

with coefficients of the Fourier transform as features. There were 27 coefficients of interest

centered about wo. Thus, 54 input nodes were obtained by treating the real and imaginary

parts of the 27 tupels obtained from the complex Fourier coefficients as individual inputs.

Table 4.6 shows the results for a network with 30 hidden nodes.

Table 4.6 Fourier Coefficient Features, Original IF Data: Confusion Matrix and Classifica-
tion Percentages

Actual Assigned
1 2 3 4

1 266 27 7
2 11 280 8 1
3 20 310 2
4 1 4 366

Class Patterns Errors Percent
1 300 34 11.3
2 300 20 6.7
3 332 22 6.6
4 370 4 1.1

Testing Error 1302 80 6.1
Training Error 2604 97 [ 3.7

4.3.2 Amplitude. Using the amplitude envelope information extracted from the

original narrowband signal data a classifier was built with low frequency coefficients of the

Fourier transform. The zero-frequency (DC) coefficient was discarded and the first 27 positive

frequency Fourier coefficients were saved, corresponding roughly to the low-pass filter used
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for extracting the amplitude envelope from the narrowband signal. Thus, 54 input nodes are

obtained by treating the real and imaginary parts of the 27 tupels obtained from the complex

Fourier coefficients as individual inputs. Table 4.7 shows the results for a network with 30

hidden nodes.

Table 4.7 Low Frequency Fourier Coefficient Features, Amplitude Data: Confusion Matrix
and Classification Percentages

Actual Assigned
- 1 2 3 4
1 292 3 2 1
2 26 279 1
3 8 13 311
4 _ 2 368

Class Patterns Errors Percent
1 300 6 2.0
2 300 27 9.0
3 332 21 6.3
4 370 2 0.5

Testing Error 1302 56 4.3

Training Error 2604 96 3* .7

4.3.3 Frequency. Results are presented in this section for a classifier whose feature

vectors consist of the low frequency Fourier coefficients obtained from the frequency signal

extracted from the original pulses. The 54 input nodes were obtained in the same manner as

for the amplitude data in section 4.3.2. Table 4.8 shows the results for a network with 18

hidden nodes.

4.4 Adaptive Wavelet Features - Weights

Results are presented in this section for classifying on the weights generated by the

adaptive wavelet representation algorithm. The choice of weights is determined by unioning

the sets of adaptive wavelets which correspond to each class. These sets were generated by
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Table 4.8 Low Frequency Fourier Coefficient Features, Frequency Data: Confusion Matrix
and Classification Percentages

Actual Assigned
1 2 3 4

1 292 6 2
2 19 279 2
3 8 14 310
4 1 2 367

Class Patterns Errors Percent
1 300 8 2.7
2 300 21 7.0
3 332 22 6.6
4 370 3 0.8

Testing Error [ 1302 j 54 4.2

Training Error [ 2604 1 98 3.8

using the 20 wavelets which had the largest weights (in absolute value) from a sample pulse

as starting points for the Adaptive Wavelet Representation algorithm. The union of the four

sets of 20 wavelets resulted in a set of 80 wavelets which was used to calculate the features,

that is, the weights.

Note, it was determined that the simple union is not necessarily optimal. In an experi-

ment the number of wavelets was reduced by 20% by averaging wavelets which had nearly

equal shift and dilation parameters; within 1% of each other. The new classifier was able to

produce slightly better results on the same data. However, this area was left for future research

as the intent in this thesis is to demonstrate the concept of adaptive feature extraction.

A simple method of reducing the number of features is to start with fewer nodes per

class in the adaptive wavelet representation network. This was implemented for 15, 10, 5, and

3 nodes per class. Results for 5 and 3 nodes are included below.
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As can be seen from the results in this section, there is a clear advantage to using

frequency features in the adaptive wavelet case. Future research should be directed towards

determining by how much the compression ratio and the performance can be improved si-

multaneously and what the tradeoffs are at the limits of both performance and compression

ratio.

4.4.1 Amplitude Features - 80 Total Nodes. Results for the amplitude data are

obtained from a network with 80 input and 20 hidden nodes. Table 4.9 shows the confusion

matrix and classification percentages of the data set under cross-validation testing.

Table 4.9 Adaptive Wavelet Features, 80 Features Total, Amplitude Data: Confusion Matrix
and Classification Percentages

Actual Assigned
- 1 2 3 4

1 248 24 9 19
2 36 245 7 12
3 13 17 302
4 18 19 3 330

Class Patterns Errors Percent
1 300 52 17.3
2 300 55 18.3
3 332 30 9.0
4 370 40 10.8

Testing Error 1302 177 13.6

Training Error 2604 113 4.3

4.4.2 Frequency Features - 80 Total Nodes. Results for the amplitude data are

obtained from a network with 80 input and 20 hidden nodes. Table 4.10 shows the confusion

matrix and classification percentages of the data set under cross-validation testing.
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Table 4.10 Adaptive Wavelet Features, 80 Features Total, Frequency Data: Confusion Ma-
trix and Classification Percentages

Actual Assigned
- 1 2 3 4
1 275 15 6 4
2 25 262 1 12
3 10 14 306 2
4 3 10 5 352

Class Patterns Errors Percent
1 300 25 8.3
2 300 38 12.7
3 332 26 7.8
4 370 18 4.9

Testing Error 1302 j 107 ] 8.2

Training Error 2604 ]95 3.1 7

4.4.3 Amplitude Features - 20 Total Nodes. Results for the amplitude data are

obtained from a network with 20 input and 15 hidden nodes. Table 4.11 shows the confu-

sion matrix and classification percentages of the data set under cross-validation testing. By

selecting fewer nodes per class, there was greater relative sum-squared error in the adaptive

representation networks. However, the goal was classification. Classification error percent-

ages decreased as a result of reducing the number of nodes per class.

4.4.4 Frequency Features - 20 Total Nodes. Results for the amplitude data are

obtained from a network with 20 input and 15 hidden nodes. Table 4.12 shows the confusion

matrix and classification percentages of the data set under cross-validation testing.

4.4.5 Amplitude Features - 12 Total Nodes. Results for the amplitude data are

obtained from a network with 12 input and 20 hidden nodes. Table 4.13 shows the confusion

matrix and classification percentages of the data set under cross-validation testing. Note that

this particular classifier performed only as well as the one using 20 total nodes.
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Table 4.11 Adaptive Wavelet Features, 20 Features Total, Amplitude Data: Confusion Ma-
trix and Classification Percentages

Actual Assigned
1 2 3 4

1 270 27 2 1
2 23 269 4 4
3 6 18 307 1
4 6 2 362

Class Patterns Errors Percent
1 300 30 10.0
2 300 31 10.3
3 332 25 7.5
4 370 8 2.2

Testing Error 1302 [ 94 [7.2
[Training Error 2604 [ 103 [ 4.0

Table 4.12 Adaptive Wavelet Features, 20 Features Total, Frequency Data: Confusion Ma-
trix and Classification Percentages

Actual Assigned
1 2 3 4

1 265 25 1 2
2 6 290 1
3 1 19 309 3
4 7 363

Class Patterns Errors Percent
1 300 28 9.3
2 300 7 2.3
3 332 23 6.9
4 370 7 1.9

Testing Error j 1302 65 5.0

Training Error 1 2604 97 3.7
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Table 4.13 Adaptive Wavelet Features, 12 Features Total, Amplitude Data: Confusion Ma-
trix and Classification Percentages

Actual Assigned
- 1 2 3 4

1 290 8 1 1
2 22 277 1

3 8 13 286 25
4 1 15 354

Class Patterns Errors Percent
1 300 10 3.3
2 300 23 7.7
3 332 46 13.9
4 370 16 4.3

Testing Error 1302 95 7.2

Training Error 2604 121 4.7

4.4.6 Frequency Features - 12 Total Nodes. Results for the amplitude data are

obtained from a network with 12 input and 20 hidden nodes. Table 4.14 shows the confusion

matrix and classification percentages of the data set under cross-validation testing. Note that

this classifier performed nearly as well as any in this thesis with fewer input feature. The

compression ration with respect to the original data is 17 : 1.

4.5 Fixed Wavelet Features - Weights

In this section the results obtained by classifying on the weights generated by the dyadic

wavelet decomposition are presented. The choice of weights is determined by unioning the

set of wavelets which correspond the largest weights (in absolute value) for a sample pulse

from each class. A total of 20 wavelets per class were chosen. The net result was an average

of 34 wavelets due to redundancy in the individual classes.
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Table 4.14 Adaptive Wavelet Features, 12 Features Total, Frequency Data: Confusion Ma-
trix and Classification Percentages

Actual Assigned
1 2 3 4

1 297 2 1
2 27 271 1 1
3 7 14 311
4 1 4 366

Class Patterns Errors Percent
1 300 3 1.0
2 300 29 9.7
3 332 21 6.3
4 370 4 1.1

Testing Error 1302 57 4.

Training Error 2604 98 3.8

A 6.5 : 1 data reduction was achieved and at the same time the error percentage of

the classifier was improved upon using the original data for both amplitude and frequency

features.

Furthermore, due to the fact that nearly identical signals also have very similar wavelet

decompositions, it can been seen that this particular method will scale well to problems with

more than four classes.

4.5.1 Amplitude Features. Results for the amplitude data are obtained from a

network with 34, 31, and 35 input and 10 hidden nodes. Table 4.15 shows the confusion

matrix and classification percentages of the data set under cross-validation testing.

4.5.2 Frequency Features. Results for the amplitude data are obtained from a

network with 34, 36, and 36 input and 10 hidden nodes. Table 4.16 shows the confusion

matrix and classification percentages of the data set under cross-validation testing.
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Table 4.15 Fixed Wavelet Features Determined by Sample Pulses, Amplitude Data: Confu-
sion Matrix and Classification Percentages

Actual Assigned
1 2 3 4

1 273 14 2 1
2 18 271 1

3 6 14 311 1
4 2 368

Class Patterns Errors Percent
1 300 17 5.7
2 300 19 6.3
3 332 21 6.3

4 370 2 0.5

Testing Error 1302 59 .5

Training Error 2604 92 3.5

Table 4.16 Fixed Wavelet Features Determined by Sample Pulses, Frequency Data: Confu-
sion Matrix and Classification Percentages

Actual Assigned
1 2 3 4

1 273 14 2 1
2 15 273 2
3 4 17 311 1
4 2 368

Class Patterns Errors Percent
1 300 17 5.7
2 300 17 5.7
3 332 21 6.3
4 370 2 0.5

Testing Error j 1302 [ 57 4.4

Training Error] 2604 [ 93 3.6
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4.5.3 Combining Amplitude and Frequency Features. So far classification has

only been attempted based solely on one type of data: either the raw data, the amplitude,

or the frequency information. Since the raw data was determined to be a signal which had

slowly varying amplitude and phase, it is natural to combine both amplitude and frequency

information into one classification attempt. One would expect the resulting classifier to be

more robust and achieve a higher success rate.

For this experiment the features from Sections 4.5.1 and 4.5.2 were combined. This

resulted in a classifier with 20 hidden nodes and 68, 67, and 71 features, respectively, for the

three-fold cross-validation.

Table 4.17 Fixed Wavelet Features Determined by Sample Pulses, Amplitude and Frequency
Data: Confusion Matrix and Classification Percentages

Actual Assigned
1 2 3 4

1 295 2 1 2
2 24 275 1
3 7 14 311
4 2 368

Class Patterns Errors Percent
1 300 5 1.7
2 300 25 8.3
3 332 21 6.3
4 370 2 0.5

Testing Error 1302 53 4.0
Training Error 2604 93 3.6

The results, as shown in table 4.17, indicate a clear improvement over both methods

in Section 4.5. The classification error percentage has been lowered from 4.5% and4.4% to

4.0%. This confirms the hypothesis that the combination of amplitude and frequency features

would lead to a more robust classifier.
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4.6 Choosing Wavelets for: Fixed Wavelet Features - Weights

After reviewing the classification results on the low frequency Fourier weights, adaptive

wavelet weights, fixed wavelet weights, and fixed wavelet weights, shifts, and dilations, it

had become apparent that the following question needed to be posed: "Why wavelets?" In

the beginning it was assumed that Pati and Krishnaprasad [3] and Szu, et al, [4] had provided

enough justification to pursue our research. However, it has become clear that, of all the

wavelet methods presented here, only the fixed wavelet weights method and the adaptive

wavelet weights for frequency modulation data, as employed herein, can compete with the

low frequency Fourier method for minimum classification error percentage.

First, figures 4.7 and 4.8 show how the average amplitude modulation and frequency

modulation of each class over the entire data set compare to each other. Particularly in

figure 4.8 it is obvious that the discriminating portions of the graphs are localized in time.

The wavelet decomposition allows us to choose features which correspond to specific time

localizations.

Therefore, the wavelets to use for feature selection (calculating the weights) were

determined by selecting only those which correspond to the proper time localization at various

dilation levels. A number of wavelets was chosen which would be comparable to the number

of features used in the low frequency Fourier case.

4.6.1 Amplitude Features. Results for the amplitude data are obtained from a

network with 54 input and 30 hidden nodes. Table 4.18 shows the confusion matrix and

classification percentages of the data set under cross-validation testing.

4.6.2 Frequency Features. Results for the amplitude data are obtained from a

network with 54 input and 18 hidden nodes. Tables 4.19 shows the confusion matrix and

classification percentages of the data set under cross-validation testing.
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Figure 4.7 Average Amplitude Modulation for all Data

Table 4.18 Fixed Wavelet Features Determined by Selection, Amplitude Data: Confusion
Matrix and Classification Percentages

Actual Assigned
- 1 2 3 4
1 293 4 3

2 23 276 1
3 8 13 311
4 I _ 2 368

Class Patterns Errors Percent
1 300 7 2.3
2 300 24 8.0
3 332 21 6.3

4 370 2 0.5

Testing Error 1302 54 4.2

Training Error 2604 96 3.7
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Table 4.19 Fixed Wavelet Features Determined by Selection, Frequency Data: Confusion
Matrix and Classification Percentages

Actual Assigned
1 2 3 4

1 291 8 1
2 18 280 2
3 7 14 311
4 2 368

Class Patterns Errors Percent
1 300 9 3.0
2 300 20 6.7
3 332 21 6.3
4 370 2 0.5

Testing Error 1302 [ 52 4.0
Training Error 1 2604 [ 94 3.6
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4.6.3 Combining Amplitude and Frequency Features. As is section 4.5.3, the

amplitude and frequency features are combined resulting in a classifier with 104 input nodes.

A total of 20 hidden nodes produced the best classification results.

Table 4.20 Fixed Wavelet Features Determined by Selection, Amplitude and Frequency
Data: Confusion Matrix and Classification Percentages

Actual Assigned
- 1 2 3 4
1 294 3 2 1
2 23 276 1
3 8 13 311
4 2 368

Class Patterns Errors Percent
1 300 6 2.0
2 300 24 8.0
3 332 21 6.3
4 370 2 0.5

Testing Error j 1302 j 53 j 4.0
Training Error 1 2604 94 ] 3.6

The results, as shown in table 4.20, indicate an improvement only over the amplitude

features. This suggests there is a limit two the classification percentages achievable on this

particular data set.

4.7 Fixed Wavelet Weights with Noisy Test Data

In this section the results for training with the entire data set (that is, all three files per

class) and testing on a noisy version of the same data files are presented. For this purpose

Gaussian random noise was added to generate the test data from the training data. The peak

signal to noise ratio (SNR) was 29.6dB, then minimum was 22.5dB. Due to limitations in the

pulse extraction algorithm it was no possible able to extract the full set of 1302 pulses from the

noisy data. There are therefore only 1123 test data examples. The overall classification error
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percentages averaged 7.2% and 7.1% for amplitude and frequency data using 10, 13, 17, 20

and 25 hidden nodes.

In the first two subsections the confusion matrices and classification results are presented

in detail for the best cases for both amplitude and frequency features. The third subsection

contains the results of testing on the noisy data from above and on a second set of noisy data

(peak SNR of 23.5, minimum SNR of 16.5) for both the fixed wavelet features, weights only,

and the low-frequency Fourier coefficients methods.

4.7.1 Amplitude Features. Results for the amplitude data are obtained from

a network with 54 input and 20 hidden nodes. Table 4.21 shows the confusion matrix,

classification percentages of the test data, and the total training error.

Table 4.21 Noisy Test Data, Fixed Wavelet Features Determined by Selection, Amplitude
Data, 20 Hidden Nodes: Confusion Matrix and Classification Percentages

Actual Assigned
- 1 2 3 4
1 225 2 1
2 2 277 1
3 28 269
4 38 281

Class Patterns Errors Percent
1 228 3 1.3
2 279 2 0.7
3 297 28 9.4
4 319 38 11.9

Testing Error [ 1123 71 6.3
Training Error [ 1302 1 48 3.7

4.7.2 Frequency Features. Results for the amplitude data are obtained from

a network with 54 input and 25 hidden nodes. Table 4.22 shows the confusion matrix,

classification percentages of the test data, and the total training error.
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Table 4.22 Noisy Test Data, Fixed Wavelet Features Determined by Selection, Frequency
Data, 25 Hidden Nodes: Confusion Matrix and Classification Percentages

Actual Assigned
- 1 2 3 4

1 221 6 1
2 278 1
3 30 267
4 38 281

Class Patterns Errors Percent
1 228 7 3.0
2 279 1 0.4
3 297 30 10.1
4 319 38 11.9

Testing Error j 1123 ] 76 6.8

[Training Error 1 1302 ] 46 J 3.5

4.7.3 Comparing the Performance of Fixed Wavelet Features, Weights, to Low-

Frequency Fourier Features for Testing on Noisy Data. The results in this section (table

4.23) show how the fixed wavelet features, weights only, and the low-frequency Fourier co-

efficients methods perform when presented with noisy data for both amplitude and frequency

features. The peak SNR levels are 29.6 and 23.5, respectively. The minimum SNR levels

are 22.5 and 16.5, respectively. The classification error percentages shown in the table are

averaged values based on networks with 10, 13, 17, 20 and 25 hidden nodes.

4.8 Fixed Wavelet Features - Shifts, Dilations and Weights

Results are presented in this section for classifying not only on the weights, but also

on the shifts and dilations. Essentially, the classifier is presented with a feature vector of

triples (w, a, b) which has conveniently been reshaped into a column vector for LNKnet.

Thus, the classifier is not only asked to learn the map between the feature vector and its

associated class label, but also the map that associates the corresponding w, a, and b with each
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Table 4.23 Comparison of Results for Testing on Noisy Data using Amplitude and Frequency
Features for Fixed Wavelet Features, Weights only, and Low-Frequency Fourier
Features

- Amplitude Frequency
Peak SNR = 29.6: Wavelet Weights 7.2 7.1

Fourier Coefficients 7.2 7.3

- Amplitude Frequency
Peak SNR = 23.5: Wavelet weights 17.9 14.9

Fourier coefficients 17.8 15.0

other. The second map is non-trivial for a multilayer perceptron to learn. The classification

error percentages are the highest of all classifiers presented in this thesis. Noteworthy is that

the classifiers in this section actually exhibit a lower classification error percentage for the

amplitude features than for the frequency features by a wide margin. The frequency features

gave better classification results in all other cases.

4.8.1 Amplitude Features. Results for the amplitude data are obtained from a

network with 24 input and 10 hidden nodes. Tables 4.24 shows the confusion matrix and

classification percentages of the data set under cross-validation testing.

4.8.2 Frequency Features. Results for the frequency data are obtained from a

network with 24 input and 25 hidden nodes. Table 4.25 shows the confusion matrix and

classification percentages of the data set under cross-validation testing.

4.9 Sensitivity Analyses

The following two sensitivity analyses are included for completeness only. They are

included in this thesis to demonstrate awareness of the problems associated with the choice of

features and hidden nodes. However, as the goal in this thesis is to demonstrate the use of var-
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Table 4.24 Fixed Wavelet Shift, Dilation, and Weight Features, Amplitude Data: Confusion
Matrix and Classification Percentages

Actual Assigned
1 2 3 4

1 284 7 1 2
2 31 271 10 1
3 9 16 298 6
4 3 7 7 348

Class Patterns Errors Percent
1 300 10 3.3
2 300 42 14.0
3 332 31 9.3
4 370 17 4.6

Testing Error [ 1302 100 j7.7

Training Error 1 2604 1 144 15.5

Table 4.25 Fixed Wavelet Shift, Dilation, and Weight Features, Frequency Data: Confusion
Matrix and Classification Percentages

Actual Assigned
1 2 3 4

1 234 45 6 15
2 27 263 2 8

3 1 25 305 1
4 6 16 4 346

Class Patterns Errors Percent
1 300 66 22.0
2 300 37 12.3
3 332 27 8.1
4 370 24 6.5

Testing Error [ 1302 j 154 J 11.8
Training Error [ 2604 138 5.3
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ious wavelet methods for feature extraction, the reader is referred to the appropriate literature

for more detailed handling of implications of feature vector and hidden node dimension.
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Figure 4.9 Input Node Analysis, Errors versus Input Nodes

4.9.1 Input Nodes. Using the data which was used in Section 4.8.1 the number of

input nodes was varied between 6 and 108 by multiples of three. Figure 4.9 shows the plot with

the total number of misclassifications on the vertical axis and the total number of input nodes

on the horizontal axis. The number of misclassifications drops rapidly from 353 with 6 input

nodes, which represents only two wavelet feature triples, i.e., (1302 - 353)/1302 = 72.9%

successfully classified test vectors, to only 96 misclassifications with 24 input nodes. As

the number of input nodes is increased above 24 the trend is that the number of successful

classifications decreases.

4.9.2 Hidden Nodes. Using the data which was used Section 4.2.1 the number of

hidden nodes was varied between 5 and 125 in five-unit steps. Figure 4.10 shows a plot of
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the total misclassifications of the vertical axis and the total number of hidden nodes on the

horizontal axis.
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Figure 4.10 Hidden Node Analysis, Errors versus Hidden Nodes

The results in classification show that as the number of hidden nodes becomes very

small, i.e. close to the number of classes, the classification percentages rise. Also, as the

number of hidden nodes is increased, there is some point with a maximum classification success

percentage. Increasing the number of hidden nodes further tends to decrease the classification

percentage as the network approaches the point where the classifier is memorizing the training

data set.

4.10 Summary of Results

Following is an overview of the results presented in this chapter. Table 4.26 shows the

entire list of classification systems and their respective classification error percentage.
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Table 4.26 Summary of Classification Error Percentages of Various Feature Extraction
Methods

Feature Extraction Method Classifier Error Percentage
Raw Data Original 5.3

Amplitude 4.7
Frequency 4.0

Low Freq Fourier Amplitude 4.3
Frequency 4.2

Adaptive, Weights 80-Amplitude 13.6

80-Frequency 8.2
20-Amplitude 7.2
20-Frequency 5.0
12-Amplitude 7.2
12-Frequency 4.5

Fixed by sample pulses, Weights Amplitude 4.5
Frequency 4.4

Amplitude and Frequency 4.0

Fixed by selection, Weights Amplitude 4.2
Frequency 4.0

Noisy Test Data, Fixed, Weights Amplitude 6.3 (best) - 7.2 (average)
Frequency 6.7 (best) - 7.1 (average)

Fixed by sample pulse, (WS,D) Amplitude 7.7
Frequency 11.8
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V Conclusions and Recommendations

5.1 Introduction

This chapter provides a conclusion to this thesis. The major points are summarized and

an evaluation of how well the objectives were met is given. Finally, we conclude with a brief

description of the issues which remain for future research.

5.2 Major Points and Evaluation of Objectives

The first area of research in this thesis was to determine how the adaptive wavelet

weights classifier would perform on the classes of narrowband signals. We were able to

achieve classification error percentages of 13.6% and 8.2% with a 2.56 - fold reduction in

feature dimensionality over classification with all of the original data. However, these results

are unsatisfactory when compared to the other methods presented in this thesis. We must point

out though that our implementation of the adaptive wavelet method raised many problems,

which when solved, may result in vastly improved performance for this method in terms of

classification error rate and data reduction. One problem in particular was the number of

features, which totaled 80 in the first experiment. Once we reduced the number of features,

by reducing the number of wavelets per class in the AWR network, we were able to improve

the classification error percentage quite drastically. The best classification error percentages

achieved were 7.2% and 4.5%, respectively for amplitude and frequency data, with a 17-fold

and 4-fold reduction in feature dimensionality over classification with all of the original data

and with wavelet or Fourier methods, respectively. The results for the amplitude data are not

as good as the results achievable even with the raw amplitude data. However, the frequency

features result is among the best that we achieved. The classification error percentage of 4.5%

is only slightly higher than our best case, 4.0%, but the data reduction ratio of 4 : 1 over the

low-frequency Fourier features and fixed wavelet features, weights only, is phenomenal.

Next, we developed and presented a robust fixed wavelet weights classifier in which

the feature extraction wavelets were determined by a sample pulse from each class of our data

5-1



set. Classification error rates of 4.5% and 4.4% for amplitude and frequency data respectively

with roughly 6-fold reduction in feature dimensionality demonstrate the utility of this method.

The classification rates are better than classification on all of the original data and comparable

to classification on all of the amplitude or frequency data, respectively. When compared to

the low-frequency Fourier features method, though, the results are nearly identical. This is

surprising since the wavelet and Fourier methods produce different features; i.e, low frequency

Fourier coefficients represent the original signal in a smoothed form, whereas, the wavelet

features also include high frequency information from select time intervals. Recall, we

selected the wavelet features based only on the criterion of minimum squared error. This is

not necessarily optimal for classification. Clearly, there is a need for more detailed analysis

of this point.

We also combined the two fixed wavelet weights classifiers, amplitude and frequency,

for an amplitude/frequency fixed wavelet weights classifier. The result was, as expected,

an improvement over the individual classifiers with an error percentage of 4.0%, but at the

price of less data reduction. Our implementation was a simple union of the two previous

experiments. There may be more efficient ways to achieve the same kind of performance

boost we observed with the combined classifier. However, it is clear that there is something

to be gained by combining amplitude and frequency information.

In another experiment which produced the some of best results of this thesis effort,

we determined the feature extraction wavelets for the fixed wavelet weights method by a

crude time-frequency analysis. We determined which wavelets adequately covered the time

periods which displayed the most significant differences between the various classes of the

narrowband signals. The resulting classifiers for amplitude and frequency performed at error

percentages of 4.2% and 4.0% respectively with a feature dimensionality reduction factor of

4. This shows that careful selection of wavelets is important and that gains can be achieved

by classifying on only certain time periods of the signal. This is an area which deserves

more consideration in terms of a detailed time-frequency analysis for the determination of the

feature extraction wavelets. We would expect this analysis to produce major gains in feature
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dimensionality reduction while at least maintaining the level of classification success. The

two fixed wavelet weights classifiers, amplitude and frequency, were again combined for an

amplitude/frequency fixed wavelet weights classifier. The result was, however, no better than

the best individual classifier using frequency data with an error percentage of 4.0%, with the

additional penalty of less data reduction. The implementation was a simple union of the two

previous fixed wavelet weights by selection experiments.

We produced a noisy test data set from the original training data by adding Gaussian

noise. The idea was to see how robust the fixed wavelet weights method is. Our results

indicate that the fixed wavelet features, weights only, method is as robust with respect to noise

as the low-frequency Fourier features method.

Finally, we also implemented the classifier suggested by Szu, et al, [4] and Kadambe

and Srinivasan [5] with two slight modifications:

e Features (weights, dilations and, shifts) were obtained from the dyadic wavelet decom-

position instead of from the adaptive wavelet representation network.

e We used a one-hidden-layer neural network instead of the zero-hidden-layer neural

network used by Szu, et al, and Kadambe and Srinivasan.

The first modification was implemented to increase speed of training and testing due to the non-

linear optimization problem the adaptive wavelet representation network presents, and because

we had discovered that the fixed features outperformed the adaptive features in our particular

implementation. The second modification was necessary because the one-layer neural network

could not learn to classify anything more complicated than a two class problem. Results for

the fixed wavelet weights, shifts, and dilations classifier were the worst in this thesis. At 7.7%

and 11.8% for amplitude and frequency features, respectively, we see on average a slight

improvement over the adaptive wavelet weights classifier, with only the surprising result that

the amplitude features actually outperformed the frequency features.
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5.3 Recommendations

There are several recommendations we can make concerning this research.

First, our particular implementation of the adaptive wavelet weights method raised

many questions that remain unanswered. We determined that a good initialization of the

adaptive representation network for one class was given by the wavelets corresponding

to the largest K detail coefficients of the wavelet decomposition of one signal of that

class. Furthermore, the adaptive representation network was able to provide a better

representation of the signal in terms of sum squared error than the reconstruction of the

K wavelets. However, our process of unioning the sets of adaptive wavelets obtained

for each class for a wavelet feature extraction set is not optimal. It would be extremely

useful to find an alternate approach to determining the wavelet feature extraction set for

the adaptive wavelet weights classifier. Perhaps the solution to this question is some

form of a fuzzy union of the individual adaptive wavelet sets, or training the adaptive

wavelet representation network for all of the classes at once.

" Next, we produced good classification results with the fixed wavelet weights classifier.

However, we do not claim to have found the optimal features. Using sample pulses to

determine our wavelet feature extraction set resulted in a less accurate classifier than

performing a crude time-frequency analysis to determine the wavelet feature extraction

set. Hence, it would be useful to investigate the performance of a time-frequency

analysis system to determine the wavelet feature extraction set. We expect that this

would minimally lead to an decrease in feature dimensionality.

" Furthermore, our method of determining the wavelet feature extraction set by sample

pulses merits more study. Since we only used one sample pulse per data file in the

training set per class, our set of wavelets was strongly biased towards those few samples.

An obvious area for research is then to increase the number of sample pulses and/or to

select the wavelets based on statistics generated by the entire training data set.
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o Finally, we believe an analysis of what wavelet features make good features would be

valuable. Figure 4.8 shows that the differences between the individual classes are most

pronounced over certain time periods of the pulse. Therefore, extracting features based

only on the minimum squared error criterion may not be optimal.

5.4 Conclusion

The objective of this thesis was obtained. We implemented several wavelet based

feature extraction and classification systems. Furthermore, we demonstrated classification

systems that outperformed traditional methods in either feature dimensionality reduction or

classification error rate.
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