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Distributed System Design 
Using Generalized Rate Monotonie Theory 

Abstract: Rate monotonic theory and its generalizations have been adopted by 
national high technology projects such as the space station and have recently 
been supported by major open standards such as the IEEE Futurebus+ and 
POSIX.4. In this paper, we describe the use of generalized rate monotonic 
scheduling theory for the design and analysis of a distributed real-time system. 
We review the theory, examine the architectural requirements for the use of the 
theory, and finally provide an application example. 

1. Introduction 

In real-time applications, the correctness of computation depends upon not only its results 
but also the time at which outputs are generated. The measures of merit in a real-time 
system include: 

• Predictably fast response to urgent events. 

• High degree of schedulability. Schedulability is the degree of resource utiliza- 
tion at or below which the timing requirements of tasks can be ensured. It can 
be thought as a measure of the number of timely transactions per second. 

• Stability under transient overload. When the system is overloaded by events 
and it is impossible to meet all the deadlines, we must still guarantee the dead- 
lines of selected critical tasks. 

Generalized rate monotonic scheduling (GRMS) theory allows system developers to meet 
the above requirements by managing system concurrency and timing constraints at the level 
of tasking and message passing. In essence, this theory ensures that as long as the system 
utilization of all tasks lies below a certain bound, and appropriate scheduling algorithms are 
used, all tasks meet their deadlines. This puts the development and maintenance of real- 
time systems on an analytic, engineering basis, making these systems easier to develop 
and maintain. 

The generalized rate monotonic theory begins with the pioneering work in Liu [17], in which 
the rate monotonic algorithm was introduced for scheduling independent periodic tasks. 
RMS is an optimal static priority scheduling algorithm for independent periodic tasks with 
end of period deadlines. The rate monotonic scheduling (RMS) algorithm gives higher 
priorities to periodic tasks with higher rates. RMS theory has since been generalized to 
analyze the schedulability of aperiodic tasks with both soft deadlines and hard deadlines 
[26], tasks with arbitrary deadlines [15], tasks with deadlines shorter than periods [16], inter- 

dependent tasks that must synchronize [22,19, 20], and single tasks having multiple code 
segments with different priority assignment [8].   RMS has also been used to analyze wide 
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area network scheduling [25], and to improve response times of aperiodic messages in a 
token ring network [27]. The implications of RMS on Ada scheduling rules are discussed in 
Sha [23], and schedulability analysis of input/output paradigms have been treated in Klein 
[11]. The theory has also been applied in the development of the ARTS real-time operating 

system [29]. Cache algorithms for real-time systems using RMS were developed in Kirk [10]. 
Schedulability models for different operating system paradigms have been developed in 
Katcher [9]. RMS has also been applied to recover from faults using transient servers [28]. 
Rate Monotonie Scheduling (RMS) with its extensions is henceforth called Generalized Rate 
Monotonie Scheduling (GRMS). 

Because of its versatility and ease of use, GRMS has gained rapid acceptance. For ex- 
ample it is used for developing real-time software in the NASA Space Station Freedom 
Program [7], the European Space Agency [4] and is supported by the IEEE Futurebus+ 
Standard [6] and IEEE Posix.4 [18]. 

Uniprocessor rate monotonic scheduling and implications to Ada tasking are described in 
Sha [23]. This paper reviews the application of the generalized rate monotonic theory to a 
distributed real-time system. We review the essential elements of GRMS that are needed 
for the development of a distributed system,1 discuss the system hardware and software 
architectural supports for using GRMS, and illustrate the application of GRMS in the design 
of a hypothetical distributed real-time system. 

Section 2 describes a distributed real-time system model that will be used to illustrate the 
application of the theory in the rest of the paper. Section 3 reviews the basic elements of 
GRMS. Sections 4 and 5 describe architectural support for the application of GRMS. Sec- 
tion 6 illustrates the use of the theory. Section 7 has some concluding remarks. 

additional examples and illustrations can be found in Sha [23]. 
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2. A System Model 
In this section we describe a simple model of a distributed real-time system that serves as a 
vehicle to illustrate GRMS theory. Figure 2-1 shows a distributed system consisting of 
several nodes connected by a network. Each node in the network is a multiprocessor. Each 
processor in the node has a CPU, memory and an operating system (OS). The processors 
communicate over a shared backplane bus. We assume that the OS and the backplane bus 
support priority scheduling. For example, the OS could be POSIX.4 [18], and the backplane 
could be Futurebus+ [6, 24]. The network could be a token ring [27] or a dual link network 
[25] that support GRMS. However, for this example we assume that the FDDI network is 

used [5]. 

Network 

Nl Ni Nn 

i 
Network 
Interface 

Tracking 
Processor 

Shared Bus 

Sensor 
and 

Signal 
Proc. 

r 
Sensor 

and 
Signal 
Proc. 

\ 
control 

processor 

controlled 
system 

Figure 2-1: Block Diagram of Distributed System 

Each node in the system consists of signal processors and control processors. In addition, 
nodes periodically send system status information periodically to a display node that inter- 
faces with operators. An operator may send commands to nodes whenever the need arises. 
As each signal processor in a node is connected to a sensor. The results from each signal 
processor are periodically sent to a tracking processor, which is a high performance numeric 
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processor dedicated to tracking the motion of objects. The results from tracking are periodi- 
cally sent over the bus to the control processor. The control processors are general purpose 
computers which perform feedback control tasks and communicates with operators via the 
network. 

The architecture utilizes both tasking and message passing paradigms. Application 
software is partitioned into allocation units, each of which can be allocated to a processor. 
An allocation unit groups together closely related application functions implemented as 
tasks. Tasks within an allocation unit communicate via shared variables. Tasks in different 
allocation units communicate via messages. Allocation units can be freely relocated as long 
as the resulting configuration is still schedulable. 

We will illustrate the scheduling of periodic and aperiodic tasks in a general purpose com- 
puter used as a control processor. In addition, we will analyze the scheduling of a remote 
server via the analysis of the tracking processor. Furthermore, we will examine the schedul- 
ing of messages across task allocation units within a processor and across the backplane 
and network. 
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3. Overview of Generalized Rate Monotonie Scheduling 
In this section, we review basic results which allow us to design a distributed system with 
features described in Section 2. We begin with the scheduling of independent periodic and 
aperiodic tasks. We then address the issues of task synchronization and the effect of having 
task deadlines before the end of their periods. 

3.1. Scheduling Independent Tasks 

A periodic task Xj is characterized by a worst case computation time Cf and a period Tr 

Unless mentioned otherwise we assume that a periodic task must finish by the end of its 
period. Tasks are independent if they do not need to synchronize with each other. A real- 
time system typically consists of both periodic and aperiodic tasks. The scheduling of 
aperiodic tasks can be treated within the rate monotonic framework of periodic task schedul- 
ing: 

Example 1: Suppose that we have two tasks. Let T1 be a periodic task with period 
100 and execution time of 99. Let x2 be a server for an aperiodic request that ran- 
domly arrives once within a period of 100. Suppose one unit of time is required to 
service one request. If we let the aperiodic server execute only in the background, 
i.e., only after completion of the periodic task, then the average response time is 
about 50 units. The same can be said for a polling server that provides one unit of 
service time in a period of 100. On the other hand, we can deposit one unit of service 
time in a "ticket box" every 100 units of time; when a new "ticket" is deposited, the 
unused old tickets, if any, are discarded. With this approach, no matter when the 
aperiodic request arrives during a period of 100, it will find there is a ticket for one 
unit of execution time at the ticket box. That is, x2 can use the ticket to preempt x1 

and execute immediately when the request occurs. In this case, x2's response time is 
precisely one unit and the deadlines of x1 are still guaranteed. 

This is the idea behind a class of aperiodic server algorithms [13] that can reduce aperiodic 
response time by a large factor (a factor of 50 in this example). We allow the aperiodic 
servers to preempt the periodic tasks for a limited duration that is allowed by the rate 
monotonic scheduling formula. An aperiodic server algorithm called the Sporadic Server 
that handles hard deadline aperiodic tasks is described in Sprunt [26]. Instead of refreshing 
the server's budget periodically, at fixed points in time, replenishment is determined by when 
requests are serviced. In the simplest approach, the budget is refreshed one period after it 
has been exhausted, but earlier refreshing is also possible. 

A sporadic server is only allowed to preempt the execution of periodic tasks as long as its 
computation budget is not exhausted. When the budget is used up, the server can continue 
to execute at background priority if time is available. When the server's budget is refreshed, 
its execution can resume at the server's assigned priority. There is no overhead if there are 
no requests. Therefore, the sporadic server is especially suitable for handling emergency 
aperiodic events that occur rarely but must be serviced quickly. 
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An effective way to implement a sporadic server is as follows. When an aperiodic request 
arrives, the system registers the request time. The capacity consumed by this request is 
replenished one sporadic period from the request time. This replenishment approach 
guarantees that the aperiodic response time is no greater than the sporadic period, provided 
that the system is schedulable and sufficient server capacity is available, i.e., aperiodic 
demand request within a duration of the sporadic period is no more than the server capacity. 
In contrast, the longest possible response time for an aperiodic request serviced by a polling 
server is twice the period of the polling server. This occurs when the request arrives just 
after the poll, so that the server waits one period for the next poll and up to another period to 
complete its execution. From a schedulability viewpoint, a sporadic server is equivalent to a 
periodic task that performs polling, except that it provides better performance. 

To determine if a set of independent periodic tasks is schedulable we introduce the following 
theorem [17]: 

Theorem 1:    A set of n independent periodic tasks scheduled by the rate 
monotonic algorithm will always meet their deadlines for all task start times, if 

Cj    C2 C, 

• • V - n(2Un-v 

where Cx is the execution time and 7j is the period of task iy 

Cj/Tj is the utilization of the resource by task TJ. The bound on the utilization, 

7i(21/n-l), rapidly converges to In 2= 0.69 as n becomes large. 

The bound of Theorem 1 is very pessimistic because the worst-case task set is contrived 
and unlikely to be encountered in practice. The actual bound is for given task sets often over 
90%. The remaining utilization can still be used by background tasks with low priority. To 
determine if a set of tasks with utilization greater than the bound of Theorem 1 can meet 
their deadlines, we can use an exact schedulability test based on the critical zone theorem 
(rephrased from Liu [17]): 

Theorem 2: For a set of independent periodic tasks, if a task vt meets its first 
deadline D^T^, when all the higher priority tasks are started at the same time, 
then it can meet all its future deadlines with any task start times. 

It is important to note that Theorem 2 applies to any static priority assignment, not just rate 
monotonic priority assignment. To check if a task can meet its first deadline we describe the 
following argument from Lehoczky [14]: 

Consider any task xn with a period Tn, deadline Dn<Tn, and computation Cn. Let tasks x1 to 
Tn_., have higher priorities than tn. Suppose that all the tasks start at time t=0. At any time 
t, the total cumulative demand on CPU time by these n tasks is: 
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K^l 
t + + c„ lcJ 

;=i TJ 

The term \tlT^\ represents the number of times task x- arrives during interval [0, f ] and there- 

fore cTf/7)l represents its demand during interval [0, f\. For example, let 7, = 10, C, = 5 
and f = 9. Task T1 demands 5 units of execution time. When r = 11, task T1 has arrived again 
and has a cumulative demand of 10 units of execution. 

Suppose that task xn completes its execution exactly at time t before its deadline Dn. This 
means that the total cumulative demand from the n tasks up to time t, Wn(t), is exactly equal 
to t, that is, Wn(t) = t. A method for finding the completion time of task Xj, that is, the in- 
stance when Wt{t) = t is given in Figure 3-1. 

Set tQ <- Zj=1 Cj 

Stop when (Wt(tk) = tk) 

Figure 3-1: Finding Minimum t, Where W|(f) = t 

We shall refer to this procedure as the completion time test. If all the tasks can be com- 
pleted before their deadlines, then the task set is schedulable: 

Example 2: Consider a task set with the following independent periodic tasks: 
• Task iyCA= 20; 7., = 100; DA = 100; 

• Task x2: C2 = 30; 72 = 145; D2 = 145; 

• Task T3: C3 = 68; 72 = 150; D3 = 150; 

The total utilization of tasks x1 and t2 is 0.41, which is less than 0.828, the bound for 
two tasks given by Theorem 1. Hence, these two tasks are schedulable. However, 
the utilization of these three tasks as given by Theorem 1 is 0.86, which exceeds 
0.779, the bound, as given by Theorem 1 for the three tasks. Therefore, we need to 
apply the completion time test to determine the schedulability of task x3. 

Figure 3-2 shows the time line for the execution of task x3. Since x1 and x2 must 
execute at least once before x3 can begin executing, the completion time of x3 can 
be no less than 118. 
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T1 

T3 

30 

20 

50 18 Completion time = 138 

-►t 
50 100 150 

Figure 3-2: Application of Critical Zone Theorem to Task x3 

tQ = Cl + C2 + C3 = 20 + 30 + 68 = 118 

However, x1 is initiated one additional time in the interval (0,118). Taking this ad- 
ditional execution into consideration, W3(118) = 138. 

fj = W3(t0) = 2CX + C2 + C3 = 40 + 30 + 68 = 138 

We find that W3(138)=138, and thus the minimum time at which W3(t) = t is 138. This 
is the completion time of x3. Therefore, x3 completes its first execution at time 138 
and meets its deadline of 150. 

W3(fi) = 2Cj + C2 + C3 = 40 + 30 + 68 = 138 =tx 

Hence, the completion time test determines that x3 is schedulable even though the 
test of Theorem 1 fails. 

3.2. Task Synchronization 

In the previous sections we have discussed scheduling of independent tasks. Tasks, 
however, do interact. In this section, we discuss how GRMS can be applied to real-time 
tasks that must interact. Common synchronization primitives include semaphores, locks, 
monitors, and Ada rendezvous. Although the use of these or equivalent methods is neces- 
sary to protect consistency of shared data or to guarantee the proper use of nonpreempt- 
able resources, their use may jeopardize the system's ability to meet its timing require- 
ments. In fact, a direct application of these synchronization mechanisms may lead to an 
indefinite period of priority inversion, which occurs when a high priority task is prevented 
from executing by a low priority task. Unbounded priority inversion can occur: 

Example 3: Let x1 and x3 share a resource and let x1 have a higher priority. Let x2 

be an intermediate priority task that does not share any resource with either x1 or x3. 
Consider the following scenario: 

CMU/SEI-95-TR-011 



1. x3 obtains a lock on the semaphore S and enters its critical section to 
use a shared resource, 

2. x1 becomes ready to run and preempts x3. Next, x1 tries to enter its 
critical section by first trying trying to lock S. But S is already locked 
and hence x1 is blocked and moved from ready queue to the 
semaphore queue. 

3. x2 becomes ready to run. Since only x2 and x3 are ready to run, x2 

preempts x3 while x3 is in its critical section. 

We would prefer that xv being the highest priority task, be blocked no longer than 
the time for T3 to complete its critical section. However, the duration of blocking is, in 
fact, unpredictable. This is because x3 can be preempted by the medium priority task 
x2. As a result, task x1 will be blocked until x2 and any other pending tasks of inter- 
mediate priority are completed. The duration of priority inversion becomes a function 
of task execution times and is not bounded by the duration of critical sections. 

The priority inversion problem can be controlled by a priority ceiling protocol.   The priority 
ceiling protocol is a real-time synchronization protocol with two important properties [22]. 

Theorem 3: The priority ceiling protocol prevents mutual locks between tasks. In 
addition, under the priority ceiling protocol, a task can be blocked by lower priority 
tasks at most once. 

The protocol works as follows: we define the priority ceiling of a binary semaphore S to be 
the highest priority of all tasks that may lock S. When a task x attempts to execute one of its 
critical sections, it will be suspended unless its priority is higher than the priority ceilings of 
all semaphores currently locked by tasks other than x. If task x is unable to enter its critical 
section for this reason, the task that holds the lock on the semaphore with the highest 
priority ceiling is said to be blocking x and hence inherits the priority of x. As long as a task x 
is not attempting to enter one of its critical sections, it will preempt every task that has a 
lower priority. The following example illustrates the deadlock avoidance property of the 
priority ceiling protocol: 

Example 4: Suppose that we have two tasks x1 and x2 (see Figure 3-3). In addition, 
there are two shared data structures protected by binary semaphores, S1 and S2, 
respectively. Suppose task x1 locks the semaphores in the order Sv S2, while x2 

locks them in the reverse order. Further, assume that x1 has a higher priority than 
x2. Since both x1 and x2 use semaphores S1 and S2, the priority ceilings of both 
semaphores are equal to the priority of task %v Suppose that at time tQ, x2 begins 
execution and then locks semaphore S2. At time tv task x1 is initiated and preempts 
task x2, and at time t2, task x1 tries to enter its critical section by attempting to lock 
semaphore Sv However, the priority of x1 is not higher than the priority ceiling of 
locked semaphore S2. Hence, task x1 must be suspended without locking Sv Task 
x2 now inherits the priority of task x1 and resumes execution. Note that x1 is blocked 
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Ti    :{...P(S1)...P(S2)...V(S2)...V(S1)...} 

X2   : {... P(S2) ...P(S1) ...V(S1)... V(S2)...} 

^Legend 

kWI S1 locked 

E223   S2 locked 

Attempts to lock S1 (blocked)        S1 locked      S2 locked    S2 unlocked S1 unlocked 

otherwise Xi andT2 
will be deadlocked ̂ di 

T2 

S2 locked   S1 locked     S1 unlocked S2 unlocked 

-i 1- 
time 

Figure 3-3: Example of Deadlock Prevention 

outside its critical section. As T1 is not given the lock on S1 but suspended instead, 
the potential deadlock involving x1 and x2 is prevented. Once x2 

ex'ts 'ts critical sec- 
tion, it will return to its assigned priority and immediately be preempted by task xv 

From this point on, T1 will execute to completion, and then x2 will resume its execu- 
tion until its completion. 

There is a simplified implementation of the the priority ceiling protocol called the priority ceil- 
ing emulation [23]. In this approach, once a task locks a semaphore, its priority is im- 
mediately raised to the level of the priority ceiling. The avoidance of deadlock and block-at- 
most-once results still hold, provided that a task is restricted from suspending its execution 
within the critical section.2 The priority ceiling protocol has been extended to deal with 
dynamic deadline scheduling [3] and mixed dynamic and static priority scheduling [2]. 

The schedulability impact of task synchronization can be assessed as follows: Let Bt be the 
duration in which task xf is blocked by lower priority tasks. The effect of this blocking can be 
modeled as though task TJ'S utilization is increased by an amount S/Tj. 

Sometimes, a task Tj's deadline, Dv is before the end of period. Theorem 1 was generalized 
to accommodate an earlier deadline. Let Af = (D/Tj) [14]. 

Theorem 4: A set of n periodic tasks scheduled by the rate monotonic algorithm 
will always meet its deadlines, for all task phasings, if 

2The full implementation permits tasks to suspend within a critical section. 
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c    c c 
V/, \<i<n,    ^ + ^+ ••• +^<U(Ai). 

whereUiA,) = J/((2A/)
1/<-l)+l-A/,   0.5<A-< 1 

LA(-,   O^A^O.5 

The completion time test can be directly used in the case when deadlines are shorter than 
end of period with no modification. To accommodate blocking, we can simply add the block- 
ing to the execution time of the task. 

So far, the task priority assignment follows the rate monotonic priority assignment, that is, 
the shorter the period, the higher the priority. Note that this is a special case of giving tasks 
with narrower completion windows to complete higher priorities, since the period is the win- 
dow for completion when the deadline is at the end of the period. Sometimes, tasks may 
have deadlines earlier than the end of periods. In generalized rate monotonic scheduling, 
tasks with narrower completion windows are given higher priority. Leung and Whitehead 
called this generalized method as deadline monotonic algorithm [16]. They showed that this 
generalized method is optimal for independent tasks with completion time windows less than 
or equal to the periods. The use of deadline monotonic priority assignment will be illustrated 
in Section 6. 
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4. Scheduling Considerations in Hardware Architecture 

In this section, we examine important architectural support necessary for the use of general- 
ized rate monotonic scheduling. Since GRMS is a priority based scheduling algorithm, the 
system must have an adequate number of priority levels that can be assigned to tasks, and 
must be free from pitfalls that lead to unbounded priority inversion. 

4.1. Number of Priority Levels 
The number of priority levels that can be supported in software by an operating system is 
essentially unlimited. In contrast, the number of priority levels that can be supported by 
hardware on a backplane and network is limited and therefore is an important design con- 
sideration. 

When fewer priority levels are available than the number needed by the priority scheduling 
algorithm, the schedulability of a resource is lowered [12]. In such a case, the loss of 
schedulability can be reduced by employing a constant ratio priority grid for priority assign- 
ments. Consider a range of the task periods such as 1 msec to 100 second. A constant- 
ratio grid divides this range into segments such that the ratio between every pair of adjacent 
points is the same. An example of a constant ration priority grid is {L1 = 1 msec, L2 = 2 
msec, Lg = 4 msec,...} where there is a constant ratio of 2 between pairs of adjacent points 
in the grid. 

With a constant ratio grid, a distinct priority is assigned to each interval in the grid. For 
example, all tasks with periods between 1 to 2 msec will be assigned the highest priority, all 
tasks with periods between 2 to 4 msec will have the second highest priority and so on when 
using the rate-monotonic algorithm. It has been shown [12] that a constant ratio priority grid 
is effective only if the grid ratio is kept smaller than 2. For the rate-monotonic algorithm, the 
percentage loss in worst-case schedulability due to the imperfect priority representation is 
(1 - Relative Schedulability), which can be computed by the following formula [12]: 

Relative Schedulability = (ln(2/r) + 1 - 1/r)/ln2 

where r is the grid ratio. 

Figure 4-1 plots schedulability as a function of priority bits, relative to schedulability with as 
many priority levels as needed [24]. It was assumed that the ratio between the shortest and 
longest periods is 100,000. As can be seen, the schedulability loss is negligible with 8 en- 
coded priority bits, which corresponds to 256 priority levels. In other words, the worst-case 
schedulablility obtained with 8 priority bits is close to that obtained with an unlimited number 
of priority levels. In many older computer backplane buses, in addition to the lack of an ade- 
quate number of priority levels, a board is given a fixed priority level. As a result, a proces- 
sor cannot access the bus according to the priority of tasks or messages. Fortunately, both 
these problems are solved by recent bus standards such as the IEEE Futurebus+, whose 
real-time computing option directly supports the use of GRMS [24]. 
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Figure 4-1: Relative Schedulability vs. The Number of Priority Bits 

4.2. Multi-processor Backplane Scheduling 

In addition to a sufficiently large number of priorities, it is necessary to have consistent treat- 
ment of priorities throughout the arbitration, message passing and DMA protocols. In order 
to support the GRMS theory, a module must request the bus based on the priority of the 
task or message that needs the bus. This means that the same module may request the bus 
at many different priorities under software control. The IEEE Futurebus+ supports such a 
software controlled priority arbitration paradigm. Unfortunately, most existing bus architec- 
tures staticly bind a single priority to each module. 

Software controlled priority arbitration can be supported by either a distributed arbiter or a 
centralized arbiter [24]. In this paper, we limit ourselves to a description of the centralized 
arbiter because it is easier to implement. Furthermore, it can be easily used to override ex- 
isting bus arbitration schemes. This maintains logical compatibility with existing products for 
that bus, while supporting real-time computations, such as multi-media applications. We 
now provide an overview of the central arbiter. 

In the central arbiter model, each module contact the central arbiter via a request line, a 
grant line and a preemption line. Ideally, 8 encoded priority bits can be used for real-time 
applications. The centralized arbiter has a priority register for each module. A module that 
needs the bus asserts the request line. The central arbiter grants the bus to the requesting 
module with the highest priority value in the corresponding priority register by asserting the 
module's grant line. The priority level of a module can be changed by communicating its 
priority via a separate serial line. To minimize the number of lines, one can use the request 
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line as the serial line. In this case, whenever a module needs the bus, it sends its 8 bit 
priority code over the request line. 

If there is an active bus master and the central arbiter receives a higher priority request, the 
arbiter asserts the preempt line on the current bus master. The module may then voluntarily 
suspend its ongoing transaction at a logical boundary and yield to the pending higher priority 
request. This scheme is particularly useful in real-time systems when a long block transfer 
at low priority can be preempted by a higher priority transaction. The preempted transaction 
can resume at a later time after a fresh request/grant cycle. If no priority change requests 
are transmitted, subsequent requests will have the same priority level as the last specified 
value from that module. This model allows each request from a module to have a different 
priority level, or all requests from the same module to have the same priority level. 

4.3. Hardware Queues 
To support message passing over a communication medium such as a backplane bus or a 
network, FIFO hardware queues are commonly used for both transmission and reception. 
Hardware FIFO queues at the receiver are acceptable if the software empties the entire 
queue and re-orders the messages in priority order before processing. 

In contrast, a short transmission priority queue can lead to unbounded priority inversion. For 
example, suppose the transmission priority queue of node A connected to a backplane bus 
is filled with low priority messages. If node A wishes to transmit a high priority message, it 
cannot even enter the high priority message in its transmission queue since it is full. Also, 
unbounded priority inversion can occur because medium priority messages from other 
nodes prevent the servicing of node As queue, indefinitely holding off node A's high priority 
message. 

A practical solution is the use of a short priority queue with priority overwrite to emulate an 
ideal priority queue [24]. When the transmission queue is full and a higher priority message 
waits at the host, the higher priority message overwrites the lowest priority message in the 
queue. To prevent the potential loss of this lower priority message, the host must preserve 
each message in memory until it is successfully transmitted. The overwrite occurs at the tail 
of the queue and can occur concurrently with transmission from the head of the queue, thus 
incurring very little performance penalty. 
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5. Scheduling Considerations in Software Architecture 
The primary objective in our software architecture considerations is to decouple the schedul- 
ing of resources. We want to analyze the scheduling of each processor in a multi-processor 
as if it were a stand-alone uni-processor. We also want to use the same analysis technique 
for message scheduling across the backplane or network. Decoupling the resources allows 
us to "divide and conquer" the scheduling problem and simplifies software development. 

Our tool to decouple the system scheduling problem is the use of allocation units mentioned 
in Section 2. The use of allocation units avoids the need to synchronize distributed tasks 
that share variables. This greatly reduces the complexity in schedulability analysis.3 

Another high level consideration is the need of a system wide priority scheme. The GRMS 
specifies only the priority order of tasks and messages and does not dictate a particular 
priority encoding method. However, priority encoding with local scope is not advisable. For 
example, consider tasks t1 and x2 with periods of 10 and 20 respectively in one allocation 
unit. Consider task x3 and x4 with periods 15 and 40 another allocation unit. Let priority 
encoding be local to allocation units. Let x1 and x2 be assigned priorities 10 and 20 in the 
first allocation unit, and x3 and x4 be assigned priorities 50 and 60 in the other allocation unit 
(larger priority numbers mean lower priority). If these two allocation units are relocated into 
the same processor, then rate monotonic assignment is violated since the task with a period 
of 15 gets a lower priority than the task with a period of 20. Hence, priorities must be as- 
signed on a system wide basis. 

In the rest of this section we consider the message passing architecture and discuss the 
remote server paradigm. 

5.1. Message Passing Architecture 

A message passing architecture for communication between allocation units may be 
described as follows. The sending task passes a message descriptor to the operating sys- 
tem (OS). The descriptor consists of a pointer to the data buffer, the sender's identification 
and the receiver's identification. If the receiver is in the same processor, the operating sys- 
tem just puts the message descriptor into the receiver's mailbox. 

If the receiver is another processor connected to the same backplane, the OS assigns a bus 
priority to the message and passes it to the message scheduler at the bus interface unit that 
schedules messages on the bus. The receiving processor's bus interface unit orders the 
messages it receives according to their bus priority, and interrupts the receiver's OS. The 
OS parses the messages and determines the receiving task. The OS then constructs a mes- 
sage descriptor and puts it in the receiving task's mailbox. 

3Readers interested in using shared variables across processors are referred to [19, 20]. 
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If the receiver is across the network, then the sender sends the message across the bus to 
the network interface processor as described above. The OS of the network interface 
processor is responsible for sending the message over the network. The OS packetizes the 
message according to the network protocol, attaches a priority to each packet, and 
schedules the packets for transmission. The receiving network interface processor sends 
the received message across the bus as described before. The assignment of message 
priority for the bus is illustrated in Section 6. 

5.2. Scheduling Remote Servers 

Clients and remote servers are commonly used paradigms in distributed computation. 
Several servers can be co-located in a processor. Each server package provides a par- 
ticular set of functions that can be used over the network or bus by clients. Ideally, a server 
for real-time applications should be multi-threaded so that high priority requests can preempt 
a low priority request. However, it is often impractical to provide as many threads as 
needed. One simple solution is to first write the service procedures and then create a few 
tasks each of which have a well defined response time. For example, we can have three 
sporadic tasks with 100 ms, 300 ms and 600 ms response time. Each task will call the same 
service procedures, 

There is great incentive to use existing server packages whenever possible. However, ser- 
vers developed for commercial use are often single threaded and come with built-in FIFO 
queues. Fortunately, we can still emulate the priority ceiling protocol [22], which ensures 
that a high priority request may wait for at most one lower priority request even if the request 
visits multiple servers co-located in the processor. The priority ceiling protocol emulation can 
be implemented as follows: 

The priority ceiling of a server is defined as the highest priority request that may ever use 
that server. Server priority ceilings can be equal to each other since a server will always 
execute at the ceiling priority level. A centralized request dispatcher is necessary; otherwise, 
unbounded priority inversion will occur if requests are inserted directly into server queues, 
even if the queues are prioritized. For example, let SM and SH be servers with medium and 
high priority ceilings respectively. Let SM have a medium priority request pending, and let 
SH's queue be filled with low priority requests. SH will keep serving the low priority requests 
at its queue since it executes at higher priority. 

The dispatcher maintains two priority queues. The Request Queue (RQ) maintains all the 
servers' pending requests, and the Active Server Record Queue (AQ) maintains the records 
of all active servers according to their ceilings. When a request is dispatched to a server, 
the server becomes active, and the record of the server is inserted in the AQ. When the 
server completes a request it becomes inactive and its record is removed from the AQ. 

• The dispatcher runs at a priority level that is higher than all application tasks 
and servers. 
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• The dispatcher compares the head of the RQ with the head of the AQ. If the 
request at the head of the RQ has a higher priority than the server record at the 
head of the AQ, the dispatcher sends the request to the requested server. 

• In case a request needs to visit more than one server it will be returned to the 
dispatcher and sent to the next requested server until done. 

• The dispatcher suspends when either the RQ is empty, or no requests can be 
forwarded. The dispatcher wakes up when any server becomes inactive or 
when there is a new request inserted into the RQ. 

Under priority ceiling protocol emulation, the server FIFO queue will not lead to priority inver- 
sion since the queue of any server has at most a single request that is being serviced. 

Example 5: Let SM and SH be servers with medium and high priority ceilings respec- 
tively. Let SM be active and serving a medium priority request and let SH be inactive. 
Hence the record of SM is at the head of AQ. Low priority requests that arrive during 
this time cannot be forwarded to any server, because the request priority at the head 
of the RQ is lower than the priority of the server record at the head of AQ. On the 
other hand, if a high priority request for SH arrives, it will be forwarded to server SH 

immediately since the request's priority is higher than the record of SM. As a result, 
SH preempts SM and starts serving the high priority request. 

Sometimes, it may be difficult to determine the server ceilings. The default is to assign all 
server ceilings to the highest priority. However, the priority ceiling assignment can be 
refined. For example, one can have a particular "emergency only" server with ceiling higher 
than that of all the normal servers. In this way, tfje emergency requests never have to wait 
for normal requests. If a server's execution time is particularly long, one may decompose the 
request of a big job into multiple small jobs when possible. The server will then execute 
each small job at a time and send it back for the dispatcher for rescheduling. 
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6. Example Application 
In this chapter, we apply the preceding theory to a concrete example. Consider the system 
in Figure 2-1. We assume that the priority ceiling protocol is used for task synchronization, 
and the message passing architecture is used for communication. We assume that we use a 
prioritized backplane such as the IEEE Futurebus+. However, the network used is the FDDI 
network, since currently no standard network fully supports GRMS. 

Let the characteristics of the application be as follows: The unit of time in this example is 
milliseconds. Referring to Figure 2-1, the sensor takes an observation every 40. To reduce 
unnecessary bus traffic, the signal processing task processes the signal and averages it 
every 4 cycles before sending it to the tracking processor. The tracking processor has a 
task with a period of 160. After the task executes, it sends the result to the control proces- 
sor. Task x3 on the control processor that uses the tracking information has a computation 
requirement of 30 and a period of 160. In addition, the end-to-end latency of the pipeline of 
data flow from the sensor to the control processor should be no more than 785. The control 
processor also has additional periodic and aperiodic tasks which must be scheduled. The 
tracking and control processors send status information across the network to a user inter- 
face node and periodically receive commands. 

Let the task set on the control processor be specified as given below: 

• Aperiodic event handling with an average execution time of 10 and an average 
interarrival time of 100. We create a sporadic server task as follows: Task i<: 
C1=20; 7., = 100; 

• A periodic task for handling local feedback control with a computation require- 
ment and a given period. Task x2: C2 = 78; 7"2 = 150; 

• A periodic task that utilizes the tracking information received. Again the com- 
putation time and period are given. Task x3: C3 = 30; 7"3 = 160; 

• A periodic task responsible for reporting status across the network with a given 
computation time and period. Task T4: C4 = 10; 7"4 = 300; 

Tasks T1 and x2 are in one allocation unit and Tasks T3 and T4 are in another unit. Note that 
the scheduling of tasks in a processor is independent of allocation units. 

6.1. Assigning Message and Task Deadlines 

When a message is sent within a processor, it can be implemented by passing a message 
pointer to the receiving task and therefore can be treated as any other OS overhead. 
However, when a message is sent outside the processor boundary, an integrated approach 
to assign message and task deadlines needs to be developed. Consider the situation in 
Figure2-1: 
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• The sensor takes an observation every 40. 

• The signal processing task processes the signal, averages the result every 4 
cycles, and sends it to the tracking processor every 160. 

• The tracking processor task executes with a period of 160. It then sends a 
message to the control processor. 

• Task T3 on the control processor that uses the tracking information has a com- 
putational requirement of 30 and a period of 160, as given above. Recall that 
the end-to-end latency for the control processor to respond to a new obser- 
vation by the sensor needs to be less than 785. 

The steps involved in integrated priority assignment are as follows: First we try to use the 
rate monotonic priority assignment. Since rate monotonic analysis guarantees end-of-period 
deadlines, we assume that the end-to-end delay is the sum of the period for each resource. 
Since the signal processor averages four cycles, each 40 long, its delay is up to 160. Each 
of the other resources has a delay of up to one period which is 160. That is, the total delay 
using rate monotonic scheduling is bound by 4*40 + 160 + 160 + 160 + 160 = 800. If it were 
less than the allowable delay then rate monotonic priority assignment could be used for all 
the resources. However, the specified maximum allowable latency is 785. Therefore, we 
may need to use deadline monotonic scheduling for at least some of the resources in the 
path. From a software engineering viewpoint, it is advisable to give a full period delay for 
global resources such as the bus or the network since their workload is more susceptible to 
frequent changes. Since there are two bus transfers involved we attempt to assign a full 
period to each. We also attempt to assign a full period to the signal and tracking processors. 
Hence, the required completion time of the control processor task x3 should be no greater 
than 785^x(160)= 145. 

6.2. Scheduling Tasks on the Control Processor 

In this section we apply the scheduling theory to the control processor tasks. Let tasks xv 

T2, and T3 share several data structures guarded by semaphores Sv S2, and S3. Suppose 
the duration of critical sections accessing shared data structures are bounded by 10. Sup- 
pose the priority ceiling protocol is used. Then by Theorem 3, higher priority tasks are 
blocked at most once for 10 by lower priority tasks. 

The task set on the control processor, is as described earlier with task t3 modified to have a 
deadline of 145. We check whether or not x3 completes within 145 under rate monotonic 
priority assignment. Under rate monotonic assignment, the completion of -c3 is: 

t0 = Cj + C2 + C3 = 20 + 78 + 30 = 128 

/j = W3(tQ) = 2Cj + C2 + C3 =40 + 78 + 30 = 148 

W3(t{) = 2CX + C2 + C3 = 148 =tl 
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Therefore, the completion time of x3 is 148. In order to meet the deadline of 145 imposed by 
the maximum allowable latency requirement of the previous section, we use the deadline- 
monotonic priority assignment. This makes the priority of task T3 higher than that of task x2, 
which has an end-of-period deadline of 150. 

The schedulability of each task can be checked as follows: Task t1 can be blocked by lower 
priority tasks for 10 , i.e., B^ = J\0. The schedulability test for task t1 is a direct application of 
Theorem 4: 

C      R 
-I+ _I = 0.2+ 0.1= 0.3 < 1(21/1-1)=1.0 
M     M 

The sporadic server task T1 is schedulable. The average response time for aperiodic events 
handled by T1 can be calculated as follows: The server capacity is 20% (20/100) and the 
average aperiodic workload is 10% (10/100). Referring back to the ticket box analogy of 
Example 1, because most of the aperiodic arrivals can find "tickets," we would expect a 
good response time. Simulation indicates the average response time is about 20. 

Task x3 is the second highest priority task. Since x3 has a deadline shorter than its period, 
the schedulability test for x3 can be checked as given in Theorem 4. Here A3 = (D3/T3) = 
145/150 = 0.967. Also, in the schedulability test of x3, the utilization of task x2 does not 
appear, since x2 has a lower priority and does not preempt x3. Because x2 has a lower 
priority, its critical section can delay x3 by 10 . Therefore B3 = 10. 

C      C B 
■^- + -^ + + ^ = 0.2+0.188+0.0625 = 0.4505 < 2((2Ao)1/2-l) = 0.781 
M    h      h 

Now consider the third highest priority task x2. From the view point of the rate monotonic 
assignment, the deadline monotonic assignment is a "priority inversion". Therefore in the 
schedulability test for task x2, the effect of blocking has to include x3's execution time. The 
blocking time is B2 = C3+0. The zero indicates that there can be no lower priority task block- 
ing x2. 

—+ — + -^ + -1 = 0.2+0.52+0.2 = 0.92 > 2(21/2-l) = 0.828 
1     22 

The schedulability test of Theorem 4 fails for x2. The schedulability of x4 can be checked by 
the following simple test since there is neither blocking or deadline before its end of period. 

c    c    c    c 
^- + ^ + 7^ + ^ = 0.2+0.52+0.188+0.033= 0.941 > 4(21/4-l) = 0.757 
M     y2    h    U 

Note that the schedulability test of Theorem 4 fails for both tasks x2 and x4. To determine 
their schedulability we use the completion time test. Since x1 and x3 must execute at least 
once before x2 can begin executing, the completion time of x2 can be no less than 128: 

t0 = C} + C2 + B2 = 20 + 78 + 30 = 128 
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However, T1 is initiated one additional time in the interval (0,128). Taking this additional 
execution into consideration, W2(128) = 148: 

h = W2%) = 2Cj + C2 + B2 = 40 + 78 + 30 = 148 

Finally, we find that W2(148)=148 and thus the minimum time at which W2(t) = t is 148. This 
is the completion time for T2. Therefore T2 completes its first execution at time 148 and 
meets its deadline of 150. 

W2(tl) = 2Cj + C2 + B2 = 40+ 78 + 30 = 148 =tx 

Similarly, we can check the schedulability of task x4 using the completion time test. It turns 
out to be schedulable. 

6.3. Scheduling Messages across a Network 

In previous sections we have discussed system support for scheduling resources. The im- 
portance of such support is that it permits us to treat the scheduling of all resources in a 
uniform way. That is, we can analyze scheduling of any resource, similar to processor 
scheduling. The total end to end delay is then be bounded by the sum of delays at each 
resource. At this writing, the support of GRMS scheduling can be found in standard proces- 
sors and OS such POSIX.4[18] and in multi-processor backplanes such as IEEE 
Futurebus+ [6], but not in standard networks. 

The problem of guaranteeing message deadlines in the FDDI network has been addressed 
in [1]. In a simple token passing protocol, the amount of time between consecutive token 
visits may be unbounded. Due to this, deadline guarantees cannot be made. FDDI employs 
a timed token protocol that results in a bounded token rotation time. There is a protocol 
parameter called Target Token Rotation Time (TTRT) which is negotiated at network in- 
itialization. Sevcik and Johnson [21] have shown that the time between two consecutive 
token visits is bounded by 2*TTRT. A node in the FDDI protocol can transmit in either 
synchronous or asynchronous mode. Without describing the details of these modes, we ob- 
serve that time critical messages should use the synchronous mode. In a network that uses 
only synchronous mode, each station can transmit once every TTRT for an amount equal to 
an assigned synchronous capacity Hy 

To support real-time applications the FDDI network should be appropriately configured. That 
is, each station only uses a preallocated portion of the network bandwidth on every token 
arrival. The capacity to each station is allocated proportionally using the following 
formula [1]: 

ui Hi = -j (7TRT-D) 

where H; is the capacity allocated to station Sr Ui is the network bandwidth utilized by 
station St and 11=11]+ . . . +Un. TTRT is the target token rotation time and D is the walk time 
(the token round trip propagation delay when the network is idle). 
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This allocation can be directly realized using only synchronous mode of transmission. 
However, it can also be realized when using only the asynchronous mode of transmission, 
provided each station only transmits a preallocated number of frames on every token arrival. 
Finally, message queues should be prioritized. 

Suppose we have three periodic messages to be transmitted on an FDDI network with the 
default TTRT of 8ms. Let the token propagation delay D be 1 ms: 

• Message x.,: C, = 7; T, = 100; 

• Message x2: C2 = 10; T2 = 145; 

• Message x2: C3 = 15; 7"2 = 150; 

In the utilization of the above message set, U= 0.239. 

Applying the above formula Ht = 2.05, H2 = 2.02, and H3 = 2.93. The proportional allocation 
scheme is directly supported by the synchronous mode of operation. 

The schedulability analysis can be carried out as follows. Let there be at least four message 
priority levels. The messages are first processed in the Network Operating System (NOS), 
that executes on the end stations. The total application level delay is the sum of the 
processing delay at the sender's NOS, the delay in the FDDI ring, and the processing delay 
in the receiver's NOS. 

The requirement on the application level delays are given in the table below: There are four 
message types with following timing requirements: 

Message 
M, 
M2 

M3 

M4 

Table 6-1: Latency Metrics 

To meet the timing requirements, polling or sporadic servers for each level can be created. 
For example, to meet the average timing requirement, four polling servers can be created 
with periods Tv T2, 73, and 7"4, given by 7 ms, 8 ms, 10 ms, and 16 ms, respectively. Each 
server has a full period at the sending NOS, the FDDI and the receiving NOS. If the total 
traffic is schedulable according to the RMS formula, then we expect the delays will be under 
21 ms, 24 ms, 30 ms, and 48 ms most of time. The absolute worst case are 42 ms, 48 ms, 
60 ms, and 96 ms since polling guarantees a responsiveness of twice the period. If sporadic 
server is used, the worst case performance will be 21 ms, 24 ms, 30 ms, and 48 ms. 

The structure for schedulability analysis is as follows: We consider four message processing 
tasks at the NOS level. Let task Mt have a processing requirement of Ct per period T-. This 

Type 
Emergency 

Average Latency 
21ms 

Alert 24ms 
Fast 30ms 
Normal 48ms 
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is determined by the number of messages the task processes per period. For example, if the 
processing of one message in task M^ takes 0.5 ms, and there are three messages to be 
processed per period, then C, = 1.5. Since the NOS executes on the host processor, the 
message processing tasks (Cv TJ, (C2, T2), (C3, T3), and (C4, T4) are scheduled along with 
other application tasks if any. The schedulability analysis is the standard rate monotonic 
analysis for processor. The schedulability analysis of the tasks in the receiving NOS can be 
analyzed similarly. 

The approach to message scheduling on FDDI can be as follows: There are four message 
transmission tasks with transmission time Cx for task with a period of Tj. For example, if 4 
Kbyte packets are used, each packet will take 0.33 ms to transmit. If a message task M1 has 
to transmit 3 packets, its transmission time C, is 0.99 ms. 

Consider the scheduling of messages in a particular station S-v Let the capacity allocated to 
the station be Hy The station can transmit for up to H, ms every TTRT. This can be treated 
as having another high priority task with message transmission time (TTRT - H) and period 
TTRT. We refer to this task as Token Rotation task M{r If TTRT = 6 ms and Ht = 2 ms, then 
MX{ = (Ctr = 4, 7"tr = 6). The task set for station S- is then (4, 6),(C1f TA), (C2, 7"2), (C3, T3), 
and (C4, T4). This task set can be analyzed in the standard rate monotonic framework. 

Finally, note that although the Token rotation task behaves like the highest priority task at 
each station, it actually may be comprised of transmission of lower priority messages from 
other stations. In this sense, it is a priority inversion and limits the schedulable utilization of 
the network. 
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7. Conclusion 

In this paper, we have described the use of generalized rate monotonic scheduling theory 
for the design and analysis of a distributed real-time system. We have reviewed the basic 
elements of the theory and provided references for further study. We have described 
hardware architectural support such required number of priority levels, and the design of 
hardware queues. We have described several important software techniques such as mes- 
sage passing interface between tasks, the scheduling of remote servers and management 
of transient overload. Finally, we have provided an application example to illustrate the as- 
signment of message and task deadlines, task scheduling and message scheduling. 
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