ADAPTIVE SPACE-TIME PROCESSING FOR AIRBORNE RADAR

The MITRE Corporation

D. Lamensdorf, B.N. Suresh Babu, J.A. Torres, A.A. Sahraouia, and C.J. Sniezek

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable to the general public, including foreign nations.

RL-TR-95-268 has been reviewed and is approved for publication.

APPROVED:

JOHN V. MCNAMARA
Project Engineer

FOR THE COMMANDER:

GARY D. BARMORE, Major, USAF
Deputy Director of Surveillance & Photonics

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list, or if the addressee is no longer employed by your organization, please notify Rome Laboratory/OCSA, Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.
Adaptive Space-Time Processing for Airborne Radar

Title and Subtitle:
Adaptive Space-Time Processing for Airborne Radar

Authors:
D. Lamensdorf, B.N. Suresh Babu, J.A. Torres, A.A. Sahraouia, and C.J. Sniezek

Performing Organization:
The MITRE Corporation
Burlington Road
Bedford MA 01730-0208

Sponsoring/monitoring agency:
Rome Laboratory/OCSA
26 Electronic Pky
Rome NY 13441-4514

Abstract:
Significant enhancements have been made to MITRE's computer simulation and processing capability for predicting the performance of airborne phased array radars, and for applying algorithms using space-time adaptive processing (STAP) to suppress interference signals received by these radars. The enhancements include adding elevation degrees of freedom and near-field scattering effects to the steady-state simulation; providing options to transform measured data and to process it in various combinations of spatial and temporal domains; and adding a graphical user interface that is applicable across computer platforms. These enhancements will provide the capability and flexibility needed for the effective application of the simulations to current and planned programs (e.g., Rome Laboratory's Multichannel Airborne Radar Measurements program).

Subject Terms:
Airborne phased array radars, Space-time adaptive processing (STAP), Near-field scattering
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Steady-state Simulation</td>
</tr>
<tr>
<td>2.1</td>
<td>Elevation Degrees of Freedom</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Sidelobe Jammer Nulling Example</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Clutter Suppression Example</td>
</tr>
<tr>
<td>2.2</td>
<td>Near-Field Scattering</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Point Scatterer Model</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Examples of Point Scatterer Model</td>
</tr>
<tr>
<td>2.2.3</td>
<td>GTD Model</td>
</tr>
<tr>
<td>2.3</td>
<td>STP Simulation Efficiency</td>
</tr>
<tr>
<td>3</td>
<td>Finite Sample Processing Capability</td>
</tr>
<tr>
<td>4</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>5</td>
<td>Demonstration of Steady-State Simulation</td>
</tr>
<tr>
<td>6</td>
<td>Applications For Simulation And Processing Software</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>List of References</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jointly-Adaptive Space-Time Processing Architectures</td>
</tr>
<tr>
<td>2</td>
<td>Flow Chart With Options of Steady-state Simulation</td>
</tr>
<tr>
<td>3</td>
<td>Performance Measures for Canceling a Sidelobe Jammer With 20 Elevation DOF</td>
</tr>
<tr>
<td>4</td>
<td>Elevation Receive Antenna Gain Patterns for Canceling a Sidelobe Jammer with 20 Elevation DOF</td>
</tr>
<tr>
<td>5</td>
<td>Performance Measures for Clutter Cancellation with 8 Elevation DOF</td>
</tr>
<tr>
<td>6</td>
<td>Elevation Receive Antenna Gain Patterns for Clutter Cancellation with 8 Elevation DOF</td>
</tr>
<tr>
<td>7</td>
<td>Performance Measures for Clutter Cancellation with 8 Elevation DOF and 4 Pulses</td>
</tr>
<tr>
<td>8</td>
<td>Elevation Receive Antenna Gain Patterns for Clutter Cancellation with 8 Elevation DOF and 4 Pulses</td>
</tr>
<tr>
<td>9</td>
<td>Four Simulated Scattering Paths</td>
</tr>
<tr>
<td>10</td>
<td>Location of Eleven Near-Field Point Scatterers</td>
</tr>
<tr>
<td>11</td>
<td>Azimuth Receive Antenna Gain Patterns for Canceling a Sidelobe Jammer, without Near-Field Scattering</td>
</tr>
<tr>
<td>12</td>
<td>Performance Measures for Canceling a Sidelobe Jammer without Near-Field Scattering</td>
</tr>
<tr>
<td>13</td>
<td>Azimuth Receive Antenna Gain Patterns for Canceling a Sidelobe Jammer, with Near-Field Scattering</td>
</tr>
<tr>
<td>14</td>
<td>Performance Measures for Canceling a Sidelobe Jammer with Near-Field Scattering</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>Performance Measures for Canceling Clutter, without Near-Field Scattering</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Performance Measures for Canceling Clutter, with Near-Field Scattering</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Illustrative CPU Run Times for RCF UNIX-Based Computers</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>Finite Sample Processing Option</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>Signal-To-Interference Ratio Versus Range for Quiescent Processing and Three-Pulse STP for DLR37</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>View Simulation Output Data Option</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>Examples of Finite Sample Clutter Spectra Created From Simulation with Two Spatial Dimensions of DOF</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>MCARM Scenario, Demonstration of Non-Adaptive Performance Using Two Independent Simulations</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>MCARM Scenario, Demonstration of Clutter Reduction Using Steady-State STP Simulation</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 1

INTRODUCTION

As a result of several recent programs over the past few years, MITRE developed software to predict the performance of airborne phased array radars and algorithms using space-time adaptive processing (STAP) to suppress interference signals received by these radars. There are two types of software capabilities, one is the steady-state performance prediction simulation, which can model the environment of interference signals and the other is finite sample processing, which can process measured or simulated in-phase and quadrature (I & Q) data. These software capabilities have not been adequately evaluated with measured data. Rome Laboratory’s (RL’s) Multichannel Airborne Radar Measurements (MCARM) program is currently developing a testbed that will obtain this type of data. The objective of this project is to enhance MITRE’s simulation and processing capability to develop benchmarks for the RL testbed for determining its potential performance, and to process and evaluate the measured data that will be obtained from this testbed in FY95.

The project can be described by four overall tasks. Two tasks cover upgrades to each of the software capabilities. One is the application of an improved graphics interface, and one is a demonstration of the steady-state simulation plus recommendations for their application.

- Several enhancements have been made to the capability of the simulation model that predicts the steady-state performance. Elevation degrees of freedom (DOF) and a model for multiple point near-field scatterers has been added. Also, the outputs of a simulation code based upon geometric optics and diffraction that provides more detailed models of the interaction with aircraft scatterers can be inserted directly into the simulation. The simulation has been reorganized to run more efficiently.

- The finite sample processing software can now apply spatial and/or temporal preprocessing transformations to a cube of received I & Q data. The covariance matrix used to calculate the adapted weights is obtained from the transformed data.

- A mouse driven front-end with menus has been applied to the simulation and processing software. A graphical user interface (GUI) with several plotting package options has been provided for showing the input files and the output performance measures. Most of these have cross-platform capability.

- The simulation has been demonstrated for scenarios based upon the planned MCARM experiments. Future applications of these simulations have been recommended based upon these experiments, potential Airborne Warning and Control System (AWACS) applications, the ARPA (Advanced Research Projects Agency) mountain top data reduction, and the proposed Bistatic Adjunct Surveillance System (BASS).
SECTION 2
STEADY-STATE SIMULATION

MITRE's Advanced Airborne Radar Simulation is based upon the STAP architecture shown in Figure 1 [1-4]. Tapped delay lines are placed at the output of each array output, with the taps spaced by one pulse repetition interval (PRI). The adapted weights are obtained by multiplying the inverse of the covariance matrix created from the received signals (interference-plus-target-plus-noise signals) at each of the tap outputs with a steering vector. Each weight is applied to the appropriate PRI tap (i.e., pulse), and the weighted pulse outputs are coherently summed to provide the adapted output signal. The number of DOF is the number of pulses times the number of array outputs (elements, beams, or subarrays). When the number of pulses used in the STAP filter is less than the number of PRI outputs to be coherently processed, Doppler processing following the STAP filter summation provides further coherent gain for the target signal. The STAP performance (e.g., signal-to-interference ratio (SIR)) can be measured at the output of the summation and at any Doppler filter output. Additional temporal taps spaced by a sampling interval that is less than the length of a compressed pulse represents another dimension of DOF that can be applied to the output of each PRI tap for suppressing multipath and for channel mismatch [4]. The individual steady-state covariance matrices for the received clutter signals, jammer signals, and thermal noise are calculated based upon their modeled spatial and temporal correlation properties as affected by the platform velocity and crab angle, internal clutter motion, signal bandwidth, and the match of the output channels. Additional insight into the adapted performance is provided by calculating the eigenspectra of the interference covariance matrix and the adapted antenna gain patterns. Figure 2 is a global flow chart showing the options of the steady-state simulation with the shaded portions identifying the new capabilities that have been provided.

2.1 ELEVATION DOF

The Advanced Airborne Radar Simulation employs a planar array with a specified aperture weighting and with the antenna element gain pattern. Previously, the simulation characterized each column of the planar array on receive as a single non-adapted elevation subarray. The effects of azimuth spatial DOF on the performance of STAP can be evaluated by adaptively processing the outputs of these receive azimuth subarrays. However, for medium- and high-pulse repetition frequency (PRF) waveforms, the long-range target and short-range clutter may compete with each other because of range folding. For these waveforms, the space-time processing (STP) architecture may require additional spatial DOF in elevation to reduce the contributions of the short-range clutter as discussed below.
Figure 1. Jointly-Adaptive Space-Time Processing Architectures
Figure 2. Flow Chart With Options of Steady State Simulation
The simulation has been modified to allow the calculation an equal number of multiple non-adapted subarrays in elevation for each array column or azimuth subarray. Earlier the simulation had 52 subroutines. Fifteen subroutines were modified to incorporate this adaptive elevation DOF capability.

Two examples illustrate the elevation DOF feature of the simulation. First, we validate the program using a horizontal linear array with a single sidelobe jammer in a clutter-free environment. We then rotated the array by 90 degrees and placed the single jammer at the same angular location in elevation. The jammer-plus-noise-to-noise ratio (JNR) results from the two programs were identical when using the modified simulation. Second, we illustrate how elevation DOF can be used to mitigate short- and long-range clutter competing with a long-range target. Although the spatial elevation DOF alone can mitigate short-range clutter, additional temporal DOF are required to cancel long-range clutter while maintaining the mainbeam and not canceling the target.

2.1.1 Sidelobe Jammer Nulling Example

In this example, we chose a horizontal 20-element linear array electronically scanned in azimuth to -10 degrees (relative to broadside) and a sidelobe jammer located in azimuth at -32 degrees (relative to broadside). Using the previous steady-state version of the simulation, the quiescent JNR was 44 dB, and the adapted JNR using element space processing (i.e., 20 azimuth DOF) was 8.2 dB. Note that the jammer was not completely canceled due to a specified cancellation ratio of 55 dB. Next, a vertical 20-element linear array (i.e., 20 elevation DOF) electronically scanned in elevation to 10 degrees was used to cancel a sidelobe jammer at 32 degrees in elevation. Figure 3 shows the quiescent and adapted JNR using the modified simulation. Figure 4 shows the quiescent and adapted elevation receive antenna gain patterns, illustrating that there is an adapted null at 32 degrees used to cancel the sidelobe jammer. The performance measures and patterns were identical for the horizontal and vertical array configurations demonstrating the successful implementation of two dimensions of spatial DOF in the simulation.

2.1.2 Clutter Suppression Example

This example illustrates how elevation DOF can adaptively cancel short- and long-range clutter competing with a long-range target. For this example we use a 30 x 8 planar array electronically scanned in elevation to 2.8 degrees. The PRF of the radar waveform is 1400 Hz, which causes an additional three range ambiguities at elevation angles of 3.1, 4.9, and 75.4 degrees, respectively. Figure 5 shows the performance measures when eight elevation DOF are used to adaptively cancel the clutter. The clutter-plus-noise-to-noise ratio (CNR) is reduced from 60 to 0.3 dB. However, there is also target cancellation, as indicated by the significant loss in signal-to-noise ratio (SNR) and small improvement in SIR. The quiescent and adapted elevation receive antenna gain patterns shows the cancellation of both the target and clutter. Figure 6 illustrates that an adaptive null in the elevation gain pattern at 75.4 degrees cancels the short-range clutter.

<table>
<thead>
<tr>
<th>Performance Measures (in dB)</th>
<th>Adaptive</th>
<th>Quiescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{J+N}{N})</td>
<td>8.21</td>
<td>44.02</td>
</tr>
<tr>
<td>(\frac{S}{I})</td>
<td>28.87</td>
<td>-6.91</td>
</tr>
<tr>
<td>(\frac{S}{N})</td>
<td>37.09</td>
<td>37.11</td>
</tr>
</tbody>
</table>

* \(\frac{J+N}{N} \) = jammer-plus-noise-to-noise ratio

\(\frac{S}{I} \) = signal-to-interference ratio

\(\frac{S}{N} \) = signal-to-noise ratio

Figure 3. Performance Measures for Canceling a Sidelobe Jammer With 20 Elevation DOF
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Antenna Columns</td>
<td>1</td>
</tr>
<tr>
<td>Number of Antenna Rows</td>
<td>20</td>
</tr>
<tr>
<td>Frequency</td>
<td>L-Band</td>
</tr>
<tr>
<td>Elevation Weighting</td>
<td>30 dB Taylor, (\bar{N} = 5)</td>
</tr>
<tr>
<td>Elevation Electronic Scan Angle</td>
<td>10 Degrees</td>
</tr>
<tr>
<td>Radar Bandwidth</td>
<td>1.0E06 Hz</td>
</tr>
<tr>
<td>Jammer Model</td>
<td>Wideband</td>
</tr>
<tr>
<td>Jammer Elevation Angle</td>
<td>32 Degrees</td>
</tr>
<tr>
<td>Cancellation Ratio</td>
<td>55 dB</td>
</tr>
<tr>
<td>Number of Pulses Processed</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4. Elevation Receive Antenna Gain Patterns for Canceling a Sidelobe Jammer with 20 Elevation DOF
<table>
<thead>
<tr>
<th>Performance * Measures (in dB)</th>
<th>Adaptive</th>
<th>Quiescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{C+N}{N})</td>
<td>0.34</td>
<td>60.10</td>
</tr>
<tr>
<td>(\frac{S}{I})</td>
<td>-40.46</td>
<td>-54.37</td>
</tr>
<tr>
<td>(\frac{S}{N})</td>
<td>-40.12</td>
<td>5.74</td>
</tr>
</tbody>
</table>

* \(\frac{C+N}{N} \) = clutter-plus-noise-to-noise ratio

\(\frac{S}{I} \) = signal-to-interference ratio

\(\frac{S}{N} \) = signal-to-noise ratio

Figure 5. Performance Measures for Clutter Cancellation with 8 Elevation DOF
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Antenna Columns</td>
<td>30</td>
</tr>
<tr>
<td>Number of Antenna Rows</td>
<td>8</td>
</tr>
<tr>
<td>Frequency</td>
<td>L-Band</td>
</tr>
<tr>
<td>PRF</td>
<td>1400 Hz</td>
</tr>
<tr>
<td>Azimuth Weighting</td>
<td>30 dB Taylor, $\tilde{N} = 5$</td>
</tr>
<tr>
<td>Elevation Weighting</td>
<td>30 dB Taylor, $\tilde{N} = 5$</td>
</tr>
<tr>
<td>Elevation Electronic Scan Angle</td>
<td>2.8 Degrees</td>
</tr>
<tr>
<td>Radar Bandwidth</td>
<td>1.0E06 Hz</td>
</tr>
<tr>
<td>Clutter Model</td>
<td>Constant Gamma (-9 dB)</td>
</tr>
<tr>
<td>Number of Range Ambiguities</td>
<td>3</td>
</tr>
<tr>
<td>Number of Receive Azimuth Subarrays</td>
<td>1</td>
</tr>
<tr>
<td>Number of Pulses Processed</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 6. Elevation Receive Antenna Gain Patterns for Clutter Cancellation with 8 Elevation DOF
However, there are adaptive nulls in the mainlobe corresponding to the elevation angle locations of the long-range clutter (which includes the elevation location of the target).

Temporal DOF (i.e., pulses) can adaptively discriminate a moving target from the long-range clutter in the main beam. Figure 7 shows the performance measures using 32 DOF where four temporal and eight elevation DOF are used simultaneously to cancel the clutter. Eigenvalue compensation was applied to minimize antenna pattern distortion [3]. The CNR is reduced from 60.0 to 6.5 dB, while the SNR is increased from 5.7 to 10.7 dB, resulting in a significant improvement in SIR from -54.4 to 4.1 dB. Figure 8 illustrates the elevation receive antenna gain pattern evaluated at the target Doppler (i.e., half the blind speed).

2.2 NEAR-FIELD SCATTERING

Near-field scattering by the radar’s platform can degrade the free-space pattern of the antenna by redirecting energy from the sidelobes into the mainbeam, thereby degrading the radars performance. STP has been shown to be an effective technique for mitigating near-field scattering [6]. For each clutter scatterer, the software calculates an entry of the steady-state covariance matrix based on the radar range equation, the free-space transmit gain pattern of the array, and the linear phase terms due to the clutter’s spatial (i.e., element-to-element) and temporal (i.e., tap-to-tap and pulse-to-pulse) correlation properties. In the absence of near-field scattering, the clutter steady-state covariance matrix is spatially and temporally stationary, and is constructed by calculating only a single row of entries and exploiting its Toeplitz structure. However, one of the critical factors that can limit the performance of STAP is the near-field scattering effects due to the antenna-aircraft interactions. The modifications to include the scattering effects from near-field obstacles in the simulation’s steady-state mode are described below.

2.2.1 Point Scatterer Model

The effects of multipath caused by point scatterers in the near-field of the array antenna can be described by the sum of four scattering paths as illustrated in Figure 9. The direct transmit and receive path between the array and a clutter patch in the far field of the array on the ground is shown in Figure 9a. Near-field scattering creates three additional paths. One bounce path on receive as in Figure 9b requires augmenting the steady-state covariance matrix calculation with additional non-linear phase terms due the nonstationary spatial correlation properties of the received clutter. One bounce path on transmit as in Figure 9c requires the calculation of the far-field transmit gain pattern in the presence of the near-field point scatterers. The two-bounce path in Figure 9d is a composite of one bounce path on transmit and one on receive. These three added bounce paths cause the steady-state covariance matrix for the received clutter to be non-Toeplitz, where all entries of the matrix need to be calculated explicitly. Therefore, this modification can significantly increase the computational complexity and run time of the simulation.
<table>
<thead>
<tr>
<th>Performance Measures (in dB)</th>
<th>Adaptive</th>
<th>Quiescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left(\frac{C+N}{N} \right))</td>
<td>6.51</td>
<td>60.10</td>
</tr>
<tr>
<td>(\left(\frac{S}{I} \right))</td>
<td>4.14</td>
<td>-54.37</td>
</tr>
<tr>
<td>(\left(\frac{S}{N} \right))</td>
<td>10.65</td>
<td>5.74</td>
</tr>
</tbody>
</table>

* * \(\left(\frac{C+N}{N} \right) \) = clutter-plus-noise-to-noise ratio

* \(\left(\frac{S}{I} \right) \) = signal-to-interference ratio

* \(\left(\frac{S}{N} \right) \) = signal-to-noise ratio

Figure 7. Performance Measures for Clutter Cancellation with 8 Elevation DOF and 4 Pulses
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Antenna Columns</td>
<td>30</td>
</tr>
<tr>
<td>Number of Antenna Rows</td>
<td>8</td>
</tr>
<tr>
<td>Frequency</td>
<td>L-Band</td>
</tr>
<tr>
<td>PRF</td>
<td>1400 Hz</td>
</tr>
<tr>
<td>Azimuth Weighting</td>
<td>30 dB Taylor, (\bar{N} = 5)</td>
</tr>
<tr>
<td>Elevation Weighting</td>
<td>30 dB Taylor, (\bar{N} = 5)</td>
</tr>
<tr>
<td>Elevation Electronic Scan Angle</td>
<td>2.8 Degrees</td>
</tr>
<tr>
<td>Radar Bandwidth</td>
<td>1.0E06 Hz</td>
</tr>
<tr>
<td>Clutter Model</td>
<td>Constant Gamma (-9 dB)</td>
</tr>
<tr>
<td>Number of Range Ambiguities</td>
<td>3</td>
</tr>
<tr>
<td>Number of Receive Azimuth Subarrays</td>
<td>1</td>
</tr>
<tr>
<td>Number of Pulses Processed</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 8. Elevation Receive Antenna Gain Patterns for Clutter Cancellation with 8 Elevation DOF and 4 Pulses
Figure 9. Four Simulated Scattering Paths
2.2.2 Examples of Point Scatterer Model

Two examples are presented to illustrate the near-field point scattering model of the simulation. First is the effect of near-field scattering on the cancellation of a single sidelobe jammer and second is its effect on clutter cancellation.

A 16-element horizontal linear array was simulated, with the antenna-platform interactions represented by a line of eleven closely spaced point scatterers (each with a bistatic cross section of 2 m²), as shown in Figure 10. The array is collinear with the x-axis and centered about the origin, and the platform heading is in the positive x-direction. The single sidelobe jammer is located at -43 degrees in azimuth. Figure 11 shows the quiescent and adapted receive antenna gain patterns without near-field scattering. Figure 11 shows the quiescent and adapted performance measures in the absence of near-field scattering. The jammer was not completely canceled (i.e., adapted JNR equal 2.9 dB) due to the channel matching, cancellation ratio of 50 dB as shown in Figure 12. In comparison, Figure 13 shows the quiescent and adapted patterns in the presence of the near-field point scatterers. The quiescent gain in the azimuth direction of the jammer increased the JNR by almost 13 dB, as show in Figure 14. The near-field scattering and channel mismatch effects increased the adapted JNR to 6.3 dB. However, if the bistatic cross section of each of the near-field scatterers is reduced, the adapted performance approaches the level achieved without near-field scattering.

The effect of the line of point near-field scatterers on clutter suppression was illustrated with a horizontal linear array of columns. Figure 15 shows the adapted SIR without near-field scattering for a varying number of spatial DOF or columns and temporal DOF or pulses. The adapted SIR is normalized by the adapted SIR obtained in the noise-only case resulting in a maximum achievable value of 0 dB. From Figure 15, for example, canceling the clutter with an internal motion of 0.1 m/s and adapted SIR of -3 dB requires eight elements and three pulses. Figure 16 shows the adapted SIR for the same array with the line of eleven near-field point scatterers. In order to achieve an adapted SIR of less than 3 dB with eight to twelve columns now requires four pulses and there is a considerable degradation with only four columns.

2.2.3 Geometric Theory of Diffraction (GTD) Model

The second modification uses a simulation that models the electromagnetic interaction between an antenna and its platform (e.g., the airplane on which it is mounted). The Numerical Electromagnetics Code-Basic Scattering Code (NECBSC), a simulation that is based upon geometric optics and the GTD. It determines the complex amplitude and phase information at each far-field point (corresponding to a clutter scatterer location) due to each transmit antenna element in the presence of a model of the aircraft structure. This simulation was developed by Ohio State University to model interactions between antennas and their platforms [7]. The signal at each of the array outputs obtained from this GTD-based
Figure 10. Location of Eleven Near-Field Point Scatterers
Figure 11. Azimuth Receive Antenna Gain Patterns for Cancelling a Sidelobe Jammer, Without Near-Field Scattering
Performance Measures (in dB) Adaptive Quiescent

<table>
<thead>
<tr>
<th>Expression</th>
<th>Adaptive</th>
<th>Quiescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{J+N}{N})</td>
<td>2.92</td>
<td>38.80</td>
</tr>
<tr>
<td>(\frac{S}{I})</td>
<td>21.58</td>
<td>-14.28</td>
</tr>
<tr>
<td>(\frac{S}{N})</td>
<td>24.50</td>
<td>24.52</td>
</tr>
</tbody>
</table>

* \(\frac{J+N}{N} \) = jammer-plus-noise-to-noise ratio

\(\frac{S}{I} \) = signal-to-interference ratio

\(\frac{S}{N} \) = signal-to-noise ratio

Figure 12. Performance Measures for Cancelling a Sidelobe Jammer Without Near-Field Scattering
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Antenna Columns</td>
<td>16</td>
</tr>
<tr>
<td>Number of Antenna Rows</td>
<td>1</td>
</tr>
<tr>
<td>Frequency</td>
<td>L-Band</td>
</tr>
<tr>
<td>Azimuth Weighting</td>
<td>Uniform</td>
</tr>
<tr>
<td>Azimuth Electronic Scan Angle</td>
<td>0 Degrees</td>
</tr>
<tr>
<td>Radar Bandwidth</td>
<td>1.0E06 Hz</td>
</tr>
<tr>
<td>Jammer Model</td>
<td>Wideband</td>
</tr>
<tr>
<td>Jammer Azimuth Angle</td>
<td>-4.3 Degrees</td>
</tr>
<tr>
<td>Cancellation Ratio</td>
<td>50 dB</td>
</tr>
<tr>
<td>Number of Pulses Processed</td>
<td>1</td>
</tr>
<tr>
<td>Number of Near-Field Point Scatterers</td>
<td>11</td>
</tr>
<tr>
<td>Bistatic Cross-Section</td>
<td>2.0 m²</td>
</tr>
</tbody>
</table>

Figure 13. Azimuth Receive Antenna Gain Patterns for Cancelling a Sidelobe Jammer, With Near-Field Scattering
<table>
<thead>
<tr>
<th>Performance Measures (in dB)</th>
<th>Adaptive</th>
<th>Quiescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\frac{J+N}{N})$</td>
<td>6.35</td>
<td>51.61</td>
</tr>
<tr>
<td>$(\frac{S}{I})$</td>
<td>16.97</td>
<td>-27.09</td>
</tr>
<tr>
<td>$(\frac{S}{N})$</td>
<td>23.31</td>
<td>24.52</td>
</tr>
</tbody>
</table>

* $(\frac{J+N}{N}) = \text{jammer-plus-noise-to-noise ratio}$

$(\frac{S}{I}) = \text{signal-to-interference ratio}$

$(\frac{S}{N}) = \text{signal-to-noise ratio}$

Figure 14. Performance Measures for Cancelling a Sidelobe Jammer With Near-Field Scattering
Figure 15. Performance Measures for Cancelling Clutter, Without Near-Field Scattering
Figure 16. Performance Measures for Cancelling Clutter, With Near-Field Scattering
simulation is stored on an output file that can be read into the steady state STAP simulation to construct the clutter steady-state covariance matrix [8]. The STAP performance predicted using this modification is based upon a more accurate model of both the near-field scatterer and the electromagnetic scattering phenomenology in comparison with the point scatterer model. However, this is provided at the expense of a significant increase in computation time because of this GTD simulation, particularly for a large array antenna.

2.3 STP SIMULATION EFFICIENCY

In the process of enhancing the steady-state STAP simulation to provide the new capabilities that have been described, the code has been reorganized. Each of the processing options, configurations for each dimension of DOF, interference signal scenarios (jammers and clutter), plus various aircraft-antenna interactions are described by separate callable subroutines. This enables the simulation to be readily applied to many radar scenarios. It has also enabled the CPU running time for the code to be sped up, which can be significant for large arrays. An example of this improved CPU efficiency is shown in Figure 17.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Antenna Rows (NUMELEV)</td>
<td>8</td>
<td>Number of Range Rings</td>
<td>1</td>
</tr>
<tr>
<td>Number of Clutter Scatterers (NCL)</td>
<td>181</td>
<td>No MTI Preprocessing (IUSMTL = 0)</td>
<td></td>
</tr>
<tr>
<td>Number of Jammers (NESI)</td>
<td>4</td>
<td>No Antenna Pattern Calculation (IPLOTP = 0)</td>
<td></td>
</tr>
<tr>
<td>Adaptive Processing (IADAPT = 1)</td>
<td></td>
<td>No Eigenvalue Compensation (ICORR = 0)</td>
<td></td>
</tr>
<tr>
<td>Subarray Space Architecture (IELEM = 1)</td>
<td></td>
<td>No Eigenvalue Calculation (IPRNEIG = 0)</td>
<td></td>
</tr>
<tr>
<td>Number of Elevation Subarrays (NSUB_EL)</td>
<td>1</td>
<td>Number of Doppler Filters (NDOP) = 50</td>
<td></td>
</tr>
<tr>
<td>Number of Pulses Processed (NP)</td>
<td>2</td>
<td>Number of Coherently Integrated Outputs (NCI)</td>
<td>16</td>
</tr>
<tr>
<td>Number of Frequency Components (NFR)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 17. Illustrative CPU Run Times for RCF UNIX-Based Computers
SECTION 3

FINITE SAMPLE PROCESSING CAPABILITY

The data received from a pulse-Doppler radar is represented by a non-stationary train of pulses. For the application of STAP, these pulses must be recorded coherently (e.g., as I & Q data for each pulse). An estimated covariance matrix is created by averaging the covariances over a finite number of space (adjacent range cells) and time (pulses) samples from the data [8]. (This differs from the steady-state simulation where the covariance matrix represents an average based upon an infinite number of samples from each clutter cell.) Adapted weights are obtained by multiplying the inverse of this estimated covariance matrix by the steering vector. These weights can now be applied to the data samples corresponding to the ranges and pulses over which the weights were averaged.

The finite sample processing code that was developed earlier [8] has been modified to provide more flexible processing options. A flow chart of the modified code is shown in Figure 18. It begins with an input consisting of a finite train of I & Q data samples that are the outputs received by the array antenna. These received data samples can be obtained from measured data or from a simulation to create the finite train of received data samples.

A cube of data is created from this finite number of data samples. The axes of the cube are the spatial DOF (horizontal and vertical element outputs of the array), temporal DOF (pulses), and the contiguous range cell samples. Options for preprocessing transformations of the data are then provided: Spatial transformations from element space to either beam-space or subarray space and temporal transformations from pulses to Doppler frequency.

The inverse of the estimated covariance matrix obtained from all or a subset of the finite sample data cube is multiplied by the appropriate steering vector to create the adaptive weights. These weights are then applied to the data cube to obtain the processed output signal. The adaptive processing options include N-pulse STAP followed by Doppler processing (where N is less than the total number of coherent pulses recorded) and higher-order Doppler frequency-factored processing [9]. The available output performance measures are the interference signal level and the SIR versus range or Doppler frequency. To illustrate this finite sample processing capability, a data file from the Naval Research Laboratory eight-element airborne UHF array was processed. The SIR versus range performance with no processing and with three-pulse STP is shown in Figure 19. For this example, the target signal at each range is made proportional to the steering vector and is not a function of elevation angle. In general, to calculate the SIR when the target signal is not already in the data (e.g., to insert a target signal) will require the development of a simulated target signal as a function of elevation gain pattern and Doppler frequency.
Read radar, antenna, and processing parameters

Read input data file
- I and Q data from each output

Create data cube
- Spatial DOF
- Temporal DOF
- Range samples

Preprocessing transformations
- Spatial: elements to beams or subarrays
- Temporal: time to Doppler frequency

Calculate estimated covariances and adaptive weights

Adaptive array performance measures

Figure 18. Finite Sample Processing Option
A GUI has been provided as an intuitive means for running the software and displaying its output [10]. Interaction using the interface to the software is mouse-based with pull-down menus describing output options. The GUI prompts the user for an interactive editing and verification of an input file, runs the software, and then offers several options for viewing and storing the output. This is illustrated by the pull down menu in Figure 20 for providing the options for viewing the output data.

The interface is written in a relatively new interpreted scripting language developed by J. Ousterhout at U. C. Berkeley called Tool Command Language and Toolkit (Tcl and Tk). This language was chosen for several reasons, including its cross-platform functionality and the short time and simplicity with which applications can be developed and modified using it.

The cross-platform functionality of the GUI and the plotting software, GNUPlot, (a freeware package developed at Dartmouth) that has been implemented with it was important in their selection since the simulation runs on both VMS and UNIX platforms. Tcl uses the same interpretation method for both types of operating systems. Also, since the script is easily modifiable to accommodate any plotting software package that can be loaded as a series of plotting instructions at the command line, other software for creating plots can also be used for specific platforms for which they are available, such as MATLAB.
Figure 20. View Simulation Output Data Option
SECTION 5

DEMONSTRATION OF STEADY-STATE SIMULATION

The capability provided by the steady-state simulation was demonstrated by its use for the Joint Airborne Early Warning (AEW) STAP Requirements Study. Simulated output I & Q data cubes for an airborne radar with a high PRF were created from the covariance matrix of the steady-state simulation. A Cholesky decomposition is applied to the steady-state covariance matrix for each range. The lower triangular matrix that is created is multiplied by a complex Gaussian variance vector with zero mean to obtain the I & Q data samples for each range. This is repeated for each of the unambiguous ranges. The size of the data cubes was 32 elements x 256 pulses x 140 ranges (the unambiguous range interval). Because of the design of the antenna, this required a simulation with both vertical and horizontal spatial DOF in the array aperture. An example of the spectrum obtained from two data cubes created from two Monte Carlo runs for the same scenario is shown in Figure 21. The average of a large number of these spectra approaches the steady-state spectrum.

A second demonstration is based upon a MCARM experiment scenario described by the radar and environmental parameters in Table 1. The clutter-plus-noise-to-noise ratio obtained from two independent simulations of the scenario are compared to provide a basis of confidence in the steady-state adaptive simulation described in this report [5]. The other simulation, which only provides performance prediction of an airborne radar without adaptive processing and with idealized Doppler filters (no “spilling” between adjacent bins), has been compared closely with measured data. One unambiguous 75-km range obtained from the steady-state adaptive simulation is shown in Figure 22a. The performance for the same scenario obtained from the second simulation is shown in Figure 22b for two adjacent 75-km unambiguous range intervals. In Figure 22b, the antenna scanned to -14.5 degrees in azimuth and the 2000-Hz extent of the Doppler frequency spectrum is represented by 200 Doppler “bins.” Also, the color scale of Figure 22b plot is more compressed than for Figure 22a. The high level of clutter signal calculated in the main beam, using both simulations, is caused by the high constant sigma model for clutter chosen for this scenario.

The adaptive suppression of received clutter is demonstrated with the same scenario using the steady-state STAP simulation. Figure 23a is a line plot of the same unadapted performance shown in Figure 22a. After two-pulse space-time adaptive filtering, the CNR is significantly reduced as shown in the line plot in Figure 23b.
Figure 21. Examples of Finite Sample Clutter Spectra Created From Simulation With Two Spatial Dimensions of DOF
Table 1. Input Parameters for the MCARM Example

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Power (kW)</td>
<td>14.4</td>
</tr>
<tr>
<td>Number of Antenna Columns</td>
<td>12</td>
</tr>
<tr>
<td>Number of Antenna Rows</td>
<td>8</td>
</tr>
<tr>
<td>Frequency</td>
<td>L-Band</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>2000.0</td>
</tr>
<tr>
<td>Radar Bandwidth (MHz)</td>
<td>1.0</td>
</tr>
<tr>
<td>Azimuth Scan Angle (Degrees)</td>
<td>14.5</td>
</tr>
<tr>
<td>Elevation Scan Angle (Degrees)</td>
<td>2.5</td>
</tr>
<tr>
<td>Platform Altitude (Feet)</td>
<td>4921.5</td>
</tr>
<tr>
<td>Platform Velocity (nmi/sec)</td>
<td>219.7</td>
</tr>
<tr>
<td>Platform Crabbing</td>
<td>None</td>
</tr>
<tr>
<td>Uncompressed Pulsewidth (μsec)</td>
<td>100.0</td>
</tr>
<tr>
<td>Fractional Wavelength Spacing — Columns</td>
<td>0.454</td>
</tr>
<tr>
<td>Fractional Wavelength Spacing — Rows</td>
<td>0.588</td>
</tr>
<tr>
<td>Noise Figure (dB)</td>
<td>2.5</td>
</tr>
<tr>
<td>System Losses</td>
<td>None</td>
</tr>
<tr>
<td>Additional Losses on Target Only (dB)</td>
<td>4.5</td>
</tr>
<tr>
<td>Atmospheric and Lens Losses</td>
<td>Included</td>
</tr>
</tbody>
</table>
Table 1. Input Parameters for the MCARM Example (Concluded)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancellation Ratio (dB)</td>
<td>60.0</td>
</tr>
<tr>
<td>Clutter Model</td>
<td>Constant Sigma</td>
</tr>
<tr>
<td>Mean Clutter Level, Gamma (dB)</td>
<td>-9.0</td>
</tr>
<tr>
<td>Internal Clutter Motion</td>
<td>None</td>
</tr>
<tr>
<td>Number of Near-Field Scatterers</td>
<td>None</td>
</tr>
<tr>
<td>Number of Coherently Integrated Outputs</td>
<td>200</td>
</tr>
<tr>
<td>Number of Doppler Filters</td>
<td>200</td>
</tr>
<tr>
<td>Doppler Weighting</td>
<td>100 dB Dolph-Chebyshev</td>
</tr>
<tr>
<td>Azimuth Transmit Weighting</td>
<td>Uniform</td>
</tr>
<tr>
<td>Elevation Transmit Weighting</td>
<td>Uniform</td>
</tr>
<tr>
<td>Azimuth Receive Weighting</td>
<td>35 dB Taylor, $\bar{N} = 4$</td>
</tr>
<tr>
<td>Elevation Receive Weighting</td>
<td>Uniform</td>
</tr>
<tr>
<td>Number of Receive Elevation Subarrays</td>
<td>2</td>
</tr>
<tr>
<td>Number of Elements Per Receive Elevation Subarray</td>
<td>4</td>
</tr>
<tr>
<td>Target Radar Cross-Section (m2)</td>
<td>2.0</td>
</tr>
<tr>
<td>Number of Non-Adaptive Pulses Processed</td>
<td>1</td>
</tr>
<tr>
<td>Number of Adaptive Pulses Processed</td>
<td>2</td>
</tr>
<tr>
<td>Steering Vector Doppler</td>
<td>Half Blind Speed</td>
</tr>
</tbody>
</table>
Figure 22. MCARM Scenario, Demonstration of Non-Adaptive Performance Using Two Independent Simulations
Figure 23. MCARM Scenario, Demonstration of Clutter Reduction Using Steady-State STP Simulation
SECTION 6
APPLICATIONS FOR SIMULATION AND PROCESSING SOFTWARE

The capability and flexibility that have been added to this software will enable it to be usefully applied to many current and planned programs for predicting performance and for off-line processing of measured data. These are outlined briefly.

• MCARM experiment
 - process measured data
 - evaluate alternative processing architectures
 - effect of near-field scattering for antenna platform
 • predict performance (increase of CNR) when beam is steered toward wing
 • process measured clutter data with beam steered toward wing
 • evaluate options for processing architectures to suppress near-field scattering
 • insert near-field scattering effects into clutter data measured using free space antenna
 - predict performance of current and real-time MCARM experiments and identify beneficial data gathering scenarios

• Demonstrate increased surveillance capability of slow, small targets for AWACS radar using STAP
 - reconfigured MCARM array (8 rows x 16 columns, two to four subarrays/row, horizontal polarization) to provide more elevation DOF and fit in same radome on BAC1-11
 • model flight and scan configurations to provide “J hook” characteristics in measured clutter data
 • evaluate processing techniques based upon row outputs for suppressing clutter
 - evaluate sidelobe canceler architectures for AWACS using auxiliary radiators around periphery of array and guard channel
• ARPA mountain top data reduction
 - process measured data
 - insert effects of near-field scattering into measured data and evaluate processing techniques
 - predict performance of future airborne experiment using RSTER radar
• Rome Laboratory’s Bistatic Adjunct Surveillance System (BASS)
 - predict performance with alternative STAP architectures
 - process measured or simulated I & Q data from receiving array outputs
• Predict performance of future airborne phased array radar candidates and evaluate alternative STAP architectures
SECTION 7

CONCLUSION

Enhancements have been added to our STAP steady-state simulation and processing software for an airborne phased array radar that provide more flexible models of the antenna and processing architecture and more realistic models for the simulation of the electromagnetic environment. Also, a GUI has been created that makes it simpler to control the input parameters, to examine input data files and to provide a flexible choice of output performance parameters and output formats. As a result, the simulation can be more effectively used to predict the performance of airborne radars and examine the potential benefits of using adaptive STAP with these radars. Also measured or simulated finite sample data can be processed to determine the viability of alternative processing architectures. These new features and capabilities have been demonstrated and potential applications identified.
LIST OF REFERENCES

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEW</td>
<td>Airborne Early Warning</td>
</tr>
<tr>
<td>ARPA</td>
<td>Advanced Research Projects Agency</td>
</tr>
<tr>
<td>AWACS</td>
<td>Airborne Warning and Control System</td>
</tr>
<tr>
<td>BASS</td>
<td>Bistatic Adjunct Surveillance System</td>
</tr>
<tr>
<td>CNR</td>
<td>clutter-plus-noise-to-noise ratio</td>
</tr>
<tr>
<td>CPU</td>
<td>central processing unit</td>
</tr>
<tr>
<td>DOF</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>GTD</td>
<td>geometric theory of diffraction</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>JNR</td>
<td>jammer-plus-noise-to-noise ratio</td>
</tr>
<tr>
<td>MCARM</td>
<td>Multichannel Airborne Radar Measurements</td>
</tr>
<tr>
<td>NECBSC</td>
<td>Numerical Electromagnetics Code-Basic Scattering Code</td>
</tr>
<tr>
<td>PRF</td>
<td>pulse repetition frequency</td>
</tr>
<tr>
<td>PRI</td>
<td>pulse repetition interval</td>
</tr>
<tr>
<td>RL</td>
<td>Rome Laboratory</td>
</tr>
<tr>
<td>SIR</td>
<td>signal-to-interference ratio</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>STAP</td>
<td>space-time adaptive processing</td>
</tr>
<tr>
<td>STP</td>
<td>space-time processing</td>
</tr>
<tr>
<td>Tcl and Tk</td>
<td>Tool Command Language and Toolkit</td>
</tr>
</tbody>
</table>
MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and technologies of command, control, communications and intelligence and to transition them into systems to meet customer needs. To achieve this, Rome Lab:

a. Conducts vigorous research, development and test programs in all applicable technologies;

b. Transitions technology to current and future systems to improve operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of surveillance, communications, command and control, intelligence, reliability science, electro-magnetic technology, photonics, signal processing, and computational science.

The thrust areas of technical competence include: Surveillance, Communications, Command and Control, Intelligence, Signal Processing, Computer Science and Technology, Electromagnetic Technology, Photonics and Reliability Sciences.