ROBERT S. TEKESKY
Mechanical Engineer
DSN 787-3362
Comm. (513) 257-3362

19960227 148

Research Testing of
Commercial Retractable Handles
for
Small Containers

AFMC LSO/LOP
AIR FORCE PACKAGING TECHNOLOGY AND ENGINEERING FACILITY
WRIGHT PATTERSON AFB, OH 45433-5540
January 1996
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture use or sell any patented invention that may in any way be related thereto. This report is not to be used in whole or part for advertising or sales purposes.

PROJECT NO. 93-P-107
TITLE: Research & Testing of Commercial Handles for Small Containers

ABSTRACT

This project was established to identify handle manufactures and their products with some type of handle strength rating. Currently AFPTEF is using aluminum rod bent into a handle shape. The handle is held in place with a cotter pin and aluminum blocks welded to the container wall. This design was developed at AFPTEF to fulfill users need for field repairable handles.

AFPTEF’s handles met the users need, however, the handles are not retractable, i.e. spring loaded, and would swing out from the container wall during drop testing. On small containers experiencing free fall drop testing, the handles would get damaged between the container and the ground. The damage was sporadic, therefore, AFPTEF wanted to look at the retractable handles that would hold the handle up against the container wall. The AFPTEF’s goal was to test the commercial handles and certify them to a rated load and eliminate the need to repeat testing of handles on other containers.

PREPARED BY:

ROBERT S. TEKESKY
Mechanical Engineer
AFPTEF

REVIEWED BY:

TED HINDS
Ch, Design Branch
AFPTEF

PUBLICATION DATE:

23 JAN 1996

APPROVED BY:

LESLEY K. CLARKE, III
Chief, AF Packaging Technology and Engineering Facility
TABLE OF CONTENTS

Abstract...i
Table of Contents...ii
Introduction...1
Test Procedure...1
Results..2
Conclusion..3
Recommendations...4

APPENDICES

Appendix 1: Test Plan..5
Appendix 2: Test Results..7
Appendix 3: Photographs...9
Appendix 4: Distribution List...15
Appendix 5: Report Documentation...22
RESEARCH TESTING
OF
COMMERCIAL RETRACTABLE HANDLES
FOR
SMALL CONTAINERS

INTRODUCTION:

This project was established to identify handle manufactures, their products, and establish a handle strength rating. Currently AFPTEF is using aluminum rod bent into a handle shape. The handle is held in place with a cotter pin and aluminum blocks welded to the container wall. This design was developed at AFPTEF to fulfill users need for field repairable handles.

AFPTEF's handles met the users need, however, the handles were not retractable, i.e. spring loaded, and would swing out during drop testing. On small containers experiencing free fall drop testing, the handles would get damaged between the container and ground. The damage was sporadic, therefore, AFPTEF wanted to look at retractable handles that would hold the handle up against the container wall.

AFPTEF's goals were:

- To establish a standard test for commercially manufactured handles.
- To establish a rating system for the handles with handle manufactures and part numbers identified.
- To eliminate repetitive testing of the same handle over again and be able to reference this project to verify handle performance.

TEST PROCEDURE:

The handles are attached to a container wall with four rivets. The handle is rotated until it comes in contact with a physical stop. The angle of the handle is then measured with respect to the container wall. This angle is call the rotation angle and is to be measured and recorded prior to testing. The handle is then pulled from side to side to measure any lateral movement the handle may have. The measurement is taken from the edge of the plate to the inside of the bail. The lateral movement is recorded.

The container is secured to the floor and the handles are pulled in four different directions using a hydraulic tensile tester, see Figure 1. The four directions are described in the test plan, Attachment 1. The pulling force starts at 50 Kg ± 2 Kg and increase in increments of 10 Kg ± 2 Kg. At each 10 Kg increase, the handle is visually inspected and measured for bending and/or
pulling away from the container. The force is held for a minimum of 1 minute.

At 120 Kg and each 10 Kg interval after, the force is removed and the handle is observed for permanent deformation and performance. The force at which one starts removing the force for a closer inspection may vary depending on the handle being tested. When permanent deformation occurs, testing is completed.

RESULTS:

The handles were manufactured by Nielson Hardware and made of stainless steel, i.e. the bail, plate, and spring. The part number for the handle is H945-3500SS2RG75SS-01. The bail size is 127 mm X 77 mm. The handle had a 94° rotation at the physical stop and 10 mm lateral movement in each direction. The part number of the rivet is CR3213-5-4. See Table I for test results.

During Test A visual inspections were made with the applied force removed. The applied force and comments of the visual inspection are below:

- 80 Kg, the handle functioned normally with an increase rotation up to 105°.
- 100 Kg, the handle functioned normally with an increase rotation up to 112°. The physical stop started to show slight deformation, see Figure 2.
- 130 Kg, the handle functioned normally with a rotation of 112°.
- 160 Kg, the handle functioned normally. The bail flexed past the physical stop. This changed the angle the applied force was pulling.
- 200 Kg, the handle functioned normally.
- 220 Kg, the handle is starting to show signs of deformation. The spring action is a little hampered.
- 250 Kg, the handle came in contact with the container when the load was applied, see Figure 3. The spring action failed to return the bail completely back against the container wall.

During Test B visual inspections were made with the applied force removed. The applied force and comments of the visual inspection are below:

- 150 Kg, the handle functioned normally.
- 170 Kg, the handle functioned normally. When load applied, the bail flexed 5 mm.
• 200 Kg, the handle functioned normally. When load applied, the bail flexed 10 mm.

• 250 Kg, the handle functioned normally. When load applied, the bail flexed 10 mm. The force was increased.

• 350 Kg, the handle functioned normally. The spring action is slightly hesitant, but retracts the bail completely.

• 400 Kg, the handle functioned normally. Spring action still hesitant. When load applied, the bail flexed 15 mm.

• 420 Kg, the handle functioned normally. Spring action hesitation is increasing. Bail starting to show signs of deformation, see Figure 4.

• 430 Kg, spring action more hesitant and not completely returning bail to container wall. Bail deformed.

• 460 Kg, spring action failed to return the bail to the container wall. Bail deformed 25 mm.

During Test C1 visual inspections were made with the applied force removed. The applied force and comments of the visual inspection are below:

• 120 Kg, spring action hesitant. Bail starting to show signs of deformation, see Figure 5.

• 140 Kg, spring action failed. Bail deformed, see Figure 6.

During Test C2 visual inspections were made with the applied force removed. The applied force and comments of the visual inspection are below:

• 120 Kg, the handle functioned normally.

• 150 Kg, bail showing signs of deformation, see Figure 7. Spring action is normal.

• 170 Kg, spring action hesitant. Bail deformed, see Figure 8.

• 180 Kg, spring action more hesitant.

• 200 Kg, spring action failed.

CONCLUSION:

The handles performed well. The handles were removed from the container and inspected. The cause of the spring failure for Tests C1 & C2 was determined to be the bail pulled out beyond the spring. This allowed the tension in the spring to be released. In Tests A & B the cause of the spring failure was determined to
be the bail being bent in the area where the spring wrapped around the bail. This caused friction between the bail and spring and didn't allow the spring to retract the bail.

RECOMMENDATIONS:

From the results in Tests A & B only, which is consider the working directions of the handle, the handle could be rated at a maximum load of 220 Kg, however, fatigue factor is not accounted for in this test. Therefore, the work load for the handle should be a certain percentage from the maximum load.

From the results in Tests C1 & C2 only, the handle could be rated at a maximum of 120 Kg. Again, the working load should be a percentage of the maximum load, however, this percentage can be lower than the percentage used to determine the load for the working direction. This test was design to simulate the possibility of the handle being used as a tie down point. The direction that was pulled is considered a worst case scenario.
APPENDIX 1

TEST PLAN
AIR FORCE PACKAGING TECHNOLOGY AND ENGINEERING FACILITY

HANDLE TEST PLAN

<table>
<thead>
<tr>
<th>HANDLE SIZE (MILLIMETERS)</th>
<th>HANDLE ROTATION</th>
<th>QUANTITY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bail (W x D): 113 x 55</td>
<td>90 DEGREES</td>
<td>4</td>
<td>01 Mar 93</td>
</tr>
<tr>
<td>Exterior (L x W x D): 130 x 120 x 15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ITEM NAME: Retractable Handle

MANUFACTURER: Nielson Hardware

PART NUMBER: H945SS2RGSS

HANDLE DESCRIPTION: Spring loaded, retrackable, stainless steel plate, spring, and bail.

CONDITIONING: As noted below

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>HANDLE ORIENTATION</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>HANDLE HOISTING/PULL TEST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. MIL-STD-648 Para. 4.17.2.1 Part C, Para. 5.8.3 Modified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. (4.7.4) Modified</td>
<td>At the center of a handle, apply a force of 200 Kg in the direction perpendicular to the container side.</td>
<td>Visual Inspection (VI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. (4.7.4) Modified</td>
<td>At the center, on the side of the handle, apply a force of 180 Kg in the direction parallel to the container side. Both directions.</td>
<td>VI</td>
</tr>
</tbody>
</table>

COMMENTS:

* Figures in parenthesis () refer to paragraphs in MIL-C-5584D.

PREPARED BY: Robert Tekesky, Mechanical Engineer

APPROVED BY: Ted Hinds, Chief, Design Group, AFPTEF
APPENDIX 2

TEST RESULTS
<table>
<thead>
<tr>
<th>Applied Force (Kg)</th>
<th>Test A Rotation</th>
<th>Test B</th>
<th>Test C1 Lateral Movement</th>
<th>Test C2 Lateral Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>113°</td>
<td>PASSED</td>
<td>22 mm</td>
<td>16 mm</td>
</tr>
<tr>
<td>60</td>
<td>115°</td>
<td>PASSED</td>
<td>22 mm</td>
<td>17 mm</td>
</tr>
<tr>
<td>70</td>
<td>117°</td>
<td>PASSED</td>
<td>22 mm</td>
<td>17 mm</td>
</tr>
<tr>
<td>80</td>
<td>123°</td>
<td>PASSED</td>
<td>23 mm</td>
<td>17 mm</td>
</tr>
<tr>
<td>90</td>
<td>130°</td>
<td>PASSED</td>
<td>25 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>100</td>
<td>151°</td>
<td>PASSED</td>
<td>26 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>110</td>
<td>155°</td>
<td>PASSED</td>
<td>27 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>120</td>
<td>155°</td>
<td>PASSED</td>
<td>28 mm</td>
<td>19 mm</td>
</tr>
<tr>
<td>130</td>
<td>156°</td>
<td>PASSED</td>
<td>30 mm</td>
<td>21 mm</td>
</tr>
<tr>
<td>140</td>
<td>158°</td>
<td>PASSED</td>
<td>32 mm</td>
<td>21 mm</td>
</tr>
<tr>
<td>150</td>
<td>159°</td>
<td>PASSED</td>
<td>35 mm</td>
<td>22 mm</td>
</tr>
<tr>
<td>160</td>
<td>162°</td>
<td>PASSED</td>
<td>MISSED</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>167°</td>
<td>PASSED</td>
<td>24 mm</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>167°</td>
<td>PASSED</td>
<td>27 mm</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>168°</td>
<td>PASSED</td>
<td>28 mm</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>168°</td>
<td>PASSED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>168°</td>
<td>PASSED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>168°</td>
<td>PASSED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>168°</td>
<td>PASSED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>170°</td>
<td>PASSED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>170°</td>
<td>PASSED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. TEST SETUP.

Figure 2. PHYSICAL STOP DEFORMATION.
Figure 3. 250 Kg LOAD APPLIED.
Figure 4. BAIL DEFORMATION.

Figure 5. BAIL SHOWING SIGNS OF DEFORMATION.
Figure 6. BAIL DEFORMATION.

Figure 7. BAIL SHOWING SIGNS OF DEFORMATION.
Figure 8. BAIL DEFORMATION.
APPENDIX 4

DISTRIBUTION LIST
DISTRIBUTION LIST

DTIC/FDAC
CAMERON STATION
ALEXANDRIA VA 22304-6145

HQ AFMC/LG
4375 CHIDLAW ROAD SUITE 6
WRIGHT-PATTERSON AFB OH 45433-5006

HQ AFMC/LGT
4375 CHIDLAW ROAD SUITE 6
WRIGHT-PATTERSON AFB OH 45433-5006

AFMC LSO/LO
4375 CHIDLAW ROAD SUITE 6
WRIGHT-PATTERSON AFB OH 45433-5006

AFMC LSO/LOP (LIBRARY)
5215 THURLOW ST
WRIGHT-PATTERSON AFB OH 45433-5540

HQ USAF/LGTT
1030 PENTAGON RM 4B322
WASHINGTON DC 20330-1030

72 ABW/LGTP
7615 SENTRY BLVD SUITE 201
TINKER AFB OK 73145-8912

75 ABW/LGTP
7530 11th ST
HILL AFB UT 84056-5707

OO-ALC/LIWGB
ATTN: JOHN LOCHNER
6034 DOGWOOD AVENUE
HILL AFB UT 84056-5816

76 LG/LGTP
401 WILSON BLVD
KELLY AFB TX 78241-5340

77 ABW/LGTP
1961 IDZOREK ST
MCCLELLAN AFB CA 95652-1620

78 ABW/LGTP BLDG 376
455 BYRON ST SUITE 1150
ROBINS AFB GA 31098-1860
DISTRIBUTION LIST (Cont'd)

*ASC/ALX
2475 K STREET SUITE 1
WRIGHT-PATTERSON AFB OH 45433-7642

*ASC/VXTC BLDG 614
102 WEST D AVE SUITE 168
EGLIN AFB FL 32542-6807

*GSA/FSS (2FYE)
ATTN: CHARLIE WEILL
26 FEDERAL PLAZA
NEW YORK NY 10278

COMMANDER
*ATTN: GINGER DAVIS (CODE 4122D)
NAVAL SUPPLY SYSTEMS COMMAND
1931 JEFFERSON DAVIS HWY
ARLINGTON VA 22241-5360

COMMANDER
ATTN: E PANIGOT (AIR 41212A)
NAVAL AIR SYSTEMS COMMAND
WASHINGTON DC 20361

COMMANDER
NAVAL SEA SYSTEMS COMMAND
ATTN: G MUSTIN (SEA 66P)
WASHINGTON DC 20362

ATTN: E. H. BRIGGS (CODE 0512)
NAVAL AVIATION SUPPLY COMMAND
700 ROBBINS AVENUE
PHILADELPHIA PA 19111-5098

ATTN: F SECHRIST (CODE 0541)
NAVY SHIPS PARTS CONTROL CENTER
PO BOX 2020
MECHANICSBURG PA 17055-0788

COMMANDING OFFICER
ATTN: F MAGNIFICO (SESD CODE 9321)
NAVAL AIR ENGINEERING CENTER
LAKEHURST NJ 08733-5100

*COMMANDING OFFICER
NAVAL WEAPONS STATION EARLE
NWHC/CODE 8023 & 5022
COLTS NECK NJ 07722-5000
DISTRIBUTION LIST (Cont'd)

*US AMC PACKAGING STORAGE AND CONTAINERIZATION CENTER/AMXLX-TE & AMXLS-TP
16 HAP ARNOLD BLVD
TOBYHANNA PA 18466-5097

DLSIE/AMXMC-D
US ARMY LOGISTICS MGT CTR
FT LEE VA 23801-6034

ATTN: Mike Ivankoe
US ARMY ARDEC/SMCAR-AEP
DOVER NJ 07801-5001

AFMC LSO/LOE
WRIGHT-PATTERSON AFB OH 45433

ATTN: DLA-MMDO
DEFENSE LOGISTICS AGENCY
CAMERON STATION
ALEXANDRIA VA 22304-6100

AMARC/LGT
6805 E. IRVINGTON RD
DAVIS MONTANH AFB AZ 85707-4341

HQ PACAF/LGT BLDG 1102
25 E. ST. STE 1326
HICKAM AFB HI 96853-5426

HQ USAFE/LGT
UNIT 3050 BOX 105
APO AE 09094-0105

HQ ACC/LGT
130 DOUGLAS ST STE 210
LANGLEY AFB VA 23665-2791

HQ AF SPACECOM/LGT
150 VANDENBURG ST., STE 1105
PETESEN AFB CO 80914-5000

HQ AETC/LGT
555 E ST EAST
RANDOLPH AFB TX 78150-4440

*HQ AFSA/SEW
ATTN: ARLIE ADAMS
9700 AVENUE G STE 263
KIRTLAND AFB NM 87117-5670
DISTRIBUTION LIST (Cont'd)

*US TRANSCOM/JTCC
ATTN: DON LAWSON
203 W LOSEY
SCOTT AFB IL 62225-5219

SCHOOL OF MILITARY PACKAGING TECHNOLOGY
ATTSZ-MP
ATTN: LARRY FRANKS
ABERDEEN PROVING GROUND MD 21005-5001

COMMANDANT OF MARINE CORPS
HQ USMC ATTN: MIKE DAWSON (CODE LPP-2)
2 NAVY ANNEX
WASHINGTON DC 20380-1775

*HQ AMC/DOJC
402 SCOTT DR BLDG 1600 ROOM 132
SCOTT AFB IL 62225-5363

*HQ AFRES/LGT
155 SECOND ST
ROBINS AFB GA 31098-1635

*HQ ANGRC/LGT
3500 FETCHET AVE
ANDREWS AFB MD 20331-5157

*HQ USAFA/LGT
8110 INDUSTRIAL DR
USAF ACADEMY CO 80840-2305

*ODUSD/L/MRM
PENTAGON 2D261
WASHINGTON DC 20301-8000

*AMSTA-AR-AL BLDG 455
ATTN: AL GALONSKI
PICATINNY ARSENAL NJ 07806-5000

*COMMANDING OFFICER
NAVAL SURFACE WARFARE CENTER
ATTN: FRANK NIEHAUS
300 HIGHWAY 361 CODE 4074
CRANE IN 47522-5000

*LOGSA PACKAGING, STORAGE,
AND CONTAINERIZATION CENTER
AMXLS-TP-P
ATTN: JOHN HARTSELL
16 HAP ARNOLD BLVD
TOBYHANNA PA 18466-5097
*US ARMY ARDEC
AMSTA-AR-AEP PKG DIV BLDG 455
ATTN: EUGENE FARRELL
PICATINNY ARSENAL NJ 07806-5000

*COMMANDER, US ARMY
TANK AUTOMOTIVE AND ARMAMENTS COMMAND
AMSTA-TR-T
ATTN: MIKE BROWN
WARREN MI 48397-5000

*COMMANDER, US ARMY
AVIATION AND TROOP COMMAND
AMSAT-1-SDP
ATTN: STEVE GEASCHEL
ST. LOUIS MO 63120-1798

*COMMANDER, US ARMY MISSILE COMMAND
AMSMI-MMC-MM-DP
ATTN: RON KOCHEVAR
REDSSTONE ARSENAL AL 35898-5239

*US ARMY MISSILE COMMAND
AMSMI-RD-ST-GD
ATTN: TOM LAMAR
REDSSTONE ARSENAL AL 35898-5247

*LOGSA PACKAGING, STORAGE,
AND CONTAINERIZATION CENTER
AMXLS-TE
ATTN: BOB MCGILL
16 HAP ARNOLD BLVD
TOBYHANNA PA 18466-5097

*COMMANDER, US ARMY COMMUNICATIONS
ELECTRONIC COMMAND AND FORT MONMOUTH
AMSEL-LC-MMD-P
ATTN: AL GREGOR
FORT MONMOUTH NJ 07703-5000

*DIRECTOR, US ARMY EDGWOOD RESEARCH
DEVELOPMENT AND ENGINEERING CENTER
SCBRD-EN-E-S
ATTN: SCOTT TOMLINSON
ABERDEEN PROVING GROUND MD 21010-5423

*BENET LABS - WATERVERTIET ARSENAL
SMCAR-CCB-SS
ATTN: NORM JAMES
WATERVERTIET NJ 12189-4050
DISTRIBUTION LIST (Cont'd)

*COMMANDER, US ARMY ARMAMENT RESEARCH
DEVELOPMENT AND ENGINEERING CENTER
SMCAR-ESK
ATTN: DAVE PISKORIK
ROCK ISLAND IL 61299-7300
APPENDIX 5

REPORT DOCUMENTATION
This project was established to identify handle manufactures and their products with some type of handle strength rating. Current handles are not retractable, i.e. spring loaded, and would swing out from the container wall during drop testing. On small containers experiencing free fall drop testing, the handles would get damaged between the container and the ground. The damage was sporadic, therefore, AFPTTF wanted to look at the retractable handles that would hold the handle up against the container wall. The AFPTTF's goal was to test the commercial handles and certify them to a rated load and eliminate the need to repeat testing of handles on other containers.