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Composites''s The principal investigator for this project is G. C. Sih,
Director of the Institute of Fracture and Solid Mechanics. N. J. Pagano
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The authors are grateful to the Materials Evaluation Laboratory of
the University of Dayton for making the laminate test specimens. The
effort of J. A. Bunderla is also acknowledged with regard to the
experimental work on fracture testing.

This technical report has been r wed and is approved.

STEPH W. TSAI, Acting Branch Chief
Mechanics & Surface Interactions Branch

Nonmetallic Materials Division
Air Force Materials ILaboratory

ii

SIS SNk T GSEE SN O GENS aEE



ABSTRACT

Analyses for laminar plates are reviewed in this report.
It is observed that while approximate global stress analyses
have been performed for laminates, little has been accom-
plished in the area of strength analysis. The work presented
here is concentrated in that area, i.e., mathematical models
to consider the influence of flaws on failure loads asso-
ciated with crack propagation and/or delamination. In par-
ticular, an approximate three-dimensional formulation for
laminates based on the variational principle of minimum com-
plementary potential energy is presented and applied to the
problem of a three layer composite plate containing a through
crack. This model is employed to study the influences of
the geometric and material characteristics of the composite

on the local stress field in the vicinity of the flaw.

Results of an experimental program to determine the in-
fluence of plate thickness on critical load for a centrally
cracked tensile specimen are reported. Extension of the ex-
perimental program to consideration of laminated specimens is

currently in progress.

A stress analysis has been carried out for another prob-
lem of particular interest in the study of failure for com-
posite systems. The effect of voids in adhesive layers on
the behavior of multi-layer fibrous composites is modeled by

the problem of a penny shaped flaw contained in an isotropic
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layer joining two orthotropic half spaces. Stresses in the
vicinity of the crack edge are calculated in terms of the

IOading and the properties of the components for this com-

posite system.
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SECTION I ' R

INTRODUCTION

A research effort primarily concerned with the under-
standing and prediction of failure for laminar composites is
reported here. The current interest in fibrous laminates
for structural épplication 1s associated with the high
strength-to-welght ratio which can be developed in laminates.
These laminates are generally composed of layers which have
been reinforced by embedding unidirectional fibers. The
layers are adhered to each other such that the fiber direc-
tion varies from one layer to the next in a previously deter-
mined manner. The freedom of choice for fiber orientation
in the layers of the composite system enables the development
of laminates with special preferential directional properties
for partlcular applications. Because of this characteristic
of fibrous composites, tﬁe employment of these systems rather
than equivalent homogeneous members will be clearly advanta-

geous in many applications.

The drawback of using laminates 1is that they are sensitive
to a number of manufacturing imperfections specific to com~
posite systems, i.e., fiber misalignment, loading imperfec-
tions between the fibers and matrix material within an indi-
vidual layer, and lmperfect adhesion of these layers. Com-
posites thus exhibit additional modes of failure associated

with phase separatilons.




Because of the complicated internal structure of compos-
ite systems, both the problems of stress analysls and faillure
prediction are much more difficult than for equivalent single-
phase specimens. A review of some of the analyses which have
been performed in connection with composite systems is con-
tained in Section II of this report. One fact which immerges
very clearly from that work is that the stress field in all
composites 1s truly three-dimensional in character. Thus,
even the stress field in a symmetric laminate subjected to in-
plane loading, a system to be considered in this report, can-
not be accurately modeled by standard two-dimensional methods
of analysis. The review of previous work in this area further
indicates that relatlvely little work has been carried out
with regard to fracture analysis of laminates. This fact is
clearly assoclated with the difficulties of extending fracture

mechanics to composite structures.

In particular, the extension of fracture mechanics to
laminates requires consideration of both three-dimensional
effects and material interactions. Hartranft and Sih [1]
have developed an approximate three-dimensional theory for
a single material plate containing a through crack in a re-
mote tenslle field. The approach to fracture of lamlnates
developed here, see Section III, is based on an extension of
this approximate theory to lamlnates and its application to
the problem of a through crack in a laminar plate subjected

to In-plane leoading. This crack represents a preliminary

-o-
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effort to model the failure of composite plates. Further
work 1s clearly required; however, the relatively crude crack
model developed here already gilves some relevant information
concerning the dependence of the stress field near the leading
crack edge on the geometric and material properties of the

composite plate.

The three-dimensional character of the stress field in
single material plates contalning cracks, which has been
studied by Hartranft and Sih [1], is clearly relevant to
understanding the effects of flaws on the behavior of lami-
nates. Thus, an experimental study of these three-dimensional
effects on the ability of the approximate solution [1] to
model them has been carried out and is discussed in Section
IV. Thils work constitutes a necessary background to both
the application of approximate theories of this type to lami-
nates and experimental programs for studying failure of lami-

nates.

In Section V, a self-contained boundary value problem is
presented which has particular application to the delamina-
tion process in layered composites. The effect of imperfect
adhesion between layers of a fibrous composite is studied by
considering a penny-shaped flaw in the adhesive layer con-
necting two anisotropic half-spaces. The results of the
analysis suggest that less load is transferred to the adhe-
sive (thus, decreasing the likelihood of delamination) as the

relative stiffness of the fibrous layers is increased. This
-3-




effect is amplified when the relative thickness of the adhe-

sive layer 1s decreased.

For future work, the stress solutions for the laminated
plate presented in Section III will be further analyzed and
used to develop a criterion of fracture. Preliminary experi-
ments have indicated that an internal crack in a sandwiched
layer of the laminate can propagate‘with and without delami-
nation depending upon the geometry and loading conditions. A
study on the stress variations near the free surface or inter-
face will be made since they will play an important role on

the failure of the laminate composite weakened by flaws.

-l
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SECTION IT

MODELING OF LAMINATED PLATES

Structural composites can be classified as laminated and
multiphase. Multiphase materials can be further divided in-
to continuous fiber reinforced materials and particulaﬁe com-
posites. Examples of fiber reinforced composites are glass
fiber reinforced plastics and boron fiber reinforced plastics
while an example for a particulate composite would be whisker
reinforced metals. Laminated composites consist of layers of
multiphase or homogeneous materials bonded together. The gen-
eral potential of laminates lies in the fact that the plies
(layers) of the laminate can be oriented to meet both the
load and direction requirements allowing for maximum struc-
tural efficiency. An important laminated composite in use
today is made of layers of unidirectional continuous fiber
reinforced material. Generally there are two types of these
laminated plates: cross-ply and angle-ply. Cross-ply lami-
nates are those in which the orthotropic axes of symmetry in
each ply are alternately oriented at angles of 0 and 90 de~
grees to the plate axes, while in angle-ply laminates the or-
thotroplic axes of symmetry in each ply are alternatelj oriented

at arbitrary angles of +6 and -6 to the plate axes.

The analysis involved for composite systems can be sub-
divided into two major categories: analytical determination
of the mechanical properties of composite materials, and anal-

ysis of structures such as laminated plates. In this section

-5-




the theories predicting the elastic behavior of laminated
plates are reviewed in detall, while a brief discusslon of

the methods evaluating material constants 1s provided.
2.1 ELASTIC PROPERTIES OF COMPOSITE MATERIALS

Many investigators have been involved 1n developing
analytical methods by which the lamina elastic constants can
be predicted in terms of the constituent material propertiles
and phase geometry, i.e., the shape and arrangement of the
filaments and volume ratios of the fibers and matrix. For
example, the stiffness matrix of a particular lamina can be

considered as a function of the above parameters, such that

Cyy = Cyy(EpsVesVesBpsvp,vy)

where E, v and v are the modulus of elasticity, Polsson's
ratio, and volume fraction of the filament and matrix mate-

rials, designated by the subscripts f and m, respectively.

The various theories which have been proposed are: (1)
netting analysis, (2) strength of materials method, (3) self-
consistent model, (4) variational method, (5) exact mefhod
(elasticity), (6) statistical methods, (7) finite element
technique, and (8) semi-empirical method. There are several

basic assumptions common to these theories, namely:

(1) The fibers are linearly elastlc and generally

homogeneous.

—-6—
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(2)

(3)

(%)

(5)

(6)

The matrix 1s linearly elastic and homogeneous.

Fibers and matrix are free of voids.

There 1s perfect bond at the interface of the fibers

and matrix.

The ply is 1initially in a stress free state.

The fibers are regularly spaced and aligned.

Furthermore, it can be assumed that the ply or lamina is

macroscopically homogeneous, linearly elastic and generally

orthotropic or transversely isotropic.

These basic assumptions lead to an over-simplified model

of the actual ply. The following are some of the reasons:

(1) the filament arrangement within the ply is generally

random and the filaments could be misaligned, (2) a transi-

tion region between constituents exists, e.g., lack of com-

plete bond and constituents interaction, (3) presence of

initilal stresses.

A concise description and evaluation of these theories

along with a comprehensive list of references is given by

C. C. Chamls and G. P. Sendeckyj [2]. For a unidirectional

fiber reilnforced lamina an important point to note is that

in general the exact theories contribute a very small cor-

rection to El calculated by the rule of mixture, i.e.,

By

Ef.vf + Em.vm 7o




where E1 is the modulus of elasticity of the composite in the
direction of the fiber axis. However, modull E2 and G12 are

rather sensitive to the geometry and constituent properties.

2.2 COMPOSITE PLATES

In general, composite plates can be classified into two
major categorles: (1) sandwlch plates, (2) anisotropic homo-
geneous or heterogeneous, single or multi-layered plates.

Due to the vastness of the fleld, a very brief discussion of
sandwich plates will be given, while the attention will be

concentrated on the discussion of laminated plates.

2.2.1 SANDWICH PLATES

These composite structures may contaln any number
of distinct homogeneous layers separated by isotropic layers.
The layers may have different thicknesses and made of differ-
ent materials. Conslder a simple sandwich plate consisting
of a core layer of thickness h and two face layers of thick-
ness t. It 1s assumed that the facings are relatively thin,
i.e., t<<h and for most practical purposes they can be treated
as membranes, while the core material 1s considered to have
negligible flexural rigidity. Relssner [3] considered the
bending of such a plate, where, based upon the above assump-
tions, he formulated the problem such that the transverse
shears are predominantly carried by the core plate, while the
bending stresses are primarily taken by the face plates. It

is also assumed that the stresses in the face plates are uni-
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form across the thickness, while no in-plane stresses Oys oy,
Txy are acting through the core material. Hence from the
equations of equilibrium it can be seen that the transverse
shear stresses remain constant across the thickness of the

core. Thus the strain energy of the sandwich plate can be

written as

=
it

£ 2 2 _
s T F; /f [of,p ¥ 0y p =20, ¢ .0

y,f
)2 1 fffh/2
+ 2(1+v)T Jdxdy + =% X
Xy,f ZGC Zn/?
2 2
x [sz,c + TyZ,C]dzdxdy (2.2.1.1)

where the subscripts f and c refer to the face layers and
core regions respectively. The relations between stresses

and couples are

M M M
O%,f T * T(mrt)’ Oy,r - F Emrn)? Txy,r - 3 ch%t)
v, v,
oo = B  Type T (2.2.1.2)

Substitution of the above into the strain energy relation re-

sults 1n

- 1 2 2 2
n, = ff {ETHI€7?§; [M2 + ME - QUMM+ 2(1+v)MXy]

1
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Note that 1f Gch + o, then the formulation 1s that of the
classical plate theory, where %%7 is replaced by ETE:%TTE;'
Hence, 1t can be seen that the results predicted by the
classical plate theory are more conservative, since it 1s
assumed that the plate has infinite shear rigidity, which
can result in an unrealistic solution when the core layer's

shear modulus is small.
2.2.2 LAMINATED COMPOSITE PLATES

In thils section, we consider plates which are
made of two or more unidirectional fiber reinforced plies
that are bonded together to form a laminated plate. If the
axes of orthotropy of all layers are orlented in the same
direction, then the plate can be considered as a unidirectlon-
al anisotroplc structure. If the orthotropic axes of symmetry
in each layer are oriented in a particular direction, then
such a configuration is an angle-ply laminate. A speclal case
of angle-ply is the cross-ply laminate, where the orthotropic
axes of symmetry 1n each ply are alternately oriented at

angles of 0° and 90° to the plate axes.

One of the most widely used theorems in fdrmula—
tion of varlous mathematical models of laminated blates 1s the
classical plate theory, where it is assumed, (1) the plane
sections normal to the middle plane of the plate remain nor-
mal, (2) the state of stress in each layer is that of gener-

alized plane stress or plane stress, (3) the strains in the

-10-




z-direction are negligible.

The most elementary formulation is that of unidi-
rectional plane anisotropic plate given by Calcote [4], where
it is assumed that the small deformation theory is applicable.
' Using x,y,z cartesian coordinate system, and assuming linear

strain distribution through the thickness

= oW = - 5 W =
us=-235 V= Z gy W T w(x,y) (2.2.2.1)
then
_ 32w _ 32w _ 32w
SX = -2 W’ Ey = - 2 —""z'ay ) 'ny = - 22 —Bxay (2.2.2.2)

considering the general case where the principal material di-
rections do not correspond with the x and y directions of the

plate, then the stress-strain relationship can be written as
{o} = [Cl{e} (2.2.2.3)

where [C] is a full 3x3 matrix, because the coordinate planes
xz and yz are not the planes of elastic symmetry of the lami-

nate. Defining stress couples in the usual way

h/2

M, = —h£2 o .zdz = - [Dllw,xx + D12w,yy + 2D16w,xy]
h/2

My = A oy.zdz‘= - [D12W,xx + D22w’yy + 2D26W,xy]

-11-~




h/2
Mo =M = [ T .zdz
v ¥ ppe X
= - ED16W,XX + D26W, + 2D66W,xy]
where
C,.h?

= 1 =

Dij 12 3 i,lj 132,6

along with the equilibrium equatilons

we obtain the governing differential equation for the plate

D + uDl6w + 2(D12+2D66)w

11W,xxxx s XXXy SXXYy

+ MD26W = p (2.2.2.4)

+ D
L, XYYY 22% yyyy

If the orthotropic axes of the material are coincident with
the plate axes, then Cl6 = 026 = 0 implies D16 = D26 = 0;

hence equation (2.2.2.4) reduces to

-12-




llw,xxxx L XXYY

+D =p ) (2.2.2-5)

w
227,y9yy
which is given in [5] as the equation for a plane orthotropic

plate. Further, if the laminate is homogeneous and isotropic,

_ _ _ ~ _ En?® ) .
then D11 = D22 = (D12+2D66) =D = T3y 7)s hence equation

(2.2.2.5) 1s reduced to

Vw(x,y) = % (2.2.2.6)

which is the classlcal plate equation.

Now let us conslder a laminate made of two layers
(angle-ply), where two orthotropic layers of equal thickness
are laminated in such a way that the axes of elastic symmetry
form an angle +6 wlth the x,y-axes in one layer and an angle
-8 in the other layer. Smith [6] formulated this problem, as-
suming a linear strain distribution through the thickness as
given in equations (2.2.2.1) and (2.2.2.2), and a state of
generalized plane stress. His formulation provided a consti-
tutive relation exactly as equation (2.2.2.5), where he con-
cluded that the laminate behaves as a homogeneous orthotropic

plate.

Reissner and Stavsky [7] pointed out this miscon-
ception by reformulating the problem, where they considered

the effect of in-plane stretching. This was done by defining
-13-




the strain-displacement relations as

- 0 _ .0 - .0
Ex = ex + ZXx’ Ey = ey + zxy, exy Exy
+ ZXXy
0 o) o)
€. = U €. =V £ = u + v
X 2X° Ty PRGN 4 sy s X
= - W = - W = - 2W
Xx ,xx° Xy ,yy° Xxy S XY

(2

(2

(2

where the mid-surface strains, and bending curvatures

.2.2.7)

.2.2.8)

.2.2.9)

are

those of the classical plate theory. The equilibrium rela-

tions are

where the stress resultants are

h/2

(Nx’Ny’ny) = _h£2 (cx,oy,Txy)dz

and the stress couples are

h/2
(M, ,M M Y= f (0,50

)zdz
yoxy -h/2 y

v x

-1~

(2

(2.

(2.

(2

(2.

.2.2.10)

2.2.11)

2.2.12)

.2.2.13)

2.2.14)




The stress-strain relationship is
{o} = [Cl{e} (2.2.2.15)
Substitution of equation (2.2.2.7) into equation (2.2.2.15)

and the results into equations (2.2.2.13) and (2.2.2.14) leads

to

N A Bl |e®
= (2.2.2.16)
M B DI |x
where A, B and D are given by
h/2 \
(Aij’BiJ’Dij) = _h£2 (1,z,2 >'Cijdz’
(1,j = 1,2,6) (2.2.2.17)
Partial inversion of (2.2.2.16) results in
_ o
e® A* B¥|| N
= (2.2.2.18)
M C* DH|| y
— ~ L

.B, C¥ = B.A"L, p*¥ = D - B.AL.B.

In order to obtaln the governing equations of

equllibrium and compatibility, introduce the Airy stress

~15-



function ¢(x,y) such that in the absence of body forces the

stress resultants can be written as

N, = N, = N, = - .2.2.1
Yy Ny T e Ny ¥, xy (2.2.2.19)

substituting (2.2.2.19) and (2.2.2.9) into (2.2.2.18) and the
results into the following equilibrium and compatibility equa-

tions

M + oM + M +p=0 2.2.2.
X, XX xy,xy © y,yy P ( 20)

(o] O [@]
+ = 2.2,
®x,yy T Ey,xx T Cxy,xy (2 21)

yields the following system of simultaneous fourth-order equa-

tions

(2.2.2.22)

I
o)

Liw = Lg¢ =

(2.2.2.23)

]
(@)

L2¢ + L3w

where the operators Lj are given in [7].

Note that equations (2.2.2.22) and (2.2.2.23) are
coupled through the operator L3. The coupling of w and ¢
enters into the boundary conditions as well, i.e., in a prob-
lem of transverse loading, i1f one has prescribed values of

MX and Rx = QX + Mxy,y at an edge x = constant, at the same

-16-




time he must formulate conditions pertaining to NX and ny

or u and v. Relssner and Stavsky [7] also pointed out this
cross—-elasticlty effect for stresses, by writing the stress-
strain relationshlp in terms of in-plane strains and bending

curvature as
{o} = [c1{e®} + z[Cl{x} (2.2.2.24)

Now invert equation (2.2.2.16)

= (2.2.2.25)

and substitute (2.2.2.25) into (2.2.2.24) to get
{o} = [CI[([a] + z[c]){N} + ([b] + z[d]){M}] (2.2.2.26)

Thus 1t can be seen that in general Oy depends not only on NX

and MX but also on Ny, My, ny, MXy and an analogous cross
elasticlty effect is encountered in the expressions for oy
and Txy.

2.2.3 N-LAYER LAMINATES

Dong, Pister and Taylor [8] extended the above

formulation for multi-layered anisotroplc plates. The as~
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the strain-displacement relations given in equation (2.2.2.7).
Each layer and also the laminate as a whole are assumed to be
in a state of generalized plane stress. Calcote [4] has given
comblete formulation of this problem. The stress;strain re-

sumptions of the classical plate theory were used along with l
lationship for the kth layer can be written as I

[6%] = [c¥Ile] (2.2.3.1)

where [€] is given in equation (2.2.2.7), and the symmetric

k)
J

wlth the kth lamina. For a particular layer these coeffi-

matrix [C§ ] represents the elastic coefficients associated
cients depend on both the elastic properties of the material
principal axes and the orientation of these axes with respect
to the laminate axes. Once a reference surface for strains
and curvatures is defined, then stress resultants and stress

couples can be formulated with respect to this surface as

h
n k

(sl M) = 1 (0{,60,: 8010, (2.2.3.2)
=1hy 4

h

n k .

(M, MM, ) = kzll{ [oik),oék),r)({l;)]zdz (2.2.3.3)
=1 hy 4

= (2.2.3.4)




where
n
_ (k)
Byy = k-21 Ciy (b = By )
B, =1 7 c)(n2 - nz ) (2.2.3.5)
1372 2, %y P T P -2.3.
_1 B (k)
Diy =3 k§1 Cyy (hg = by 4)

Equilibrium equations are the same as for the two-ply laminate
given by equations (2.2.2.10), (2.2.2.11) and (2.2.2.12), and
the compatibillity equation (2.2.2.21). The governing differ-
ential equations of the laminate can be formulated either in
terms of an Airy stress function ¢(x,y) and the transverse de-
flection w, or in terms of the three displacements uo, v° and
w. The system of two simultaneous fourth-order equations ob-
tained in terms of ¢(x,y) and w(x,y) 1s identical to that of
the two-ply laminate given in equations (2.2.2.22) and
(2.2.2.23). The formulation in terms of the displacements is

given by Whitney and Leissa [9], and Whitney [10]. The gov-

erning equations for cross-ply laminates are

I
o

o) o) -
Llu + L2v - Luw

0 0
+ Lovo -
L2u L3 L5w

il
o

(2.2.3.6)

0 o} -
- Luu - L5v + L6W =D
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and the governing equations for angle-~ply laminates are

0 o _
Llu + L2V - LlW =0

L2uo + L3vo - Lgw = 0 (2.2.3.7)

- Lluo - L8vO + L6w = p
where Li are operators given in [9,10]. It should be noted
that these operators are different from those given in equa-
tions (2.2.2.22). P is the transverse load acting on the
plate. These equations can be simplified significantly when
the laminated plate is a symmetric one with respect to the mid-
dle plane, 1.e., when the middle plane of the laminate is se-
lected as the reference surface of the plate and the laminate
is composed of palrs of laminas such that the two laminas of
any particular pair are identical in thickness and orientation.
Hence, under these conditions Bij = 0, which implies no cou-

pling between stretching and bending.

Pagano [12-14] has investigated the limitations of
the classical plate theory (CPT) by comparing the soluﬁions of
several specific boundary value problems in this theory with
the exact solutions (within the theory of linear elasticity);
in particular, cylindrical bending of laminates and transverse

deflection of rectangular bi-directional composites.
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Pagano [12] formulated the cylindrical bending
of a laminate composed of m orthotropic layers simply sup-
ported on the ends x = 0 and x = £, by assuming the plate to
be in a state of plane strain. Since each layer is ortho-

tropic, the strain-stress relations can be written as

€ = R,.,0_ + R

Eg = R 1302’ z 137 x 3302

X 110x * R

sz = R55sz

where Rij are the reduced compliance coefficients for plane
strain, defined in terms of Sij the compliances with respect
to the principal axes of the material. The equilibrium equa-
tions along with the strain-displacement relations are given

as

™
|
=

Note that all the stresses, strains and displacements are
functions of x and z only. A solution of the following form

is assumed:

(1) _ an
o, = fi(z).sinpx

(1) _ 2 .

o, = -Dp fi(z).51npx
(1) _

Tew = pfi(z).cospx
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which satisfies the equations of equilibrium identically, and
the eigenvalues p = p(n) are determined from the boundary
conditions. Substitution of these assumed solutions into the
stress~strain and strain-displacements relations results in a
fourth-order ordinary differential equation in the variable
fi(z) for each layer which is solved exactly. 1In a subsequent
work Pagano [13] solved the problem of bending for a simply
supported rectangular laminate under transverse load. Each
layer was assumed to be orthotropic. A solution to the gov-

erning equations of elasticity of the form

u(x,y,z) = U(z)cospx.sinqgy
v(x,y,z) = V(z).sinpx.cosqy
w(x,y,z) = W(z)sinpx.sinpy

and
(U,V,W) = (U*,V¥,W*).exp(sz)

was assumed. The eigenvalues p and g as well as the constants
U¥, V¥, and W*¥ were determined by substitution of the above
assumed solution into the fileld equations and boundary con-

ditlons.

Comparison of the solutlons obtained by Pagano
[12,13] with that of the classical laminate plate theory so-
lutions discussed previously [7-11] indlcate clearly that the

classical laminated plate theory (CPT) underestimates the

-22-
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plate deflection and gives a very poor estimate for relatively
low values of S (span length/plate thickness), e.g., in the
case of cylindrical bending at S = 20, the error is approxi-
mately 20% and it grows significantly with lower values of S;
however, for large values of S the solution approaches asymp-
togically the CPT results. Another important point to note

is the validity of the Kirchhoff hypothesis, where the solu-
tion indicates that the assumption of linear displacement
wilthin each layer may be reasonable; but, the deformed con-
figuration of the original normal plane cannot be described

by this hypothesis for low values of S. Meanwhile, it can be
seen that the deformed normal tends to straighten as the value

of S increases.

In summary, the above comparison clearly shows
the necessity of incorporating the influence of transverse

shear deformation.

Whitney [15] considered the bending of symmetric
angle-ply and cross~ply laminates where he included the trans-
verse shear deformation in the following way. Using the con-
ventional x,y,z coordinate system, the plate surfaces z = i%
are assumed to be free of shear tractions. Each layer is as-
sumed to be an orthotropic material. Neglecting the effect
of transverse normal stress o, on the gross response of the

laminate, the stress-strain relation for the kth layer can be

written as
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Ox Q1 Qp 0 0 Qgiiey
Tyz =10 0 QHU QMS 0 8yz
T 0 0 Q Q 0 €
%7 45 55 Xz
Txy LQ16 Qg O 0 %6 [fxy

where Qij is the reduced stiffness matrix. Furthermore, it
is assumed that the transverse shear stresses of the kth

layer have the following form:

o= 10r(a) + all) e, (x,)

+ [{B)r(2) + aff) 10, ()

o) = [affr() + a{E) 10, (xy)

+ [afPr(z) + aff)To, (x,3)

In the above ai?) are constants which can be determined from
the condition of the continuity of shear tractions at the in-

terface of adjacent layers.

Using the strain-displacement relations along with
the stress-straln equations and the assumption that w = w(x,y)

yields
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il

W = a4 1) e (), + gy () g

3

y

v e s a4 ey, () + gy P20,

>

where

J(z)

[ f(z)dz

y (&) aiz(k) v al® ) 1= 1,2,3,0)

gi(z i

and where the constants dﬁk) can be determined from the con-
tlnuity condition of the displacements u and v at the inter-
face of adjacent layers, noting that u = v = 0 at the mid-
plane of the plate. These equations for J(z) and gi(z)(k)
along with the strain-displacement (linear elasticity) rela-
tlons and Hooke's law for the kth layer will yield three
equations for the stress couples Mx’ My, MXy as functions of
w(x,y), ¢X(x,y) and ¢y(x,y) and their derivatives. Using
these new equations along with the conventional equations of
equllibrium given in equations (2.2.2.11) and (2.2.2.12) will
result 1n three constitutive equations for w, ¢X and ¢y.
These constitutive equations are rather formidable; however,
for lamlnates in which Qﬁg) = aﬁg) = 0, they are considerably

simplified [15]. Thils condition arises when the preferred

directions of the layers coincide with the plate axes.
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In order to assess this formulation, Whitney con-
sidered a simply supported rectangular laminated plate sub-
jected to sinusoldal transverse loading. In order to obtain
relevant numerical results, a knowledge of the nature of the
function f(z) is necessary. From solutions provided in [12]

and other references mentioned in [15], Whitney concluded that

the cholice of
42y
f(z) = 1 - (E)

was a judiclous one for this class of boundary value problems.
Bending curves given in [11] indicate that shear deformation
increases the plate deflection; e.g., for a width to depth
ratio of 20 this increase is about 15% for the plate with
Ell/E22 = 40, while the laminate with Ell/E22 = 3 shows a
much less pronounced effect, demonstrating the effect of an-
isotropy of each individual layer. It can be seen that de-
splte the assumptions made on the functions T, , Tz and f(z),

this theory predicts rather accurately the gross response of

laminated plates under transverse loads.

As is evident, bending theories of composife lami-
nated plates have been investigated extensively. However,
very little attention has been given to the extension and in
particular the interlaminar shear problems. Puppo and Evensen
[16] have proposed the following model for the study of 1nter-

laminar shear stresses in the laminate. It is assumed that
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the laminate can be modeled as a set of anisotropic layers
separated by 1sotropic layers, where the isotropic layers
develop only shear stresses, acting as "adhesives" between
the anisotropic layers. It is also assumed that the state of
stress 1n each anisotropic layer is that of generalized plane

stress, and the in-plane stresses Oys O T and displace-

y? Xy
ments u, v are the averages of the actual values through the
thickness. For a model consisting of two layers, the equilib-

rium equations for the anisotropic layers are

(1) , (1) 1 'xz
0x,x + Txy,y + hi 0

#

1) . (1) 1 Ty
+ + = 0

TXY3X CY:y hi

where the superscript (1) indicates a particular layer, and
the positive and negative signs correspond to i=1 and i=2 re-
spectively. The interlaminar shear stresses T;Z and T;Z are
acting on the faces of the layers, but from the equilibrium
point of view it 1s assumed that they are acting on the middle
plane of each layer. This assumption is a valid one if the

laminate 1s symmetric or warping 1s prevented by external sup-

ports. The shear stresses in the isotropic layer are assumed

to be
¥ G
Txg = G¥ygy = H(ul - u2)
# G _
Tyz = nyz = vy - vy)




where u, v are the displacement components, and G is the
shear modulus of the isotropic layer, while the stress-strain
relation for the anisotropic material is {o} = [Qij]{e} where
Qij is the reduced stiffness matrix. The solution 1s obtalned
when four functions Ugs Vis Uy and v, are found which satisfy
the constitutive equations and the particular boundary condi-
tions. For an infinite laminate under uniform unidirectional
deformation, it is shown that the interlaminar shear stresses
are zero. However, at the free edge of a finite width lami-
nate, the interlaminar shear stress has a finite value. Re-
sults based on this theory indicate that the magnitude of the
transverse shear T;Z can be approximately 25% of the maximum
axial stress N while in the classical laminate plate theory
these shear stresses are ignored. Hence, 1t 1s evident that

for a reasonable strength analysis the effect of the 1nter-

laminar shear stresses must be included.

Pipes and Pagano [17] considered the problem of a
finite width symmetric angle-ply laminate under uniform axial
strain, in order to study the character of the interlaminar
shear stress. The stress-strain relations for each layer with

respect to the plate axes are
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~ 1 r S
Oy €11 €12 C13 0 0 Cigiley
9y €12 Cap Co3 0 0 Cygliey
o5 | %13 Cp3 C33 0 0 Cylle,
T, 0 0 0 Gy O 0 ||y,
T, 0 0 0 Gy Coe O |1y,
Txy C16 Co6 C36 O 0 CogliVygy
L] L U

and the strain-displacement relations are those of linear

elasticity. The tractions are applied only on the ends of
the laminate (x = constant) such that the stress components
are Independent of x. Hence the equilibrium equations are

+ 1 =0, o + 1 = 0, =0

T T + 0
Xy,y XZ’Z y,y yZ,Z yZ’y Z,Z

Integrating strain-displacement relations and enforcing the
symmetry conditions of the displacements with respect to the
Xy and xz planes and the continulty conditions at the inter-

faces ylelds
u = Cex + U(y,z), v.= V(y,z), w = W(y,z)

Since the strain €, 1s a constant, this type of displacement
field is defined as "uniform axial extension" [17]. The con-
stitutive equations of each layer are obtalned by combining
the stress-strain relations with the reduced equilibrium equa-
tlons, the strain-displacement relations and the above dis-

placement field. From the numerical results of a four layer,
-29-




+45° symmetric angle-ply laminate, it can be seen that the
in-plane stresses converge to the values predicted by the
classical plate theory away from the plate boundaries. How-
ever, the interlaminar shear stress Tyy tends to approach in-
finity at the free edge, indicatling the possibility of the
presence of a singularity at the intersection of the inter-
face and free-edge. Rybicki [18] has carried out a three-
dimensional finite element analysis for the problem considered
by Pipes and Pagano, i.e., a laminar plate subjected to uni-
form end displacements. Rybicki's results for the stress
components are in close agreement with those of Pipes and
Pagano except that Rybickl's interlaminar shearing stresses

do not becbme singular at the plate edges. The fact that
Rybickil did not obtaln a singularity for the shearing stresses
may be a consequence of his finite element model which does
not permit such singularities. The question of whether these
shearing stress components attain a large finite value or are
actually singular at the plate edges 1s not satisfactorily re-
solved by either the Pipes and Pagano or the Rybickl calcula~
tion because of the inherent approximate nature of both of

thelr numerical calculations.

In summary the classical laminate plate theory
can be used effectively when predicting gross behavior of thin
laminates; however, it fails to predict the interlaminar shear
stresses and their effect on other laminate response. In order

to predict the behavior of composite plates accurately, the
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effect of transverse stresses must be included. The mathe-
matical models of Puppo and Evensen, and Pipes and Pagano
conslder the effect of interlaminar shear for the special
case of symmetric laminates. These models can be used as a
guide in understanding the shear transfer behavior between
layers of a composite laminate, but they are inadequate to
investigate the failure by either delamination or fracture
within an individual layer. Other mathematical models are
needed to investigate these failure mechanisms in conjunction
with the free edge effects due to geometrical discontinuities.

2.2.4 STRESS ANALYSIS FOR LAMINATES CONTAINING FLAWS -

A PROPOSED THEORY
The ultimate purpose of models and stress analy-

ses for composites is to enable strength analysis or the pre-
diction of load carrying capacity for the composite system.
The approach to be taken is clearly dependent on the mode of
failure anticipated. For laminates, failure is often asso-
clated with crack growth and/or delamination. Thus a knowl-
edge of the local effects of flaws or cracks on the response
of laminates is needed to make accurate predictions of load
carrying capacity. The theories discussed above give a de-
scription of the stress field in laminar composites but do not

take into account the effects of material imperfections.

In the followlng section, an approximate, three-
dimensional model for laminates 1s developed and applied to

the problem of a through crack in a laminate.
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SECTION III

AN APPROXIMATE THREE-DIMENSIONAL LAMINAR PLATE THEORY

Laminar composites have been developed whose strength to
weight ratio is considerably higher than that of homogeneous
materials. This had led to a considerable interest in the
employment of composite plates for structural application.
Consequently, a great deal of effort has been directed in both
areas, analysis and experiments, to determine the behavior of
such composite systems. In particular, it is clearly impor-
tant to understand the failure mechanisms and develop crite-
ria to predict failure conditions. The failure phenomena for
composites is far more complicated than for the corresponding
homogeneous structures because fiber-matrix debonding and
interlaminar separation often are observed in conjunction with
unstable crack growth. The present study attempts to (1) de-
velop an approximate theory for laminar plates and (2) apply
this theory to a laminate containing a through crack in order
to predict the effect of such a flaw on the behavior of the
composite system. The analysis 1s particularly directed to-
ward developing a better understanding of the fallure mecha-

nisms, i.e., the interaction of cracks with delamination.

In the development of approximate theory for laminar
plates, it must be, at the outset, realized that composite
plates contain a truly three-dimensional distribution of
stress even under two-dimensional loading conditions. The
approach employed in this work is to extend the approximate
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three-dimensional theories for homogeneous plates developed
by Relssner [3] and Hartranft and Sih [1] to laminates. These
theories are based on the variational principle of minimum
complementary potential energy. An approximate form is as-
sumed for the stress field and the complementary potential
enefgy functional is minimized with respect to admissible
variations of this field, i.e., those which satisfy (a) the
equilibrium equations of three-dimensional elasticity and

(b) the traction boundary conditions. The resulting solution
1s approximate in that the compatibility or displacement con-
tinuity conditions are only satisfied in an averaged sense.
Thus some diffilculties can arise in the application of such

a theory to laminates because the interfacial conditions be-
tween layers requires continuity of displacements as well as
tractions. The cholces for the extension of the three-dimen-
sional plate theories to laminar structures will be based,

in part, on Jjust this consideration.

The complementary potential energy principle for two (or
more) isotropic material problems will be developed and the
interfacial continuity conditions will be demonstrated. An
approximate stress fleld will then be assumed and its éonse—
quences examined. This will lead to an approximate theory
for lamlnar plates whilch will, in turn, be applied to the
problem of a laminate containing a through crack subjected to
an in-plane loading situation. It should be noted that the

same approach is applicable to problems associated with bend-
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ing of laminar plates. Only minor changes in the formulation

are needed to consider plate bending.

The approximate theory to be presented here is capable

of dealing with lamlnates developed from homogengous, isotrop-
ic plies. On the other hand, more interest has been expressed
in laminates which are manufactured from fiber reinforced
layers, thereby exhibiting higher strength to weight ratios.
Extensions of the present theory to laminates containing an-
isotropic plies, thus modeling the behavior of fibrous lami-
nates, are now possible as a result of the knowledge gained

from this idealized approach.

3.1 THE VARIATIONAL PRINCIPLE OF MINIMUM COMPLEMENTARY
POTENTIAL ENERGY FOR COMPOSITES

The complementary potential energy princlple is developed
for two-material problems and the results are used to deter-

mine the corresponding variational principle for laminates.

Recall, the complementary potential energy (%) of an iso-
tropic, homogeneous, body is defined as the strain energy of
that body minus the work done on the portion of the body sur-
face (Su) over which displacements are specified, 1.e.,

¢ = [ vdv - [ T,u,ds (3.1.1)
S

where the strailn energy density is
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Consider a body, made up of two materials, which is sub-
Jected to traction boundary conditions along its external
surface, Figure 3.1.1. Traction boundary conditions are as-
sumed over the entire external surface for convenience in
writing so that the complementary potential energy reduces to
the straln energy and the only interfacial surface (SI) must
be considered separately. Displacement boundary conditions
can be handled in the standard manner and do not alter the
significant points of the analysis to be discussed. The com-
plementary potential energy of the body described is the sum
of the strain energles of the portion made from material (1)

plus that formed from material (2), i.e.,

¢ = | Y,oo\dv + [ Y, dv (3.1.2)
This functional (@) is to be minimized with respect to the
stress components subject to the constraints of

(1) equilibrium, ofp) =0, p=1,2
i3,J

(2) satisfaction of traction boundary conditions,

0§?)nj = Ti on Sép), p =1,2, and

(3) continuity of tractions across S

(1) (1) _ (2) (2)
N T T %y
-35-
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(p)

where nj are the components of the outward unit normal to

the surface of the sub-region (p). Thus, on St

(2) (1)
n = - n
J J
The minimization of a functional subject to a set of

constraints can be accomplished with the use of Lagrange

multipliers. For this case, the functional 7 is introduced

as

(1)4(1)

T = y.dv + Y. dv - A av
él 1 £2 2 £ i iJ,j
_ 5 (2),(2) _ (1), (1)
{2 i 013,397 éI By (oyy7ny
c(2),(2)

+ ij J )ds (3.1.3)
where xél), x§2), and Bi (1 = 1,3) are the Lagrange multi-

pliers. The minimizatlon of this functional m with respect
to admissible variations of the stress components leads to
the set of governing equations and material boundary condi-
tions. This variational procedure will be carried out pri-

marily to demonstrate that it leads to continulty conditions

for the dlsplacement components across the material interface

SI'
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o¥ oY

1 (1) 2 (2)
St = 8o dv + So dv
[ e | o o

(1), (1) (2) ¢, (2)
- é Ay S(GiJ,J)dV - £ Ay 6(ciJ,J)dv
1 2

é Bi(nél)acii) + n§2)60§§))ds =0 (3.1.4)
I

Application of the divergence theorem followed by collection
of terms ylelds
awl

(1) (1)
S = ( + A )So av
él ag§§5 i,d ij

oV
N NN T

i,J ij

- | Logt + gpn{Peeld)
i

(2) (2);.(2) -
+ (Ai + Bi)nj Goij Jds = 0 (3.1.5)
This result can be further simplified by recalling that on S

ngl)oi;) + n§2)0£§) = 0 which implies that

I

n(2)60(2) = - n(l)Gcgl)

J iJ J iJ

Thus
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(1) (1)
= + N
8w {; (—(—17 )\ )601j dv
1
oY
2 (2) (2)
+ [ (_—T—T + Ay )60 dv
v2 Boi§ 1J
(1) (2)y,. (1) (1)
- él (A7 = Ay )nj coiJ ds =0 (3.1.6)
In order that v = 0 for all admissible Scéﬁ) in vl and on S
and all admissible 60§§) in Vs it is necessary that
oy
1 (1)
+ =
m )\ 1,3 0 in Vl
1J
oV
2 (2) _ .
507—2—5' + )\i j = 0 in V2 (3.1.7)
ij
(1) (2)y _
(Ai - Ai ) = 0 on S;

¥ _ e
90, 13 1]
the first two sets of equations are the compatibility condi-

and

From equation (3.1.1) it is recognized that
tions in vy and Vo respectively. They further imply that
WP = o u{P) p a0, 1= 1,2,3

Substitutlon of this result into the third set of equations

(3.1.7) ylelds

uél) = uiz) on SI
-38-
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Thus, 1t has been demonstrated that the complementary
strain energy for a nonhomogeneous body is the sum of the
strain energies of the various constituents minus the work
done over the portion of the external boundary over which
displacements are prescribed. Minimization of the comple-
meﬂtary potential energy with respect to admissible stress
fields leads to the compatibility conditions within each ma-
terlal and continuity of displacements across material inter-

faces.
3.2 AN APPROXIMATE THREE-DIMENSIONAL THEORY FOR LAMINATES

The use of variational principles, e.g., the principle
of minimum complementary potential energy, to develop ap-
proxlmate solutions is a standard technlque. An approximate
form 1s assumed for the varlables, in this case the stress
components, and it is substituted into the functional. Min-
Imization of that functional with respect to admissible vari-
atlons of the assumed functions (stress components) leads to
the cholce for those functions which best approximates the

exact solutlion in an averaged sense.

The procedure to be employed for laminated plates'is to
assume that each of the stress components in each layer can
be approximated as a product of a function of the out-of-
plane variable z multiplied by a function of the in-plane

variables x and y, 1l.e.,
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oég) = fig)(z)gég)(x,y) no sum on 1,j,p (3.2.1)

The purpose of this assumed form for the stress components is
to reduce the governing equations from dependence on three
‘independent variables to dependence on two variables for
which many standard solution techniques exist. Substitution
of the assumed form for the components into the equilibrium
equations with the addltional condition that the equations

separate leads to the more specific assumption

(p) _ (p)
ozp = fp(z)zZ (x,y)

(p) (p)+ _ ' (p) (p)
[sz > Typ ] =- fp(Z)[ZX (x,¥y), Zy (x,y)]
(3.2.2)
[o{P), 6P, <Py < ez s{P) i,y s 5P ey,

Téi)(x,y)]

The conditions of traction continuity across material inter-

faces are satisfied by taking

Z ]

(p) (@) ,(P)q .
[2,P7, 2.2, 2,21 = [2,, 2, 2,

y

and

fp(z) = fp+l(Z)

fé(z) fé+1(z)
40—
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at the value of z corresponding to the interface between

layers p and p+1l.

It 1s perfectly reasonable to substitute this assumed
form for the stress field into the complementary potential
energy functional and minimize that functional with respect

to f(p)(z)’ Zz’ yA Z S(p), S(p), and Tii) subject to the

x? 7y’ X y

conditions of equilibrium in order to develop an approximate
solution for laminar composites. It is, however, advantageous
to examline the resulting form of the strain components so as
to choose the approximate solution which comes closest to
satisfying the displacement continuity conditions across the

material interfaces. For example, the strain component €4

is given by

= 1. = L rpv - -
€, = F [ox v(oy+cz)] g [f (z)(SX vSy) vf(z)ZZ]
In order for €4 and thus U, to be continuous it is necessary,
though not sufficient, that Sép) and Sép) be the same for all

layers. Examination of the shearing strain component vy

(p)

Xy

Xy

yilelds a similar condition for T Thus the assumed form

for the stress field which will be adopted is:

o) = £y (202, (xy)
[P 2Py o Corr () Z (x,y), Zo(x,y)]  (3.2.3)
X7 s yz (p) X s s y ) s C o

(p) _(p) _(P)q o pn
[o,P7 s 0P, 1070 = £y ()08, (x,3), Sy (x,3), Ty (x,5)]

Iy




where fp(z) and fé(z) must match theilr respective values for
the adjacent layers. For notational purposes 1t 1s convenient
to rewrite the assumed form for the stress components in an

equivalent manner as:
o{P) = £(2)z_(x,3)
(p) (p)q _ 1
[ten "> Tz 1=-1"(2)[Z (x,5), Zy(x,y)]

(p) (p) (p) - N
lo" 7 0o s Tyy 1= " (z)[8, (x,y), Sy(X,y), Txy(X,y)]
where f(z) must be contlnuous and have a continuous first

derlvatlive across the materlal interfaces.

Substitution of this assumed form for the stress compo-
nents, equation (3.2.4), into the complementary potential
energy functional and the equilibrium equations for a laminar
plate with edge loading and traction-free surfaces (f = f' =0

on surfaces) ylelds

o = ] [QEi / {r"2[s? + s; - 29515y
p) Vv
(p)
+ 2(1+v(p))T§y] + 2f'2(1+v<p))(Z§+Z§)

" + + 2572
2v(p)ff (ZZ)(SX Sy) f ZZ}dV

- f(p) [f"(SnUép) + Tnsﬁép)) - f'Znﬁ;p)]ds (3.2.5)
S

b ~lyp-




and

z ~ "x,x 0 Ty,y
2y = Sex * Tyyy (3.2.6)
7 = + 8

T
y Xy, X Yy

where
Sn.-T n =8Sn_ + T n
n x ns’'y X X Xy'y
Snny + T Ny = TxynX + Syny (3.2.7)
Z =72 n_ + 7 n
n XX ¥y

and Uép), ﬁép), and Uép) are the normal, tangential, and
transverse components of the displacements prescribed on the

edge (Sép)) of layer p, respectively.

Lagrange multipliers (ki) are employed to insure satis-

faction of the equilibrium equations, and the functional

Z.)

m=090 - [f (A (S x ¥ Tey.y = Zx

+ + - + + -
A (T S Z,) + A5(Z, 4 z,)Jdxdy

2( Xy ,y VY s X Y,y
(3.2.8)
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is formed.

The variation of m with respect to Sx’ Sy, Txy’ Zx’ Zy,

Zz’ and f(z) with the continuity conditions enforced on f(z)

and f'(z) is

= " -
sm=7 [ / {f"[2s8,688, + 2888, - 2 (8,85

P 2E(p) V(p) J

+ + + + 12 (1+
SyGSX) L(1 v(p))TxyGTxy] hrr2(1 v(p) X
+ - "
x (ZXGZX ZyGZy) 2v(p)ff [ZZ(GSX + 6Sy)

+ (S + S )GZ ] + 2£2%y GZ }dv - f fn(dsnﬁép)
S(p)

+ 87 5P _ sz 5P a7
ns S n z

-/ [Aq(88, , + 8T, o = 82.)
+ A, (8T + 68 - 8Z

2( XY, X V¥ y)
+ + -

>\3(azx,X azy,y 6ZZ)]dxdy

+ 1 [op— | | {2082 + 82 - 2v
p

p 2o v p)°x

1" n 2 2
+ 2(1+v(p))Txy]f SE" 4+ u(1+v(p)(zX + Zy)f'af'

- + "o 11 + 2
2V(p)ZZ(SX | Sy)(f@f £"8r) 2ZZf6f}dV

T




- f(p) [(Snﬁép) + Tnsﬁép))éf" - Znﬁép)df']ds]
S

Y (3.2.9)

Note that &m has been purposely separated into two parts.
The first part contains only variations of the in-plane func-

tions S S T Z

x° Py2 Txyo Zyxo Zy, and ZZ; while the second set of

terms includes only variations of f(z) and its derivatives.

The integrals containing variations of the in-plane functions
can be integrated through the thickness and those containing
variations of f(z) can be integrated in x and y. Thus &7 can

be rewritten as:

§m = [ {I (S, 85, + 8,88, + 2(I) - I,)T, 6T

A Xy

+ IZ(SXGSY + Syasx) + 13(zxcszX + Zyszy)
Z 872
2z Z

+ Iu[ZZ(ﬁsx + éSy) + (SX + Sy)éZZ] + I5

- A, (83 + &7 - 87 - A, (68T + &3 - 87
1( X,X Xy .,y X) 2( Xy, X Y,y y)

- + -
A5 (82, o 62, , - 6Z,)}dxdy

(UncSSn + US(STnS + UZSZn)dC

I
QY

u

P galPlenzysrn(z) + a{P) 1 ()58 (2)
p-1

e~ ct

+ ]
D

+ aPILr(2)80"(2) + £(2)80(2)] + afP)r(2)60(2)

+ sﬁp)éf"(z) + Bép)éf'(z)}dz (3.2.10)
=45~



where
®p
I, =1 El—— / "2 (z)dz
p (p) ¢t
p-1
V(o) (P
I, =-) =24 [ £"2(z)dz
: p Tp) b
p-1
2(1+V( )) tp
I =] —— 2=/ £'2(z)dz
P (p)  t, 4
Yp) P
I,=- ] g2 [ f£(2)"(z)dz
p o (p) 4
®p
Io = ) «2— [ f2(z)dz
5 E
p "(p) Ty g
bp
u, =] [ ﬁép)f"(z)dz
Pty g
®p
u =] f Uép)f"(z)dz
p tp_l
b
w o=-1 [ 0Pria)a
Pty q
(p) _ _1
T E j£ [83 + 57 = 2v()5,Sy + 2(14v ) )TL Jdxdy
(p) = 2(1+\)(9)) : 2 2
oy E o) f£ (z3 + Zg)axdy
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(p) _ _ %iEl [/ z,(S, + S_)dxdy
(p) A Y

(p)

L [f z%axay
Bp) ' °

(p) _ =(p) =(p)
slp = é (annp + TnSUSp )dc

u

Bép) = - é ZnUép)dC
u

The divergence theorem and the integration-by-parts
technique are applied to the variational equation 8w = 0 to

obtain:

)6SX

s o= £ [(IlSX + 128y +Iu7, + Al’x

+ (IlSy + IZSX Iz, + Az,y)asy

+ (2(1, - I2)TXy + Al’y + X2,x Xy

+ (I.Z2_+ X, + X

37x 1 3,X)6Zx

+ (I.Z_ + A, + )

3fy t Ap + A3 )8l

+

(Iy(s, + sy) + Ig%, + A3)8z, Jdxdy

5
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- é [(u, + A )88, + (ug + AST  + (u, ¥ A3)62n]dc
by
*1f falPlem(z) + (20{P) - afPhyen(z) + ofP)r(2)

+ s§?;z - séfgjaf(z)dz + g (alPlen(z) + ugp)f(z)

t
p
+ {P)ysr(z) + 1 (-a{Prmiz) + afPlrr(a)
t p
p-1
*o
- a{Priz) - 8{P) + 8IP))sr(a) (3.2.11)
too1
where
An = Alnl + A2n2
XS = - Alng + xznz

and (nl,n2) are the direction cosines of the normal to the

plate edge.

The governing equations and boundary conditions are now

apparent, i.e., the in-plane variables can be determined from

IlSX + IESy + IMZZ + Al,x =0

{]
o

Ilsy I8, F Iz, A2,y
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I3ZX + Al + A3,X =0
I + + =
iy T Aot A3y =0
Iu(sX + Sy) + ISZz + A3 = 0
(3.2.12)
Z =17 + Z
Z X, X Y,y
Z, =3 +. T
X X, X Xy ,¥
= + S
ZY TXYsX Y.y
with An = -U., AS = -ug, and A3 = -u, on the portion of the

boundary over which displacements are prescribed. The bound-
ary conditions associated with the in-plane variables Sx’

S can be elther of the traction type or averaged displace-

NERRE
ments. On the contour c¢ along the plate edge, one can prescribe

elther
S, = §n or A = —ﬁn
Ths = Tns or Ay = —ﬁs
z, =12, or Ay = -,

The function f(z) for the pth layer is governed by
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a§p)f""(z) + (2a§p) _ aép))f"(z) + aﬁp)f(z)

(p) (p)
B0, = 81" (3.2.13)

1,zz

with the conditions that, f(z), f'(z), (a(p)f"(z) + a§p)f
ng)) and [aip)fn'(z) + (agp) (p))f'(z) + B(p) _ Bép)]

must be continuous across material interfaces. The traction-

free surface conditlons are reflected by the requirement that

f(z) and f'(z) must be zero on the plate surfaces.

After some nontrivial manipulations the set of governing

differential equations can be separated into the form:

2 _ 0 2
ZX - a6V ZX = 5% (alv 13 + a2x3)
- 29 - 0 2
Zy a6V Zy 5y (alv X3 + a2k3) (3.2.14)
Y 2 -
a3V X3 + auV A3 + 35A3 = 0

provided that

ax + 55 - a7v Ag - a8h3
I .1 I
4 2 3
[(I ) (TE-12) 2(1;- Ty1%y I,
a1 = [I (11+I )+1 Iu 2IZ] + (Ii—lé)
T 1,1 T
4 3 3
[(I ) (12 27 2(T,- )](11+12)
a = T
2 ‘II (; +I )+I3Iu—214]
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3 15

ay = - 2I,(I, - I,) + I I,
ag = - (Ii - IS)

3 = 3 Ii312

a I).{

7% EI5(I1+I2)+IM(I3—2I4)]

(I;+I,)
a =
8 [15(11+12)+IM(I3-214)]

The other in-plane variables can be expressed in terms

of XB’ Zx’ and Zy as

_ 9
Al - T I3Zx 73X (A3)
A = - T.7 - (A,)
2 37y oy 3
2
. 1 825 . I (azx , azy)
Xy ZIl—Igj 0X3y 2(11—127' oy 90X
L 322 221 | 2z,
Sy = (T2-12) {1y g5z = Ip gy + 15 - I(I-1)0 55
2y
- [1213 + Iu(Il—Iz)] 55 }
1 SZAB azx3 EEX
Sy = TZ-12 Iy 557 = T gz *+ [T - T(1-1)0 55
: 97,
- [T + I,(1,-1,)] 557~ (3.2.15)

-51-




3.3 APPLICATION OF THE APPROXIMATE THEORY TO A LAMINAR PLATE

CONTAINING A THROUGH CRACK

For this analysis, the crack length is taken as small in
comparison with the in-plane dimensions of the plate. The
stress field in the vicinity of the crack is thus independent
of local boundary effects and the plate can be modeled as in-
finlte 1n the two, lIn-plane directions. This assumption sim-
plifies the analysls significantly while maintaining the es-

sential characteristics of the crack laminar plate problem.

In particular, the problem of a laminar plate (symmetric
about i1ts mid-plane) containing a crack in a uniaxial far-
field, stress state will be considered (Figure 3.3.1). The
crack is directed normal to the loading direction, thus mod-
eling the most damaging type of flaw. This problem can be
expressed as the superposition of two auxiliary problems.

The first auxlliary problem is that of an uncracked plate
subJected to the same loading conditions as the actual cracked
plate. For the second auxiliary problem, the cracked plate
conflguration is considered with no boundary loads. Instead,
the crack faces are loaded with tractions of equal magnitude
but opposite sense to those found at the crack location in

the first problem. Thus the superposition of the two problems
yields the cracked plate with traction free crack faces and

remote loading as originally described.

The first of the auxiliary problems, an uncracked plate

in a far, uniform stress field, has nonsingular stress compo-
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nents and as such does not contribute to the crack-tip singu-
larity. Therefore, the stress field in the vicinity of the
crack tips for the case of crack face loading i1s identical to
that for the remote loading situation of the actual cracked
plafe. It is mathematically advantageous to consider the
crack face loading problem because it leads to stress fields
which die-out far from the crack and can thus be treated by

transform techniques.

The problem of a composite plate, made up of isotropic
layers distributed symmetrically about its mid-plane, con-
talning a through crack will be analyzed for the case of sym-
metric crack face loading. The loading is required to be
symmetric about the plate mid-plane as well as the x = 0 line
to eliminate any bending effects. The crack is directed along
the x-axis, Figure (3.3.1). In general, the loading on the
crack face will include normal pressure and transverse shear-
ing tractions. The symmetry conditions require that these
shearing tractions be zero on the intersection of the mid-plane
of the plate with the crack faces. They also have to die-out
at the top and bottom plate surfaces. Thus, except in the
case of very thick plates their effect will be small ih com-
parison with the pressure loading and the crack face shearing

tractions will be omlitted from this analysis.

Consider the region x,y,z > 0. The boundary and symmet-

ric conditions from three-dimensional elasticity are:
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ony =20
Txy = Tyz
o. = p(x,z
y
u. = 0
y
on x =0
Txy = Txg
u. = 0
X
and on z = 0
Txe © Tyz
u =0
7

The equivalent

are:
ony =20
=7 =
Xy y
Sy = P(x),
12 =0 s
on x =0
TXy = ZX =
kl = 0

= 0

), 0<x<a (3.3.1)
, x>a

= 0

= 0

boundary conditions for the approximate theory

0<x<a (3.3.2)
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and f(z) 1s required to be symmetric in z to model the sym-
metry conditions on the z = 0 plane. Further f(z) and f'(z)

are zero on the plate surface z = th/2.

The governing equations (3.2.14) are to be solved subject
to the boundary conditions (3.3.2). Further, the functions

S S T Z

x* Sy Txyo Zy, and ZZ must die-out at large distances

X’

from the crack.

3.3.1 SOLUTION PROCEDURE FOR THE IN-PLANE VARIATIONS OF
THE STRESS FIELD
As indicated earlier, the solution procedure will
be based on applying the Fourier transform to the x variable
to determine the nine in-plane variables SX, Sy,... It is
convenient to recognize the symmetry properties of these vari-
ables in advance, thus reducing the Fourier transform to sine
and cosine transforms for the odd and even functions, respec-

S Z Z

tively. It 1s observed that the functions Sx’ y? Zys Ly

A2, and A3 are even 1In x while Txy’ Zx’ and Al are odd in x.
Therefore define
]

Si(s,y) = é S, (x,y)cos(sx)dx, etc.

and
s =0}
Txy(s,y) = é Txy(x,y)sin(sx)dx, etc.
Application of Fourier sine and cosine transforms

to the governing set of equations (3.2.4) leads to the follow-
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ing set of equations:

d“Ag dzlg
2 b 2 c _
ag Tl + (au - 2a3s ) & + (a3s ays® + a5)>\3 0

a2z% a. d2aS a a
T - e N IO I RPN
T " (s® + a6)ZX = S[a6 agv—'+ ag ag ] )X3]
dZZC 3, C : (¢}
— ¥ _ (g2 + 1y7% = _ ol E_;i - (32 A 52) ar3
dy a6 y a6 dy a6 a6 dy
(3.3.1.1)
provided that

. az° d2xg , .

sZX + E§K = - a7 T + (a7s - a8))\3

The general solution to equations (3.3.3.1) which
satlisfies the asymptotic conditions at infinity can be written

in the form

xg(s,y) = 2Re[A,(s)e™"V]
Zi(s,y) = % B(s)e % + Re[Pl(s)e—ry] (3.3.1.2)
Z;(s,y) = B(s)e ¥ + Re[PE(s)e—ry]
where
. 1/2

au 85 au
r=t [82 « om— + 1V =2 ~ (5=—) ]

2a3 . a3 2a3
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[a,-2a,(s?-r?)]
28 TTra (s7=r) T *1(8)

Pl(s) = -

[az—al(sz_rz)]

PZ(S) = - 2r [1+a6(sz_rg)] Al(s)

The additional transformed functions of the in-plane variables

can be expressed in terms of AC, Zi, and Z§ through equations
(3.2.15). In particular, the functions Tiy, S§, and Ag are
obtained to study the boundary conditions:
c
dx I
S _ 1 _ 3 43 ¢4d_g,8 _ (,C
'I‘Xy(s,y) = W [- s 7 + 5 (dy Zx SZy)]
a2 s
c _ 1 3 2 c
Sy(s,y) = Il—I2 {Il 5372_ + s 12)\3
az’
+ [1113 - 14(11_12)] E§E (3.3.1.3)

S
[T,I5 + I,(I;-1,)1s25}
A (s,y) = = 120 - ==

The general solution is now substituted into the
boundary conditions (transformed appropriately). The condi-
tion z§<s,o) = 0 ylelds

a2—al(sz—r2)
B(s) = Re {2r [l+a6(sz—rz) ]Al(S)} (3.3.1.4)
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while the condition Tiy(s,o) = 0 relates the real and imagi-

nary parts of Al(s) as

I a,-a. (s?-r?)
Re(2l1 + 52 (1 - &) (g fgrmpry ) IeA (80 = O

It is convenlent to express this result symbolically as

Im[Al(s)J = Bl(s)Re[Al(s)] where

2

I (a,-k-a-)(1l+a k. )-a,a k
- 3 2 171 671 19673
By(s) = - {rg [s® - 2ag ( (Tragky) 7+ (agky)” )
N I a1+a2a6 ]} .

3
Ty §€g’k3 [(1+a6k1)2+(a6k3)2

I a1+a2a6

3
{l"R -é—é-g k3 [(1+a6k1)2+(8‘6k3)‘]

I (a,-k- a-)(1l+a k. )-a-a k3
- Pi[82 - 22 ( 2 (%+; K )zf(i K %46 3)]}
6 671 673
(3.3.1.5)
and
a
_ b
17 @y
S —
3 3
The set of mixed boundary conditions
Sy(xso) = - p(X): x<a
xg(x,o) =0 .f x>a
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remain to be satisfied. These conditions can be expressed

in terms of the transformed functions as

SIS

f S;(s,o)cos(sx)ds - p(x), x<a
o

(3.3.1.6)

Ag(s,o)cos(sx)ds 0, x>a

3o
O*“— 8

The functions Sg(s,o) and Ag(s,o) can be expressed in terms

of the one unknown function Re[Al(s)] as

Ag(s,o) = £,(s)Re[A,(s)]
(3.3.1.7)
S;(s,o) = f2(s)Re[Al(s)]
where
£i(s) = Re[r(1 + 1B)]

- 2 . 2 2
fz(s) = TTE:T§7 Re{(l+1B)[Ilr + I,s% + (—qr(Il+12)I3

+ (r211 + 3212)13 + (sz—rz)(Il—I2)Iu] X
ag—al(sz—rz)

l+a6(s‘—rz)

X

[

1} (3.3.1.8)

Thus the mixed boundary conditions can be expressed in the

form of a set of dual integral equations as
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g(s)R(s)cos(sx)ds = - % p(x), x<a

O+ 38

(3.3.1.9)

R(s)cos(sx)ds = 0, x>a

.08

where

R(s) = fl(s)Re[Al(s)]
and

| f,(s)

g(s) = ?ITEY

This set of dual integral equations can be reduced to a
single integral equation by the introduction of an auxiliary

function, w(x), defined as

©

[ R(s)cos(sx)ds, x<a
w(x) © (3.3.1.10)
0 » X>a

SN

it

e o]

[ w(x)cos(sx)dx and the set of equations 1s satis-
°

fied for all functions w(x) which satisfy

Then R(s)

® a
[ {g(s) [ w(x)cos(sx)dx}cos(sx)ds = - % p(x) (3.3.1.11)
0o o

This equation (3.3.1.11) contains the crack tip

singularity and corresponding care must be taken in the solu-
-60-
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tion procedure. Exact three-dimensional solutions for sym-
metric crack problems [19], indicate that on all interior
points in the immediate vicinity of the leading crack edge

the local stress and displacement fields must be of the form:

kl(z)

o, = = [cos(%) + % sin(e)sin(%e)]
k.(z)
- 1 6y _ 1 3
Oy = = [cos(2) 5 sin(e)sin(2e)]
g, = \)(0X + Uy) (3.3.1.12)
- _K 1 3
Txy = 75% [E sin(e)cos(ge)]
Typ? Typ = 0(1) as p=0

where (p,6) are local polar coordinates in the plane normal

to the crack edge, Figure (3.3.1).

The auxiliary function w(x) corresponds to
Ag(x,o) and, as such, is expected to be locally proportional
to the square root of the distance from the crack tip. This
information is used to introduce a second auxiliary function,
p(t), in an attempt to remove the inherent singularity from

equation (3.3.1.11). Define y(t) by the integral equation

a
w(x) = [ Y g6 x<a (3.3.1.13)
X VE4-x
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Substitution into equation (3.3.1.11) yields, after some

simplifications,

a oo X
[ tv(e) [ %ﬁl J (st)sin(sx)dsldt = - [ p(x)dx, x<a
0 o} o}
(3.3.1.14)

where JO is the zero order Bessel function of the first kind.
If the expectations mentioned above are correct, equation

(3.3.1.14) will be a nonsingular integral equation for ¥(t)

*
which is amenable to numerical solution procedures . The
function g(s) can be written in the form
&és—) = C + g*(s) (3.3.1.15)

and C is given 1in the Appendix where g¥(s) = O(s-2) as s>,
Substitution into equation (3.3.1.14) and use of the known
solution to Abel's equation leads to the Fredholm integral

equation (see reference [20] for detalls)
a o
CEY(t) + [ vaw(n) vEn [ sg*(s)J (sn)J (st)dsdn
o) o)

- -2 5 ) gy (3.3.1.16)
m /tZ-x72

*A posteriori checks of the numerical results do indeed indi-
cate that y(t) is a well behaved function.
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This equation can be reduced to standard form by the follow-

ing nondimensionalizations

=3
i
&
(q
i
©
]
i
W
>
n
I
p|o

and

o(t) = v/T9(at)

Then equation (3.3.1.16) can be written as

1
Ce(t) + [ 9(E)K(E,1)dE

O

= - % JT } _Eizl_ dg
0

VT?-B*Z

where

K(g,7) = VET [ eg*(2)7 (65)J_(67)de
0

(3.3.1.17)

The accuracy of the numerical solution procedure to be em-

ployed 1s improved by separating g¥(s) as

H

g*(s) = Szpz + h(s)

where h(s)

(3.3.1.18)

0(5_6) as s+, The constants H and N? are given

in the Appendix. The kernel K(£,T) can be rewritten as
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K(E,T) = /ET {azHIO(EaN)KO(TéN)
+ [ on()s_(e£)7 (87)a6), O<Eer
[e]

where IO and Ko are the zero-order modified Bessel functions

of the first and second kind, respectively.

The case of crack face loading which does not
vary with x is considered, i.e., p(x) = p. The kernel is now
evaluated numerically and the integral equation is approxi-
mated by a set of algebraic equations via Simpson's rule.

Numerical solutions for &(t) are thereby obtained.

The original unknown function, R(s), is obtained
by substitution into equations (3.3.1.13) and (3.3.1.10).

Carrying out the indicated integrations, R(s) can be written

as
R(s) = 5 2 p{¥(1)7, (as)
ta v
- [ & 52719, (asg)eag} (3.3.1.19)
0 Ve
The unknown transformed functions S;, S;, etc., can be deter-

mined directly from R(s) by back substitution.

It 1s expected that damage resulting from either
crack propagation or interfacial delamination will originate

in the most highly stressed region, the vicinity of the crack

-6l
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tip. Thus our main objective is to obtain the best approxi-
mate solution for the near tip crack field. Referring to
equation (3.3.1.19) it can be shown that the singularity at
the crack tip 1s associated with ¢(1) and that integral ex-
presslon 1n this equation has no contribution to it. Because
an asymptotic description of the crack tip field is sought,
the integral expression in equation (3.3.1.19) is dropped and
the functions S;, S§, etc., are expressed in terms of the
simplified equation for R(s). These transformed functions
are inverted asymptotically for large s. Adopting polar co-
ordinates r, rys Ty, and 6, 6,;, 6, as shown in Figure (3.3.1),

it 1s found that

Sx(x,y)* S — P‘l’(l)C{r—arL sin[g—(61+62)]
rlr2 1°2
ro 1
- = cos[eo - §(el+62)3} + 0(1)

- a a .. r3
S, (x,3) = + — PW(l)C{EI%; sin[5(8,+6,)]
172

I‘O 1
+ 32 cosloy - L(61+6,)7) + 0(1)

a

Ty (%5¥) = - PW(l)C{;?%E costg(el+92)]} + 0(1)

r.r

1" 2

¥
e bl’ b2, C, m, are given in the Appendix A.
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el(klb2+k3bl)] §

PY(1) [ m,

ZZ(X’y) = -

r.r

172

« [0 [6 - Z(6.46.)7} + 0(1)
g CO8LY, = 5879,

b

aP¥(1) i [2 (b k +b2k1— 2)] X
2

Zx(x,y)

1
S

X
O+ 8

Jl(as)sin(sx)e_syds

e b

1 5]
+ E—(blk3+b2kl+a ) f yJ,(as)sin(sx)e” Yas}

X

(x,5) (1) 2L %2
Z,(x,y) = aP¥(1) 5= (b kb, ky+=5)

X

[oe]

f le(as)cos(sx)e_syds (3.3.1.20)
0

Note that Zx(x,y) and Zy(x,y) are nonsingular. Further, ap-
proaching the crack tip (a,0), 1.e., taking the limit r-a,

80, r2+2a, 82+O, the near tip fields can be written as

Ko (z)va 6 36,
o, = ——E—E———~[cos(§l) - % 31n(e )51n( )] + 0(1)
¢2rl
Ko _(z)va 9 364
o = ——E—E——— [cos(§l) + % 31n(6 )31n( )] + 0(1)
y V2rl
Ko_(z)va 3
Tey = -k [% 31n(6 )cos( )] + 0(1)
J /2r1
KoT(z)/a 0,
0, = ——— [cos(z=)] + 0(1)
z /2r1
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T, = T = 0(1) (3.3.1.21)

where

K = a?(l)elC

op(z) Pf"(z)

and

op(2) = P(bykgtb ok, )2 (2)

Note that the stress field in the vicinity of the
crack tip, as glven above, contains the usual square root
slngularity in the plane normal to the crack front. The de-
pendence of the stress components on the in-plane variable
(rl,el) obtained here is in complete agreement with the exact
three-dimensional solution for a crack in an elastic medium
[19]. Note, the results of this approximate solution indi-
cate that the transverse shearing stress components do not
exhibit an in-plane singularity, a possibility considered by
other authors [17]. The dependence of the near tip stress

field on the through-the-thickness coordinate, z, will be

discussed in the following section.
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3.3.2 THROUGH~-THE-THICKNESS VARIATION OF THE NEAR-TIP
STRESS FIELD
Two possible approaches may be proposed for the
determination of fi(z). The variational principle, Section
3.2, ylelds equations and matching conditions for the func-
tions fi(z) which govern the stress dlstribution in the thick-

th layer. Functions obtained from

ness direction of the 1
these equations give the "best" choice for fi(z) consistent
with the 1nitial approximations, i.e., the function of z which
on the average over the entire plate is closest to describing
the true stress field. The possibility of using this approach
was considered but an alternative direction was chosen in-
stead. Exact asymptotic analysis [19] described earlier in-

dicates that at all interior points near the leading edge of

the crack, the plate is in a state of plane strain, 1l.e.,

g, = v(cX + oy) (3.3.2.1)
Within each layer, the plane strain condition can be employed
to obtailn fi(z) in the vicinity of the crack tip. Supposi-
tion of the requirement that the approximate solution should
satisfy equation (3.3.2.1) leads to the followlng differential

equations for fi(z):
f:'{(z) + pifi(z) = 0 (3.3.2.2)

where pg is equal to the asymptotic value of the function
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- Zz/vi(Sx+Sy) at the crack tip, i.e.,

2 1 el
Py = 37 [2m6 (byks + byky)]
i
It can be shown in general that the solutions to
equation (3.3.2.2) do not possess sufficient free parameters

to satisfy both of the free surface conditions (f = f' = 0).

Hartranft and Sih [1] have used the condition in
equation (3.3.2.1) to derive the z-distribution of the
stresses through a single layer plate with a crack. Thelr re-
sults in terms of the function f(z) is Acos(pz); where p is
the free parameter in the theory and A is arbitrary. Such an
approximate analytical solution, however, cannot be expected
to hold throughout the thickness of the plate. This is mailn-
ly because experimental observation has shown that there
exists a layer of material near the plate surface which be-
haves very differently from that in the bulk. Specifically,
the fracture testing of through cracks in finite thickness
plates has evidenced two surface layers of the material com—
monly referred to as the "shear 1lips" that undergo a consid-
erable amount of plastic deformation. However, the inferior
portion of the fractured plate remains essentially brittle.
This i1s analogous to the flow of fluids in a pipe where the
viscous action dominates in a layer of fluid close to the
pipe wall while the flow characteristics in the bulk can be

adequately described by using the potential flow theory.
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In order to impose a limitation on the analytical
result in [1], Hartranft and Sih introduced two narrow slices
of finite thickness (boundary 1ayers*) eh/2 close to the plate
surface, where the variation € was chosen as € = 1/(2+8h/a).
The same approach will be carried out here for laminated
plates. The non-dimensional boundary layer of thickness e
(to be chosen later) is introduced in the outer most layers of
the composite plate. In this thin strip the function f(z) is
chosen such that it satisfies the traction-free condition on
the exterior surface and equilibrium in the interior region.
The three layer symmetric composite, Figure (3.3.1), is chosen
as the simplest nontrivial example. The numeral 1 1s used to
refer to the interior layer while the outside layers are de-
noted by 2. The solutions to equation”(3.3.2.2) which satisfy

continulty of fi and fi across the material interfaces are:

£i(z) = Acos(pyz), 0<z<h,

f2(z) = A{cOS(plhl)COSEp2(z—hl)] (3.3.2.3)

P
1 .
5; sin(plhl)51n[p2(z-hl)]}, hl§z§h1+h2

where

¥

There exists a small but finite distance to the boundary
within which the resolution of experimental measurements and
accuracy of any numerical solution breaks down.
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€
2_1[1

P1 % V] ‘2mg (bykg + bokq)]
(3.3.2.4)
AY]
2 _ 1 2
P2 =y, F1

See Appendix A for bl’ b2, €15 Mg, k1 and k3.

The functions fi(z) given by equation (3.3.2.3)
which satisfy the plane strain conditions are not general
enough to allow imposition of the free surface conditions at
z = hl + h2. It 1s reascnable to introduce a boundary layer
adjacent to the free surface within which an arbitrary func-
tion f2(z) 1s constructed such that the traction-free condi-
tions f2(h1+h2) = fé(hl+h2) = 0 are satisfied along with the
requlrements that f2(z) and its first and second derivatives
must be continuous at z = hl + h2(1—e). This arbitrary func-

tion can be represented by the following fourth order poly-

nomial

f2(z) = al(z—hl-hz)“ + az(z—hl-hg)3 + oa3(z--hl-h2)2
+ o) (z-h;=h,) + Ggs 5 (3.3.2.5)

h, + hz(l-e) < z < hyth

1 172

The five coefflcients (qi, i=1,2,..,5) are determined from

the conditions mentioned before.

At this point the functions fi(z) (1 = 1,2) can
be expressed solely in terms of the parameter Pq> which de-
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pends on the behavior of the functions S S., and Zy(x,y).

x* 7y

The dependency of fi(z) on pq is found by using an iterative

procedure, which consists of selecting an initlial value of Pq
that specifies a glven set of the coefficients of asymptotic

behavior of Sx’ S.. and Zz(x,y). This leads to a new value of

y
Py obtained from equation (3.3.2.1) and the procedure is re-
peated until it converges to any one of a set of discrete

values for P which satisfy equation (3.3.2.2). This itera-
tive procedure should be modified such that the solution for

p, converges to that value which best approximates the actual

load applied on the crack surface.

The crack tip stress field as given by equations
(3.3.1.21) is now completely determined and there remains
simply the numerical calculation of the stress intensity fac-

tor, kl(z) which can be expressed in the form
k(z) = Kop(z)/a

The newly defined function
op(z) = Pfg(z), (1 = 1,2)

represents the equivalent load distribution on the crack
faces which is compatible with the variational theory. To
recapitulate, the in-plane stress components are proportional

to fg(z), and the transverse normal stress o, is equal to
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vi(0x+cy) except in the boundary layer, while the transverse
shear stresses Tyg and Tyz are non-singular. Thus, the singu-
lar stress fleld in the vicinity of the crack tip can be
characterized by the non-dimensional stress intensity param-
eter K and the elgenvalues Pq and Dy which govern the func-

tions fi(z).

It should be pointed out that the behavior of
the laminate may be qualitatively different in the vicinity
of the material interfaces than that within each layer. Such
an effect may have signlificant influence on the load transfer
from one layer to the next. This line of reasoning suggests
the possiblility of introducing additional boundary layers or
transition regions at the material interfaces. However, the
introductlon of such boundary layers is not required by this
formulation, because the functions fi(z) given in equation
(3.3.2.3) do satisfy the traction continuity conditions at

the interfaces.

In order to carry out the numerical analysis it
is necessary to assume a value for e, the non-dimensional
boundary layer thickness. For laminates the boundary layer
thickness willl in general depend on the elastic constants
El/Ez’ Vs Yy and geometric parameters h2/h1 and (hl+h2)/a,
but sufficient data for modeling the functional dependence is
not yet available. Hence as a first attempt in modeling lami-
nates the present formulation includes boundary layers at the
exterior surfaces but no interfacial transition layers. This
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non-dimensional boundary layer thickness was assumed to be

of the form

h
e = e (5) (3.3.2.6)
2+16( la 2y 1

The consequence of this choice will be discussed in the fol-

lowing section.
3.3.3 NUMERICAL RESULTS AND DISCUSSION

Numerical results are obtained for the dependence
of the crack-tip stress field on the geometric and material
parameters (h2/h1, hl/a, El/Ez’ v, and v2) of the layered
plate containing a through crack for two formulations. The
first does not and the second include the boundary layers
discussed in Section 3.3.2. The amplitude of the singular
stress field, equation (3.3.1.21), is presented in the non-

dimensional form
K = kl(z)/(op(Z)/E)

where op(z) = Pf;(z) is the crack face load distribution. The
results for K as a function of the composite plate parameters

are presented graphlcally.

Results for the formulation without any boundary

layers are presented first in Figures 3.3.3.1 - 3.3.3.4. In

this case no attempt has been made to satisfy the boundary
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conditions on the plate surfaces z = t(hl+h2). As a conse-
quence, the parameter P which governs the z dependence of

the stress field given by equation (3.3.2.3) can be chosen
arbitrarily. Note, however, that for pl(h1+h2) greater than
m/2, the crack face load distribution changes from compression
to tension at z = =— for v, = vV, and no longer adequately

2pl 1 2
models the physical problem under consideration. For this

reason, the results are confined to the range O<pl<n/2.

Referring to Figures 3.3.3.1 - 3.3.3.4, and de-
fining the symbol Pl = plhl’ note that the stress intensifi-
cation parameter K is strongly influenced by the value of Py
chosen, 1.e., as pq is decreased, K increases for finite hl/a.
In the limit hl/a becomes large, K approaches unity for all
values of Pq- The reason for the Py dependence is clear when
one recalls the z dependence of the near tip field, equation
(3.3.2.3). As p, decreases the rate of change of this field
with respect to z is correspondingly decreased. In fact, as
Py approaches zero, the crack tip stress field becomes inde-
pendent of z and reduces to the two-dimensional plane strain

solution for which X equals 1.0.

The dependence of K on the relative layer thick-
ness h2/h1 1s also seen in these graphs. As h2/h1 increases,
the stress intensification parameter, K, correspondingly in-
creases for finite hl/a approaching 1.0 for large h2/hl.

This result is directly associated with the increase in plate
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thickness and the approach of the plane strain condition at
large h2/hl' The dependence of K on h2/h1 is more pronounced

at low values of pq-

Figures 3.3.3.1 - 3.3.3.4 show that the depen-
dence of K on the relative layer stiffness El/Eé is rather
weak. Results for the formulation which includes boundary
layers and satisfies the mathematical boundary conditions are

to be presented next. They exhiblt a stronger K dependence

on El/E2'

Boundary layers at the free surfaces are included
in the refined formulation in order to (a) satisfy the mathe-
matical boundary conditions and (b) model the physically ob-
served surface phenomena referred to as the shear lips zone
as discussed in Section 3.3.2. In this formulation the pa-

rameter P is no longer arbitrary. Numerical results for

v, Vs, (for which Py, = pl) suggest that pl(h1+h2) is almost
constant and approximately equal to m/2. Deviations are at-
tributed to the specific form of the boundary layer solution.

Thus, except near the free surfaces

f(z) = cos(% n fh )

This implles that near the crack tip the normal stress compo-

nents Og> O and o, attain a maximum at the center plane of

y’
the composite plate and approach zero near the top and bottom

surfaces of the plate.
-76-




Numerical results are obtained for the dependence
of the stress intensification factor K on the geometric and
material properties of the laminate associated with the re-
fined formulation which includes boundary layers. Results
are presented graphically in the form of plots for K as a
function of hl/a at varlous values of El/EZ’ hz/h1 with

v, = Vv, = .3 in Figures 3.3.3.5 - 3.3.3.14,

Attentlon 1s directed to the influence of the
relative stiffness of the inside layer to the outer layers
(El/E2) on the amplitude of the stress field in the vicinity
of the crack tip. Figures 3.3.3.5 - 3.3.3.9 indicate that K
decreases as El/E2 increases 1f the other parameters are held
constant. As El/E2 increases the load is carried increasingly
by the middle layer. In the limit as E2 goes to zero, the
actual plate half thickness is reduced from h1+h2 to hl and
the stress intensity factor is expected to decrease according-
ly*. The influence of h2/h1 on this effect can be seen by
comparing Figures 3.3.3.5 - 3.3.3.9. As h2/h1 increases, the
effect of changes of El/E2 on K becomes less pronounced. To

understand these interactions, recall that at finite El/EZ

In the present model, it is not possible to account com-
pletely for this effect. The load distribution permitted in
this formulation for finlte but small E2 is qualitatively dif-

ferent than that for E2 =0, i.e., for E2 finite,
r T 1 = ~ 1l
Py ¥ 3 (hl+h2) while at E2 0, P ¥ 3 hl.

=7 =




increasing h2/h1 causes the outer layers to carry a larger
portion of the applied load and for very large h2/h1 the
laminate behavior should be almost independent of the mate-

rial properties of the inside layer.

Figures 3.3.3.10 - 3.3.3.13 explicitly demonstrate
the influence of the parameter h2/h1 on K. If hl/a is held
constant increasing h2/hl Increases the total plate thickness

and K is observed to increase accordingly.

Figure 3.3.3.14 is a plot of K against hl/a for

the special condlition in which the total plate thickness to

hl+h2

3 = 3.0). Note that for

crack length is held constant (
finite h2/h1, K decreases as El/E2 increases. In this case,
load 1is transferred to the middle layer and the "apparent"
plate thickness is decreased. Calculations were also carried
out for the special case El/E2 = 1.0. For El/E2 = 1.0, the
stress intensification parameter K is not expected to vary
with hl/h2 as long as the total plate thickness to crack
length ratio 1s held constant. The slight variation observed
is associated with the boundary layer thickness dependence on
hl/h2 (equation (3.3.2.6)) which i1s inappropriate for this

special case.

In summary, the approximate three-dimensional
stress analysis presented here for a laminate containing a
through crack indicates that the amplitude of the near tip

stress field tends to increase with plate thickness. The
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stress intensification parameter K was found to decrease as
the relative stiffness of interior layer to outer layers
(El/E2) 1s increased. Polsson's ratio influences are to be

studied in subsequent work.
3.3.4 LIMITATIONS OF PRESENT THEORY AND FUTURE WORK

The present formulation includes boundary layers
at the top and bottom surfaces of the composite plate; how-
ever, 1t does not allow for a transition layer at the material
interfaces. Such an interfacilal boundary layer is not re-
quired by this variational formulation as all equilibrium
and traction conditions can be satisfied without the intro-
duction of interfacilal layers. However, the effect of not
including these transition layers in this approximate formu-
lation 1is that the crack face load distribution is fixed in
the z direction independent of the material properties of the
layers. The physics of the problem suggests that the major
‘portion of the load per unit thickness should be transmitted
in the stiffer layers. Interfacial transition layers are
needed 1n the approximate theory to take into account this
type of load distribution - layer property interaction. Ex-
tensions of the present model to include these layers are
currently under study. A stronger dependence of the stress
distribution 1n the laminate on the material properties of

the constituents is expected in the improved model.

Further theoretical and experimental work is also

needed to employ the approximate stress analyses as presented
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here for the prediction of laminate strength. The possibility
of defining equivalent fracture toughness as a failure crite-
rion for composite plates is being considered. Some related
work for finite thickness homogeneous plates containing

through cracks 1s discussed in Section IV of this report.
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SECTION IV
EXPERIMENTAL MEASUREMENT OF THE EFFECT OF PLATE

THICKNESS ON THE STRAIN ENERGY RELEASE RATE

The results of an experimental program to determine the
effects of plate thickness on the failure of homogeneous
plates containing through cracks subjected to tensile loading
are presented here. This work is a prerequisite to experi-
mental determination of strength for laminated plates con-
taining flaws where a large number of material and geometric

parameters will have to be considered.

In this study, compliance measurements and critical load
tests were performed for a set of specimens covering a range
of plate thicknesses as well as crack lengths. The results
of these tests enable an indirect calculation for the average
through-the~thickness of the energy release rate; i.e., the
rate at which the strain energy of the plate is decreased as

_ the crack extends.

The energy release rate (or the stress intensity factor
which 1s directly related to it) is the basic parameter used
for failure prediction in two-dimensional elastic fracture
mechanics*. However, for finite thickness specimens, the

averaged energy release rate is expected to depend on the

Reference is made to the plane stress and plane strain formu-
lations of two-dimensional elasticity.
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ratio of the plate thickness to the crack length. An approx-
imate stress analysis which takes thls thickness effect into
account has been carried out by Hartranft and Sih [1,28],
(Figure 4.1) and is extended to laminates in Section III of
this report. The experimental results obtained here will be
compared to the predictions of that approximate, three-dimen-
sional model. An analogous theory has been developed [28]
and a corresponding program carried out [29] for the bending
of finite thickness plates with through cracks.
4,1 CALCULATION OF ENERGY RELEASE RATE FROM EXPERIMENTAL

RESULTS

Let U be the strain energy of the cracked plate. If the
crack extends under constant displacement conditions so that
no external work 1s done to the plate, then the energy re-
lease rate per unit of new crack surface area A created 1s

defined as

(4.1.1)

[®]
p
=13

For the present experimental investigation, the test
specimen is loaded in tension by concentrated loads P és
shown in Figure 4.2. The points of application of the loads
are displaced a distance 8§ = 8§(P) during loading. Thus the

strain energy stored in the specimen as a result of the loads

P 1is

12 ' (L,1.2)
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provided the plate response is completely elastic. If the
crack in the loaded plate then extends under fixed grip con-
ditions, i.e., if § is held constant during crack growth,

then

G:———:———(S—-—K (u.l-B)
§ constant

At this point, it i1s convenient to define an apparent

plate stiffness k = P/8§. Then

38 _ o 3(1/k) , 1 3P _

EY Sy wan A -y W
Thus

3P _ 3(1/k)

) = -kP oA

§ constant

Substitution of this result into equation (4.1.3) gives

_ 1 52 3(8/P)

G = 5 P Y (4.1.4)
Thus, the critical energy release rate (the value at fracture
initiation) can be determined from experimental results for
the load PC at fracture and the specimen compliance &§/P as a

function of crack surface area.
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4.2 THE EXPERIMENTAL PROGRAM

Plexiglas was chosen as the material for the test speci-

mens. It possesses the following desirable characteristics:

a. Plexiglas exhibits comparatively little plasticity

up to failure.
b. A cost material, plexiglas 1ls very nearly isotropic.

¢c. Since plexiglas is transparent, the detection of

crack extension in it is relatively easy.

The specimens were 16 inches long and 3 inches wide.
Their thickness varied from 1/16 to 3/4 inch. After the
specimens were cut from a sheet of cast material, two holes
were drilled in order to mount them on the loading pins.
Another small hole of approximately 1/8 inch in diameter was
drilled in the center of the specimen so that a Jeweler's saw
could be used to cut the crack. Twelve specimens for each

thickness were prepared, (see Figure 4.3).
4.3 TESTING PROCEDURE

An Instron universal testing machine with 10,000 1b

capacity was used to apply the tensile load between the grips.

A specimen was tested with the small hole of 1/8 inch radius
without a crack to determine the load-displacement relation-

ship for zero crack length. The displacements in each test

were measured between the points of load application and also

8l
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for an 8 inch gage length, U inches from each side of the
crack. Those two different methods of measuring the displace-
ment were used in order to study the importance of the dis-
placement gage length. Each specimen was accurately -centered
before loading. The load was applied in small increments.

At each increment the relative displacement between the two
points in consideration (points of load application or 8 inch
gage length) was measured with 2 dial indicators read to an
accuracy of *0.001 inches. During the load application, the
displacement had a constant rate of 0.02 inches per minute.
For each specimen, the loading was applied five or more times
until a repeatable load-displacement curve was obtained.

After determining the load-displacement curve for the speci-
men with the small hole, a small crack of 1/4 inch length was
cut with a Jeweler's saw. The specimen was then mounted on
the machine and subjected to tension, applying the load in
small increments and measuring the displacements for each

load i1ncrement.

Followlng this testing procedure in which the load-dis-
placement curve was determined, the crack was lengthened by
an increment of 1/4 inch and tested again. The procedﬁre was
continued until the crack length of 1 1/2 inches was reached.
Thils is the maximum crack length advisable for avoiding ef-
fect of finite width [30]. Details of the test apparatus
are shown in Figures 4.4 and 4.5. The same procedure was per-
formed for each different thickness. Figure k.6 shows typical

load-displacement curves. A second series of tests were car-
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ried out to determine the critical loads for each plate
thickness and crack length. In Figure 4.7, the critical load
is plotted against crack length for the case of 3/8 inch

thick specimens.
4.4 EXPERIMENTALLY DETERMINED ENERGY RELEASE RATES

Table 4.1 contains a listing of the experimentally deter-
mined compliances (8/P) and fracture loads (Pcr) for the
specimens tested. For each thickness considered, compliance
was plotted against crack length and corresponding crack

surface area to determine the quantity

9(8/P)
oA

needed in equation (4.1.4) for calculation of the energy
release rate. A sample graph for compliance against crack
surface area corresponding to a specimen of thickness 3/8
inch 1s shown in Figure 4.7. Energy release rates were then
calculated using equation (4.1.4) and are included in Table
4.1,
4,5 COMPARISON OF EXPERIMENTALLY DETERMINED ENERGY RELEASE
RATES WITH THE HARTRANFT-SIH MODEL v
Hartranft and Sih [1] carried out an approximate three-
dimenslonal analysis for a finite thickness plate containing
a through crack under tensile loading, Figure 4.1. 1In this
refined theory, the rate at which energy is released with

crack extenslon is found to vary through the plate thickness.
-86-

B 2 BN 2 TN 2N 02N 0 T 0 T 0 O T 0O T 0 T 0O AT O T O T 0 a0 W T W_—  W—— - _—_—_—



An average, over the plate thickness, of the energy release
rate per unit of new crack lnegth created is given in the

form

€) Ml___& (4'5.1)

G = f(h/2a,v,p, i

where o is the applied stress, 2a is the crack length, h is
the plate thickness, v 1s Poisson's ratio, and E is Young's
modulus. The parameter € is a measure of the boundary layer-
thickness at the plate surfaces where observed behavior is
qualitatively from that of the specimen interior. These
surface layers were introduced to account for phenomena such
as shear lip formation. In the specimen interior the varia-
tion of the near tip stress field with the thickness coordi-

nate z is given by the multiplicative functional coefficient
f(z) = cospz

The value of p is to be chosen from experimental observations.

It should be noted that if the crack extends without
change in shape of 1ts leading edge, the average energj re-
lease rate per unit increase of crack length and the energy
release rate per unit of new crack surface created are iden-
tical. With this assumption, the energy release rate G
(equation (4.5.1)) and the experimentally determined energy

release rate at fracture are both plotted against the non-
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dimensional thickness parameter h/2a in Figure U4.9. A least

squares procedure has been used to fit the experimental curve

through the data. The asymptotlic value of the Hartranft-Sih

equation for G at large %5 where the specimen 1is in a state
mola(1-v?)

of plane strain and G -+ B T — has been chosen to agree

with the experimental results.

In two-dimensional elasticity, the energy release rate G
is used as a failure criterion for thick specimens where plane
strain conditions are assumed to hold. A critical value of
the energy release rate GlC known as the fracture toughness
is obtained experimentally for a given material. Failure of
a struétural component of the same material containing a flaw

is predlicted at the level of loading such that
G(load, geometry) -+ Gi,

Here, an attempt is made to extend the fracture toughness
concept beyond the plane strain range. A thickness dependent
energy release rate at fracture has been determined experi-
mentally for plexiglas, Figure 4.9, and an approximate for-
mula, equation (4.5.1), can be used to determine the depen-
dence of the energy release rate on speclimen loading and
geometry. The G obtained in equation (4.5.1) can be equated

for given h/a to determine the failure load, il.e.,

to the GeXp

¢ 9n2g 172

eX
Por = Larr(=v7) (4.5.2)

where f is given in equation (4.5.1). These calculations
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have been carried out for each of the specimens tested and a
comparison of Pcr(exp) with Pcr (predicted) is given in

Table 4.2.

A graphical comparison of experimental and predicted
values for Pcr is shown in Figure 4.10. The quantity
Pcr/g/h 1s plotted against the thickness parameter h/2a.
This parameter (Pcr/g/h) is seen to be relatively insensitive
to h/2a for h/2a > .35 and 1n that range experimental and pre-
dicted values are in good agreement. The experimental results
for the range h/2a < .35 are observed to depend strongly on

the actual plate thickness h and continuation of the curve

through these points would be deceiving.

In considering the results presented in Table 4.2 and
Figure 4.10, note that for each plate thickness tested (with
the exception of h = 0.5") the Gexp is found to increase with
h/2a untll a maximum value, then decrease slightly and level
out. These results are typlcal of those obtained many ex-
perimental programs 1n fracture mechanics. The level portion
of the curve for large h/2a is known as the plane strain re-
gion. The peak 1s associated with plane stress and the left-
most portion where Gexp increases with h/2a is thought to be
the consequence of a nonlinear necking phenomenon. Tests
corresponding to this range where plasticity is considered

to be important and the Hartranft-Sih elastic model is not

expected to be accurate are marked with superscript (¥%).
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With the exception of the results for 0.5" thilckness
specimens which are suspect, the experimental values and the
predictions for critical load are in reasonable agreement
over the range where the nonlinear effects are thought to
be negligible. These results are based on a rather arblitrary
choice for the parameters p and € contained in equation
(4,5.1). Further theoretical and experimental work is being
carried out presently to develop a rational procedure for
choosing these or other related parameters. Similar sequences
of tests are needed for other materials to substantiate the
present results. Even with these limitations, the 1nitial
results obtained here are very encouraging in that they sug-
gest a possible procedure for overcoming the testing restric-
tions on specimen thickness based on two-dimensional plane
strain analyses, and for using fracture mechanics to predict
failure of three-dimensional structural components. This
kind of information is necessary before réasonable strength
analyses can be carried out for laminated plates contalning
flaws where the stress fields near the flaws are expected to

be three-dimensional in character.
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TABLE 4.2 - COMPARISON OF PREDICTED AND EXPERIMENTAL VALUES

FOR FAILURE LOAD

| G P
exp

h a 1b-in/in? exp.
3/b " 3/4m 7.45 20  (10)%1bs
3/b " 5/8" 7.0 22.5 (10)21bs
3/4 " 172" 6.45 28  (10)21lbs
3/ " 1/ 6.30 34 (10)%1bs
¥5/8 " 3/4" 6.50 13.5 (10)%1bs
5/8 " 5/8" 7.25 18  (10)%1bs
5/8 " 1/2" 7.03 24 (10)%1bs
5/8 " 1/4" 6.80 32 (10)%*1bs
1/2 " 3/4m 7.80 11 (10)%1bs
1/2 " 5/8" 7.40 13.7 (10)%1bs
/2" 172" 7.75 22 (10)%*1bs
1/2 " 1/4" 6.30 30 (10)%1bs
¥3/8 " 3/4n 8.60 7.2 (10)%1bs
3/8 " 5/8" 1 9.25 9.5 (10)%1bs
3/8 " 1/2" 7.55 11.25(10)%1bs
3/8 " 3/8" 7.0 14.5 (10)%1bs
3/8 " 1/4" 7.35 18.7 (10)21bs
£1/4 " 3/4 7.05 4.55(10)%1bs
/4" 172 8.25 10.8 (10)21bs
/4" /4" 6.45 13.8 (10)%1bs
¥1/8 " 3/4m 6.97 3.6 (10)%1bs
1/8 " 5/8" 7.25 4.4 (10)%1bs
/8 " 1/2" 6.40 5.0 (10)%1bs
1/8 " 3/8" 6.65 5.8 (10)%1bs
1/8 " 1/4" 6.72 7.6 (10)%1bs
®¥1/16"  3/4m 5.80 2.5 (10)%1bs
¥1/16"  5/8" 6.20 2.8 (10)%*1bs
®¥1/16" 1/2" 7.02 3.4 (10)2%1bs
1/16"  3/8" 7.10 4.5 (10)%1bs
1/16"  1/4 5.75 5.0 (10)21bs
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pred.

.5(10) %1bs
.5(10)%1bs

(10) %1bs
(10)%1bs

.1(10)%1bs
.6(10)*1bs
.5(10) %1bs
.2(10) %1bs
.0(10)21bs
.0(10)%1bs
.8(10)%1bs
.0(10)%1bs
.5(10)%1bs
.0(10)%1bs
.7(10)%1bs
.0(10)%1bs
.5(10)%1bs
.2(10)%1bs
.6(10)21bs
.2(10)%1bs
.0(10)21bs
.5(10)%1bs
.0(10)2%1bs
.6(10)%1bs
.0(10)%1bs
.4(10)21bs
.6(10)%1bs
.9(10)%1bs
.1(10)%1bs
.6(10)%1bs

h/2a

1/2
3/5
374
3/2
5/12
1/2
5/8
5/4
1/3
2/5
1/2

1/4
3/10
3/8
1/2
3/
1/6
1/4

1/2

1/12
1/10

- 1/8

1/6
1/4
1/24
1/20
1/16
1/12
1/8




SECTION V
A PENNY-SHAPED CRACK IN AN ISOTROPIC LAYER SANDWICHED
BETWEEN TWO ORTHOTROPIC HALF-SPACES

There 1s considerable interest in the possible struc-
tural applications of fiber~reinforced laminar composites.
These composites are produced by adhering sheets of fiber
reinforced material to create a laminar structure. Separa-
tion of the individual layers through debonding, a process
known as delamination, is perhaps the most often observed
mode of failure for this type of composite system. The aim
of this study is to determine the iInfluence of the geometric
and material properties of the composite on the loading con-
ditions under which delamination will occur. A flaw is pos-—
tulated to exlst within an adhesive layer in the form of a
penny-shaped crack parallel to the plane of the layers. The
shape chosen for the flaw clearly simplifies the mathematlcal
analysils, yet it also models the physical situation realisti-
cally. Kassir and Sih [32] have demonstrated that cracks of
arbltrary shape subjected to stress filelds, which are approx-
imately uniform relative to the scale of the flaw, will tend
to grow into the shape of a circular disk of discontinuity.
A stress analysis, for a model of fiber-reinforced composite,
will be described which yields a measure of the stress inten-
siflcation along the edge of the flaw as a function of the
thickness of the bond and the elastic properties of both the
édhesive and the fiber-reinforced layers. The rate at which

energy could be made available for the creation of new sur-
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face assoclated with enlargement of the flaw is determined
thereby enabling prediction of the conditions under which

delamination will occur for a given adhesive.
5.1 MODEL FOR FIBER REINFORCED LAMINATE

Consider the composite made up of a number of fiber-
reinforced layers bonded together by relatively thin layers
of adhesive materials. One of the adhesive layers cbntains a
penny-shaped crack which is parallel to the bonding surfaces,
Figure (5.1). The stated purpose of the analysis 1s to de-
scribe accurately the solution in the vicinity of the flaw
and the 1Influence of the geometric and material properties of
the composite system on/;hat solution. With this in mind,
the details of the coﬁggsite structure are ignored everywhere
except 1n the neighborhood of the crack. The sequences of
reinforced and adhesive layers above and below the layer which
contalns the flaw are idealized as two identical, transverse-
ly isotropic half-spaces with preferred directions normal to
the layers, Figure (5.2). The elastic properties of these
half-spaces are chosen to model the averaged effects of the
outer layers on the solution in the vicinity of the flaw.

The parameters in this model which can be varied to represent
the iInfluences of the composite structure on the local behav-
ior about the crack are: the ratio of adhesive layer thick-
ness to crack radius, the Young's modulus and Polsson's ratio
for the adhesive, and the five material properties of the

transversely isotropic half-spaces. For example, the relative
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stiffness of the half-spaces parallel to the bond plane as
compared to thelr stiffness normal to that plane is taken to

be a measure of the stiffness and quantity of the fiber rein-

forcements.

Solutions wlll be presented for the problem of pressure
loading on the surfaces of the penny-shaped crack. The super-
position principle for linear elasticity can be used to demon-
strate that the sum of these solutions plus the corresponding
ones for the remote tensile loading of the same body without
the crack gives the solutions for remote tensile loading nor-
mal to the bond lline of the composite containing the flaw.

The solution for the remote loaded composite which does not
contain a crack is nonsingular and thus will not effect the
total solution in the immediate vicinity of the crack edge.
Therefore, as far as the near-tlp solution is concerned, for-
mulation of the problem for elther pressure loading on the
crack faces or remote tensile loading lead to identical re-
sults. The former is amenable to solution by transform pro-

cedures [33] and will be considered.
5.2 FORMULATION OF GOVERNING EQUATIONS

For convenlence, the superscript (1) will be used to re-
fer to the isotropic layer containing the crack, while symbols
with a superscript (2) will be associated with the half-spaces.
The governing equaﬁions for the layer and half-spaces can be

expressed in terms of Airy stress functions as
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and [34] (5.2.1)
32 19 1 52 32 19 1 32 (2) _
(Wﬂ;ﬁ+qﬁmﬁﬂ;ﬁ+gﬁm 0
where

F-H
2

2(2) 5(2)_,7(2) (14,(2),

=1
F=3I

~ ~ 1/2
1-5(2)5(2) 2(2)

i [E(z)(l—vZ(g))/E<§7]

£ (2) (2)

Here, and v are the Young's modulus and the Poilsson's

ratlo, respectively, in planes parallel to the interface,
while, é(g)’ ;(2), and 5(2) are the Young's modulus, Poisson's
ratio, and shear modulus in the transverse direction for ma-
terial (2). Solutions will be presented for choices of ma-

terial properties such that B is real.

The continuity conditions across the material interface

are
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oV (n,r) = 0;2)(h,r)

Té;)(h,r) Téi)(h,r)

(5.2.2)

W, = o,

uél)(h,r) uég)(h,r)

The mixed boundary conditions on the z = 0 plane are

0';1)(0,1',) = =D, r<a
uo,r) = 0, r2a (5.2.3)
Téi)(o,r) =0

Let G(i)(z,g), i = 1,2, be the Hankel transforms of the

Alry stress functions ¢(i)(z,r) glven by
¢ (z,8) = [ v (2,0)5,(2,r)ar
o}
Application of the Hankel transform to the governing

differential equations (5.2.1) results in the following equa-

tions for the transforms of the Airy stress functions:

(ga7 - e ¢ z,0) = o0 (5.2.4)
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%g 2 - 26 (z,8) = 0 (5.2.5)
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0 |
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The well-known solutions to these equations are:
¢ (z,8) = (A (e) + B (8)Ez)cosnez

(c(l)(a) + D(l)(E)Ez)sinhgz (5.2.6)

+

' G(Z)(Z,g) = A(E)(E)G—E(a+8)z + B(2)(g)e-€(a—8)z

C(2)(£)eg(u+6)z + D(2)(E)e€(a—8)z (5.2.7)

<+

Here, the function C(2)(£) and D(2)(€) are required to be

ldentically zero so that the solution will remain bounded for

large z.

The stress components and the displacements for the

layer and the half-space can be expressed in terms of the

transformed stress functions G(l)(z,g) and G(2)(£,z), respec-

tively as

o0 (1)
opt) (z,r) = [ == @G - 82000 %

(1)
1 (1+2v )

2 e2e{ s (e,r))az
\) 3
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(1),

o ,r)

(1),

7 s7)

Uél)(z,r)

Uél)(z,r)

c<2)(z,r)

0(2)(z,r)
1(2)(z,r)
U(2)(z,r)

UéZ)(z,r)

Z et E;;z - fZX%%; £ G(l)]J (£,r)dE
Z Ez[?igé%;75 (1) + e26M0 (e ma
O ] Do
gTi%zzfizi)) Z E[(1—2v(1))GE;;

2(1-v ez M (2,r)az

,227

- [ eraa'®) - g26'2)15 (2, p)
0 3

=

(b-1)g26'2)5, (g, m)a

eraa2) - ce26'15, (e, mya

0“3

- f e2la62) - £26'®) 10 (e

(2)y =
(1-b)(A4v"7) ngf§>Jl(£,r)d£

E(z)
® S(2) ~(2)
(2v a+d) (2) (14b)v +C
£ el E 2 ,ZZ -1 ~(25
e20(®)ya, (g, r)ax
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where

3@ an@)

o]
i

b = [3(2) - 5(2)(E(2)/é(2) - G(Z)E(Z)/ﬁ(2))]/ x

X

e = [é(2)/a(2) - ?)(2)(14,\)(2))]/[1 - '{')2(2)}3(2)/%(2)]

c 5 (1 - 2@y @0 - 52252 5(2);

Q.
i

The general solutions for G(i)(z,g), equation (5.2.6),
and equation (5.2.7) are substituted into the above expres-
sions for the stress and displacement components and the
boundary conditions, equations (5.2.2) and (5.2.3) are ap-
plied. Five of the unknown functions of £ can be expressed
in terms of the sixth, reducing the problem to the set of
dual integral equations with the mixed boundary conditions on

the z = 0 plane.

g2 ()3 (2,r)a8 = 0, r2a

O 8

(5.2.9)
g*e(£)a M) (6)5,(6,7)a8 = -p, r<a

O3

where f(£), a complicated function of the geometric and ma-

terlal parameters of the composite, is given in the Appendix
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B. The other unknown functions B(l)(E), c(l)(g), D(l)(g),

A(g)(g), B(2)(£) can be expressed in terms of A(l)(g), see

the Appendix B.

Solution procedures have been developed for this set of
dual integral equations [28] and the method of solution will
be briefly outlined here for completeness. The first of equa-

tions (5.2.9) is satisfied by introducing the function
) = [ e M), e,rae (5.2.10)
o]

with the condition W(r) = 0 for r>a. The Hankel transform

is applied to equation (5.2.10) to obtain
2, (1) ¢
g2 77 (g) = [ rW(r)J,(g,r)dr
0
The second equation (5.2.9) may thus be written as
[ 82 () Inw(n)Ig(En)dn}dy(g,r)dE = p(r), r<a (5.2.11)
o

Since W(x) is associated with the displacement field it must

be bounded at x*a and of order (xia)l/2 [28] as |X]+a,‘i.e.,

1/2

W(x) = ¢(a)(a?~x?) +

For this reason, W(r) is expressed in the form
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W(r) =

where ¢(t) 1s continuous on the interval [0,a].

The expression for W(r) is substituted into equation
(5.2.11). The resulting equation is multiplied by r and then
integrated in r fromr = 0 to r = R. After a formal change

in order of integration and application of the identity

} Endy(€,n)dn
o V1% n?

dn

sin(g1)
the following equation is obtained
a o R
R [ t¢6(t) [ £(&)sin(ET)I(ER)AEdT = [ p(r)rdr
o 0] ' o}

where J(ER) is the first order Bessel function of the first

kind.

For the speclal case of constant pressure the above

equation is reduced to:

a [o+]
[ to(t) [ £(£)sin(ET)J, (ER)dEar = BB (5.2.12)
! ! 1 2

By making the substitution

£H(g) = - £(e)2v P 1y )y 1.0
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and applying the identity
0 , O<R<r1

/ sin(gﬂJl(gR)dg = (5.2.13)
(0]

T

RVR?-72

> O0<T<R

equation (5.2.12) can be expressed in the form of an Abel

equation as

[ 2e(nar |, (1) (1)), pR
o VRZ-1? 2

a ©
- R [ to(1) [ £*(E)sin(E1)T (ER)AEAT
O (e}

The solution of the Abel equation yields a Fredholm in-

tegral equation of the second kind for ¢(t)

p'RdR

t9(1) = £ {
T°=-R

Q1

a 0
- { ne(n) [ £¥(&)sin(&n)sin(ET)dEdn}0o<t<a
O (o)

where
pt = - avM Dy,

This equation can be rewritten in a convenient nondimensional

form, i.e., the substitutions
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- - 4 TE——

T=at, n=as, 1¢(1) % p'ad(t)

lead to
1
o(t) + [ o(s)k(s,t)ds = ¢ (5.2.14)
0

with the symmetric kernel
k(s,t) = 2 [ r#(&)sin(Es)sin(£t)dE, 0<t<l; O<s<l
o}

The equation (5.2.14) is solved numerically for &(t).

The function ¢(t) can be determined exactly for the case
of a limitingly thin adhesive layer. Note that the function
f(£) reduces to a constant, say fo» for h = 0. Refer back
to equation (5.2.12), divide by fo and use the identity,
equation (5.2.13), to reduce equation (5.2.12) to the Abel

integral equation

? IﬁgilldT - PR? R<a
o VRZ-7% ety =

Solution of this equation and application of the normaliza-

tion described above gives

t

o(t) = - ,
2v(1)(1—v(1))fo

for h = 0
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Returning to the solution of the original set of dual

integral equations, A(l)(g) takes the form

Ay = - %%'ré (1) cos(£a)

+ } L (& t)‘-i—— [e(t)]at (5.2.15)
5 g'rr cOos a, at «C

where ¢(1) is to be interpreted as the limit of &(t) as t
approaches 1.0 from below. Once the function ®(t) is evalu-
ated from the Fredholm integral equation, equation (5.2.15)
may be substituted into equations (5.2.6) and (5.2.7) to ob-
tain G(l) and G(2), from which the displacements and stresses

at every point may be calculated.
5.3 LOCAL STRESS FIELD

It is not difficult to show that the integral expression
in equation (5.2.15) remains bounded at the crack edge r = a
and that the contribution to the singular behavior of the
stresses 1s fully described by the leading term in equation
(5.2.15). The desired explicit representation of the portion
of the solution that becomes unbounded at the penny-shaped
crack border may be obtained by recourse to Laurent series
expansions and the use of elementary Bessel-integral identi-
ties. Adopting polar coordinates p and 6, as shown in Figure

(5.3), it is found that
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_ -1/2 ] 08 .3
g, = k1(2p) cos 3 [1 - sin 5 sin 29]
. 172, 8 |
g, = k1(2p) cos 3 [1 + sin 5 sin 26]
= -1/2 8 ) 36
Ty = kl(2p) cos 3 [sin 5 COS §—]

where kl is the stress intensity factor defined as

=
1
240

¢(1)pva

5.4 NUMERICAL RESULTS

Numerical solutions for the stress intensity factor
(1) . ) _ (@)

were obtained for the special case v = 3,
¢ 2 5 5149()y | For this choice of 3(2), B, equation
(5.2.1) is real for 1 < ET§7 < [1/v ] and the general

solution to equation (5.2.5) for the transformed Airy stress
function, equation (5.2.7) is correct. Alternate expressions
for G(2) are possible which results in real values for B over

(2) 5 (2)

other ranges of E

Numerical results for the variation of stress intensity
factor over the range of material's properties discussed
above are exhibited in Figures (5.4) to (5.6). 1In these
plots, the stress intensity factor‘has been normalized by its
value for a penny-shaped crack of the same radius and sub-

Jected to the same pressure loading but contained in an in-
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finite isotropic body (kl = % pva) [24]. Thus values of the
normalized stress intensity factor which are less than 1.0
indicate that less load is transferred to the crack tip by
the laminar composite than would be transferred in an equiva-
lent homogeneous, isotropic body. The dependence of the
stress intensity factor on the degree of anisotropy of the
center layers Eg/ﬁ2 is illustrated in Figures (5.4) and (5.5)
for various values of the relative stiffness of the cracked
layer to that of the half spaces (in the direction normal to
the crack face), El/i‘,2 at a number of distinect ratios of
layer thickness to crack diameter. Increasing the relative
stiffness of the half spaces parallel to the crack face re-
duces the locad transfer to the crack tip. Further, any
deviation of the stress intensity factor from the one-mate-
rial result (k; = % pva) is amplified as the layer thick-
ness to crack diameter ratio h/a is decreased. This effect
is demonstrated in Figure (5.6). It should be noted that the
slope of the stress intensity factor layer thickness curves
is infinite at h/a = 0. This mathematical result has been
demonstrated earlier in connection with a different physical

problem [28].
5.5 DISCUSSION

The primary purpose of these calculations is associated
with the use of this boundary value problem as a model to
study the effect of the geometric and material properties of

the fiber reinforced, laminar composite system on a flaw in
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an adhesive bond. With this interpretation in mind, the pre-
dictions are that load transfer to the flaw is decreased as
the relative stiffness of the layer material to that of the
adhesive 1is 1ncreased and, in particular, as the volume per-
centage or stiffness of the reinforcing fiber is increased,
producing a higher apparent stiffness for the layers parallel
to the interfaces. The effects are more pronounced when the

adheslve layers are thin or the flaw is large.

These estimates of load transfer can be related to the
predliction of conditions for delamination via a knowledge of
the energy necessary to create new surface for the bonding
material. The rate at which energy would be made available
for the creation of new surface if the crack expanded uniform-
ly 1s readily attalnable from the numerical results presented
above via the energy release rate equation for cracks in an

isotropic material [24]:

4(1—v2(1)) 12

G =
E_l 1

Thus crack extension 1s predicted when G is greater than the

corresponding material property GC = 2ma?y of the adhésive.
This analysls thus provides a quantitative criterion for
choice of bonding material in terms of its stiffness and en-

ergy required to create new surface.
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APPENDIX A - PARAMETERS ARISING IN SOLUTION FOR IN-PLANE

o
I

STRESS VARIATIONS

&y
2a3
-
Sk
2a3 a3
1,22
ay [(kl+ag)(az*kl)-k§]
T %5 [ (. +1) +K2
1 8.6 3
(——+——)
3 “3 a6
ag [ (kq + ) +k ]
ua6
Isb, - 2kjag
3
5= (k by=kqbq) = (ki—kg)a6
2k3a6 - I3b2
I
kkqag + (k3b1+k b,)
°1
dy
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5 _
Tff:fé'y [(Il+12) - e1{11k3 + =

Iu(Il—I

2) - 1113] -_—

blk3 |:(Il+I2)I3

b
21

(I.+I.)I
1 72773 ,1
P ( k

)
2 a6 1

(Iu(Il—Iz) - 1113)kl]}]

2
Zli—léj [—Il(k1+k3e2) +

k

k
1 3
(E_ + 5=

2

%2
2

2
2

2

k-k

k

bl{(I+I)1 [ k. e
27 VT2 73 Hhag U3t

e, + 3 e = [T,(11-1,) - T,T510k +kge,))

-

(ki—kz)

1 1 3

e
{=(I,+T,)T, [g%g f o (e F e

- Ei} = [Ty(I3-I,) - I;I;3(k e,-ks)}]
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2 by (I+I5)1g 1
mg = (arorzy [~lakges * o I Dleg - gz o)y
k. k (k2-k2) k. k
1 1¥3 17%3 1¥3
+ Za; (ky + kge, + —5—= e ) + — 77— + 5= ¢,

- % (k3-3k2kz)eq ] = [T,(Tq-T,) = I,130(kzeq))

(Il+12)13 : 1 1 k&g
2

{ Baz °1 * ez (2 T ©2)

o
N

o (ki-k3) 1,5 s
- 5—6- (——-——E-——— e; * kle2 - k3 - 2e3) -3 (1»«:1—31{3)k1e1

(ki—k%) k-k
- —=p—— e, - k1e3 + =5 ]

(m6mu+m7m3) mg
- +me (=) 1]

[m7—m6 ﬁ—]
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APPENDIX B - FUNCTION f(&) RELATED TO THE SECOND EQUATION
(5.2.9)

o1 H(E)
£8) = 11y &)

where:

HE) = gy - {{(li%—7—>(1 - 5"%17>
Vv

(l-b)(1+v(2))(sl—82)

+
2E2SV(1)
- [1 + as{s, - ds 155 (s +s )Eh]}31nh£h
(2)
. (1+v(l))£h . (1-b) (1+v )(51—32) §
(1) 2E25v(l>

x [- (1 + asls2)gh]}oosh£h}

- ey (- a0 St
8% Elv(l) 2E(2jsv(l)

x [(2vPata) (s +s,) (<gn) + [+0)v ) + e x

(1491 yen

1 1

x a(s.+s,)(&h)]}coshEh +
172 2E v

a+d)[(s1+sg)

+ 5y5,(ctds s,) (~Eh)] - [(1+b)v?) & ¢ x
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G(&)

with:

[a(sl+52) + [d(si+slsz+s§) - ¢](=gh)]11}sinh&h}

(2)
— {{(1+V(l))(—£h) . (1-b) (14+v°7) (s1-5,)
gq(g) E(l)(l—Q\)(lj) ET(gjs(l_g\)(l)>

X

[(1 + asls2(-£h) - 2v(l)dsls2(sl+s2)]}sinhgh

an®y L a»an®es;-s))
(L) (1-2 (1)) (2

X

dslsz(sl+sz)5h

1) J}coshih}

[(1 + as,s,) -
"1%2 1-2v(

S.=S

1M 5178
=& Cay ooy T R,

sls2(0+dslSZ)(—£h)

~(2)
[(2v " 7a+d)[ (s +s,) +
e 1-2vy (1)

[(1+b);(2) + c][a(sl+sz) + (d[si+s s +s§] - c) x

152
(1)
£h 2(1+v )
(- Y]1}coshih + {-
12y (1) s g(1)
s.+s ~(2)
(2 2ypl2v " 7atd) [ ey (s 4s,)
E,s 142y (1) 17"

1+b);(2)+c]

X
l—2v(1)

slsz(c+dsls2)(—2v(2)] - [(
[a(sl+s2)(—gh) + (d[si+sls2+s§] - c) x

(—2v(1>)]]}sinhgh}
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- 3_.3 2.2 _
s = [d(s1 s2) + (¢ + cas,s, + adsls2)(sl 82)]

(1)
1+v Eh .
(g) = [( YcoshEh - sinh&h]
%3 (D o,M "

5175,

5(2)5(1-2v(1))

{(2v®ara) {[(en)(s,+s,)

sls2(c+dslsg)]sinh£h

+ [slsz(c+ds132)(Eh)]coshgh}

- [0 )+ o1{[a(s +s,) (£h)

+ (d[si+s s +s§] - c¢Jsinh&h

172

+ [d(si+sls2+s§) - c¢][&hJcoshEh}}

and

(1+v1)

i (1)
- E(l)(l_g\)(l)) [Ehsinh&h + 2(1-v YcoshZh]

#

gu(g)

(l~b)(1+v(2))(sl—s
£ (205 (1-2v (1))

5)

{[(1 + aslse)gh

+ dslsz(sl+s2)]sinhgh + [dslsg(sl+s2)£h]cosh5h}}
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Coefficients of equations (5.2.6) and (5.2.7)

84(55
(1) (1)

(1)
DM (g) = - AT ()

2V
£s-.h
s(1l-v )
£Es,h
s(1-v )
where:
(1) (1)
L(g) = (AL - —3) - U=y T )f(E)Eh,

g (1) oy (1) 1-2y (1)

, 12 any(s;-5))

[(1+ asgs,) {5—%17
Vv

E(2)s
(1)
(1+v ' *7)f(£)En £h
- ] -4 (s +s.)(
1oy (D) 515218178, oy (1)
(1) (1) (1)
2V (1-v )T (&) 1+v &h
+ )1}sinh&h + { [-
1-2y (1) o g (1) 2y (1)

X

(2)
(l—v(l))f(g)] . (1-b) (1+v )(sl+52)
1-0y (1) £(2)g

Eh
7]

X

[(1 + as s, [+ re) -
2v
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i

dsls2(sl+s2)(l—v(l))f(E)Eh
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(1) (1)
1 C (8)=(1-v )T (E)
{(l—asg)tzvzly + [ 1_2v(1) ](Eh)]

L(g) _ _¢&h
(ds3-s0) (5, Ty ~ 5ot
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l-2v(l) 2

1

[C<l)(€>'(12§§1))f<5)]gh}coshgh
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(1) (1)
022 ()=(1-v ") (E) g,y 1
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1 2\)(1)
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Figure 4.3 - Specimen Geometry




Figure 4.4 - Testing Details




ure 4.5 - Testing Details
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Figure 4.6 - Load-Displacement Curves

O




Specimens 16x3x ¥ |

2000

1600

1200—

400~

I | i | 3 |
ZON 7 S 2% " 717

CRACK LENGTH (2a)

Figure 4.7 - Critical Load as a Function of Crack Length
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Figure 4.8 - Compliance Curves for 3/8" Specimens
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Figure 5.1 - A Penhy-Shaped Crack in an Adhesive Layer
Between Fiber Reinforced Layers
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Figure 5.2 - Remote Loading for the Composite Cylinder
Containing a Penny-Shaped Crack in the
Adhesive Layer
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Figure 5.3 - Idealized Model for the Composite Containing
' a Penny-Shaped Crack
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- Figure 5.4 - Variation of the Normalized Stress Intensity
Factor with Material Properties and Relative
Layer Thickness

— = HIEE R #z&&0O N 2z 20Iaa 02020 0O TSm0 0 TSm0 TEm—m 0 T—S—" 020 W——" z0 0 W——_—"r Wa—" 0020 " 00 W——"  W_-—" W_— T _——— W—_—_—



l | l 1 1

2.0 4.0 6.0 8.0 10.0
EZ/Ez

Figure 5.5 - Variation of the Normalized Stress Intensity
Factor with Material Properties and Relative
Layer Thickness
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Figure 5.6 - Normalized Stress Intensity Factor as a
Function of Relative Layer Height
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