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Abstract

We study the3D shape similarity between closed surfaces. We represent a curved or polyhe-

dral 3D object of genus zero using a mesh representation that has nearly uniform distribu-

tion with known connectivity among mesh nodes. We define a shape similarity metric based

on theL2 distance between the local curvature distributions over the mesh representations of

the two objects. For both convex and concave objects, the shape metric can be computed in

time O(n2), wheren is the number of tessellation of sphere or the number of meshes which

approximate the surface. Experiments show that our method produces good shape similarity

measurements.
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1  Introduction

Being able to compare object shapes is essential for many computer vision tasks such as

object model categorization and hypothesis verification in model-based object recognition

[6]. Previous work has focused on comparing 2D scene images with 2D object models.

For example, as shown in Figure 1, a gradual shape change of a 2D closed curve, from a

square to a concaved triangle, can be captured by previous shape similarity measures (e.g.,

[1] [19]).

Figure 1 An example of 2D shape similarity: how to measure the gradual shape change from left to
right?

Recent progress in 3D sensors such as laser range finders and real-time stereo machines

has led us to the problem of comparing 3D objects with 3D or 2D scene image. In this

paper, we address the following question: to what extent is 3D shape A similar (or dissim-

ilar) to 3D shape B?

The desirable properties of such a shape similarity measure are as follows. First, such a

measure between two geometrical shapes should be a metric. In particular, the triangle

inequality is necessary since it is desirable in pattern matching and object recognition

applications. In addition, the distance function between two shapes should be invariant

under rigid transformation and scaling, easy to compute, and intuitive with human shape

perception [1].
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The problem of shape similarity has been studied extensively in both machine vision and

biological vision. Readers interested in human perception of similarity, such as contextual

and asymmetrical properties, are referred to Tversky [23] and Mumford [16]. For human

perception, other features such as color or functional information are also used to compare

objects. In this paper, we focus on geometrical shape similarity because geometry is the

basis for other features such as color and reflectance, etc. As a first step toward 3D shape

similarity with arbitrary topology, we restrict ourselves only to objects of genus zero

(objects without holes). We want to compare polyhedral shapes as well as smooth surfaces.

To compare different shapes, one must first understand how to represent them. Most work

assumed an object shape to be a two dimensional closed contour. Many previous methods

can evaluate the shape similarity among the set of 2D closed polygons shown in Figure 1.

For instance, Schwartz and Sharir [19] proposed to approximate a closed 2D curve, after

proper smoothing if necessary, by a simple polygon with equal-length edge segments. The

polygon was then represented by the turning angle (a measure of local curvature) at each

vertex. Arkin et al. [1] also represented local curvature at each vertex of a polygon using a

turning angle and, in addition, proposed an efficient algorithm to directly compare polygons.

Mumford [16] also suggested the use of moments as an alternative to curvature because

moments are also invariant to rigid transformation and scaling. Other 2D shape similarity

methods include 2D planar graph and graph matching by Kupeev and Wolfson [14], and

shape deformation by Basri et. al. [3].

Unlike using a closed 2D curve which can be simply parameterized by its arc-length, how-

ever, it is much more difficult to find an appropriate “data structure” in which to store a 3D

surface. How to compute and store the curvature information on the surface depends on the

choice of coordinate system. Without a proper representation, it is unclear how to compare

polyhedral shapes because curvature is zero everywhere except on vertices and edges. It is

no trivial task to compare simple 3D shapes as shown in Figure 2. In practice, local curva-
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ture on each sample point of surface is difficult to estimate robustly from noisy range data.

This problem is even more severe when only a single view depth map is available because

of surface discontinuity and occlusion.

Figure 2 An example of 3D shape similarity: how similar are these shapes?

Because a closed surface is topologically equivalent to a sphere, many spherical representa-

tions have been proposed to represent closed surfaces. The Gauss map characterizes the sur-

face normal at each point on a unit sphere, called a Gaussian sphere. Horn [9] proposed to

represent objects using an extended Gaussian image (EGI) which uses a distribution of mass

over the Gaussian sphere. Little [15] showed that an EGI could be used for pose determina-

tion. A Complex EGI was proposed by Kang and Ikeuchi [12] to store both surface area and

distance information which can be very useful for recovering translation. It has been proven

that two convex objects are congruent if they have the same EGIs. Nalwa [18] augmented

Gaussian images by some support function which was the signed distance of the oriented

tangent plane from a predefined origin. Hebert, Ikeuchi and Delingette [8] proposed a sim-

plex attribute image (SAI) to characterize the convex/concave surfaces, both as a coordinate

system and as a representation. For a summary of different spherical representations, the

reader is referred to [11] by Ikeuchi and Hebert. Brechbuhler, Gerig and Kubler [5] also

defined a one-to-one mapping from a simply-connected surface to a unit sphere, using

extended 3D elliptical Fourier descriptors.

The lack of a proper coordinate system (or data structure) for geometrical entities has driven

many researchers to compare 3D shapes in domains other than geometrical space. For
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example, Sclaroff and Pentland [20] used many modes to represent shapes and to compare

shapes based on the coefficients of the modes. Murase and Nayar [17] represented objects in

eigenspace, and compared objects depending on the proximity of two eigenvalues to one

another. Unfortunately, these quantities used for measuring similarity do not provide us with

geometrical intuition.

Even with the appropriate data structure, choosing a good metric for comparing shapes can

be confusing. For example, Arkin et. al. [1] usedL2 norm to compare polygons. Hutten-

locher and Kedem [10] used Hausdorff distance to compare the distance between two point

sets under translation. Kupeev and Wolfson [14] used graph matching to compare 2D

shapes. Basri et. al. [3] emphasized that the distance function has to be continuous and

should matter less as curvature becomes greater. Comparison among different metrics can

be found in [16].

Using a special spherical coordinate system we represent a closed curved or polyhedral 3D

surface without holes. A semi-regularly tessellated sphere is deformed so that the meshes sit

on the original data points while the connectivity among the mesh nodes is preserved. After

the deformation process, we obtain a spherical representation with local curvature at each

mesh node. The problem of comparing two shapes becomes that of comparing the corre-

sponding curvature distributions on spherical coordinates. This approach is illustrated in

Figure 3. The local curvature at each node is calculated by its relative position to its neigh-

bors. We then present an efficient shape metric between two objects: the metric is a distance

function between two corresponding curvature distributions on spherical coordinates.

The paper is organized as follows. In Section 2 we introduce a spherical representation of a

3D surface. Then we define local curvature and show how to compute it. In Section 3 we

present a distance metric between two objects, or between two spherical approximations of

these two objects obtained from surface deformation. We also construct two algorithms to
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compute the metric. We show experimental results in Section 4 and give final comments in

Section 5.

Figure 3 Comparing shapes from curvature distribution: an example of a sphere and a hexahedron.
The curvature has been color-coded so that the darker the bigger positive curvature and the
lighter the bigger negative curvature.

Shape Metric

how similar?

Object

Deformed
Object

Curvature
Distribution

Local
Curvature

on Sphere
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2  Representation of a Closed Surface

2.1  Discrete Representation of a Curve

To compare object shapes, one first has to find appropriate representations of those shapes

[2]. A standard way of representing a simple polygon is to describe its boundary by a circu-

lar list of vertices with known coordinates. To represent a simple closed 2D curve (not self

intersecting), one can parameterize the curve by a number of points. For example, one can

approximate the curve by equal length line segments. The similarity between two curves can

be measured by comparing the distribution of curvature measurement at the vertices of the

approximating polygons.

The curvature of a discrete curve at each node of the polygonal approximation can be

approximated by the turning angle between adjacent line segments. The turning angle can

be viewed as a discrete average measure of local curvature at the vertex. Like curvature, the

turning angle is independent of rigid transformation and scaling. To avoid possible unstable

representation under certain kinds of noise, dense equal length line segments have been

adopted in [19] and [8]. For noise-free polygons with few vertices, Arkin et. al. [1] showed

a very efficient algorithm which directly compares turning angles on vertices. Unfortunately

Arkin’s approach can not be extended to 3D polyhedra because of the lack of a proper coor-

dinate system.

2.2  Spherical Representation of a 3D Surface

A natural discrete representation of a surface is a graph of nodes, or tessellation, such that

each node is connected to each of its closest neighbors by an arc of the graph. We use a spe-

cial mesh each node of which has exactly three neighbors. Such a mesh can be constructed

as the dual of a triangulation of the surface [7]. To tessellate a unit sphere, we use a standard

semi-regular triangulation of the unit sphere constructed by subdividing each triangular face

of a 20-face icosahedron intoN2 smaller triangles. The final tessellation is built by taking
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the dual of the 20N2-face triangulation, yielding a tessellation with the same number of

nodes.

In order to obtain a mesh representation for an arbitrary surface, we use a deformable sur-

face algorithm in which we deform a tessellated surface until it is as close as possible to the

object surface. This algorithm drives the spherical mesh to converge to the correct object

shape by combining forces between the data set and the mesh. Our algorithm originates

from the idea of a 2D deformable surface [22] and is described in detail in [8]. The

deformed surface can accurately represent concave as well as convex surfaces. Our deform-

able algorithm is not sensitive to deformation parameters such as initial center and radius of

the sphere. An example of a free-form object model created using the deformable surface

and multiple view merging techniques [21] is show in Figure 4. The deformation process is

robust against data noise and moderate change of parameters such as initial sphere center

and radius [21].

Figure 4 An example of free-form object modeled from deformable surface: (a) (c) Images of a sharpei;
(b) (d) Deformable models of a shapei

The key idea of our spherical representation of surface is to produce meshes in which the

density of nodes on the object’s surface is nearly uniform1. Although perfectly uniform dis-

1.  Koenderink warned that one has to be very careful of any method that uses surface area of a polyhedral
model (p.597 of [13]). Surface area depends on the way in which triangulations are done. In our previous
work, we have shown how areas of different shapes are adjusted before comparison, in particular for partial
views[8].

(a) (b) (c) (d)
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tribution is impossible, a simple local regularity constraint can enforce a very high degree of

uniformity across the mesh. First of all, we start with a semi-regularly tessellated sphere.

Then we implement the local regularity constraint in the deformable surface algorithm such

that each mesh is similar to the others in area [8].

This local regularity constraint is a generalization to three dimensions of the regularity con-

dition on two dimensional discrete curves; this condition simply states that all segments are

of equal lengths. The difference between 2D and 3D cases is that it is always possible to cre-

ate a uniform discrete curve in 2-D, while only nearly uniform discrete surfaces can be gen-

erated in 3-D. In practice, the variation of mesh nodes on the surface is on the order of 2%

[8].

2.3  3D Local Curvature: An Approximation

After we obtain a nearly uniform surface mesh representation, the next step is to define a

measure of curvature that can be computed from the surface representation. Conventional

ways of estimating surface curvature, either by locally fitting a surface or by estimating first

and second derivatives [4], are very sensitive to noise. This sensitivity is mainly due to the

discrete sampling and, possibly, to the noisy data. We introduced in [8] a robust measure of

curvature computed at every node from the relative positions of its three neighbors. Our

method is robust because all the nodes are at relatively stable position after the deformation

process. The deformable surface process serves as a smoothing operation over the possibly

noisy original data. We called this measure of curvature the simplex angle.

The simplex angle varies between -π andπ, and is negative if the surface is locally concave,

positive if it is convex1. Given a configuration of four points, the angle is invariant by rota-

tion, translation, and scaling because it depends only on the relative positions of the points,

not on their absolute positions.

1.  It is interesting to note that the simplex angle is related to mean curvature at the vertex [Delingette].
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The spherical representation can approximate not only free-form objects, but also polyhe-

dral objects. For example, Figure 5 shows an example of a spherical polyhedral approxima-

tion of an octahedron with one concave face. Because of the regularity constraint, corners

and edges are not represented perfectly. All plane surfaces, however, are well approximated

even though the local regularity is enforced on all meshes.

Figure 5 (a) A spherical tessellation; (b) Deformable surface of an octahedron with a concave dent; (c)
Local curvature on each mesh node; (d) Curvature distribution on spherical representation
(The curvature on (c) and (d) is negative if it is light, positive if dark, zero if grey).
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3  The 3D Shape Similarity Metric

In section 2 we have explained how we obtain mesh representation and curvature distribu-

tion of a 3D surface over the sphere. LetSA andSB be the mesh representations of shapeA

and shapeB, andkR(SA) andkR(SB) be the curvature distribution functions under a spherical

rotationR. We then formally define the distance function between two 3D surfacesA andB

as theLp distance between their local curvature functionskI(SA) andkR(SB), minimized with

respect to the rotation matrixR over the sphere. The functionkI(SA) denotes the curvature

distribution ofSA under no rotation whereI is the identity matrix. Hausdorff distance [10]

can be an alternative toLp distance, but the computation is formidable.

3.1  A Distance Function on Sphere

We define theLp distancedp(SA, SB, R) betweenA andB at a certain spherical rotationR as

which is the sum of curvature differences over the sphere. Then the distance function

betweenA andB, Dp(A, B) becomes

which is minimizeddp over all possible rotationsR.

Property 1: Dp(A, B) is a metric for all p>0.

Proof:

Becausedp is aLp norm, we have

•  is positive. ;

•  is identity. ;

•  is symmetric. .

dp SA SB R, ,( ) kI SA( ) kR SB( )–
p
dS∫ 

 
1
p
---

=

Dp A B,( ) minR d
p

SA SB R, ,( )=

DP Dp A B,( ) 0≥
DP Dp A A,( ) 0=

DP Dp A B,( ) Dp B A,( )=
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The only thing left to prove is the triangle inequality .

Let R1 and R2 be the rotation matrices which minimize the  and ,

respectively,

where .

3.2  Algorithm One: A Global Search

The above proof showed that we can search over the spherical rotation space to compute the

distance between two curvature distributions. A naive algorithm can then be easily con-

structed. Because this is an exhaustive search, global minimum is always found provided

that the search step is small enough (this is, the number of searches is sufficiently large).

This leads to the following property:

Dp A B,( ) Dp B C,( )+ Dp A C,( )≥

Dp A B,( ) Dp B C,( )

Dp A B,( ) Dp B C,( )+

minR1
d

p
SA SB,( ) minR2

d
p

SB SC,( )+=

minR1
kI SA( ) kR1

SB( )–
p
dS∫ 

 
1
p
---

minR2
kI SB( ) kR2

SC( )–
p
dS∫ 

 
1
p
---

+=

minR1 R2, kI SA( ) kR1
SB( )–

p
dS∫ 

 
1
p
---

kR1
SB( ) k

R1
1–
R2

SC( )–
p
dS∫ 

 
1
p
---

+
 
 
 
 

≥

minR1 R,
2

dp SA SB R1, ,( ) dp SB SC R2, ,( )+( )=

minR3
d

p
SA SC R3, ,( )≥

Dp SA SC,( )=

R3 R1
1–
R2=
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Property 2: The distance between two shapesA and B, D2(A, B), can be computed in time

O(m3) wherem is the number of searches in each rotational space.

3.3  Algorithm Two: An Efficient Algorithm

The above time bound can be improved by employing a property of the semi-regularly tes-

sellated sphere: each node has exactly three neighbors. We have observed [8] that the only

rotations for whichd(SA, SB) should be evaluated are the ones that correspond to a valid list

of correspondences{Pi, Pj} between the nodesPi of SA and the nodesPj’  of SB. In Fig. ??,

nodeP1 of theSA correspondsP1’  of SB, and the two neighbors of P1 (P2, andP3) are put in

correspondence with two of three neighbors (P2’ , P3’  andP4’ ) of P1’ , respectively. Fig. ??

shows only 3 valid neighborhood matchings since each node has exactly three neighbors

and the connectivity among them is always preserved. Given correspondence of three nodes,

a spherical rotation can be calculated. This rotation defines a unique assignment for the

other nodes. In other words, there is a unique correspondence between a nodePj’  of SB and

a nodePi of SA, given the initial correspondences between{P1, P2, P3} and{P1’, P2’, P3’}.

Moreover, the number of such correspondences is3n wheren is the number of nodes of

spherical tessellation [8]. Figure 6 shows that there are three possible matchings at each

node. Equivalently, there are3n distinct valid rotations of the unit sphere. This analysis

leads us to an efficient algorithm for comparing two shapes.
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Figure 6 Matching of neighbors from (P2, P3, P4) to: (a) (P2’, P3’, P4’); (b) (P3’, P4’, P2’); (c) (P4’, P2’,
P3’) when P1 of shapeSA is matched to P1’ of shapeSB.

Property 3: The distance between two shapesA and B, D2(A, B), can be computed in time

O(n2) where n is the number of nodes, with preprocessing storageO(n2).

Proof:

Because the total match for each node is3n, we can find the global minimum in3n2. To

speed up the search for correspondence, we can make the lookup table for each node onSA

matching each node onSB. Since each match gives 3n correspondences, this lookup table

requires3n2 for storage.

Up to now we do not have exact one-to-one correspondence betweenSA andSB because of

the non-uniform nature of the semi-tessellated mesh structure. But the one-to-one corre-

spondence can be established by resampling each mesh using the regularity constraint

[Shum]. Once a set of spherical mesh nodes (along with its local curvature) is obtained, it is

possible to interpolate any point on the spherical coordinate from this set. For example, in

Figure 7, although there exist many-to-one mappings betweenP andQ (bothP1, andP2 can

be matched toQ1), mapping betweenP’ andP is unambiguous becauseP’ results from the

rotation ofP. The new mesh node atP’1 and its SAI value can be interpolated from its near-

P1

P2

P3

P4
P’3

P’4

P’2

P’1 P1

P2

P3

P4

P1

P2

P3

P4
P’1 P’1

P’2P’2 P’3

P’3 P’4

P’4
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est pointQ1 on setQ and three neighbors ofQ1. Let g(P’) andg(Q1) be the values of the

simplex angles at nodeP’ and its nearest nodeQ1, respectively. We have the following local

interpolation:

(EQ 1)

whereQ2, Q3, andQ4 are three neighbors ofQ1, and wi are the weights depending on the

distance betweenP’ andQi (i=1,2,3,4). The coordinates of the mesh node atP’ can be inter-

polated in the same way.

Figure 7 One-to-one matching: (a) Valid correspondence between nodes; (b) Table of correspondences.

g P'( ) wi Q
i

i 1=

4

∑=

P1

P2

P3

P4

Q2
Q3

P’3 Q1

node number

1 K

(b)

(a)

Q4

P’4

P’2

P’1

QK

P3P2P1 P4 PK

P’4P’3P’2P’1 P’K

Q4Q3Q1Q1

432
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4  Experiments

In this section, we present the results of applying our shape similarity metric to synthetic

data and to real objects. We have usedLp distance in the metric function defined in Section

3. For all experiments below, we will useL2 distance for the ease of computation.

Our data set consists of several polyhedra such as icosahedron and dodecahedron whose

shapes are known in advance. To make deformable surfaces, we generate uniformly ran-

dom-sampled data points over each object surface. We also use the free-form object model

generated from real range images. Unless specified, the frequency of spherical tessellation is

set to 7, which means that the total number of meshes is 980.

Figure 8 shows the approximation of a sphere by a set of regular polyhedra: a tetrahedron, a

hexahedron, a dodecahedron, and an icosahedron. Since curvature is constant everywhere

on a sphere, computing the minimum distance between a polyhedron and a sphere can be

greatly simplified. Figure 9 shows the distance between the polyhedron (convex) and the

sphere. Figure 10 shows a sequence of concave objects which are generated by making con-

cave dents on an octahedron. We show shape similarity between this sequence of concave

objects and an octahedron in Figure 11. The distance between the object (1) and the octahe-

dron is big because it is more concave and no longer star-shaped.

Figure 12 shows a comparison of shape similarity among a set of free-form objects. The dis-

tance functions among all objects are plotted in Figure 13a where all the distances on the

diagonal are zero. Figure 13b and Figure 13c show the distance between the object dog and

others, and the distance between the object sha and others, respectively. Figure 14 shows the

shape change from others to dog. Figure 15 shows the shape change from others to sha.

One possible drawback of our approach is that the quality of approximation of a polyhedral

or free-form surface depends on the number of patches chosen. For example, with frequency
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7 semi-regular spherical tessellation, we have 980 surface patches. We have 3380 patches

when the frequency is 13. Obviously the more surface patches we use, the better the approx-

imation is. Figure 16 presents the curvature distribution of an approximated hexahedron

when different tessellation frequencies are used. When the higher frequency is used, the

higher curvature distribution is narrower because of the better approximation. Figure 17

shows comparison of shape similarity measure when different tessellation frequencies are

used. The results demonstrate that the shape similarity measure is robust provided that a suf-

ficient number of tessellations is adopted.

Figure 8 Polyhedral approximation of a sphere (1) Tetrahedron; (2) Hexahedron; (3) Dodecahedron; (4)
Icosahedron; (5) Sphere.

Figure 9 Distance between a sphere and its polyhedral approximations.

(1) (2) (3) (4) (5)



17

Figure 10 Concaved octahedron (1) with one deep concave dent; (2) with one concave dent; (3) with two
dents; (4) with three; (5) with four; (6) with eight.

Figure 11 Distance between an octahedron and several concaved octahedron objects.

(1) (2) (3)

(4) (5) (6)
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Figure 12 (a) Free-form objects: dog and sha are generated from real range data [21]; dp1 and dp2 are
two approximations of dog; sp1 an sp2 are two approximations of sha; sd1, sd3, and sd3 are
three intermediate shapes between sha and dog. (b) A different view of all 9 objects.

(a)

(b)

dog

sha

sd1 sd2 sd3

sp2sp1

dp1 dp2

dog

sha

sd1

dp1 dp2

sp1 sp2

sd2 sd3
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Figure 13 (a) Shape similarity among all free-form objects: distance of pair-wise comparison. (b) The
distance between the object dog and others. (c) The distance between the object sha and others.

objectobject

distance (1) dog

(2) sha

(7) sd1

(8) sd2

(9) sd3

(4) dp1

(3) dp2

(5) sp2

(6) sp1
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to dog

to sha

among
objects
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Figure 14 Shape change from the object dog to others. From left to right: shapes are more and more
dissimilar to dog.

Figure 15 Shape change from the object sha to others. From left to right: shapes are more and more
similar to sha.

(1) (4) (7) (3) (8) (5) (6) (9) (2)

less and less similar to dog

(1) (4) (3) (7) (8) (5) (6) (9) (2)

more and more similar to sha
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Figure 16 An example (hexahedron) of curvature distribution of mesh representation at tessellation
frequencies: (a) f=7; (b) f=9; (c) f=11; (d) f=13.

Figure 17 Effect of tessellation frequency on shape similarity between regular polyhedron and a sphere.

(c) (d)(b)(a)

f=7

f=9

f=11

f=13
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5  Conclusion

We have employed a new data structure for storing object shapes of genus zero, both free

form and polyhedral. We build a spherical mesh representation that has nearly uniform dis-

tribution with known connectivity among mesh nodes. We iteratively deform a semi-tessel-

lated sphere so that the deformed mesh representation converges to the original shape. The

local curvature computed at each node captures the averaged curvature information in its

vicinity. The task of comparing two shapes is essentially one of comparing two curvature

distributions generated from deformed meshes. An important observation is that, unlike the

curvatures on sparse vertices and edges on polyhedra, the curvature distribution (such as on

a mesh representation on a sphere) can be used to compare shapes efficiently and effectively.

Based on the special structure of our mesh representation, we have also proposed an effi-

cient algorithm to computing the shape metric between two objects. We use the distance

function to analyze shape similarity between sets of concave and convex objects. Experi-

ments show that our shape similarity metric is robust and invariant under rigid transforma-

tion and scaling, easy to compute, and intuitive with human perception on shape.

Our approach is, in spirit, similar to the one used by Schwartz and Sharir [19] where they

approximated a 2D curve from noise data points by discretizing the turning function (a 2D

curvature in some sense) of two polygons into many equally spaced points. We discretize

the polyhedral and/or free-form surfaces into many approximately equally spaced patches.

An advantage of our distance function is that it is stable under a certain amount of noise.

Even with non-uniform noise, we can keep most part of object well represented.

Currently our approach is restricted to genus zero shape topology. Recent progress on geo-

metrical heat equation and geometry diffusion shed some light on how to compare topologi-

cal shape similarity as well as geometrical similarity. We will work in this direction.
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