e

.

o
.
N

Technical Document 2739
June 1995

Simulation of Time-Varying Filters for Spread Spectrum
Communication

John Custy

Approved for public release; distribution is unlimited.

Technical Document 2739
June 1995

Simulation of Time-Varying
Filters for Spread Spectrum
Communication

John Custy

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER
RDT&E DIVISION
San Diego, California 92152-5001

K. E. EVANS, CAPT, USN R. T. SHEARER
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work detailedn this document was performed by the Naval Command, Control and
Ocean Surveillance Center, RDT&E Division (NRaD), at NRaD’s Warminster Detachment,
Communication Systems Analysis Branch, Code 342. The work was funded by the ONR
Technology Program at NRaD under program element 0602232N, project number RC32C13,
work unit number 30-NNB101, and accession number DN081123.

Released by Under authority of

L. E. Smith, Head P. J. Finnegan, Head
Communication Systems Aircraft Communication
Analysis Branch Technology Division

RT

CONTENTS

1.0 INTRODUCTION ... e e e e e et 1
2.0 TIME-VARYING FILTER SIMULATIONS ON THE MACINTOSH 3
2.1 OVERVIEW OF THE TIME-VARYING FILTER SIMULATION
ON THE MACINTOSH ... o e 3
2.2 HOW TO USE THE SIMULATION e i 5
2.3 ANALYSIS OF TVF DATAIN MATLAB ... e 9
2.4 DESCRIPTION OF THE MAIN-EVENT LOOP AND OBJECTS
IN THE SIMULATION ... e e e 10
2.4.1 Baseband Signal Generator/BER Tester Object 12
2.4.2 Modulator and Demodulator Objects 13
2.4.3 Layer ObjeCtt 13
2.4.4 Transform Object 14
245 Channel Object 15
2.4.6 Window Object i e 17
2.5 AREAS FOR IMPROVEMENT OF MACINTOSH SIMULATIONS 18
3.0 SIMULATIONS OF TIME-VARYING FILTERS UNDER SPW ON THE SUN 19
4.0 CONCLUSIONS AND PLANS FOR FUTUREWORK 23
5.0 REFERENCES e 25
6.0 BIBLIOGRAPHY .. 27
Figures
Structure of the TVF simulation i, 3
2. Unitary transformation architecture used in the simulation for the
modulator and demodulator 4
3. Screen dump showing the time-varying filter simulation windows 6
4. The Apple menu for the TVF simulation 7
5. The File menu for the TVF simulation i ... 7
6. The Parameters menu for the TVF simulation 7
7. The Parameters dialog boX 8
8. The Actions menu for the TVF simulation 8
9. The Help menu for the TVF simulation, 9
10. Frequency spectrum of data going into the TVF demodulator 10
11. Main-eventloopin TVF simulation i it 11
12. Objects and their relationships in the TVF simulation 12

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,

25.

Messages that can be sent to a Signal Generator/BER

Tester ObJeCt

Messages that can be sent to a TVFObject
Messages that can be sent to a modulator object

Messages that can be sent to a demodulator object

Messages that can be sent to a layer object
Structure of a unitary transformation object
Messages that can be sent to a transform object
Messages that can be sent to a channel object . .

Histogram of real component of simulated Gaussian noise

Messages that can be sent to a window object ..

Communication system based on time-varying filters in SPW

A Mathematical program for generating the coefficients of random

unitary transformations and their inverses
A time-varying filter modulator developed in SPW

12
13
13
13
14
14
15
15
17
17
19

20
21

1.0 INTRODUCTION

As described in detail in Dyckman (1995), time-varying filters (TVFs) can be used to generate a
broad class of signals for spread spectrum communication. This document describes simulations
which have been developed as adjuncts to the mathematical analysis of these filters. Our specific
goal has been to obtain tools for the quantitative comparisons of TVF modulation against other spead
spectrum techniques in terms of bit error-rate performance and low probability of intercept/antijam
(LPI/AJ) performance. These simulations were developed to also aid in studying synchronization.

Several architectures for TVF modulators were identified in Dyckman (1995). The unitary trans-
formation architecture was chosen for these simulations primarily because this architecture appears
to hold promise for implementation in distributed hardware. Also, the optimal-matched filter detector
in additive white noise can be implemented as a simple inverse transformation.

Two simulations have been developed: one on the Macintosh and one under Comdisco’s Signal
Processing Worksystem (SPW) on a Sun. The Macintosh simulation can be used to spread a variety
of baseband signals with a TVF modulator and to carry out the inverse transformation using a TVF
demodulator. Modulated signals can be corrupted by noise or multipath effects before demodulation.
Bit error-rate statistics can be accumulated for all channel configurations. Modulated waveforms
which have passed through the channel can be saved to disk in Matlab readable format to perform
analysis. The simulation is object oriented, making it easy to understand and modify.

The simulations on the Sun were developed under SPW, which is a simulation environment for
communication systems. These simulations can be used to modulate and demodulate signals using
TVFs. Several channel models are provided with SPW. In addition, a variety of intercept receiver
and jammer models have been obtained from Wright Patterson Air Force Base for use under SPW,;
thus, these simulations may be used for studying AJ and LPI charactersitics of TVF-generated wave-
forms.

2.0 TIME-VARYING FILTER SIMULATIONS ON THE MACINTOSH

2.1 OVERVIEW OF THE TIME-VARYING FILTER SIMULATION ON THE MACINTOSH

The Macintosh simulations were written with Symantec C++, version 6.0. 1, and were repgtégded with
Symantec C++, version 7.0. The simulation consists of a collection of objects, where an object (for
example, a signal generator) consists of a collection of data and a group of functions that operate on
that data. Communication between objects occurs in terms of messages; that is, an object can send a
message to change the internal data of another object. For example, a message can be sent to a signal
generator object to change the frequency of the signal it is generating. Thus, the characteristics of an
object are changed only through a well-defined message structure, and a user does not have to be
concerned with the structure of the data within an object, or in the way in which an object’s response
to a message is implemented.

The object-oriented nature of the simulation provides important benefits. Since data are tightly
coupled with the functions that operate on them, modifications to the simulation can be carried out
with limited risk of unexpected side effects. Objects allow implementation details to be hidden from
the user. Also, the simulation is easy to understand from both a user’s standpoint and a programmer’s
standpoint, because of its structural similarity to a real-world communication system.

As shown in figure 1, the system being simulated consists of a baseband signal generator, a time-
varying filter modulator, a channel, a time-varying filter demodulator, and a detector. There is also a
provision for measuring bit error rates by comparing the baseband signal against the received
demodulated signal. The baseband signal generator, detector, and comparator are all part of a single
object because of the need for these items to share data as bit error-rate (BER) measurements are
made. In addition to the objects shown in the figure, window objects are also available for displaying
text and graphics. Since all waveforms in the simulation take on complex values, a complex data

TVF TVF

MODULATOR CHANNEL DEMODULATOR

! DETECTOR '
! BASEBAND !

(Integrate & Dump -
SIGNAL GENERATOR +

Threshold & Decision)

Lo >
DELAY COMPARATOR

'
TIME :

BER TESTER

........................

RUNNING ACCUMULATION
OF BER STATISTICS

Figure 1. Structure of the TVF simulation. The TVF modulator, channel, TVF demodulator,
and BER tests are objects in the simulation. The TVF modulator and demodulator are
composed of layer and transform objects.

type and functions for operating on it were developed. (The complex data structure and library pro-
vided with Symantec C++ 6.0. 1 had some bugs associated with it.) The signals coming out of the
modulator, passing through the channel, and going into the demodulator are baseband complex enve-
lope representations of RF-modulated signals (Jeruchim et al., 1992, p. 36).

The baseband generator generates complex valued waveforms that can take the form of a sinusoid
square wave, or pseudonoise sequence. The user can change the type of signal being generated and
its amplitude as the program is running. Bit error rates are measured by comparing the baseband
pseudonoise sequence against the output of an integrator that acts as a detector.

The output of the baseband generator is fed into a time-varying filter modulator that spreads the
signal. The structure of the modulator used in the simulation is shown in figure 2. It consists of two
layers, each of length 100, and of 50 unitary transform objects. As the simulation stands now, the
coefficients of the transformations yield pseudorandom unitary transformations. In general, these
coefficients can be set to any value by modifying the appropriate code.

M.|1I HE] ,48!49150'51[52! 53']98]99]100]

o
>
AEE - HEE
P
<>

|1| 2 |3 | ... 48’49 50[51‘52' 53 | ...]98|99]100

Signal Out

Figure 2. Unitary transformation architecture used in the simulation for the
modulator and demodulator. The 50 unitary transformations, marked T1
through T50, act on a block of 100 samples.

The filter operates by shifting the input signal into the top layer, one sample at a time. After 100
new samples have been shifted in, they are fed through the transformations to form samples in the
output layer. The resulting samples in the output layer are shifted out, one sample at a time; simulta-
neously, new samples arrive at the input layer. Thus, the transforms can be thought of as “firing”
every time a complete set of new samples has been shifted into the input layer. The processing gain
is directly proportional to the amount of oversampling of the input signal.

Both the modulator and demodulator have the same architecture (as shown in figure 2); the only
difference lies in the coefficients of the transformations. The transformations of the demodulator are
simply the matrix inverses of the modulator transformations. Dyckman (1995) explains rigorously
the sense in which this architecture is time varying, spectrum spreading, and time spreading.

The signal generated by the TVF modulator is fed into a channel object, which is based on a shift
register. It introduces a time delay corresponding to transit time through the channel and can also
introduce Gaussian noise and multipath effects.

The output of the channel is fed into a time-varying filter demodulator. This demodulator carries
out the inverse transformation performed by the modulator. Thus, the demodulator has the same
architecture as the modulator (shown in figure 2), but the unitary transformations of the demodulator

are the inverse transformations of the modulator. The modulator and demodulator are synchronized
by using knowledge of the exact time delay introduced by the channel. (The synchronization scheme
was kept as simple as possible at this point in anticipation of more practical schemes to be devel-
oped.)

The output of the demodulator is a re-creation of the baseband signal, except for the effects of
noise and multipath introduced by the channel. If the baseband generator is generating a pseudonoise
sequence, then data are collected for bit error-rate measurements; this is done by performing an inte-
grate and dump operation on the demodulated waveform. A decision about which bit was transmitted
(+1 or —-1) is made by comparing the output of the integrate and dump against a fixed threshold of
value zero. This result is compared against the true bit sent; a running count is kept of the total num-
ber of bits transmitted, number of bits in error, and number of bits received correctly.

2.2 HOW TO USE THE SIMULATION

The simulation runs on the Macintosh-II family of computers under System 7. Upon double-click-
ing on the TVF icon, the screen shown in figure 3 appears. The default configuration of the simula-
tion is as follows:

Baseband signal type: Pseudorandom sequence
Baseband signal amplitude: 10 units

Channel noise variance: 0 units

Multipath in channel: None

Four graphics windows and one text window are associated with the simulation. The graphics win-
dow in the upper-left corner shows the output from the baseband generator. This is the waveform
being fed into the TVF modulator. The output from the TVF modulator, shown in the upper right
window, is fed into the channel; the output from the channel is shown in the lower left window. This
waveform is different from the output of the modulator due to the time delay through the channel, the
effects of noise, and the effects of multipath. This waveform is fed into the TVF demodulator, whose
output is shown in the lower right window. This waveform would be the same as the output of the
baseband generator, except for a time delay and for the effects of channel noise and multipath. The
bottom-most window is a text window that provides feedback to the user whenever a simulation
parameter (that is, signal type, signal amplitude, noise, and/or multipath status) is changed.

"MOPUIM 1YyBlI-19MO0| 3Y1 Ul UMOYS SI Jo1eInpowap ayl wody Indino sy "uonewlojsuel] 4A1 9SIaAUI 8yl IN0 Salled
yolym ‘1o1e|npowsp syl ojul pay si [eubis siyL ‘Ya| JoMO| 8Y) e UMOYS SI [suueyd ay) wouy Indino sy ‘pappe si asiou
Ajuo ‘asay ‘yrednjnw 1o 8SIOU BINPOAUI UBRD YDIYyM ‘[Buuryd 8yl Olul Pa} SI WiodARM SIYL "Mopulm 1ybu-1addn ay ul
UMOYs SI Jolejnpow 4A 1 ayl wolj 1ndino ay] "loresauab Jaisibal-liys abeis-6z e Aq paresauab asuanbas asiouopnasd
B S| WIojanem puegaseq ayl -ioreinpow 13yl bulArea-awn ayp 01 Indul puegaseq ayl SMoOYs mopuim 1yaj-1addn

a2yl 'ybu 01 Ys| WOl [|0JIS SWIOJBARM ||V "SMOPUIM uoienwis a1 bulArea-awn ay) buimoys dwnp usaids ‘g ainbi4

. N —
12

THA0 pBUany uEEq sby yiodiy ngy w

000000 S (B 335 4SS Sy S0Ub|Jbn BS1ou By) B

"EOUBNbas wopubdophasd b Bulibdsuab 5| Jo}baBusb joubis ay) B

‘000000 01 93 }@s uelq sby apry | dub woibaausb |bubg W

3 TFE Ul Eub syand fabuBowy pub Bn|g ul B4p spubd | bad e dwod sun sjoubls |y —330y 2sba|d
‘mopuim yb) a-wojog
B3 ML UROYS S| oJ0lb | npowap 34y wodl 3ndino sy) cmopuim 113] woyioq Byl Ul unoys 31 “Joyb | hpowap
I Y3 0} ndul B} SL SI0D yd(ym (| BUUBYD S} w0 ndino a4y cmoputm B J uaddn By} Ul umoys
S IEUUBLD B 0} Jndul Ue SB SI0D UDiying W00 Rpow S|y} 4o INdino BYj CJoibNpoW b SB S0 YD | ym
431113 Butfupn-awy o ooy gndul sy s yDiyn Cunypususb jpubis b jo yndino 2y} smoys mopuim 43| R

sn}e}s uonenwis 41

Ky

B0 A

SRR % 2365 BN SRK 4 X R0 B SR R R ¢
B (3 diay suonoy sisjawesed Hp3y a4 e

Several menus are available to the user that allow the simulation to be modified as it is running.
The available menus are the Apple menu, the File menu, the Edit menu (not shown), the Parameters
menu, the Actions menu, and the Help menu. Author and version information is available under the

Apple (%) menu (figure 4). Desk Accessories are not available while the TVF simulation is running.

About TUF Simulation...

Figure 4. The Apple menu for the TVF simulation.

The File menu (figure 5) provides the Save Data As... command and the Quit command. The Save
Data As... command allows the last 1024 data points coming out of the channel to be saved to disk as
a Matlab M-file. This is a data file that can easily be read into Matlab for analysis, as is later

described.

Save Data As...

Quit

Figure 5. The File menu for the TVF simulation.

The Edit menu is not used in this simulation; it is included in an inactive state for future compati-
bility with desk accessories, and also to conform to Macintosh user-interface guidelines.

The Parameters menu (figure 6) has a single choice associated with it: Change Simulation Parame-
ters.... This menu choice brings up a dialog box (figure 7) that allows the user to change the type and
amplitude of the baseband waveform, the noise level in the channel, and to indicate whether or not

multipath is present.
Parameters
Change Simulation Parameters...

Figure 6. The Parameters menu for the TVF simulation.

| cance

AT
N

-

Figure 7. The Parameters dialog box.

The Actions... menu, shown in figure 8, allows the user to perform a number of actions on the sim-

ulation.

Increment Synchronization Delay
Decrement Synchronization Delay

Print Current BER Measurements
Toggle Graphics On/0ff
IWhat Time Is It?

Reset Bit Error Rate Tester

Figure 8. The Actions menu for the TVF simulation.

The Increment Synchronization Delay and the Decrement Synchronization Delay items change by
one unit the time delay between the modulator firing and the demodulator firing. By default, this
value is set to the sum of the time delay through the channel, the time delay through the modulator,
and the time delay through the demodulator, which results in proper synchronization. The total syn-
chronization delay is printed out whenever these items are changed.

The Print Current BER Measurement prints out all of the bit error-rate statistics kept by the sys-
tem; i.e., the number of bits received correctly, the number of bits received incorrectly, and the total
number of bits sent.

The Toggle Graphics On/Off item stops the four graphics windows from being updated. This is
useful for speeding up BER measurements, because the simulation spends most of its time drawing
to the screen.

The What Time Is It? item causes the total number of elapsed-time increments to be printed. Note
that this is greater than the number of data bits transmitted by a factor equal to the processing gain
(i.e., the rate at which the input baseband signal is oversampled).

The Reset Bit Error-Rate Tester should be used after changing signal amplitude, noise amplitude,
or multipath status. This menu choice resets to zero all accumulated BER data associated with the bit
error-rate tester.

The Help menu (figure 9) provides information about the TVF concept in general, how to use the
simulation, and how to modify the simulation. The information presented by these items is stored in
TEXT resources, thus facilitating updates when the program is modified.

The Time-Uarying Filter Concept...
How to Use This Simulation...
How to Modify This Simulation...

Figure 9. The Help menu for the TVF simulation.

2.3 ANALYSIS OF TVF DATA IN MATLAB

One of the most useful aspects of the Macintosh simulation is that data coming out of the channel
can be saved to disk as a text file for analysis in Matlab. To perform an analysis, configure the TVF
simulation program as desired in terms of baseband waveform, signal and noise level, and multipath
status. Next, allow the program to run until at least 1024 samples have been generated (this can be
checked by using the What time is it? command under the Actions menu). Then, simply use the Save
as... command under the File menu to save the data points to a file. Saving the file somewhere in the
Matlab search path is most convenient. By typing the file name at the Matlab prompt, the one-dimen-
sional complex vector of length 1024 is read in and named TVF. For example, for a file saved in the
Matlab search path with the default name TVF_Data.m, the following commands read in the data
and perform an FFT on it:

»TVF_Data %Read in data

»fft_tvE=£f£ft (TVF) ; %Take FFT of data vector
»plot(abs (£ft_twvEf(1:1000)), 'black'); %Plot the magnitude of the FFT
»whitebg; $Display with white background

»title('Frequency Spectrum of TVF Waveform')
»ylabel ('Amplitude’)
»xlabel ('Frequency')

The resulting frequency spectrum is shown in figure 10.

Frequency Spectrum of TVF Waveform
1400 r x w —r

1200 [b

1000 [-

800 I

Amplitude

600

400

200

400
Frequency

800 1000

Figure 10 . Frequency spectrum of data going into the TVF demodulator. The input
waveform was a pseudonoise sequence, and processing gain was set to 10. There
was no channel noise, and multipath was off. The modulator was that shown in
figure 2.

2.4 DESCRIPTION OF THE MAIN-EVENT LOOP AND OBJECTS IN THE SIMULATION

This section describes each object used in the simulation at a level that enables the main-event
loop to be understood and modified to suit a particular purpose. The descriptions here are not meant
to be comprehensive, but rather to simply indicate how the simulation works, and also to provide
some guidance for changing the main-event loop.

As shown in figure 11, the main-event loop indicates the structure of the simulation. Each cycle
through the loop corresponds to one increment of simulated time. The user’s interaction with the
simulation is carried out through the operating system; i.e., the operating system is the intermediary
between user events, such as mouse-down events and menu choices, and the behavior of the simula-
tion. For example, if the user presses the mouse button as the simulation is running, the operating
system stores information about this event, where it occurred (e.g., in the menu bar, in a window,
etc.), for use by the program. (Examples of other events include mouse-up events and disk-insertion
events.)

10

Start time = time + At

: R
-) Generate a signal
Initialize objects - sample using the

baseband generator.
1

Send sample into
modulator.

1

Get a sample out of
the modulator.

t

Put sample from No
dulator int
moC #aarl] r?;lm 0 Yes Handle Event: Send
' Mouse-down event? Appropriate Message
i to Appropriate Object.
Get a sample out of
the channel.

1

Put sample from
channel into
demodulator.

!

Put sample from

demodulator into

detector/integrator.

1

Update BER statistics.

Figure 11 . Main-event loop in TVF simulation. Each cycle through the loop represents one
increment of simulated time.

Figures 12—17 and 19—20 were cut from the object browser in the Symantec compiler. These
figures show each function associated with each object.

Ways in which the simulation could be modified include (but of course are not limited to) the fol-
lowing:

e Changing the architecture of the TVF modulator or demodulator. This could include changing
the number of layers or transforms, or changing the coefficients of the transforms.

e Changing the characteristics of the channel; for example, changing noise to some non-Gaus-
sian type, or changing the multipath configuration.

e Incorporation of a more realistic synchronization scheme.

11

Channel
Layer
SigGen

TVYFObject
Demodulator

Transform
WindowObject

Figure 12 . Objects and their relationships in the TVF simulation.

All objects in the simulation are derived from (i.e., are special cases
of) the BaseObject. The modulator and demodulator are derived from
the TVFObject.

2.4.1 Baseband Signal Generator/BER Tester Object

As shown in figure 1, the Baseband Signal Generator/BER Tester object consists of the baseband
signal generator, a detector, and code for comparing the transmitted baseband signal against the
received baseband signal and for keeping a running count of the bit error-rate statistics.

The baseband signal generator generates waveforms as a function of time; that is, sending the mes-
sageout (tto the signal generator returns the signal value at that value of t. The sine wave is generated
with a standard sine function, and the square wave is generated by applying a threshold to the sine
wave. The PN sequence is generated with a 29-stage shift-register generator; the generating polyno-
mial isx22+ x2 + 1 (i.e., the taps are 29 and 2). This configuration was chosen because it provides a
long sequence € — 1 = 536,870,911 chips before repeating), but only requires two feedback taps,
making implementation somewhat simpler than other choices.

Initialize ToDefaults(void)
Qut(long)
PrintBER_Results(void)
ReceiveDataPoint{complex)
ResetBERT(void)
SetFreq(double)

SetMode ToPHR(void)
SetModeToSine(void)
SetModeToSquare(void)
SetNoise Amp(double)
SetSigamp(double)
SetTheta(double)
SetThresheld(long double)

Figure 13. Messages that can be sent to a Signal Generator/BER
Tester object. These messages allow the characteristics of the signal
generator to be changed (signal amplitude, type, etc.); they also allow
a sample to be obtained from the signal generator, or a sample of the
demodulated signal to be received for BER measurement. The function
SetNoiseAmp is used to introduce noise into the baseband signal prior
to the channel and is not used in this simulation.

12

Detection of the received signals consists of feeding the demodulated signal into an integrate and
dump, and comparing the output of the integrator to a threshold. As mentioned previously, the trans-
mitted data consists of +1 and —1 values; thus, the threshold applied to the output of the integrate and
dump is set to zero.

2.4.2 Modulator and Demodulator Objects

The time-varying filters that make up the modulator and demodulator are both constructed from
layer objects and transform objects. The modulator and demodulator are identical except for the set-
ting of the transformation coefficients in the transforms connecting the two layers.

Because of the similarity between the modulator and demodulator, both of these objects are special
cases of—that is, are descendents of—an object called a TVFObject. Thus, certain functions that are
the same for the modulator and demodulator can be implemented as TVFObject functions. For exam-
ple, the messages GetOutputValue and SetlnputValue can be sent to either a modulator or a demodu-
lator. The SetlnputValue message simply shifts the samples in the input layer one register to the right
and then places the input sample in the left-most register. Likewise, the GetOutputValue message
returns an output sample obtained by shifting each sample in the output layer one register to the
right. (See figure 14.)

GetOutput¥alue(void)
InitializeF ilter(void)
ProcessData(long)
SetinputValue(complex)

Figure 14 . Messages that can be sent to a TVFObject.

The message SetModulatorCoefficients sets the modulator coefficients to specific values; i.e., the
coefficients are part of the code of the SetModulatorCoefficients membership function.

ProcessData(long)
SetModulatorCoefficients(void)

Figure 15. Messages that can be sent to a modulator object.

In a way similar to the modulator, the SetDemodulatorCoefficients message sets the demodulator
coefficients to specific values. The ProcessData function simply multiplies data from the input layer
through the transforms and places them in the output layer. This message is implemented separately
in the modulator and demodulator, but since the action is the same in both cases, it could have been
implemented as a function in the TVFODbject.

ProcessDatallong)
SetDemodulatorCoefficients(void)

Figure 16 . Messages that can be sent to a demodulator object.

2.4.3 Layer Object

A layer object is a shift register with provisions for shifting complex valued data in from the left
(for an input layer) and for shifting stored data out from the right (for an output layer).

13

GetCellValue(int)
GetOutput(void)
InitializeLayer(void)
PrintLayer(void)
SetCellValue(int ,complex)
Setinput({complex)

Figure 17 . Messages that can be sent to a layer
object. A shift operation occurs automatically when
either Setinput or GetOutput are called. Any cell can
be set directly with the SetCellValue message.

2.4.4 Transform Object

A transform object is a 2-by-2 matrix with complex coefficients. It transforms a two-dimensional
complex vector into another two-dimensional complex vector (figure 18).

Input A input B

N/

Output A C11 C12|{InputA
Qutput B c21 c22|}inputB

/

Output A Output B

/

Figure 18 . Structure of a unitary transformation object. Coefficients are
set according to the constraints given in Appendix A of Dyckman (1995).

As shown in figure 2, both the TVF modulator and demodulator incorporate transform objects in
their structure. The coefficients of each of these transforms are constrained so that the transformation
is unitary (see Dyckman, 1995, Appendix A, for a more detailed description of unitary transforma-
tions).

Having the modulator generate its coefficients automatically would have been convenient. How-
ever, the coefficients of the demodulator are dependent on those of the modulator. Thus, if the modu-
lator were to in some way set its coefficients automatically, it would have to communicate this
information to the demodulator. In the interest of keeping the modulator and the demodulator as
totally separate entities, we chose a different approach. The SetForwardTransformation function,
which is called with five arguments, is used to set the coefficients for the modulator transformation.
The function SetReverseTransformation is called with the same arguments as the SetForwardTrans-
formation; however, it sets the inverse transformation for the demodulator. This allows the arguments
from the demodulator to be simply copied and pasted from the modulator. Thus, the modulator and
demodulator communicate only by way of the data transmitted through the channel.

14

Fire(void)

GetOutput¥alue Alvoid)

GetOutputValueB(void)

PrintCoefficients(void)

RandomizeCoefficients(void)
SetCoefficients(complex ,complex ,complex complex)
SetCoefficients(double ,double double double ,double double ,double ,double)
SetForwardTransformation(double double ,double ,double ,double)
Setinputalue Alcomplex)

SetlnputyalusB(complax)
SetReverseTransformation(double double double double double) .

Figure 19. Messages that can be sent to a transform object. These
messages essentially consist of ways of setting the coefficients of the
transformation, putting data into it, carrying out the matrix multiplication,
and then the getting data out.

2.4.5 Channel Object

As previously mentioned, the channel is essentially a shift register through which waveform sam-
ples pass. Noise can be added to a sample as it leaves the shift register, and multipath can be simu-
lated by forming an output that consists of the sum of two shift-register elements. Messages that can
be sent to the channel are shown in figure 20.

GetChannelOutput(void)
InitializeChannel(void)
PrintChannelCharacteristics(void)
PutCharinelinput(complex)
SetMoizeLevel(double)
TurnPultipathOff(void)
TurnMultipathOn{void)

Figure 20. Messages that can be sent to a channel
object. These messages provide ways of putting data
into the channel, getting data out of the channel, setting
the noise level, and turning multipath on and off.

Though the Macintosh Toolbox provides a built-in function for generating uniformly distributed
random numbers, no routines exist for generating random variables with a Gaussian distribution.
Thus, Gaussian noise in the channel is generated by adding together several uniformly distributed
variables in accord with the Central Limit Theorem. Relevant calculations and considerations are
summarized as follows (Hogg & Craig, 1978, p. 192):

We have as definitions

o2 = E{(X—u)z}:E{XZ ~2xu+p?h=E{x?}p?, E{u(x)}zj;(xyf(x) dx,

where f(x) is the probability density function of the random variggland # = .[i' f(0dx | Say we
have a random variable uniformly distributed between 0 and 1; then

15

otes{e ot [eron (3 - [a(§)- 4] (L) 14

The central limit theorem says that if weXet, Xo> X11 denote the items of a random sample
from a distribution that has mean and positive variance 2, then the random variable

Y, :[ixi —nuJ/o—\/Z

has a limiting distribution that is normal, with mean zero and variance 1. Thus, if we take 12 random
variables uniformly distributed between 0 and 1, we can get a random variable that approximates a
Gaussian random variable with mean 0 afd 1 by forming

Yn=[2X,~‘12~(%)J/(\/%jx/ﬁ=ixi—6

That is, we simply add together the 12 random variables and subtract 6 to get an approximate
Gaussian random variable wigh= 0 ando = 1.

Say we have a random variable uniformly distributed between —1 and 1. (Such a random variable
can be easily generated with the Macintosh toolboxRadidom () , which returns a pseudoran-
dom integer uniformly distributed between —32767 and 32767.) Calculation shows that for such a
random variable, the variance is

| | 1
2 2 2 2 1 {5 It 5 1 o1 1
o? = E{x?] - =J', Y _o=_j dez_{_] =_[_ _]:_
{x?}-n I ode0=g Jrde=o130 | =3]373

Using the above formula for Yn, we see that if we add together 12 of these and divide by
ovn =Nﬁ§-JTE=:VZ}=2,

we get a Gaussian distribution with mean 0 ardl. This approach is a little better than the pre-
vious one because it saves the computational trouble of taking the absolute value of the result
returned by the call Random (

To verify that the channel noise is indeed Gaussian, a histogram (figure 21) of the values of the
channel noise can be generated in Matlab. Comparison of this histogram against histograms of Gaus-
sian noise generated in Matlab indicates that the TVF noise is close to Gaussian. The Matlab pro-
gram used to generate the plot is shown below.

»TVF_Data

»hist (real (TVF), 25)

»title('Histogram of Simulated Noise')
»ylabel ('Number of Samples in Interval')
»xlabel ('Value of Real Component')

16

HISTOGRAM OF SIMULATED GUASSIAN NOISE
120 T T T

100 — .

80 [B (] -

NUMBER OF SAMPLES IN INTERVAL
|

20 B

mnﬂﬂl—‘ Hﬂm

0
=20 -10 0
VALUE OF REAL COMPONENT

20

Figure 21 . Histogram of real component of simulated Gaussian noise. Data were
generated by setting the signal amplitude to zero and the noise standard deviation
to 5. Record length was 1024 samples. Histograms of imaginary components are
similar in appearance. This histogram and others generated by the same method
are reasonably similar to those representing Matlab-generated Gaussian noise.

Multipath effects are generated by combining the last element of the shift register with some other
element of the shift register. Both samples can be scaled by a complex constant. Though multipath
effects can be turned on and off as the simulation is running, changing the time delay or the complex
scale factors requires modification of the GetChannelOutput function.

2.4.6 Window Object

The Window object (figure 22) allows the graphical display of a waveform (data distributed in
time). As such, it could be thought of as an oscilloscope object. Scrolling takes place automatically
when a data point is sent to a window; scrolling is effected by the toolbox call ScrollRect (The text
window is provided by the ANSI library in the Symantec compiler; in that documentation, it is
referred to as the console window.

OpenWindow(int)
PletBar(complex)
FlotPoint(complex)
wWriteTitle(unsigned char ¥)

Figure 22 . Messages that can be sent to a window
object. These messages provide ways of opening a
window and of sending data to it.

17

2.5 AREAS FOR IMPROVEMENT OF MACINTOSH SIMULATIONS

Because the Macintosh simulations were written with the highest priority placed on achieving cor-
rect results, some efficiency has been sacrificed to make the logical flow of the program as simple
and as clear as possible. The most notable example is that the layer object and the channel object are
each implemented as a one-dimensional array. When a value has to be shifted into or out of either of
these objects, all entries in the array must be shifted. A much more efficient technique would involve
using a circular buffer, in which new values simply overwrite old ones; and all that need be updated
is the index of the starting point. As indicated previously, other areas for improvement include devel-
opment of more sophisticated TVF architectures, a more sophisticated channel, and incorporation of
a more sophisticated synchronization scheme.

Only one bug is known to exist in the Macintosh TVF simulation: the program incorrectly over-
writes data files. Specifically, if data are to be saved to a file with the same name as a data file that
already exists, the tail end of the old file becomes a part of the new file. To work around this prob-
lem, give all new files names that are distinct from existing files.

18

3.0 SIMULATIONS OF TIME-VARYING FILTERS UNDER SPW
ON THE SUN

As the software on the Macintosh was nearing completion, Comdisco’s Signal Processing Work-
system (SPW) became available to our group. SPW is a simulation environment for digital signal
processing and communication systems. It provides a large collection of blocks from which full sys-
tems can be built hierarchically. No code has to be written; instead, systems are built up in terms of
graphical block diagrams. Since blocks can be constructed in a hierarchical manner, special purpose
blocks (such as a TVF) can be constructed and tested with standard channel models.

Several TVF-based systems of various complexity have been developed within the SPW environ-
ment. Figure 23 shows a simple but complete communication system based on TVFs.

Library/Fite: Library/File:
“john_sigs/modulator_input’ ‘john_sigs/channel_signal’
COMPLEX COMPLEX
éoml x SIGNAL e x SIGNAL
SINK SINK
x—ms_freq x— s_freq
x— t_time x—ai t_time
= _ [s=]
Library/File:
One Layer TVF One Layer TVF - john_sigs/denort_out’
CO\M/P{EX RAYLEI?& COMPLEX
XN = complex input complex output] > \Y? * 2\ complex input complex output [\\2* X SlGS’;‘Y@‘l(.
TONE x—ird = x x—mi s_freq
2 FLAT nFAUE,,,,ﬁ:X Time _

Figure 23. Communication system based on time-varying filters in SPW. The input to the system
is from a file (shown at left), and waveforms at various points in the system are saved to files for
later analysis. The coefficients for the forward and inverse transformations were generated by the
program shown in figure 24 and then entered by hand. The channel model is a Rayleigh model.

The TVF shown in figure 23 operates by collecting a block of 128-input samples and then break-
ing this block into 4 subblocks. Each of these subblocks of 32 samples is sent through a separate
array of unitary transformations with an effective structure like that shown in figure 2. The outputs of
the unitary transformations are then concatenated into an output stream for transmission. The demo-
dulator after the channel has the same structure as the forward transformation, except that the coeffi-
cients are set for the inverse transformation. The structure of the TVF blocks in the simulation (fig-
ure 23) should enable us to construct multilayer TVFs simply by stringing several blocks together;
however, we invariably get “out-of-memory” type errors when this is attempted. We have worked
with Comdisco’s technical support to track down the exact cause of this problem.

The coefficients for the TVFs shown in figure 23 are hard-coded into the block. The coefficients
for both the forward and inverse transformations were generated by the program shown in figure 24.

19

generateUnitaryXform:=Module [
{alpha,beta,gamma,delta, theta,c,cll,cl2,c21,c22,d},
theta=Random[Real, {0, N[2P1]}1];
alpha=Random[Real, {0,1}];
beta=Random[Real, {0,1}];
gamma=Random[Real, {0,1}];
delta=N[2Pi] - alpha + beta + gamma;
cll= Exp[I alphal]Cos[theta]:;
cl2=-Exp[I beta]Sin{thetal:;
c21= Exp[I gamma]Sin[theta];
c22= Exp[I delta]Cos[thetal;
Print ["Coefficients for forward unitary transform are:"];
Print["” ",cll,™ ",cl2];
Print{" ",c21," ",c22];
Print[""];
c={{cll,cl2}, {c21,c22}};
d=Inverse{c];
Print ["Coefficients for the inverse transform are:"];
Print[" ",d4[({1,11]," v,dl[1,2]11;
Print[” ",d[[2,1]]," v,dl[2,211];
Print [" "];

Figure 24 . A Mathematical program for generating the coefficients of random unitary trans-
formations and their inverses. The inverse of a unitary transformation is its complex-conjugate
transpose, as can be verified by the outputs of this program. This program was used to generate
the coefficients used in the simulation of figure 23.

A more sophisticated TVF modulator is shown in figure 25. The input signal is read in at the upper
left of the figure. Blocks of the input signal are duplicated and are fed into the four modules in the
center. The four components in the center of the figure each represent an array of unitary transforma-
tions. Some of the coefficients for the transformations are read in from a file of random numbers; the
circuitry for this is shown at the lower left. The rest of the coefficients are generated internally, so
that the resulting transformations are unitary. Outputs from the four modules are concatenated to
form the output of the modulator.

One advantage of this architecture is that the coefficients of the TVFs can be changed as the simu-
lation is running. Another advantage is that the processing gain can be extended arbitrarily by simply
placing more “modules” in the system. The only practical limitation is “out-of-memory” type errors.
Time spreading is fixed by the architecture of the individual modules.

One of the most important benefits of the SPW environment for this project is the availability of a
wide variety of channel models and other blocks, some of which are included with SPW, and some
of which have been developed by outside parties. These will be valuable tools in testing TVF spread
spectrum waveforms. The following is a list of channel models provided with the SPW system; each
description is a shortened version of the description given in the on-line documentation.

¢ Am-Am/Am-PnThis block implements an input-amplitude-to—output—amplitude (AM to
AM) and an input-amplitude-to-output-phase nonlinearity.

e Indoor (Rappaport)rhis block implements a statistical model for an indoor radio multipath
channel.

* Indoor (Saleh)rhis block implements a statistical model for an indoor radio multipath chan-
nel.

20

2R B
AN VIS

i [P | (I

iy ‘_t i

Figure 25. A time-varying filter modulator developed in SPW. The input waveform is
read in from a file; the blocks associated with this are near the top, to the left of
center. The random coefficients are read in from a file at the lower left of the
diagram. The output waveform is written to a file at the lower right. Each of the four
modules in the center of the figure takes a block of the input waveform and passes it
through an array of unitary transformations. The structure of this modulator allows a
demodulator to be constructed using the same coefficient file, with only minor
modifications to the architecture.

e Multipath (Rummler)rhis block implements Rummler’s model of a multipath signal.
* Rayleigh FlatThis block implements a flat (or single-ray) Rayleigh fading-channel model.

e Rayleigh SelectivEhis block implements a selective (or two-ray) Rayleigh fading-channel
model. Rayleigh fading-models are typically used in mobile communication systems to model
the effects of multiple-point scatterers in the neighborhood of a moving receiver.

e Tabular Non-LineaifThis block implements a mapping from input to output according to a data
file.

e Timing Drift This block simulates asynchronous transmitter and receiver clocks by resampling
the input signal to produce an output signal that slowly drifts from the input signal. A ‘jitter”
input can also change the sampling time, allowing you to simulate sample jitter. Both real and
complex versions of this channel are available.

e Traveling-Wave Tube Anihis block implements the AM-to-AM and AM-to-PM characteris-
tics for a typical Traveling-Wave Tube (TWT) amplifier.

In addition to the modules provided with the SPW system, we have obtained a variety of modules
developed by the University of Kansas for Rome Labs, which can be used to assess system vulner-
ability in terms of AJ and LPI performance. The following is a list of jammers, radiometers, and

21

signal generators obtained from Rome Labs; each description is a shortened version of the descrip-
tion given in the “SPW Communications Vulnerability (CVA).”

Noise -Loaded AM Jammgehis is a jamming tone AM modulated with noise.
Noise-Loaded FM Jammadihis is a jamming tone FM modulated with noise.

Random-Tone Jamme&his module generates up to three tones which are randomly distributed
in the specified bandwidth. At the start of each hop interval, new tones with random frequen-
cies are generated. This module can be used for partial band jamming.

Sweep Jammérhis block generates a jammer tone that sweeps over the desired bandwidth.

Tone JammefThis block implements a CW tone jammer. It generates up to three CW tones
with frequencies specified by the user.

Channelized Radiomet&teasures the signal power in each channel (frequency band) by
appropriately integrating the power spectral density over the frequencies.

Wideband Total-Power Radiometdeasures the signal power in the entire RF spectrum by
appropriately integrating the power spectral density.

Scanning Radiometdrhis module sweeps the reception bandwidth in steps and measures the
energy intercepted at each dwell position in the sweep. Various detector modules, including the
BMWD and the OR-BMWD, are designed to work in conjunction with the intercept receiver
modules.

Modules to Generate the JTIDS Waveform
Modules to Generate the SINCGARS Waveform

Generic Frequency Hoppéihe generation of the hop frequencies can be governed by a PN
sequence generator, a uniform random number generator, an arbitrary PMF random number
generator, or a user-designed code-generator module.

Generic Time Hoppefhe generation of the time slots, where the signal is hopped, can be gov-
erned by a PN sequence generator, a uniform random-number generator, an arbitrary PMF ran-
dom-number generator, or a user-designed code-generator module.

Direct Sequence Spread€éhis module generates a PN sequence waveform that should be
multiplied with the source signal for implementing direct sequence spreading.

Various controllers are available to drive the generic time hopper and the generic frequency hop-

per.

22

4.0 CONCLUSIONS AND PLANS FOR FUTURE WORK

Because of the different natures of the SPW simulations and the Macintosh simulations, each can
present advantages and disadvantages for a given simulation task. One of the fundamental differ-
ences between the two approaches is that the various signals within SPW (i.e., input signals and out-
put signals) are represented as files, whereas the Macintosh simulation operates on each point of a
waveform as it is generated, similar to the way real equipment operates in real time. Another differ-
ence is that simulations that employ multirate signals (i.e., signals with different sampling rates) are
handled more conveniently in SPW. Also, for a given number of input waveform sample points,
SPW executes more quickly. However, some level of expertise is required to use SPW effectively;
this difficulty is compounded by the fact that we tend to have “out-of-memory” type errors with large
simulations on our Sun LX. Also, the user appears somewhat restricted in analysis and data display
options. Taken together, the SPW simulations and the Macintosh simulation provide a valuable
adjunct to mathematical analysis in the study of TVFs for spread spectrum modulation.

A specific area in which we expect to use these simulations is the study of synchronization. As
explained in Dyckman (1 995), for a general TVF spread spectrum system, the TVF modulator and
demodulator do not commute with a frequency shift. For this reason, in general, a two-dimensional
synchronization search appears to be necessary. These simulations will be useful for evaluating can-
didate synchronization schemes.

Another potential project involves verifying that the processing gain determined by simulation
matches what we calculate analytically. We can easily calculate the processing gain for a particular
TVF modulator. To verify these figures through simulation, we could transmit a nonspread (i.e.,
baseband) waveform over the channel and measure bit error regégNgsfor a range of white-noise
powersN,. We will then repeat the same measurements using a waveform spread with a TVF-based
modulator/demodulator. By comparing the BERBggN, curves for these two cases, we will be able
to experimentally verify the value of processing gain for a particular filter.

Another area of interest involves using the TVF waveform as a featureless waveform for LPI com-
munication. A BPSK waveform spread with a PN sequence will show “features” corresponding to
the chip rate, when passed through a delay and multiply receiver. The simulations presented here
could be useful, for example, in studying how a delay and multiply receiver responds to a TVF-
modulated waveform.

23

24

5.0 REFERENCES

Dyckman, H. L. 1995. “Spread Spectrum Modulation by Means of Time-Varying Linear Filtering.”
NRaD TD 2733 (March). Naval Command, Control and Ocean Surveillance Center, RDT&E
Division (NRaD), San Diego, CA.

Hogg, R. V., and A. T. Craig. 197Bitroduction to Mathematical Statisticslacmillan Publishing
Co., Inc., New York, NY.

Jeruchim, M. C., P. Balaban, and S. K. Shanmugan. Bi8tulation of Communication Systems
Plenum Press, New York, NY.

25

26

6.0 BIBLIOGRAPHY

Dixon, R. C. 1976Spread Spectrum Systeméley, New York, NY.
“Signal Processing Worksystem (SPW) Manual Set.” Comdisco, Inc.

“SPW Communications Vulnerability Assessment (CVA) Modules.” 1993. Final Technical Report.
Contract #F30602-93-C-0109, 15 April 1993. Prepared for: Rome Laboratories, RL/C3BB, Grif-
fiss AFB, New York 13441. Prepared by: CECASE Rapid Prototyping Lab, University of Kan-
sas, 2291 Irving Hill Drive, Lawrence, Kansas 66045.

27

28

REPORT DOCUMENTATION PAGE o P 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1995

3. REPORT TYPE AND DATES COVERED

Final: FY 93 — FY 94

4. TITLE AND SUBTITLE

SIMULATION OF TIME-VARYING FILTERS FOR SPREAD
SPECTRUM COMMUNICATION

5. FUNDING NUMBERS

PE: 0602232N
PR: RC32C13

6. AUTHOR(S)
John Custy

WU: 30-NNB101
ACCESS NO.: DN081123

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NRaD Warminster Det.
Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division, Block Programs
53560 Hull Street
San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

TD 2739

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
ONR Technology Program

NCCOSC RDT&E Division
San Diego, CA 92152-5001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes two computer simulations which have been developed to aid in the study of time-varying filters for spread sp|
trum communication (Dyckman, 1995). One simulation, written to run on a Macintosh computer, allows bit-error-rate measurements
carried out, and also allows the TVF-waveform data to be saved for analysis in Matlab. The other simulation, developed udner Comd
Signal Processing Worksystem, allows a variety of jammers and intercept receivers to be applied to the TVF-generated waveform.

PC-

o be

isco’s

14. SUBJECT TERMS

time-varying filters
spread spectrum communication
computer simulation

15. NUMBER OF PAGES

33

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-5500

Standard form 298 (FRONT)

UNCLASSIFIED

21a. NAME OF RESPONSIBLE INDIVIDUAL
John Custy

21b. TELEPHONE (include Area Code)
(619) 553-2599

21c. OFFICE SYMBOL
Code 342

NSN 7540-01-280-5500

Standard form 298 (BACK)
UNCLASSIFIED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 0271 Archive/Stock (6)
Code 0274 Library (2)
Code 30 W. J. Schoppe (2)
Code 34 P. J. Finnegan Q)
Code 342 J. Custy (15)
Code 804 R. D. Peterson (1)

Defense Technical Information Center
Fort Belvoir, VA 22060-6218 (2)

NCCOSC Washington Liaison Office
Washington, DC 20363-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

Navy Acquisition, Research & Development
Information Center (NARDIC)
Arlington, VA 22244-5114

GIDEP Operations Center
Corona, VA 91718-8000

Office of Naval Research
Arlington, VA 22217-5660 (2)

Naval Air Warfare Center
Warminster, PA 18974—-0591 (2)

