
Technical Report

CMU/SEI-95-TR-011
ESC-TR-95-011

Carnegie-Mellon University

Software Engineering Institute

Distributed System Design
Using Generalized Rate Monotonie Theory

Lui Sha
Shirish S. Sathaye

September 1995

töCa;
*yj.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local iaws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-95-TR-011

ESC-TR-95-011
September 1995

Distributed System Design
Using Generalized Rate Monotonie Theory

Lui Sha
Dependable Real-Time Software

Shirish S. Sathaye
Electrical & Computer Engineering

Carnegie Mellon University

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt. Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1995 by Carnegie Mellon University

This work was created in the performance of Federal government Contract Number F19628-95-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a Federally Funded Research and Development Center. The Government of the
United States has a royalty-free government purpose license to use, duplicate, or disclose the
work, in whole or part and in any manner, and to have or permit others to do so, for government
purposes. >

This material may be reproduced by or for the U.S. Government pursuant to the copyright
license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA
15212: Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a Mosaic home page.
The URL is http://www.rai.com.

Copies of this document are available through the National Technical Information Service
(NTIS). For information on ordering, please contact NTIS directly: National Technical
Information Service, U.S. Department of Commerce, Springfield, VA 22161. Phone: (703) 487-
4600.

This document is also available through the Defense Technical Information Center (DTIC).
DTIC provides access to and transfer of scientific and technical information for DoD personnel,
DoD contractors and potential contractors, and other U.S. Government agency personnel and
their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: DTIC-OCP, 8725 John J. Kingman Road, Suite 0944, Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8019/8021/8022/8023. Fax: 703-767-8032/DSN-427.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

Table of Contents
1. Introduction 1

2. A System Model 3

3. Overview of Generalized Rate Monotonie Scheduling 5
3.1. Scheduling Independent Tasks 5
3.2. Task Synchronization 8

4. Scheduling Considerations in Hardware Architecture 13
4.1. Number of Priority Levels 13
4.2. Multi-processor Backplane Scheduling 14
4.3. Hardware Queues 15

5. Scheduling Considerations in Software Architecture 17
5.1. Message Passing Architecture 17
5.2. Scheduling Remote Servers 18

6. Example Application 21
6.1. Assigning Message and Task Deadlines 21
6.2. Scheduling Tasks on the Control Processor 22
6.3. Scheduling Messages across a Network 24

7. Conclusion 27

8. Acknowledgement 29

References 31

CMU/SEI-95-TR-011

CMU/SEI-95-TR-011

List of Figures
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 4-1

Block Diagram of Distributed System
Finding Minimum t, Where \Nj(f) = t
Application of Critical Zone Theorem to Task x3

Example of Deadlock Prevention
Relative Schedulability vs. The Number of Priority Bits

3
7
8

10
14

CMU/SEI-95-TR-011

iv CMU/SEI-95-TR-011

List of Tables

Table 6-1: Latency Metrics 25

CMU/SEI-95-TR-011

Distributed System Design
Using Generalized Rate Monotonie Theory

Abstract: Rate monotonic theory and its generalizations have been adopted by
national high technology projects such as the space station and have recently
been supported by major open standards such as the IEEE Futurebus+ and
POSIX.4. In this paper, we describe the use of generalized rate monotonic
scheduling theory for the design and analysis of a distributed real-time system.
We review the theory, examine the architectural requirements for the use of the
theory, and finally provide an application example.

1. Introduction

In real-time applications, the correctness of computation depends upon not only its results
but also the time at which outputs are generated. The measures of merit in a real-time
system include:

• Predictably fast response to urgent events.

• High degree of schedulability. Schedulability is the degree of resource utiliza-
tion at or below which the timing requirements of tasks can be ensured. It can
be thought as a measure of the number of timely transactions per second.

• Stability under transient overload. When the system is overloaded by events
and it is impossible to meet all the deadlines, we must still guarantee the dead-
lines of selected critical tasks.

Generalized rate monotonic scheduling (GRMS) theory allows system developers to meet
the above requirements by managing system concurrency and timing constraints at the level
of tasking and message passing. In essence, this theory ensures that as long as the system
utilization of all tasks lies below a certain bound, and appropriate scheduling algorithms are
used, all tasks meet their deadlines. This puts the development and maintenance of real-
time systems on an analytic, engineering basis, making these systems easier to develop
and maintain.

The generalized rate monotonic theory begins with the pioneering work in Liu [17], in which
the rate monotonic algorithm was introduced for scheduling independent periodic tasks.
RMS is an optimal static priority scheduling algorithm for independent periodic tasks with
end of period deadlines. The rate monotonic scheduling (RMS) algorithm gives higher
priorities to periodic tasks with higher rates. RMS theory has since been generalized to
analyze the schedulability of aperiodic tasks with both soft deadlines and hard deadlines
[26], tasks with arbitrary deadlines [15], tasks with deadlines shorter than periods [16], inter-

dependent tasks that must synchronize [22,19, 20], and single tasks having multiple code
segments with different priority assignment [8]. RMS has also been used to analyze wide

CMU/SEI-95-TR-011

area network scheduling [25], and to improve response times of aperiodic messages in a
token ring network [27]. The implications of RMS on Ada scheduling rules are discussed in
Sha [23], and schedulability analysis of input/output paradigms have been treated in Klein
[11]. The theory has also been applied in the development of the ARTS real-time operating

system [29]. Cache algorithms for real-time systems using RMS were developed in Kirk [10].
Schedulability models for different operating system paradigms have been developed in
Katcher [9]. RMS has also been applied to recover from faults using transient servers [28].
Rate Monotonie Scheduling (RMS) with its extensions is henceforth called Generalized Rate
Monotonie Scheduling (GRMS).

Because of its versatility and ease of use, GRMS has gained rapid acceptance. For ex-
ample it is used for developing real-time software in the NASA Space Station Freedom
Program [7], the European Space Agency [4] and is supported by the IEEE Futurebus+
Standard [6] and IEEE Posix.4 [18].

Uniprocessor rate monotonic scheduling and implications to Ada tasking are described in
Sha [23]. This paper reviews the application of the generalized rate monotonic theory to a
distributed real-time system. We review the essential elements of GRMS that are needed
for the development of a distributed system,1 discuss the system hardware and software
architectural supports for using GRMS, and illustrate the application of GRMS in the design
of a hypothetical distributed real-time system.

Section 2 describes a distributed real-time system model that will be used to illustrate the
application of the theory in the rest of the paper. Section 3 reviews the basic elements of
GRMS. Sections 4 and 5 describe architectural support for the application of GRMS. Sec-
tion 6 illustrates the use of the theory. Section 7 has some concluding remarks.

additional examples and illustrations can be found in Sha [23].

CMU/SEI-95-TR-011

2. A System Model
In this section we describe a simple model of a distributed real-time system that serves as a
vehicle to illustrate GRMS theory. Figure 2-1 shows a distributed system consisting of
several nodes connected by a network. Each node in the network is a multiprocessor. Each
processor in the node has a CPU, memory and an operating system (OS). The processors
communicate over a shared backplane bus. We assume that the OS and the backplane bus
support priority scheduling. For example, the OS could be POSIX.4 [18], and the backplane
could be Futurebus+ [6, 24]. The network could be a token ring [27] or a dual link network
[25] that support GRMS. However, for this example we assume that the FDDI network is

used [5].

Network

Nl Ni Nn

i
Network
Interface

Tracking
Processor

Shared Bus

Sensor
and

Signal
Proc.

r
Sensor

and
Signal
Proc.

\
control

processor

controlled
system

Figure 2-1: Block Diagram of Distributed System

Each node in the system consists of signal processors and control processors. In addition,
nodes periodically send system status information periodically to a display node that inter-
faces with operators. An operator may send commands to nodes whenever the need arises.
As each signal processor in a node is connected to a sensor. The results from each signal
processor are periodically sent to a tracking processor, which is a high performance numeric

CMU/SEI-95-TR-011

processor dedicated to tracking the motion of objects. The results from tracking are periodi-
cally sent over the bus to the control processor. The control processors are general purpose
computers which perform feedback control tasks and communicates with operators via the
network.

The architecture utilizes both tasking and message passing paradigms. Application
software is partitioned into allocation units, each of which can be allocated to a processor.
An allocation unit groups together closely related application functions implemented as
tasks. Tasks within an allocation unit communicate via shared variables. Tasks in different
allocation units communicate via messages. Allocation units can be freely relocated as long
as the resulting configuration is still schedulable.

We will illustrate the scheduling of periodic and aperiodic tasks in a general purpose com-
puter used as a control processor. In addition, we will analyze the scheduling of a remote
server via the analysis of the tracking processor. Furthermore, we will examine the schedul-
ing of messages across task allocation units within a processor and across the backplane
and network.

CMU/SEI-95-TR-011

3. Overview of Generalized Rate Monotonie Scheduling
In this section, we review basic results which allow us to design a distributed system with
features described in Section 2. We begin with the scheduling of independent periodic and
aperiodic tasks. We then address the issues of task synchronization and the effect of having
task deadlines before the end of their periods.

3.1. Scheduling Independent Tasks

A periodic task Xj is characterized by a worst case computation time Cf and a period Tr

Unless mentioned otherwise we assume that a periodic task must finish by the end of its
period. Tasks are independent if they do not need to synchronize with each other. A real-
time system typically consists of both periodic and aperiodic tasks. The scheduling of
aperiodic tasks can be treated within the rate monotonic framework of periodic task schedul-
ing:

Example 1: Suppose that we have two tasks. Let T1 be a periodic task with period
100 and execution time of 99. Let x2 be a server for an aperiodic request that ran-
domly arrives once within a period of 100. Suppose one unit of time is required to
service one request. If we let the aperiodic server execute only in the background,
i.e., only after completion of the periodic task, then the average response time is
about 50 units. The same can be said for a polling server that provides one unit of
service time in a period of 100. On the other hand, we can deposit one unit of service
time in a "ticket box" every 100 units of time; when a new "ticket" is deposited, the
unused old tickets, if any, are discarded. With this approach, no matter when the
aperiodic request arrives during a period of 100, it will find there is a ticket for one
unit of execution time at the ticket box. That is, x2 can use the ticket to preempt x1

and execute immediately when the request occurs. In this case, x2's response time is
precisely one unit and the deadlines of x1 are still guaranteed.

This is the idea behind a class of aperiodic server algorithms [13] that can reduce aperiodic
response time by a large factor (a factor of 50 in this example). We allow the aperiodic
servers to preempt the periodic tasks for a limited duration that is allowed by the rate
monotonic scheduling formula. An aperiodic server algorithm called the Sporadic Server
that handles hard deadline aperiodic tasks is described in Sprunt [26]. Instead of refreshing
the server's budget periodically, at fixed points in time, replenishment is determined by when
requests are serviced. In the simplest approach, the budget is refreshed one period after it
has been exhausted, but earlier refreshing is also possible.

A sporadic server is only allowed to preempt the execution of periodic tasks as long as its
computation budget is not exhausted. When the budget is used up, the server can continue
to execute at background priority if time is available. When the server's budget is refreshed,
its execution can resume at the server's assigned priority. There is no overhead if there are
no requests. Therefore, the sporadic server is especially suitable for handling emergency
aperiodic events that occur rarely but must be serviced quickly.

CMU/SEI-95-TR-011

An effective way to implement a sporadic server is as follows. When an aperiodic request
arrives, the system registers the request time. The capacity consumed by this request is
replenished one sporadic period from the request time. This replenishment approach
guarantees that the aperiodic response time is no greater than the sporadic period, provided
that the system is schedulable and sufficient server capacity is available, i.e., aperiodic
demand request within a duration of the sporadic period is no more than the server capacity.
In contrast, the longest possible response time for an aperiodic request serviced by a polling
server is twice the period of the polling server. This occurs when the request arrives just
after the poll, so that the server waits one period for the next poll and up to another period to
complete its execution. From a schedulability viewpoint, a sporadic server is equivalent to a
periodic task that performs polling, except that it provides better performance.

To determine if a set of independent periodic tasks is schedulable we introduce the following
theorem [17]:

Theorem 1: A set of n independent periodic tasks scheduled by the rate
monotonic algorithm will always meet their deadlines for all task start times, if

Cj C2 C,

• • V - n(2Un-v

where Cx is the execution time and 7j is the period of task iy

Cj/Tj is the utilization of the resource by task TJ. The bound on the utilization,

7i(21/n-l), rapidly converges to In 2= 0.69 as n becomes large.

The bound of Theorem 1 is very pessimistic because the worst-case task set is contrived
and unlikely to be encountered in practice. The actual bound is for given task sets often over
90%. The remaining utilization can still be used by background tasks with low priority. To
determine if a set of tasks with utilization greater than the bound of Theorem 1 can meet
their deadlines, we can use an exact schedulability test based on the critical zone theorem
(rephrased from Liu [17]):

Theorem 2: For a set of independent periodic tasks, if a task vt meets its first
deadline D^T^, when all the higher priority tasks are started at the same time,
then it can meet all its future deadlines with any task start times.

It is important to note that Theorem 2 applies to any static priority assignment, not just rate
monotonic priority assignment. To check if a task can meet its first deadline we describe the
following argument from Lehoczky [14]:

Consider any task xn with a period Tn, deadline Dn<Tn, and computation Cn. Let tasks x1 to
Tn_., have higher priorities than tn. Suppose that all the tasks start at time t=0. At any time
t, the total cumulative demand on CPU time by these n tasks is:

CMU/SEI-95-TR-011

K^l
t + + c„ lcJ

;=i TJ

The term \tlT^\ represents the number of times task x- arrives during interval [0, f] and there-

fore cTf/7)l represents its demand during interval [0, f\. For example, let 7, = 10, C, = 5
and f = 9. Task T1 demands 5 units of execution time. When r = 11, task T1 has arrived again
and has a cumulative demand of 10 units of execution.

Suppose that task xn completes its execution exactly at time t before its deadline Dn. This
means that the total cumulative demand from the n tasks up to time t, Wn(t), is exactly equal
to t, that is, Wn(t) = t. A method for finding the completion time of task Xj, that is, the in-
stance when Wt{t) = t is given in Figure 3-1.

Set tQ <- Zj=1 Cj

Stop when (Wt(tk) = tk)

Figure 3-1: Finding Minimum t, Where W|(f) = t

We shall refer to this procedure as the completion time test. If all the tasks can be com-
pleted before their deadlines, then the task set is schedulable:

Example 2: Consider a task set with the following independent periodic tasks:
• Task iyCA= 20; 7., = 100; DA = 100;

• Task x2: C2 = 30; 72 = 145; D2 = 145;

• Task T3: C3 = 68; 72 = 150; D3 = 150;

The total utilization of tasks x1 and t2 is 0.41, which is less than 0.828, the bound for
two tasks given by Theorem 1. Hence, these two tasks are schedulable. However,
the utilization of these three tasks as given by Theorem 1 is 0.86, which exceeds
0.779, the bound, as given by Theorem 1 for the three tasks. Therefore, we need to
apply the completion time test to determine the schedulability of task x3.

Figure 3-2 shows the time line for the execution of task x3. Since x1 and x2 must
execute at least once before x3 can begin executing, the completion time of x3 can
be no less than 118.

CMU/SEI-95-TR-011

T1

T3

30

20

50 18 Completion time = 138

-►t
50 100 150

Figure 3-2: Application of Critical Zone Theorem to Task x3

tQ = Cl + C2 + C3 = 20 + 30 + 68 = 118

However, x1 is initiated one additional time in the interval (0,118). Taking this ad-
ditional execution into consideration, W3(118) = 138.

fj = W3(t0) = 2CX + C2 + C3 = 40 + 30 + 68 = 138

We find that W3(138)=138, and thus the minimum time at which W3(t) = t is 138. This
is the completion time of x3. Therefore, x3 completes its first execution at time 138
and meets its deadline of 150.

W3(fi) = 2Cj + C2 + C3 = 40 + 30 + 68 = 138 =tx

Hence, the completion time test determines that x3 is schedulable even though the
test of Theorem 1 fails.

3.2. Task Synchronization

In the previous sections we have discussed scheduling of independent tasks. Tasks,
however, do interact. In this section, we discuss how GRMS can be applied to real-time
tasks that must interact. Common synchronization primitives include semaphores, locks,
monitors, and Ada rendezvous. Although the use of these or equivalent methods is neces-
sary to protect consistency of shared data or to guarantee the proper use of nonpreempt-
able resources, their use may jeopardize the system's ability to meet its timing require-
ments. In fact, a direct application of these synchronization mechanisms may lead to an
indefinite period of priority inversion, which occurs when a high priority task is prevented
from executing by a low priority task. Unbounded priority inversion can occur:

Example 3: Let x1 and x3 share a resource and let x1 have a higher priority. Let x2

be an intermediate priority task that does not share any resource with either x1 or x3.
Consider the following scenario:

CMU/SEI-95-TR-011

1. x3 obtains a lock on the semaphore S and enters its critical section to
use a shared resource,

2. x1 becomes ready to run and preempts x3. Next, x1 tries to enter its
critical section by first trying trying to lock S. But S is already locked
and hence x1 is blocked and moved from ready queue to the
semaphore queue.

3. x2 becomes ready to run. Since only x2 and x3 are ready to run, x2

preempts x3 while x3 is in its critical section.

We would prefer that xv being the highest priority task, be blocked no longer than
the time for T3 to complete its critical section. However, the duration of blocking is, in
fact, unpredictable. This is because x3 can be preempted by the medium priority task
x2. As a result, task x1 will be blocked until x2 and any other pending tasks of inter-
mediate priority are completed. The duration of priority inversion becomes a function
of task execution times and is not bounded by the duration of critical sections.

The priority inversion problem can be controlled by a priority ceiling protocol. The priority
ceiling protocol is a real-time synchronization protocol with two important properties [22].

Theorem 3: The priority ceiling protocol prevents mutual locks between tasks. In
addition, under the priority ceiling protocol, a task can be blocked by lower priority
tasks at most once.

The protocol works as follows: we define the priority ceiling of a binary semaphore S to be
the highest priority of all tasks that may lock S. When a task x attempts to execute one of its
critical sections, it will be suspended unless its priority is higher than the priority ceilings of
all semaphores currently locked by tasks other than x. If task x is unable to enter its critical
section for this reason, the task that holds the lock on the semaphore with the highest
priority ceiling is said to be blocking x and hence inherits the priority of x. As long as a task x
is not attempting to enter one of its critical sections, it will preempt every task that has a
lower priority. The following example illustrates the deadlock avoidance property of the
priority ceiling protocol:

Example 4: Suppose that we have two tasks x1 and x2 (see Figure 3-3). In addition,
there are two shared data structures protected by binary semaphores, S1 and S2,
respectively. Suppose task x1 locks the semaphores in the order Sv S2, while x2

locks them in the reverse order. Further, assume that x1 has a higher priority than
x2. Since both x1 and x2 use semaphores S1 and S2, the priority ceilings of both
semaphores are equal to the priority of task %v Suppose that at time tQ, x2 begins
execution and then locks semaphore S2. At time tv task x1 is initiated and preempts
task x2, and at time t2, task x1 tries to enter its critical section by attempting to lock
semaphore Sv However, the priority of x1 is not higher than the priority ceiling of
locked semaphore S2. Hence, task x1 must be suspended without locking Sv Task
x2 now inherits the priority of task x1 and resumes execution. Note that x1 is blocked

CMU/SEI-95-TR-011

Ti :{...P(S1)...P(S2)...V(S2)...V(S1)...}

X2 : {... P(S2) ...P(S1) ...V(S1)... V(S2)...}

^Legend

kWI S1 locked

E223 S2 locked

Attempts to lock S1 (blocked) S1 locked S2 locked S2 unlocked S1 unlocked

otherwise Xi andT2
will be deadlocked ̂ di

T2

S2 locked S1 locked S1 unlocked S2 unlocked

-i 1-
time

Figure 3-3: Example of Deadlock Prevention

outside its critical section. As T1 is not given the lock on S1 but suspended instead,
the potential deadlock involving x1 and x2 is prevented. Once x2

ex'ts 'ts critical sec-
tion, it will return to its assigned priority and immediately be preempted by task xv

From this point on, T1 will execute to completion, and then x2 will resume its execu-
tion until its completion.

There is a simplified implementation of the the priority ceiling protocol called the priority ceil-
ing emulation [23]. In this approach, once a task locks a semaphore, its priority is im-
mediately raised to the level of the priority ceiling. The avoidance of deadlock and block-at-
most-once results still hold, provided that a task is restricted from suspending its execution
within the critical section.2 The priority ceiling protocol has been extended to deal with
dynamic deadline scheduling [3] and mixed dynamic and static priority scheduling [2].

The schedulability impact of task synchronization can be assessed as follows: Let Bt be the
duration in which task xf is blocked by lower priority tasks. The effect of this blocking can be
modeled as though task TJ'S utilization is increased by an amount S/Tj.

Sometimes, a task Tj's deadline, Dv is before the end of period. Theorem 1 was generalized
to accommodate an earlier deadline. Let Af = (D/Tj) [14].

Theorem 4: A set of n periodic tasks scheduled by the rate monotonic algorithm
will always meet its deadlines, for all task phasings, if

2The full implementation permits tasks to suspend within a critical section.

10 CMU/SEI-95-TR-011

c c c
V/, \<i<n, ^ + ^+ ••• +^<U(Ai).

whereUiA,) = J/((2A/)
1/<-l)+l-A/, 0.5<A-< 1

LA(-, O^A^O.5

The completion time test can be directly used in the case when deadlines are shorter than
end of period with no modification. To accommodate blocking, we can simply add the block-
ing to the execution time of the task.

So far, the task priority assignment follows the rate monotonic priority assignment, that is,
the shorter the period, the higher the priority. Note that this is a special case of giving tasks
with narrower completion windows to complete higher priorities, since the period is the win-
dow for completion when the deadline is at the end of the period. Sometimes, tasks may
have deadlines earlier than the end of periods. In generalized rate monotonic scheduling,
tasks with narrower completion windows are given higher priority. Leung and Whitehead
called this generalized method as deadline monotonic algorithm [16]. They showed that this
generalized method is optimal for independent tasks with completion time windows less than
or equal to the periods. The use of deadline monotonic priority assignment will be illustrated
in Section 6.

CMU/SEI-95-TR-011 — ff

12 CMU/SEI-95-TR-011

4. Scheduling Considerations in Hardware Architecture

In this section, we examine important architectural support necessary for the use of general-
ized rate monotonic scheduling. Since GRMS is a priority based scheduling algorithm, the
system must have an adequate number of priority levels that can be assigned to tasks, and
must be free from pitfalls that lead to unbounded priority inversion.

4.1. Number of Priority Levels
The number of priority levels that can be supported in software by an operating system is
essentially unlimited. In contrast, the number of priority levels that can be supported by
hardware on a backplane and network is limited and therefore is an important design con-
sideration.

When fewer priority levels are available than the number needed by the priority scheduling
algorithm, the schedulability of a resource is lowered [12]. In such a case, the loss of
schedulability can be reduced by employing a constant ratio priority grid for priority assign-
ments. Consider a range of the task periods such as 1 msec to 100 second. A constant-
ratio grid divides this range into segments such that the ratio between every pair of adjacent
points is the same. An example of a constant ration priority grid is {L1 = 1 msec, L2 = 2
msec, Lg = 4 msec,...} where there is a constant ratio of 2 between pairs of adjacent points
in the grid.

With a constant ratio grid, a distinct priority is assigned to each interval in the grid. For
example, all tasks with periods between 1 to 2 msec will be assigned the highest priority, all
tasks with periods between 2 to 4 msec will have the second highest priority and so on when
using the rate-monotonic algorithm. It has been shown [12] that a constant ratio priority grid
is effective only if the grid ratio is kept smaller than 2. For the rate-monotonic algorithm, the
percentage loss in worst-case schedulability due to the imperfect priority representation is
(1 - Relative Schedulability), which can be computed by the following formula [12]:

Relative Schedulability = (ln(2/r) + 1 - 1/r)/ln2

where r is the grid ratio.

Figure 4-1 plots schedulability as a function of priority bits, relative to schedulability with as
many priority levels as needed [24]. It was assumed that the ratio between the shortest and
longest periods is 100,000. As can be seen, the schedulability loss is negligible with 8 en-
coded priority bits, which corresponds to 256 priority levels. In other words, the worst-case
schedulablility obtained with 8 priority bits is close to that obtained with an unlimited number
of priority levels. In many older computer backplane buses, in addition to the lack of an ade-
quate number of priority levels, a board is given a fixed priority level. As a result, a proces-
sor cannot access the bus according to the priority of tasks or messages. Fortunately, both
these problems are solved by recent bus standards such as the IEEE Futurebus+, whose
real-time computing option directly supports the use of GRMS [24].

CMU/SEI-95-TR-011 13

3
■o
0
ü
c/j

1.0

= 0.8
XI
co

0)
>

0.6

0.4

« 0.2

I ISfflMH I Fiwiitiiffn i ^^M"^» i E-^HMM i feti

3 4 5 6

Number of priority bits

Figure 4-1: Relative Schedulability vs. The Number of Priority Bits

4.2. Multi-processor Backplane Scheduling

In addition to a sufficiently large number of priorities, it is necessary to have consistent treat-
ment of priorities throughout the arbitration, message passing and DMA protocols. In order
to support the GRMS theory, a module must request the bus based on the priority of the
task or message that needs the bus. This means that the same module may request the bus
at many different priorities under software control. The IEEE Futurebus+ supports such a
software controlled priority arbitration paradigm. Unfortunately, most existing bus architec-
tures staticly bind a single priority to each module.

Software controlled priority arbitration can be supported by either a distributed arbiter or a
centralized arbiter [24]. In this paper, we limit ourselves to a description of the centralized
arbiter because it is easier to implement. Furthermore, it can be easily used to override ex-
isting bus arbitration schemes. This maintains logical compatibility with existing products for
that bus, while supporting real-time computations, such as multi-media applications. We
now provide an overview of the central arbiter.

In the central arbiter model, each module contact the central arbiter via a request line, a
grant line and a preemption line. Ideally, 8 encoded priority bits can be used for real-time
applications. The centralized arbiter has a priority register for each module. A module that
needs the bus asserts the request line. The central arbiter grants the bus to the requesting
module with the highest priority value in the corresponding priority register by asserting the
module's grant line. The priority level of a module can be changed by communicating its
priority via a separate serial line. To minimize the number of lines, one can use the request

14 CMU/SEI-95-TR-011

line as the serial line. In this case, whenever a module needs the bus, it sends its 8 bit
priority code over the request line.

If there is an active bus master and the central arbiter receives a higher priority request, the
arbiter asserts the preempt line on the current bus master. The module may then voluntarily
suspend its ongoing transaction at a logical boundary and yield to the pending higher priority
request. This scheme is particularly useful in real-time systems when a long block transfer
at low priority can be preempted by a higher priority transaction. The preempted transaction
can resume at a later time after a fresh request/grant cycle. If no priority change requests
are transmitted, subsequent requests will have the same priority level as the last specified
value from that module. This model allows each request from a module to have a different
priority level, or all requests from the same module to have the same priority level.

4.3. Hardware Queues
To support message passing over a communication medium such as a backplane bus or a
network, FIFO hardware queues are commonly used for both transmission and reception.
Hardware FIFO queues at the receiver are acceptable if the software empties the entire
queue and re-orders the messages in priority order before processing.

In contrast, a short transmission priority queue can lead to unbounded priority inversion. For
example, suppose the transmission priority queue of node A connected to a backplane bus
is filled with low priority messages. If node A wishes to transmit a high priority message, it
cannot even enter the high priority message in its transmission queue since it is full. Also,
unbounded priority inversion can occur because medium priority messages from other
nodes prevent the servicing of node As queue, indefinitely holding off node A's high priority
message.

A practical solution is the use of a short priority queue with priority overwrite to emulate an
ideal priority queue [24]. When the transmission queue is full and a higher priority message
waits at the host, the higher priority message overwrites the lowest priority message in the
queue. To prevent the potential loss of this lower priority message, the host must preserve
each message in memory until it is successfully transmitted. The overwrite occurs at the tail
of the queue and can occur concurrently with transmission from the head of the queue, thus
incurring very little performance penalty.

CMU/SEI-95-TR-011 15

16 CMU/SEI-95-TR-011

5. Scheduling Considerations in Software Architecture
The primary objective in our software architecture considerations is to decouple the schedul-
ing of resources. We want to analyze the scheduling of each processor in a multi-processor
as if it were a stand-alone uni-processor. We also want to use the same analysis technique
for message scheduling across the backplane or network. Decoupling the resources allows
us to "divide and conquer" the scheduling problem and simplifies software development.

Our tool to decouple the system scheduling problem is the use of allocation units mentioned
in Section 2. The use of allocation units avoids the need to synchronize distributed tasks
that share variables. This greatly reduces the complexity in schedulability analysis.3

Another high level consideration is the need of a system wide priority scheme. The GRMS
specifies only the priority order of tasks and messages and does not dictate a particular
priority encoding method. However, priority encoding with local scope is not advisable. For
example, consider tasks t1 and x2 with periods of 10 and 20 respectively in one allocation
unit. Consider task x3 and x4 with periods 15 and 40 another allocation unit. Let priority
encoding be local to allocation units. Let x1 and x2 be assigned priorities 10 and 20 in the
first allocation unit, and x3 and x4 be assigned priorities 50 and 60 in the other allocation unit
(larger priority numbers mean lower priority). If these two allocation units are relocated into
the same processor, then rate monotonic assignment is violated since the task with a period
of 15 gets a lower priority than the task with a period of 20. Hence, priorities must be as-
signed on a system wide basis.

In the rest of this section we consider the message passing architecture and discuss the
remote server paradigm.

5.1. Message Passing Architecture

A message passing architecture for communication between allocation units may be
described as follows. The sending task passes a message descriptor to the operating sys-
tem (OS). The descriptor consists of a pointer to the data buffer, the sender's identification
and the receiver's identification. If the receiver is in the same processor, the operating sys-
tem just puts the message descriptor into the receiver's mailbox.

If the receiver is another processor connected to the same backplane, the OS assigns a bus
priority to the message and passes it to the message scheduler at the bus interface unit that
schedules messages on the bus. The receiving processor's bus interface unit orders the
messages it receives according to their bus priority, and interrupts the receiver's OS. The
OS parses the messages and determines the receiving task. The OS then constructs a mes-
sage descriptor and puts it in the receiving task's mailbox.

3Readers interested in using shared variables across processors are referred to [19, 20].

CMU/SEI-95-TR-011 17

If the receiver is across the network, then the sender sends the message across the bus to
the network interface processor as described above. The OS of the network interface
processor is responsible for sending the message over the network. The OS packetizes the
message according to the network protocol, attaches a priority to each packet, and
schedules the packets for transmission. The receiving network interface processor sends
the received message across the bus as described before. The assignment of message
priority for the bus is illustrated in Section 6.

5.2. Scheduling Remote Servers

Clients and remote servers are commonly used paradigms in distributed computation.
Several servers can be co-located in a processor. Each server package provides a par-
ticular set of functions that can be used over the network or bus by clients. Ideally, a server
for real-time applications should be multi-threaded so that high priority requests can preempt
a low priority request. However, it is often impractical to provide as many threads as
needed. One simple solution is to first write the service procedures and then create a few
tasks each of which have a well defined response time. For example, we can have three
sporadic tasks with 100 ms, 300 ms and 600 ms response time. Each task will call the same
service procedures,

There is great incentive to use existing server packages whenever possible. However, ser-
vers developed for commercial use are often single threaded and come with built-in FIFO
queues. Fortunately, we can still emulate the priority ceiling protocol [22], which ensures
that a high priority request may wait for at most one lower priority request even if the request
visits multiple servers co-located in the processor. The priority ceiling protocol emulation can
be implemented as follows:

The priority ceiling of a server is defined as the highest priority request that may ever use
that server. Server priority ceilings can be equal to each other since a server will always
execute at the ceiling priority level. A centralized request dispatcher is necessary; otherwise,
unbounded priority inversion will occur if requests are inserted directly into server queues,
even if the queues are prioritized. For example, let SM and SH be servers with medium and
high priority ceilings respectively. Let SM have a medium priority request pending, and let
SH's queue be filled with low priority requests. SH will keep serving the low priority requests
at its queue since it executes at higher priority.

The dispatcher maintains two priority queues. The Request Queue (RQ) maintains all the
servers' pending requests, and the Active Server Record Queue (AQ) maintains the records
of all active servers according to their ceilings. When a request is dispatched to a server,
the server becomes active, and the record of the server is inserted in the AQ. When the
server completes a request it becomes inactive and its record is removed from the AQ.

• The dispatcher runs at a priority level that is higher than all application tasks
and servers.

18 CMU/SEI-95-TR-011

• The dispatcher compares the head of the RQ with the head of the AQ. If the
request at the head of the RQ has a higher priority than the server record at the
head of the AQ, the dispatcher sends the request to the requested server.

• In case a request needs to visit more than one server it will be returned to the
dispatcher and sent to the next requested server until done.

• The dispatcher suspends when either the RQ is empty, or no requests can be
forwarded. The dispatcher wakes up when any server becomes inactive or
when there is a new request inserted into the RQ.

Under priority ceiling protocol emulation, the server FIFO queue will not lead to priority inver-
sion since the queue of any server has at most a single request that is being serviced.

Example 5: Let SM and SH be servers with medium and high priority ceilings respec-
tively. Let SM be active and serving a medium priority request and let SH be inactive.
Hence the record of SM is at the head of AQ. Low priority requests that arrive during
this time cannot be forwarded to any server, because the request priority at the head
of the RQ is lower than the priority of the server record at the head of AQ. On the
other hand, if a high priority request for SH arrives, it will be forwarded to server SH

immediately since the request's priority is higher than the record of SM. As a result,
SH preempts SM and starts serving the high priority request.

Sometimes, it may be difficult to determine the server ceilings. The default is to assign all
server ceilings to the highest priority. However, the priority ceiling assignment can be
refined. For example, one can have a particular "emergency only" server with ceiling higher
than that of all the normal servers. In this way, tfje emergency requests never have to wait
for normal requests. If a server's execution time is particularly long, one may decompose the
request of a big job into multiple small jobs when possible. The server will then execute
each small job at a time and send it back for the dispatcher for rescheduling.

CMU/SEI-95-TR-011 19

20 CMU/SEI-95-TR-011

6. Example Application
In this chapter, we apply the preceding theory to a concrete example. Consider the system
in Figure 2-1. We assume that the priority ceiling protocol is used for task synchronization,
and the message passing architecture is used for communication. We assume that we use a
prioritized backplane such as the IEEE Futurebus+. However, the network used is the FDDI
network, since currently no standard network fully supports GRMS.

Let the characteristics of the application be as follows: The unit of time in this example is
milliseconds. Referring to Figure 2-1, the sensor takes an observation every 40. To reduce
unnecessary bus traffic, the signal processing task processes the signal and averages it
every 4 cycles before sending it to the tracking processor. The tracking processor has a
task with a period of 160. After the task executes, it sends the result to the control proces-
sor. Task x3 on the control processor that uses the tracking information has a computation
requirement of 30 and a period of 160. In addition, the end-to-end latency of the pipeline of
data flow from the sensor to the control processor should be no more than 785. The control
processor also has additional periodic and aperiodic tasks which must be scheduled. The
tracking and control processors send status information across the network to a user inter-
face node and periodically receive commands.

Let the task set on the control processor be specified as given below:

• Aperiodic event handling with an average execution time of 10 and an average
interarrival time of 100. We create a sporadic server task as follows: Task i<:
C1=20; 7., = 100;

• A periodic task for handling local feedback control with a computation require-
ment and a given period. Task x2: C2 = 78; 7"2 = 150;

• A periodic task that utilizes the tracking information received. Again the com-
putation time and period are given. Task x3: C3 = 30; 7"3 = 160;

• A periodic task responsible for reporting status across the network with a given
computation time and period. Task T4: C4 = 10; 7"4 = 300;

Tasks T1 and x2 are in one allocation unit and Tasks T3 and T4 are in another unit. Note that
the scheduling of tasks in a processor is independent of allocation units.

6.1. Assigning Message and Task Deadlines

When a message is sent within a processor, it can be implemented by passing a message
pointer to the receiving task and therefore can be treated as any other OS overhead.
However, when a message is sent outside the processor boundary, an integrated approach
to assign message and task deadlines needs to be developed. Consider the situation in
Figure2-1:

CMU/SEI-95-TR-011 ~ ^\

• The sensor takes an observation every 40.

• The signal processing task processes the signal, averages the result every 4
cycles, and sends it to the tracking processor every 160.

• The tracking processor task executes with a period of 160. It then sends a
message to the control processor.

• Task T3 on the control processor that uses the tracking information has a com-
putational requirement of 30 and a period of 160, as given above. Recall that
the end-to-end latency for the control processor to respond to a new obser-
vation by the sensor needs to be less than 785.

The steps involved in integrated priority assignment are as follows: First we try to use the
rate monotonic priority assignment. Since rate monotonic analysis guarantees end-of-period
deadlines, we assume that the end-to-end delay is the sum of the period for each resource.
Since the signal processor averages four cycles, each 40 long, its delay is up to 160. Each
of the other resources has a delay of up to one period which is 160. That is, the total delay
using rate monotonic scheduling is bound by 4*40 + 160 + 160 + 160 + 160 = 800. If it were
less than the allowable delay then rate monotonic priority assignment could be used for all
the resources. However, the specified maximum allowable latency is 785. Therefore, we
may need to use deadline monotonic scheduling for at least some of the resources in the
path. From a software engineering viewpoint, it is advisable to give a full period delay for
global resources such as the bus or the network since their workload is more susceptible to
frequent changes. Since there are two bus transfers involved we attempt to assign a full
period to each. We also attempt to assign a full period to the signal and tracking processors.
Hence, the required completion time of the control processor task x3 should be no greater
than 785^x(160)= 145.

6.2. Scheduling Tasks on the Control Processor

In this section we apply the scheduling theory to the control processor tasks. Let tasks xv

T2, and T3 share several data structures guarded by semaphores Sv S2, and S3. Suppose
the duration of critical sections accessing shared data structures are bounded by 10. Sup-
pose the priority ceiling protocol is used. Then by Theorem 3, higher priority tasks are
blocked at most once for 10 by lower priority tasks.

The task set on the control processor, is as described earlier with task t3 modified to have a
deadline of 145. We check whether or not x3 completes within 145 under rate monotonic
priority assignment. Under rate monotonic assignment, the completion of -c3 is:

t0 = Cj + C2 + C3 = 20 + 78 + 30 = 128

/j = W3(tQ) = 2Cj + C2 + C3 =40 + 78 + 30 = 148

W3(t{) = 2CX + C2 + C3 = 148 =tl

22 CMU/SEI-95-TR-011

Therefore, the completion time of x3 is 148. In order to meet the deadline of 145 imposed by
the maximum allowable latency requirement of the previous section, we use the deadline-
monotonic priority assignment. This makes the priority of task T3 higher than that of task x2,
which has an end-of-period deadline of 150.

The schedulability of each task can be checked as follows: Task t1 can be blocked by lower
priority tasks for 10 , i.e., B^ = J\0. The schedulability test for task t1 is a direct application of
Theorem 4:

C R
-I+ _I = 0.2+ 0.1= 0.3 < 1(21/1-1)=1.0
M M

The sporadic server task T1 is schedulable. The average response time for aperiodic events
handled by T1 can be calculated as follows: The server capacity is 20% (20/100) and the
average aperiodic workload is 10% (10/100). Referring back to the ticket box analogy of
Example 1, because most of the aperiodic arrivals can find "tickets," we would expect a
good response time. Simulation indicates the average response time is about 20.

Task x3 is the second highest priority task. Since x3 has a deadline shorter than its period,
the schedulability test for x3 can be checked as given in Theorem 4. Here A3 = (D3/T3) =
145/150 = 0.967. Also, in the schedulability test of x3, the utilization of task x2 does not
appear, since x2 has a lower priority and does not preempt x3. Because x2 has a lower
priority, its critical section can delay x3 by 10 . Therefore B3 = 10.

C C B
■^- + -^ + + ^ = 0.2+0.188+0.0625 = 0.4505 < 2((2Ao)1/2-l) = 0.781
M h h

Now consider the third highest priority task x2. From the view point of the rate monotonic
assignment, the deadline monotonic assignment is a "priority inversion". Therefore in the
schedulability test for task x2, the effect of blocking has to include x3's execution time. The
blocking time is B2 = C3+0. The zero indicates that there can be no lower priority task block-
ing x2.

—+ — + -^ + -1 = 0.2+0.52+0.2 = 0.92 > 2(21/2-l) = 0.828
1 22

The schedulability test of Theorem 4 fails for x2. The schedulability of x4 can be checked by
the following simple test since there is neither blocking or deadline before its end of period.

c c c c
^- + ^ + 7^ + ^ = 0.2+0.52+0.188+0.033= 0.941 > 4(21/4-l) = 0.757
M y2 h U

Note that the schedulability test of Theorem 4 fails for both tasks x2 and x4. To determine
their schedulability we use the completion time test. Since x1 and x3 must execute at least
once before x2 can begin executing, the completion time of x2 can be no less than 128:

t0 = C} + C2 + B2 = 20 + 78 + 30 = 128

CMU/SEI-95-TR-011 23

However, T1 is initiated one additional time in the interval (0,128). Taking this additional
execution into consideration, W2(128) = 148:

h = W2%) = 2Cj + C2 + B2 = 40 + 78 + 30 = 148

Finally, we find that W2(148)=148 and thus the minimum time at which W2(t) = t is 148. This
is the completion time for T2. Therefore T2 completes its first execution at time 148 and
meets its deadline of 150.

W2(tl) = 2Cj + C2 + B2 = 40+ 78 + 30 = 148 =tx

Similarly, we can check the schedulability of task x4 using the completion time test. It turns
out to be schedulable.

6.3. Scheduling Messages across a Network

In previous sections we have discussed system support for scheduling resources. The im-
portance of such support is that it permits us to treat the scheduling of all resources in a
uniform way. That is, we can analyze scheduling of any resource, similar to processor
scheduling. The total end to end delay is then be bounded by the sum of delays at each
resource. At this writing, the support of GRMS scheduling can be found in standard proces-
sors and OS such POSIX.4[18] and in multi-processor backplanes such as IEEE
Futurebus+ [6], but not in standard networks.

The problem of guaranteeing message deadlines in the FDDI network has been addressed
in [1]. In a simple token passing protocol, the amount of time between consecutive token
visits may be unbounded. Due to this, deadline guarantees cannot be made. FDDI employs
a timed token protocol that results in a bounded token rotation time. There is a protocol
parameter called Target Token Rotation Time (TTRT) which is negotiated at network in-
itialization. Sevcik and Johnson [21] have shown that the time between two consecutive
token visits is bounded by 2*TTRT. A node in the FDDI protocol can transmit in either
synchronous or asynchronous mode. Without describing the details of these modes, we ob-
serve that time critical messages should use the synchronous mode. In a network that uses
only synchronous mode, each station can transmit once every TTRT for an amount equal to
an assigned synchronous capacity Hy

To support real-time applications the FDDI network should be appropriately configured. That
is, each station only uses a preallocated portion of the network bandwidth on every token
arrival. The capacity to each station is allocated proportionally using the following
formula [1]:

ui Hi = -j (7TRT-D)

where H; is the capacity allocated to station Sr Ui is the network bandwidth utilized by
station St and 11=11]+ . . . +Un. TTRT is the target token rotation time and D is the walk time
(the token round trip propagation delay when the network is idle).

24 CMU/SEI-95-TR-011

This allocation can be directly realized using only synchronous mode of transmission.
However, it can also be realized when using only the asynchronous mode of transmission,
provided each station only transmits a preallocated number of frames on every token arrival.
Finally, message queues should be prioritized.

Suppose we have three periodic messages to be transmitted on an FDDI network with the
default TTRT of 8ms. Let the token propagation delay D be 1 ms:

• Message x.,: C, = 7; T, = 100;

• Message x2: C2 = 10; T2 = 145;

• Message x2: C3 = 15; 7"2 = 150;

In the utilization of the above message set, U= 0.239.

Applying the above formula Ht = 2.05, H2 = 2.02, and H3 = 2.93. The proportional allocation
scheme is directly supported by the synchronous mode of operation.

The schedulability analysis can be carried out as follows. Let there be at least four message
priority levels. The messages are first processed in the Network Operating System (NOS),
that executes on the end stations. The total application level delay is the sum of the
processing delay at the sender's NOS, the delay in the FDDI ring, and the processing delay
in the receiver's NOS.

The requirement on the application level delays are given in the table below: There are four
message types with following timing requirements:

Message
M,
M2

M3

M4

Table 6-1: Latency Metrics

To meet the timing requirements, polling or sporadic servers for each level can be created.
For example, to meet the average timing requirement, four polling servers can be created
with periods Tv T2, 73, and 7"4, given by 7 ms, 8 ms, 10 ms, and 16 ms, respectively. Each
server has a full period at the sending NOS, the FDDI and the receiving NOS. If the total
traffic is schedulable according to the RMS formula, then we expect the delays will be under
21 ms, 24 ms, 30 ms, and 48 ms most of time. The absolute worst case are 42 ms, 48 ms,
60 ms, and 96 ms since polling guarantees a responsiveness of twice the period. If sporadic
server is used, the worst case performance will be 21 ms, 24 ms, 30 ms, and 48 ms.

The structure for schedulability analysis is as follows: We consider four message processing
tasks at the NOS level. Let task Mt have a processing requirement of Ct per period T-. This

Type
Emergency

Average Latency
21ms

Alert 24ms
Fast 30ms
Normal 48ms

CMU/SEI-95-TR-011 ~ ~ 25

is determined by the number of messages the task processes per period. For example, if the
processing of one message in task M^ takes 0.5 ms, and there are three messages to be
processed per period, then C, = 1.5. Since the NOS executes on the host processor, the
message processing tasks (Cv TJ, (C2, T2), (C3, T3), and (C4, T4) are scheduled along with
other application tasks if any. The schedulability analysis is the standard rate monotonic
analysis for processor. The schedulability analysis of the tasks in the receiving NOS can be
analyzed similarly.

The approach to message scheduling on FDDI can be as follows: There are four message
transmission tasks with transmission time Cx for task with a period of Tj. For example, if 4
Kbyte packets are used, each packet will take 0.33 ms to transmit. If a message task M1 has
to transmit 3 packets, its transmission time C, is 0.99 ms.

Consider the scheduling of messages in a particular station S-v Let the capacity allocated to
the station be Hy The station can transmit for up to H, ms every TTRT. This can be treated
as having another high priority task with message transmission time (TTRT - H) and period
TTRT. We refer to this task as Token Rotation task M{r If TTRT = 6 ms and Ht = 2 ms, then
MX{ = (Ctr = 4, 7"tr = 6). The task set for station S- is then (4, 6),(C1f TA), (C2, 7"2), (C3, T3),
and (C4, T4). This task set can be analyzed in the standard rate monotonic framework.

Finally, note that although the Token rotation task behaves like the highest priority task at
each station, it actually may be comprised of transmission of lower priority messages from
other stations. In this sense, it is a priority inversion and limits the schedulable utilization of
the network.

26 CMU/SEI-95-TR-011

7. Conclusion

In this paper, we have described the use of generalized rate monotonic scheduling theory
for the design and analysis of a distributed real-time system. We have reviewed the basic
elements of the theory and provided references for further study. We have described
hardware architectural support such required number of priority levels, and the design of
hardware queues. We have described several important software techniques such as mes-
sage passing interface between tasks, the scheduling of remote servers and management
of transient overload. Finally, we have provided an application example to illustrate the as-
signment of message and task deadlines, task scheduling and message scheduling.

CMU/SEI-95-TR-011 27

28 CMU/SEI-95-TR-011

8. Acknowledgement
The authors want to thank Mark Klein and John Goodenough for their suggestions and com-
ments.

CMU/SEI-95-TR-011 ~ 29

30 CMU/SEI-95-TR-011

References

1. Agrawal, G., Chen, B., Zhao, W., Davari, S. "Guaranteeing Synchronous Message
Deadlines in High Speed Token Ring Networks with Timed Token Protocol". To appear in
the Proceedings of IEEE International Conference on Distributed Computing Systems
(1992).

2. Baker, T. "Stack-Based Scheduling of Realtime Processes". Journal of Real-Time Sys-
tems 3, 1 (March 1991), 67-100.

3. Chen, M., Lin, K.J. "Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-
time Systems". Journal of Real-Time Systems 2, 4 (November 1990), 325-346.

4. ESA. "Statement of Work, Hard Real-Time OS Kernel". On-Board Data Division,
European Space Agency (July, 1990).

5. FDDI Token Ring Media Access Control - ANSI Standard X3T9.5/83-16. 1986.

6. Futurebus P896.1,2,3 Specifications. IEEE, 345 East 47th St., New York, NY 10017,
1991. P896 Working Group of the Microprocessor Standards Committee.

7. Gafford, J. D. "Rate Monotonie Scheduling". IEEE Micro (June 1990).

8. Harbour, M. G., Klein M. H., and Lehoczky, J. P. "Fixed Priority Scheduling of Periodic
Tasks with Varying Execution Priority". Proceedings of IEEE Real-Time Systems Sym-
posium (December 1991).

9. Katcher, D., Arakawa, H., and Strosnider J. K. Engineering and Analysis of Fixed Priority
Schedulers. Tech. Rept. CMUCDS-91-10, Center for Dependable Systems, Carnegie Mel-
lon University, Pittsburgh, Pa, December 1991.

10. Kirk, D. and Strosnider, J. K. "SMART (Strategic Memory Allocation for Real-Time)
Cache Design Using MIPS R3000". Proceedings of IEEE Real-Time Systems Symposium
(1990).

11. Klein, M. H., and Ralya, T. An Analysis of Input/Output Paradigms for Real-Time
Systems. Tech. Rept. (CMU/SEI-90-TR-19, ADA226724), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa, July 1990.

12. Lehoczky, J. P. and Sha, L "Performance of Real-Time Bus Scheduling Algorithms".
ACM Performance Evaluation Review, Special Issue Vol. 14, No. 1 (May, 1986).

13. Lehoczky, J. P., Sha L and Strosnider, J. "Enhancing Aperiodic Responsiveness in A
Hard Real-Time Environment". IEEE Real-Time System Symposium (1987).

14. Lehoczky, J.P., Sha, L, and Ding, Y. "The Rate Monotonie Scheduling Algorithm - Ex-
act Characterization and Average Case Behavior". Proceedings of IEEE Real-Time System
Symposium (1989).

15. Lehoczky, J. P. "Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Dead-
lines". IEEE Real-Time Systems Symposium (December 1990).

16. Leung, J. and Whitehead, J. "On the Complexity of Fixed-Priority Scheduling of Peri-
odic, Real-Time Tasks". Performance Evaluation 2 (1982).

CMU/SEI-95-TR-011 " 3J

17. Liu, C. L. and Layland J. W. "Scheduling Algorithms for Multiprogramming in a Hard
Real Time Environment". JACM20 (1) (1973), 46 - 61.

18. IEEE Standard P1003.4 (Real-time extensions to POSIX). IEEE, 345 East 47th St.,
New York, NY 10017,1991.

19. Rajkumar, R., Sha, L, and Lehoczky, J.P. Real-Time Synchronization Protocols for
Multiprocessors. Proceedings of the Real-Time Systems Symposium, IEEE, Huntsville, AL,
December, 1988, pp. 259-269.

20. Rajkumar, R. "Real-Time Synchronization Protocols for Shared Memory Multi-
Processors". Proceedings of The 10th International Conference on Distributed Computing
(1990).

21. Sevcik, K.C., and Johnson. M.J. "Cycle Time Properties of the FDDI Token Ring
Protocol". IEEE Transactions on Software Engineering SE-13 No. 3pp 376-385 (1987).

22. Sha, L., Rajkumar, R. and Lehoczky, J. P. "Priority Inheritance Protocols: An Approach
to Real-Time Synchronization". IEEE Transaction On Computers (Sept., 1990).

23. Sha, L. and Goodenough, J. B. "Real-Time Scheduling Theory and Ada". IEEE Com-
puter (Apr., 1990).

24. Sha, L., Rajkumar, R., and Lehoczky, J. "Real-Time Applications Using IEEE
Futurebus+". IEEE Micro (June 1990).

25. Sha, L., Sathaye, S., and Strosnider J. K. Analysis of Reservation Based Dual Link
Networks for Real-Time Applications. Tech. Rept. (CMU/SEI-92-TR-10, ADA254176),
Software Engineering Institute, March 1992.

26. Sprunt, B., Sha, L., and Lehoczky, J. P. "Aperiodic Task Scheduling for Hard Real-
Time Systems". The Journal of Real-Time Systems 7<(1989), 27-60.

27. Strosnider, J. K. and Marchok, T. E. "Responsive, Deterministic IEEE 802.5 Token
Ring Scheduling". Journal of Real-Time Systems 1 (1989), 133-158.

28. Ramos-Thuel, S., Strosnider J. "The Transient Server Approach to Scheduling Time-
Critical Recovery Operations". Proceedings of IEEE Real-Time Systems Symposium
(December 1991).

29. Tokuda, H., Sha, L. and Lehoczky, J. P. "Towards Next Generation Distributed Real-
Time Operating Systems". Abstracts of IEEE Fourth Workshop on Real-Time Operating
Systems (1987).

32 CMU/SEI-95-TR-011

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-95-TR-011
5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-95-011

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

ESC/AVS
Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/AVS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
! 1. TITLE (Include Security Classification)

Distributed System Design Using Generalized Rate Monotonie Theory
12. PERSONAL AUTHOR(S)

Lui Sha and Shirish S. Sathaye

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

September 1995
15. PAGE COUNT

41pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

distributed real-time system
rate monotonic scheduling
real-time scheduling

FIELD GROUP SUB. GR.

1 y. ABS 1 KACl (continue on reverse if necessary and identify by block number)

Rate monotonic theory and its generalizations have been adopted by national high technology projects such as the
space station and have recently been supported by major open standards such as the IEEE Futurebus+ and POSIX 4
In this paper, we describe the use of generalized rate monotonic scheduling theory for the design and analysis of a
distributed real-time system. We review the theory, examine the architectural requirements for the use of the theory
and finally provide an application example.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED | SAMEASRPTQ DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/AVS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

