Shipboard IRST Support

Final Briefing to
Office of Naval Research
October 1994
Environmental Research Institute of Michigan
Project Tasks

- Target vehicle signature
 - dynamic variation due to maneuvers (including effects of guidance and control)
 - vehicle reflectance properties
- Environmental effects
 - atmospheric refraction (including turbulent effects)
 - emission and reflection from opaque backgrounds
- Sensor Trade Studies
- Advanced Discriminants
 - selection of spectral band or bands
 - spectral diversity.
Elevation Variation during CM Approach

![Graph showing elevation variation over time from launch.](image-url)
Multispectral Gain for Two Target Classes

5 km Visibility

SCR

Range (km)

Supersonic

Subsonic

LWIR

2 bands

LWIR

2 bands
Multispectral Gain, Good Visibility

23 km Visibility

Range, km

SCR

MWIR
LWIR
2 bands
MWIR
LWIR
2 bands

Supersonic
Subsonic

IRIA
10/21/94
Supersonic Vehicle, 23 km Visibility

SCR

Range, km

MWIR
LWIR
2 bands
Multispectral Gain, Good Visibility (Cool Vehicle)

Subsonic Vehicle, 23 km Visibility

- MWIR
- LWIR
- 2 bands

SCR vs Range, km

10/21/94
Coating Effects on Target Signature

- Detection ranges are sensor noise limited not clutter limited
- BRDF of various aircraft coatings are not all diffuse
- Specularity decreases target contrast and therefore SCR since target signal is primarily reflected background and not thermal emission from the target itself
Glossy Coating

- The reduction in SCR is apparent
- Multispectral processing does have some small benefit when the target has a glossy coating
Target Insertion in Backgrounds

- Target-environment interaction
 - reflectance of the environment from target surfaces
 - heat transfer from the environment
 - occultation of the background by the target

- Point targets
 - will appear as an Airy spot filling more than one detector
 - technique for efficiently inserting point targets
 » compute the FFT of a single pixel
 » phase shift the transform to give it the correct sub-pixel shift
 » multiply by the MTF of the IRST optics and detector
 » inverse transform and add the radiance to the image
Extended Target Insertion

- Edges must be blended properly with the background
- Compute target signature for chips which include a portion of clutter surrounding the target
- Spatial sample interval should be no more than half of that of the final image
Transmission and Path Radiance

- Transmittance can be as small as 6-10% even with high visibilities.
- For long ranges, SCR dominated by the sensor noise.
- Short range SCR is dominated by background clutter.
- Path radiance adds a bias to the signals detected by an IRST.
 - At long ranges it can fill a significant portion of the detector dynamic range
 - Random photon arrival times of this energy can increase the level of noise added to the signal by the sensor
Turbulence and Scintillation

- Turbulence will also cause the scintillation of extended sources, such as the background clutter.
- Variance will be less than that of a point source due to spatial averaging over the extended background.
- Refractive index structure parameter is a weak function of wavelength.
Vertical Refractive Index Gradients

- Temperature increases with altitude
 - Air density decreases with height
 - Light rays are bent toward the Earth
 - This can cause the image of an object to appear:
 » above its true position (looming)
 » to have an angular size larger (towering)
 » smaller (stooping) than the true angular extent

- Temperature decreases with altitude
 - Air density increases with height and light rays are bent away from the earth.
 » Causes the image to appear below its true location (sinking).
 » Unstable atmosphere causes turbulence that produces fluctuations in image location as well as scintillation
ONR Sensor at Diamond Shoals

- Shows a distinct horizon with an elevation that changes by as much as three pixels
 - Could be attributed to "giant waves" [Takken, et al., 1993]
 - Similar to undulations seen in the visible images taken from a video tape

- Features were observed to propagate with the wind at speeds that are improbably high for low frequency "giant" waves

- Possible that these features are due to an air mass having azimuthal changes in the temperature profile propagated across the field of view by winds
Shadow Zones

- The optical horizon occurs where the rays are tangent and intersect the Earth's surface.
- Horizon is closer under these conditions
- There is a region below the optical horizon yet above the geometrical horizon in which targets cannot be seen.
- Analogous to shadow regions in sonar
Shadow Zone
Temperature Data Availability

- Standard meteorological practice is to measure air temperature at least two meters above the surface to avoid surface effects.
- Temperature measurements are usually made at a single height.
- Profiles of the fifty meters closest to the ground are not generally available.
- Majority of temperature data collected worldwide is of little use in determining what profiles should be used in any particular situation or location.
Sensor Trade Studies

- Multispectral and temporal processing of imagery from the AADEOS sensor
- AADEOS sensor is capable of preserving at least two nines (0.99) of correlation in the data collected.
Statistical Characterization

- Estimate of clutter and correlation levels from four locations in images
- Fifty contiguous sky pixels used to characterize sensor noise levels
- Estimates made of correlation lengths of four types of backgrounds after removing linear trend
Conclusions

- Some targets exhibit anomalous relative motion
 - effect pronounced during turns
 - non-linear motion may impact target detection performance

- Multispectral processing results in modest gain for standard targets in an open ocean scenario.
 - More gain is realized against targets with advanced (reflective) coatings.
 - Greater payoff for multispectral is expected for an cruise missile viewed against a land background.
 - The use of multispectral processing for combat identification was not addressed.
Conclusions (2)

- A simple ocean clutter model agrees well with measured data acquired under different environmental conditions
- Atmospheric refractive effects can cause significant variations in the infrared scene
- SIRST performance may be radically reduced under certain atmospheric conditions
 - Refractive shadow zones may exist under some conditions
 - Additional data on temperature lapse rate are needed to determine the frequency of occurrence of this phenomenon.