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1. Introduction

One of the hardest problems in all of physical oceanography is real-time La-
grangian prediction. Accurate, reliable, real-time Lagrangian prediction of the
movement of overboard people, distressed ships, downed aircraft, drifting icebergs,
pollutants, etc. in ocean surface waters is crucial for U.S. Coast Guard (USCG)
activities related to Search and Rescue (SAR), International Ice Patrol, and envi-
ronmental protection. In particular, SAR missions are global and require global
environmental data sets for planning optimal search strategies.

Accurate and contemporaneous estimates of environmental variables such as
wave height, wind speeds, and, most importantly, sea surface velocity are required
to achieve the highest probability of a successful rescue. However, in many sit-
uations such data are not available and historical estimates and their associated
variances are used in computer models for identifying regions of highest probability
of containment. These computer models require historical sea surface velocity and
their variances on a regular grid.

Two recent studies (Perkins and Marsee, 1994; Viekman and Jordan, 1991)
in the Florida Current region, Gulf Stream, and California Current region have
documented serious deficiencies in the present historical data base used in SAR
operations. The major problems are that (1) the surface velocities in the present
operational data base are too slow in the major currents analyzed and (2) the
velocity fields are too smooth. For instance, Viekman and Jordan (1991) calculated
a 40-90 cm /s difference in zonal and meridional velocity components between the
historical data base and surface drifters. Both studies recommended that a new
historical data base be constructed, for USCG SAR operational use, from ship drift
data archived by the U.S. Navy. This report details the construction of a new SAR
historical data base from the Maury Ship Drift Data.

The largest historical data base of sea surface velocity is the Maury Ship Drift
Data (MSDD) compiled by the U.S. Naval Oceanographic Office (NAVOCEANO).
These data, described in Section 2, (1) have an irregular distribution in space and
time; (2) have large measurement errors; and (3) contain extreme unrealistic data
outliers that must be removed. Section 3 contains a description of a generalized
median filter for removing data outliers and an objective analysis (OA) technique
that was used for space/time interpolation of the irregularly distributed data onto
a regular grid. Examples of the analysis velocity fields, and the seasonal and annual
averages of the sea surface velocity analysis are presented in Section 4. The limita-
tions of the MSDD and our analysis methodology and recommendations for future
improvement of sea surface velocity estimates and applications for SAR activities
are discussed in Section 5.




2. Maury Ship Drift Data

The sea surface velocity data base used here consists of historical ship drft
measurements obtained from NAVOCEANO. This data base, known as the Maury
Ship Drift Data, is named after Lt. Matthew Fontaine Maury who, during the
years 1842-1861, inaugurated the tabulation of ship drift from historical merchant
logbooks and a hydrographic reporting program among shipmasters (Bowditch,
1984). This information has been used to compile pilot charts under the auspices
of NAVOCEANO (1955, 1966, 1979a, 1979b, 1979c).

Ship drift is computed as the vector difference between dead-reckoning position
and the actual position over a 12-24 hour period. Averaging over 24 hours practi-
cally eliminates tides, inertial motion, and small-scale ocean variability, and yields
an estimate that resolves oceanic scales on the order of a few hundred kilometers
(Wyrtki et al., 1976; Richardson and McKee, 1984).

Strictly speaking, drift velocities differ from true sea surface velocities mainly
because of windage effects on the ships. The differences between these two quantities
are detailed in Section 3.2 when errors are assigned to the ship drift measurements.
Nevertheless, a number of oceanographic studies have used this data set to estimate
surface mean and eddy kinetic energy levels (Wyrtki et al., 1976; Richardson and
McKee, 1984), to study seasonal circulation patterns (Stidd, 1975; Meehl, 1982;
Richardson and Reverdin, 1987), and to evaluate numerical models (Richardson
and Philander, 1987; Arnault, 1987). These studies and the comparison between
ship drift, buoys, and current meters by McPhaden et al. (1991) clearly demonstrate
that ship drift-based velocity estimates are a surprisingly good indicator of mean
sea surface velocities and their seasonal variations.

The data base used here, acquired from NAVOCEANO by USCG Research and
Development Center (R&D Ctr), was last updated November 1991. The number
of observations is 4.16 million ship drift estimates. There may be up to 0.7 million
missing observations from this data base because of probable accidental deletion
during file transfers (Richardson, 1989). Most of the missing observations (63 per-
cent) are probably in the data-sparse South Pacific. Finding the missing data and
adding the new data, especially surface drifters (see Section 5), should be given high
priority by the USCG R&D Citr.

Data from 1900 to 1991 are used in this analysis. Navigation errors were
significantly reduced during the early part this century through a combination of
improved optics in the sextants and more stable chronometers. Comprehensive
statistics for this data base are given in Richardson (1989) and references therein.
Table 1 presents the number of edited observations for each month for each of three
major basins.




Table 1. Number of Edited Ship-Drift Observations for Three Major Basins

Atlantic Indian Pacific
January 147077 48307 70596
February 99752 38351 54918
March 165768 48008 109170
April 109285 37518 70534
May 182938 42725 94765
June 88293 41457 65195
July 163220 41640 54801
August 174074 42551 57113
September 164577 41942 54276
October 120494 39441 54510
November 149695 38689 84438
December 77015 40980 49562

Note in Table 1 the low number of observations for June and December for the
Atlantic Ocean. Richardson (1989) also noted this, and argued for probable deletion
or omission of the data file in the North Atlantic. In addition, Richardson noted
in the Pacific data that there were a small number of observations for the months
of February, April, June-October, and December for the North Pacific and that
only three relatively data-rich months, March, April, and June, are available in the
South Pacific.

A monthly temporal resolution was chosen for our estimates. This frequency
allows for adequate resolution of the important semi-annual and annual compo-
nents of the flow field and barely resolves the circulation features associated with
the energetic 50-60 day wind events. The important 1-10 day weather scale was
not resolved and should be modeled as the random component in the trajectory
simulations. Higher temporal resolution would significantly lower the confidence
in the estimates and would create many data-void gaps, especially in the southern
oceans. Instead of the twelve monthly estimates, only one annual estimate was
made south of 50° S because of data sparsity. In general, the North Atlantic has
the highest data density and, consequently, the most reliable estimates, and the
South Pacific has the lowest data density and the least reliable estimates.

The monthly data sets were also binned into twelve basins for the analysis.
This binned data set is known as the Monthly MSDD (MMSDD). This was done for
two primary reasons: (1) to make the computations more manageable so that they
could be done on a workstation; and (2) to prevent artificial leaking of information
during the interpolation procedure over land masses. For example, given the 300 km
correlation scales used (see Section 3.2), Caribbean Sea velocities would be used in
the estimation of Pacific velocities in the region surrounding the Isthmus of Panama,
and vice versa if the data were not binned into separate files. Also, velocity data
from coastal seas, with much different dynamics and smaller decorrelation scales,
would not influence the estimates in nearby oceanic regimes.




The twelve basins are the: Antarctic Ocean, Atlantic Ocean, Baltic Sea, Black
Sea, Caribbean Sea, South/East China Sea, Indian Ocean, Sea of Japan, Mediter-
ranean Sea, Pacific Ocean, Persian Gulf, and the Red Sea. Data overlap regions at
the boundaries connecting the major basins, such as the region south of the Cape
of Good Horn, are needed to ensure that the final field estimates blend together
smoothly. Data overlap regions are on the order of (1000 km)? for the OA calcu-
lations. This area is greater than three times the correlation length scales in each
direction (west-east, south-north) so that bigger overlap regions would not add any
new information to the estimates at the “seams” where basins meet. A comparison
of the estimates at the basin seams is discussed in Section 4.



3. Methodology

As mentioned earlier, the MSDD must be edited to remove outliers and then
space-time interpolated onto a regular grid in space and time for USCG operational
use. The spatial interpolation grid was chosen by USCG R&D Ctr and is currently
the grid in operational use. Monthly estimates for all basins, except Antarctic, at
these grid points were determined to be sufficient for present operational use. The
next two subsections discuss the generalized median filtering algorithm used for
data editing (Section 3.1) and the parameter matrix objective analysis algorithm of
Mariano and Brown (1992), hereafter MB92, used for data interpolation (Section
3.2).

3.1 Generalized Median Filter

An area encompassing the Gulf Stream off the coast of Florida was chosen
for initial testing because it contained both the well-defined Florida current and
because the SAR historical data base was unrealistic in this very important area
(Perkins and Marsee, 1994). Fig. lais a representative OA map of surface velocities
using all the May data for this area. It is quite evident that some of the velocity
estimates are poor even after smoothing by the OA scheme (though for this map,
the smoothing was kept to a minimum). Inspection of the input data revealed
extreme data outliers. The presence of outliers was expected with the MSDD based
on previous work by Richardson and colleagues. Fig. 1b shows the OA map after
the outliers were removed using a simple procedure that calculated the arithmetic
mean and the standard deviations of u and v, and that removed every data point
that was more than three standard deviations from the mean. A technique for
removing outliers from the basin-wide data subsets was formulated, based on the
encouraging results of this initial mapping experiment.

Most methods for removing outliers require a measure of central tendency,
Q, such as the arithmetic mean or median value, and a measure of variation or
spread, such as the standard deviation, 0g. An envelope of acceptable data values,
(@1, Q2), is constructed by calculating

Ql = Q —aoqQ, (31(1)
Q2 = Q + aoy, (3.1b)

where a is a factor controlling the width of the acceptable data envelope. In many
applications, a is 2-3. If the data value Q; is between @, and Q2, viz.

Q1 < Qi < Qa2

then Q; is deemed a good data point and is kept for analysis. Otherwise, it falls
outside the acceptable data value range and is removed from the analysis.
In many oceanographic applications, including this one, there are a number of

practical difficulties in using this simple formula. These difficulties are encountered
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because: (d1) the ocean is energetic over a wide spectrum of scales and its variability
is greater than the mean in most places; (d2) the ocean is heterogeneous-the mean
flow in the subtropical gyre is a few cm/s while in the Gulf Stream, the flow is
100-250 cm/s; (d3) the variation in o is also large, e.g., the surface velocity Eddy
Kinetic Energy (EKE) maps of Wyrtki et al. (1976) vary by a factor of six to seven;
and (d4) anomalous ocean events, order of ten standard deviations from the mean,
occur (McWilliams et al., 1983).

If the measurement error were small, a large anomaly would be real if mea-
sured, and difficulty (d4) would vanish. However, the measurement error for the
MMSDD is large and the necessity of removing outliers was demonstrated in Section
2. Thus we must live with (d4) and an algorithm dealing with difficulties (d1-d3)
was constructed. This algorithm flags good data as bad data for extreme events,
but this is unavoidable with this data set.

In light of (d1-d3), the basin-wide application of eqn. (3.1) requires Q(z,v)
and og(z,y) for Q@ = u,v. Note that the temporal dependency in these terms is
not needed since the data have been binned into months. In general, a could also
be a function of z and y, but this was not tried. Empirical determination of a is
discussed below.

The MMSDD was binned into 5° x 5° bins for outlier removal and OA calcu-
lations. The selection of bin size was a compromise between a small bin size that
would better resolve the field and a large bin size so that Q(z,y) and o(z,y) are
estimated from a large sample size. For each bin k, the standard deviation of u and
v, denoted by o, and o,, respectively, are estimated using the standard formulas

0. = E?=1('”'i_ﬁk)2 1/2
v = (n—1) I

0. = Z?=1(”i"1_’k)2 1/2
v = (n—1) )

)

where,

Q = Z Q‘i/n)
=1

for Q = ur and vx. o, and o, are assigned to the midpoint of the k** bin. A
smooth bicubic spline (Inoue, 1986; MB92) is fitted to all assigned o, values and
all assigned o, values generating two sets of spline coefficients, one for o,, one for
0., for each of the twelve basins and for each of the twelve months.

The outlier procedure is described next for one basin and one month. For each
5° x 5° bin k, @; and 7 were estimated using a median filter since this measure
of central tendency is better suited than the arithmetic average for data sets with
extreme outliers. Let the position of the i** data point be denoted by (z4i,¥i)-
0w (zi,y:) and 0,(zi,y:) are calculated by evaluating the bicubic spline for o, and
0., Tespectively, at each position (zi,y:). ik and ¥y for each of the k bins are
calculated by the taking the median value, defined by ordering the data values,
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and defining if n is odd

j=j+1=(n+1)/2,

and if n is even

j=n/2, j+1=(n+2)/2
The median value, Q, is then defined as

Q =1/2(Q; + Qj+1)-

Let s; denote the speed associated with the it* data point, s; = \/u? + vZ. Let 5
denote the speed associated with the median values of @k and vk, §x = Vi + vk

Let 0, = /02 + 02 represent the standard deviation of the field evaluated at the
point (zi,y:). If

Sp — aa,(zi,y,’) < 8; <8k+ aas(zi)yi))

is true then the data point (u;,v;) is deemed good and is used in the analysis. It is
removed from the analysis if it fails this condition.

The value for a was determined empirically. If a is too small, too many good
data points are removed. If a is too large, too many bad data points are retained for
analysis. For example, if the velocity components were truly Gaussian distributed,
then a value of a = 2 (3) would remove 5% (1%) of the good data points. A range
of a from 1.5-4.0 was tested by viewing the fields and noting that the largest a value
contained no obvious outliers. The best value of a, for this data set, was determined
to be 3.

3.2 Objective Analysis

Objective Analysis, hereafter OA, is used here for interpolating irregularly
spaced asynoptic observations onto a regular grid at a common estimation time
for subsequent analysis. OA has been used extensively for mapping oceanic fields
(e.g., Bretherton et al., 1976; Freeland and Gould, 1976; Carter, 1983; Davis, 1985;
McWilliams et al., 1986; Carter and Robinson, 1987; Robinson et al., 1987, Watts
et al, 1989; and Mariano and Brown, 1992). OA has its roots in the analysis of
meteorological variables (e.g., Gandin, 1963; Thiébaux, 1974; Ghil et al., 1981;
Thiébaux and Pedder, 1987; Daley, 1991). In general, an OA of data requires (1)
estimates of the covariance (correlation) function of the variable of interest, (2) the
covariance function of the data variable, and (3) the cross-covariance function be-
tween the variable of interest and the data. A brief introduction to the theory of OA
is presented next in terms of a scalar variable T that represents temperature since




the software was developed for the estimation of global Sea Surface Temperature
(SST). Velocity components u and v are mapped independently by the following
method outlined for T.
Since a perfectly accurate temperature can never be measured, the i** mea-
surement T,- is denoted as
T‘i =T+ €

where e; is the i** measurement error. <e,-) is the average error at the 1t* location.
Our goal is to find the best estimator of the form

n n
T, = Z a;T; = Z a,-(T,- + &), (3.2)
=1 =1
that takes into consideration both error and distance information. The usual choice
for the criterion of merit for the notion of best is a minimum variance unbiased
estimator.
First, we examine whether the estimator is unbiased. The following relation

(T)= (3 asti)= 2<T>

1=1

shows that, if <T,> = 0, then <To) = 0 and the estimator is unbiased.
Our estimator will always be unbiased if we consider only the deviations of the
it* measurement from its average state,

T;l = Ti - <T‘i>)

because it will always have an average of zero, since by definition

~

(£2)= (F)=((B)= (F)—(T)=0.

The middle equality uses the fact that, for statistically stationary fields, (T,-> is a
constant (it may be a different constant for different values of i) and the average of
a constant is obviously the constant itself. Thus deviations from an average state
will always be assumed for any measurement and the prime notation is dropped
for convenience. In practice, only an estimate of the mean field is available. The
estimated mean field is referred to as the trend.

The variance of our estimator is

((To = (To))*)= 0%

Since our estimator is unbiased (i.e., <To>= T,), the variance of the estimator can
be written

(B - T))= (el - T))= (D a(Ti+e) - TF),  (33)

9




where we recall that T, is the true value. ,

The unknown weighting coefficients, a;, are found by first minimizing the vari-
ance in (3.3). Derivatives with respect to each coefficient a; yield a set of linear
equations for 3 = 1,2,...,n,

@ ai(T: + &) - T)[T; + €5]) = 0. (3.4.1)

i=1

(3.4.1) can be written as either

(Z ai(T; + e:)(Tj + €5)) = (To(Tj + &5)), (3.4.2)
; ai[(T.'T,'>+<eiTj>+<Tie,'>+<e,-e,->] = (To(Tj + ej)>, (3.43)
= (T.T;).

It is usually assumed that there is no relationship between the error field and
temperature field on the average, such that

(Toe,->= (e;Tj>= (T,-e_,-): 0. (3.4.4)

Consequently, for j = 1,2,...,n, (3.4) becomes

n

Z ai[(T,-Tj)+<e,-ej>] = (TOT]'>. (3.5)

=1

Since T, T;, and T, are deviations from their average values, <T,~Tj> is the co-
variance function of the true temperature field and <T¢,Tj> is the covariance between
the temperature of interest and the measurement 'f’j. If the errors are unbiased (i.e.,
<e,~> = <e_.,~> = 0), then <e,~e,~> is the error covariance. Also, since <T,-ej> =0, 1t 1s
easily shown that the bracketed ([ ]) terms in (3.5) can also be written

(T.T;)+(eie;)= ((Ts + & )(T; + ))= (B.Ty), (3.6)

which, for all i and j, is the covariance function of the measured temperature field.
Both a dynamical component, because the structure of the covariance function 1s
usually determined by mesoscale and/or wave dynamics (T,-Tj>, and a measurement
component (e,'ej>, contribute to the covariance function of the observations. These
components are uncoupled by (3.4.4). »

How accurate is this estimator? In our example, the covariance function of
the true temperature field is also needed to determine the error variance associated
with our estimator. To see this, substitute (3.6) into (3.5) and expand to give
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41<T1T1>+a2<T1T2)+ +a,,(T1Tn> = (T;[To)

)

a(Tnfs)bar(Tuda)t .. +an(Taln) = (TuTo)

which, upon substitution of the following matrix definitions (* is transpose),

Tt = (11, T3, ..., Tn),

(FiF) ... (D)
Cre=| o i ]
(ToTh) ... (TnTn)
at = (0.1,0,2, :a"n-))

Crp = (L), (T), - (TTn)),

and rearrangement, becomes

a=Cp4Cik. (3.7)

Note that C4q is the covariance between the observations. It 1s sometimes
more rigorously denoted as C44. since the matrix is formed by the expected value of
the outer product of T and Tt. The transpose operator, *, is dropped for notational
convenience. All the second arguments in our notation for covariance functions are
the transpose of that argument. Moreover, in many of the references, the second
argument is dropped when it is the same as the first argument.

The variance of our estimator, C 4 , is defined to be

Ci. 3 = {(To = To)*).
The following formula for estimation variance can easily be derived,

Ct.4, = Cr,1, — C1,+C35Cr ¢ (3.8.1)
The square root of (3.8.1), or the standard deviation, is usually referred to alterna-

tively as the estimation error, mapping error, or analysis error. (3.8.1) may also be
written as

0% =07, —Cr,1C35Ch ¢ (3.8.2)

The first term on the right hand side of (3.8.1) is the natural variation in the
true temperature at the point of interest, T,, and the second term on the right
hand side of (3.8.1) measures the information content of the observations. If the
covariance between T, and T is zero, as it would be if the measurements were very
distant from the location of interest, then
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(a) the second term on the right hand side of (3.8.1) and a in (3.7) are zero,

(b) the best estimate of T, is the mean value, and

(c) the error variance associated with our estimate, T,, is the field variance at
location O, 0% .

The measurements added no new information and the estimation error is the square
root of the variance of the temperature field at the location of interest. Of course
in practice, the true field variance is an estimate based on all a priori information;
historical data, concurrent data, and theoretical expectations.

A more general estimation problem is the estimation of the temperature field
at m different locations given n different measurements. Instead of a vector of coef-
ficients, as we had in (3.7), we now need to find a m z n matrix of coefficients, A, to
estimate the field at the m locations of interest. Define a vector T, = (To1 5---sTon),
which is the true temperature field at the locations of interest, and its associated
field of temperature estimates To,. Eqn. (3.7) generalizes in a straightforward
fashion to

A=Cp +CIy (3.9)

where Cp 4 and A are now m x n matrices. The variance of our estimator T, is
o

CToTo =Cr, T, — CToTC'-i_‘}i‘Cfro’i“ (3.10)

Eqns. (3.9) and (3.10) are a version of the Gauss-Markov theorem for a linear
minimum mean-square estimate of a random variable. It should be noted here that
the Gauss-Markov theorem is not affected by replacing the covariance functions
with covariance functions normalized by their value at zero lag or correlation func-
tions. Correlation functions are generally used in practice because of numerical
convenience. Thus C in all of the previous formulas can either denote covariance
or correlation.

In fact, the matrices associated with the covariance functions can undergo an
affine transformation (magnitude change, rotation, translation). Structure functions
(e.g., Gandin, 1963)

GTT = 2 % 0"_2['0(111 - CTT) =

0 (T -T2)?) ... (Th-Ta)?)
z z ; , (3.11)

(Ta-ToY) (Ta-Ta)7) .. 0
can be used. Cpr is the correlation function. The advantage of structure functions
is that a mean is not removed from the observation. Interpolation using struc-
ture functions is known as Kriging in geostatistics (e.g., Journel and Huijbregts,
1978), and its use is gaining popularity in oceanography (Denman and Freeland,
1985; Hanson and Herman, 1989). The biggest disadvantages of Kriging are that
(1) the present algorithms do not allow for spatial and temporal correlations and
(2) the structure function has considerable curvature near zero lag. This extreme
curvature near zero lag hampers estimation of parametric forms of the structure
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function. Kriging was formulated for mapping ore deposits that do not move over
the observing time. When mapping ocean features, especially in strong frontal
regimes, phase speeds are needed to move non-synoptic observations to the location
where they would be at the estimation time. Also, a temporal correlation factor
is needed to account for the loss of correlation in time due to turbulence and/or
stochastic forcing.

The primary subjective components of an OA scheme are the selection of the
assumed observational noise level, the number of influential data points, the mean
field, and the correlation function(s). The four subjective components are discussed
next.

The numerical value of the error is given as a fraction of total field variance, typ-
ically in the range of 0.05-0.50. Fortunately, the accuracy of the objective analysis is
only weakly dependent upon the actual value of this difficult-to-estimate parameter.
On the average, an OA estimate at an observing location will be within the noise
level of the observed value. The larger the assumed noise level, the smoother the
OA field. For the case of assumed uncorrelated noise, the noise level parameter
appears in the main diagonal of the observation’s covariance matrix as an additive
term. The assumption of uncorrelated noise is poor when the spacing between
observing stations is much less than the distance between the estimation locations.
For instance, if you are making large-scale maps using stations that resolve the
energetic mesoscale only in data-rich patches, uncorrelated noise is not a good error
model (see Clancy (1983) for an excellent discussion of this point). The assump-
tion of uncorrelated noise is also poor for systems that measure with a bias. Bias
reduces the amount of independent information that the observations provide, but
it enhances gradient calculations (Seaman, 1977). Biased noise also puts a lower
limit on the mapping error that does not exist for random noise (Gandin, 1963).
See Bergman (1978) and Chelton (1983) for further discussion on correlated errors.

Since the noise level increases the magnitude of the diagonal elements of C4.4,
a large enough noise level will guarantee a positive semi-definite matrix, and the
numerical inversion of C44 will be stable. Hence, it is always advisable to have
some nonzero value for the assumed noise level.

An OA estimate is essentially a weighted average of observations with the
weights chosen by eqn. (3.7). The number of observations (“Limit”) that influence
the OA estimate must also be chosen. The maximum number of points to use
in this weighted average is the “limit,” which typically ranges from 5-20 points.
On the one hand, large values of “limit” improve the statistical confidence in the
estimate because of a large number of degrees of freedom. On the other hand,
larger than necessary values of “limit” do not improve the accuracy of the OA
estimate and may smear features in heterogeneous regions. (Note, as indicated
by eqn. (3.9), that a n x n matrix must be inverted for each estimation point;
n is an upper bound on “limit.”) While smaller values of “limit” lead to faster




computation, the OA estimates under these circumstances are more sensitive to
noise in the observations. If the correlation representation is nearly singular, a
relatively small value of “limit” may be advantageous since the inversion of a small
matrix is less likely to be numerically singular than a large one. Some trial and
error experimentation with the value of “limit” is a recommended part of the early
implementation of an OA. For our analysis, the number of influential data points
equals 8.

Ideally, the best influential data points are those data points most correlated
with the estimation location and least correlated amongst themselves. The latter
requirement can be relaxed by averaging close and highly correlated points before
the selection of influential data points. Then only the former requirement of the
most correlated data points with the estimation location are used to select influential
data points. The most correlated data points are found by sorting the absolute value
of the correlations. The absolute value is sorted since, for example, a correlation of
—0.9 is more desirable than a correlation of 0.1.

Our approach for decomposing data containing both large scale and mesoscale
components is to remove the mean of the data before the OA, and to objectively
interpolate just the deviations from the mean. The final field estimate is the sum of
the mean and the OA of the deviation field. In practice, the mean field is a function
of longitude, latitude, depth, and time, and is either a trend, climatology, a forecast
from a dynamical model, or a previous field estimate. Common trends are either
a constant average, linear trends, polynomial surfaces, splines, or different sets of
basis functions. A frequently used name, first-guess field, sums up the situation
nicely.

OA works best for interpolation. Extrapolation by OA or any other technique
can be risky. For instance, an OA might yield unrealistic streamlines running in
and out of a coastline or temperature values that are far from the historical range.
These problems are usually caused by sparse boundary data, which can affect the
analysis at two different stages. First, a spatial trend calculated from sparse and /or
patchy data may not represent the true trend over the entire analysis domain. For
example, a plane fit to the data in a region that contains a front can give unrealistic
estimates near the edge of the analysis domain away from the front. The second
problem with sparse data is that only a simple few-parameter correlation function
can be estimated from the data. Based on these considerations, a tense bicubic
smoothing spline was chosen to represent the mean field in our analysis.

Inoue’s least-square finite-element splines were chosen because they have ad-
justable smoothness and tension parameters, allow variable data errors, and, for
computational efficiency, they use a B-spline basis and iterate with binary subdivi-
sions (Inoue, 1986). Because of the rich large-scale structure evident in sea surface
velocity fields, a trend consisting of a simple mean or two-dimensional polynomial fit
produces unrealistic maps for large analysis domains. MB92 used two-dimensional
bicubic splines for the trend surface in the interpolation of sea surface temperature
in the tropical Pacific from 30°S to 30°N with good results. The use of tense
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splines allows reasonable extrapolation from strong frontal regions with large spa-
tial gradients to more homogeneous regions. The spline parameters chosen were the
(inverse) smoothing parameter p = 10~*, the tension parameter 7=0.99, and the
initial number of knots for the large basins, mz0 = my0 = 60.

by a decay term. The oscillatory term models wave behavior and is usually a
trigonometric function or a Bessel function. The decay term models turbulent
behavior and is usually an exponential (i.e., Gaussian) function or inverse poly-
nomial. Other representative functions are described in Bretherton et al. (1976),
Carter and Robinson (1987), Julian and Thiébaux (1975), Freeland and Gould
(1976), McWilliams et al. (1986), Thiébaux (1975, 1976), and Thiébaux and Pedder
(1987). A functional form for the correlation function is assumed in the parameter
matrix algorithm with the novelty of having nine correlation parameters that can
vary in space and time. The parameter matrix algorithm uses an anisotropic, time-
dependent correlation function with correlation parameters that vary in space /time,
and a time-dependent trend surface for efficient OA of dynamically heterogeneous
and non-stationary fields. An observation (subscript o) is decomposed into three
components,

To(z,y,t) = Tm(z,y,t) + Te(z,y,t) + es(z,y,1), (3.12)

where the first term is the contribution of the large scale or trend field (subscripted
m for mean), the second term is the natural field variability important on the
mesoscale or synoptic time scale (subscripted e for eddy), and the third term is the
combined effects of unresolved scales, i.e, subgrid-scale noise, and error from the
particular sensor (subscript s for subgrid-scale and sensor error).

T, was estimated by least-square fitting of a bicubic spline surface to the data.

The anisotropic and time-dependent correlation model for estimating T, from the
detrended data (T, — Tr) is

Typical correlation functions are in the form of an oscillatory term multiplied
|
|

C(dz,dy,dt) = C(1)[1. — (DX/C(4))* — (DY/C(5))*]*
exp —[(DX/C(6))? + (DY/C(7))* + (dt/C(8))?], (3.13)

DX = dz — C(2) *dt and DY = dy — C(3)  dt,
where, '

o dz is the east-west lag; dy is the north-south lag; and dt is the time lag.

e C(1) is the correlation at zero lag and equals one minus the normalized (by
the field variance) measurement variance (which includes a subgrid scale com-
ponent).

e C(2) and C(3) are the mean phase speeds in the east-west and north-south
direction, respectively.
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o C(4) and C(5) are the zero-crossing scales in the east-west and north-south
direction, respectively.

e C(6) and C(7) are the spatial decay scales (or the e-folding scales) in the
east-west and north-south direction, respectively.

e C(8) is the temporal decay scale.

This correlation function can be rotated in space by C(9), an arbitrary angle. This
correlation function and its isotropic form, C(4) = C(5) and C(6) = C(T7), have been
used in a variety of dynamical regimes (e.g., Carter and Robinson, 1987; Robinson
et al., 1987; and MB92).

The parameter matrix algorithm starts by dividing both the interpolation grid
and data domain into the same rectangular space/time bins. The dimensions of the
bins are based on the correlation scales and how the correlation parameters change
in space and time: (1) each bin must contain one set of correlation parameters and
(2) all the data in a bin should be significantly correlated with the midpoint of the
bin to minimize computations. The parameter matrix is formed by assigning the
values of the nine correlation parameters to each numbered bin.

The present parameter matrix algorithm consists of the following steps:

e 0) Highly correlated data are averaged.

e 1) Each data point is assigned a bin number. :

e 2) The data points are sorted by bin number so that all the data for each bin
are stored together with their corresponding position, time, detrended value
and error level. '

e 3) A marker array is used to record the array position where each bin starts
(or ends).

e 4) The OA is performed one interpolation point at a time.

¢ 5) The bin number of the interpolation point is found and denoted by N.

e 6) Data in bin N and all bins within an influential correlation window from
the interpolation point are selected for determining the influential data points.

e 7) The correlations between the interpolation point and each data point from
step 6 are tabulated and sorted.

e 8) The most influential data points, i.e., the most correlated with the interpo-
lation point, are used for the OA and usually number between 6 and 20 data
points.

e 9) Steps 5-8 are repeated for each interpolation point.

If a data point is in one bin and the interpolation point is in another bin, all
the correlation parameters from the two bins are averaged except the phase speeds.
The phase speeds of the data bin are used since it 1s desirable to move the data
points to where they would be at the estimation time. For calculating correlation
between data in different bins, all the correlation parameters (including the phase
speeds) are averaged.

The algorithm allows two types of random errors to contribute to the diagonal
elements of C44 and enter the calculation of T. An environmental error due to
subgrid-scale processes is assigned to C(1) in the parameter matrix and a sensor
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error is assigned to each data point. For these calculations, C(1) = 0.9, and the
sensor error is assumed to be 0.1 so that the total normalized error level is 0.2.

The exact error is hard to estimate because of the unknown and hard-to-model
effects of winds and waves in conjunction with ship shape and size. Another un-
known factor is the skill, or lack of it, of the navigators. Richardson and McKee
(1984) estimated a random error for a single ship drift speed to be 20 cm/s. System-
atic and bias errors in dead-reckoning will cancel out in the velocity calculations,
but the systematic error due to windage will not. By comparing ship drift, drifting
buoys, and current meters, McPhaden et al. (1991) estimated an upper bound of
windage effects to be 3 percent of the surface wind speed. For SAR applications,
the windage bias is probably not a problem and may actually help when looking
for distressed ships. On the other hand, windage effects downgrade the ship drift
velocity estimates for comparisons with ocean circulation models.

Wind speed information was not used in the calculation of the error level.
Given a range of speeds from 0 to 200 c¢m/s, typical maximum speeds of order 100
c¢m/s, and that the random error component for single ship drift estimate 1s20cm/s
(Richardson and McKee, 1984) leads to an average error on the order of the assumed

20 percent value ( -1-2-(?%-/3; x 100% ). Future calculations may want to assume that
this error is on the order of 10 percent in the western boundaries and on the order
of 50 percent in mid-ocean regions where typical eddy speeds are 40-60 cm/s. One
fact should not be overlooked. In all of the quoted studies, the investigators were
surprised at how much useful information was obtained on basin-wide circulation
patterns and their seasonal variability after averaging ship drift data. Though the
data are very noisy, the law of large numbers and a data set consisting of over four
million data points lead to stable estimates of seasonal ocean currents.

The following spatial scales, in units of degrees of longitude for the z direction
and degrees of latitude for the y direction, were chosen based on data density
considerations and because the vast majority of the data resolve scales on the order
of 300-400 km. Dynamical considerations would lead to smaller correlation scales
and more structure in the final field estimates. Since the bicubic splines capture
almost all of the large-scale heterogeneity of the surface velocity fields, the spatial
scales were chosen to be isotropic. The temporal scale, in units of days, was chosen
to be large since a historical average of data from many different years i1s wanted
(not the typical OA synoptic scale estimate using just one month of data).

C(1) = 0.9,C(2) = C(3) = C(9) = 0.0,C(4) = C(5) = 3.0,

C(6) = C(7) = 2.0,C(8) = 99999.

The parameter matrix algorithm results are presented in Section 4.
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4. Mariano Global Surface Velocity Analysis 1.0

For the two largest basins, the Pacific Ocean and the Atlantic Ocean, the
largest amount of monthly data was in the Atlantic for the month of May, a total
of 182,938 good data points, and the smallest amount of monthly data was in the
Pacific for the month of December, a total of 49,562 good data points (Table 1). The
OA maps and normalized mapping error plots for these two data density extremes
are presented in Figs. 2 and 3.

Seasonal and yearly averages of the data are shown in Figs. 4-8. These
velocity maps contain many well-known ocean features. For instance, the major
western boundary currents—the Gulf Stream, the Brazil Current, the Kuroshio, E.
Australian, Somali, Algulhas, Labrador Current, Malvanus, and the Kamchatka
current, as well as the equatorial current system-~North Equatorial Current (NEC),
North Equatorial Counter Current (NECC), and the South Equatorial Current
(SEC) in all three major ocean basins, are clearly visible in the annual maps (Fig.
4). Major eastern boundary currents—Guinea, Angula, Benguela, California, Peru,
and the Leeuwin currents— are also clearly visible.

The seasonal averages—-DJF, MAM, JJA, and SON (Figs. 5-8)- show the well-
known reversal of the NEC in the Indian Ocean during the onset of the Southwest
Monsoon and the retroflection of the N. Brazil current into the NECC in the latter
half of the year (see Richardson and Walsh, 1986). This agreement with well-known
ocean circulation regimes proves, at least qualitatively, that these maps would be
of practical use to the USCG.

The reliability of these maps was further studied in a visual comparison with
the present historical velocity file in operational use. Based on these comparisons,
it was quite clear to R&D Ctr that this data product was far superior to the overly
smooth data base currently in use. The monthly space/time interpolated velocity
fields were termed the Mariano Global Surface Velocity Analysis, hereafter MGSVA.
If anything, some smoothing of the MGSVA in some areas may be needed.

The statistics of the differences between the Atlantic and Indian basins' OA
estimates at the boundary are shown in Fig. 9. These calculations were performed
for the area 10-30° E, 30-70° S, south of South Africa, for the month of January.
Figs. 9a and 9b are the histogram of the velocity differences between the Atlantic
and Indian estimates for the u and v velocity component, respectively. These dif-
ferences are not biased. Fig. 9c is a histogram of the differences in speed between
the Atlantic and Indian estimates. Fig. 9d shows the vector differences between
the two estimates. Over 90 percent of the speed estimates agree to within 30 cm/s
(Fig. 9c) and there is no clear-cut directional bias (Fig. 9d). This is encouraging
since most of the estimates compared here are from the data-sparse areas with the
largest estimation error.

There are no obvious biases between the two different sets of estimates. Con-
sequently, the two sets of estimates for each month and for each seam should be
averaged together using weights that are inversely proportional to each error esti-
mate and normalized such that their sum is one. For example, let u; be the velocity
estimate associated with region 1 and let e; be the estimation variance associated
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Fig. 2 (a) The velocity scale as a function of latitude. (The software for the curly
vector plots was developed at the Navy Research Lab South.) (b) The OA map
for the Atlantic Ocean for the month of May. (c) The corresponding error map.
(Note that most of the basin, except for the sub-polar and polar regions, has low

estimation error.)
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Fig. 3 (a) The OA map for the Pacific Ocean for the month of December. (b) The

corresponding error map. (Note that the North Pacific has much lower estimation
error than the South Pacific.)
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Fig. 4 (a-d) The weighted annual average of the monthly surface velocity estimates.
The weights were inversely proportional to the error estimates associated with each

monthly estimate.
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Fig. 5 (a-d) The weighted seasonal average of the monthly surface velocity estimates
for the months of December, January, and February.
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Fig. 6 (a-d) The weighted seasonal average of the monthly surface velocity estimates
for the months of March, April, and May.
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Fig. 7 (a-d) The weighted seasonal average of the monthly surface velocity estimates
for the months of June, July, and August.
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with u;. Let u; and e; be the corresponding variables for the second region. Then
the final estimate, uy, in the data overlap regions should be given by

we= (e2uy + e1uz)
f (€1 +e2)

A similar expression is used for v. The final blending of the data in the overlap
regions is the responsibility of the USCG R&D Citr.

In addition to the velocity estimates, the corresponding uncertainties, o3 and
03, were also estimated. Since the OA scheme usually calculates estimation er-
rors for the problem of estimating fields at a given estimation time, and since our
estimates here represent historical averages, the typical error formula (e.g., eqn.
(3.8)) was modified. For each bin, month, and velocity component, the maximum
normalized error level, given by eqn. (3.8), was calculated, ¢mqz. At each grid point
i, the standard deviation of the original data, o;, was calculated from the spline
fits to the standard deviation fields. Let the normalized error level given by eqn.
(3.8.1) be denoted by c. Then the error of our estimates for each component was
estimated by

c(0i/cmaz)-

The final velocity fields were smoothed by a first-order Shapiro filter (Shapiro,
1970) to remove one-point grid noise for mapping purposes.
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5. Limitations and Recommendations

The MGSVA was constructed on a volunteer basis from a noisy, unedited, but
very large data set using existing software developed for another project. Conse-
quently, these fields can be improved in a number of ways by generalizing our appli-
cation of the parameter matrix objective analysis algorithm and the data processing
steps. This suggestion is discussed after the discussion of the inherent limitations
of Eulerian-based field estimates for USCG operational use.

Ocean current systems meander or change their positions on a variety of time
scales. Coherent circulation features, such as Gulf Stream warm-core rings, frontal
eddies, planetary waves, etc., also propagate over time. It is a well-known fact
that Eulerian-based estimates will smear circulation features and that consequently,
these estimates are too slow (Mariano, 1990; Mariano and Chin, 1995). Halkin
and Rossby (1985) demonstrated that peak Gulf Stream velocities in an Eulerian-
based average of 16 PEGASUS velocity transects were significantly lower than peak
velocities in a stream-based average of the same data, 100 cm/s versus 170 cm/s.
Another example of smearing in Eulerian averaging is shown in Fig. 10, where
two estimates of the Gulf Stream front, a warm- and cold-core ring, are averaged
using a simple arithmetic average with equal weights of 1/2. This is the simplest
example that is relevant to this OA method. Note that the field values are reduced
by a factor of 1/3 between the two data realizations. The contour-based averaging
approach of Mariano (1990) shows a more pleasing estimate. The construction of
contour-based software for averaging the MMSDD would be a daunting task because
of the sophisticated pattern recognition that is needed for contour-based averaging
and is not recommended at this time.

A far more economical approach is to compare actual drift velocities calculated
in the field and to compare these to our estimates and then tabulate the amount
of underestimation. A smooth regional map of a correction factor, which may be a
function of wind speed, could then be applied to the OA estimates to correct some
of the underestimation problems of least-square Eulerian-based estimates.

Based on the lead author’s experience with feature-based estimation, it is sug-
gested that, in Computer Aided Search Planning (CASP) 2.0 or its successor, a
feature-based combination of real-time and historical data would lead to a major
improvement in SAR activities because many ocean features have a fairly “ngid”
cross-feature structure. For example, in the Gulf Stream, two nearby drifters yield
two estimates of velocities and an estimate of a spatial derivative. This would tell
you what side of the Gulf Stream you are on and, by translating the historical Gulf
Stream cross-stream velocity structure so that it matches the in situ data, would
provide a much better estimate of the true velocity field than either an OA map of
the drifter velocity or the MGSVA data by itself or any Eulerian-based scheme. As
Fig. 10 illustrates, a simple average of the two will lead to undesirable results, and
a feature-based approach should be tried.

As demonstrated by Robinson and collaborators (Robinson et al., 1989; Spall
and Robinson, 1990), feature models can be used with satellite data for reliable
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prediction of ocean currents. For example, Advanced Very High Resolution Ra-
diometry (AVHRR) data in the Gulf Stream can convey the position of the stream
and the rings. Analytical three-dimensional models of the circulation associated
with these features can be combined with other data.

In addition to the incorporation of feature-based analysis, a number of possible
generalizations in the OA of these data can be tried. These can be broadly char-
acterized into two separate research avenues: improvements to the input data sets
and improvements to the OA algorithm. The input data set can be improved by
assigning error bars to the individual drifts since our OA algorithm allows this. For
instance, earlier estimates would be given larger bars based on progress in naviga-
tion technology. The input data can also be improved by incorporating the newest
global drifting buoy data set from the Tropical Ocean Global Atmosphere (TOGA)
experiment, the World Ocean Circulation Experiment (WOCE), and other major
ocean field experiments, and finding the missing ship-drift estimates. This should
be done as quickly as possible, especially in the data-sparse southern oceans. Given
the planned experiments in the southern ocean, new data would certainly lead to
major improvements in surface velocity estimates south of 50° S.

Another potential research avenue that may lead to major improvement in this
product for SAR activities would involve first binning the data by wind speeds and
directions. Velocity would then be estimated as a function of longitude, latitude,
and wind regime. Visual inspection of surface drifters in a Mineral Management
Service video (courtesy of Walter Johnson) show a strong correlation between wind
direction and drifter movement. It is very evident from drifter trajectories in this
video and, given our estimates for this region, that the inherent variability between
different wind regimes will lead to very sub-optimal SAR drift predictions during
anomalous wind conditions. This is unavoidable with our historical analysis because
of the strongly stochastic nature of both the ocean and the atmosphere. It is highly
recommended that this research avenue be given high prionty.

" The most obvious extension to our OA algorithm would be the use of a multi-
variate OA scheme that incorporates the cross-correlations between u and v. Carter
and Robinson (1987) showed that their multi-variate approach improved velocity
estimates in the thermocline waters in the NW Atlantic over scalar OA techniques
using the POLYMODE data set. This improvement was expected for subsurface
thermocline flow where geostrophic dynamics lead to a significant cross-correlation
between u and v. Our analysis indicates significant horizontal divergences and
convergences in some areas that would cause smaller correlations between u and
v. Thus, the calculation of regional and monthly cross-correlations between u and
v should be given high priority so that the issue of scalar versus multi-variate OA
scheme for surface velocity estimates can be settled.

OA also requires the specification of a mean and covariance function at each
of the estimation points. This specification is the most subjective component of an
OA scheme. A tense, smooth, two-dimensional bicubic spline was used to represent
the mean field for each variable u and v. The spline was fitted to the monthly data
sets in all of the basins except for the Antarctic, where data-sparsity dictated just
one annual analysis. These splines have been used by the lead author extensively
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and have performed well for global SST estimation (MB92). Further experiments
with the adjustable spline parameters is needed, but is not crucial. The choice of
other mean surfaces would probably not improve the velocity estimates.

Because only a finite number of data points are used in estimating the cor-
relation functions, correlation function estimates are the convolution of the true
correlation function with a sinc function. Thus, with limited data, it is hard to
determine the correct form of the correlation function. Work by Thiébaux (1975,
1976) suggests that if a fairly general correlation function is used and fitted to the
data, it would be hard to improve on it unless more data become available. So
the choice of another correlation function would probably not improve the velocity
estimates, but using the full power of the parameter matrix may. This would require
estimation of the nine correlation parameters in each 5° x 5° bin for each basin for
each month. This computer-intensive component should be first tested in a region
that is both of high priority to the USCG and that contains numerous good quality
data sets for comparisons. The latter requirement for a large-scale region would
certainly suggest the tropical Pacific, seeded with numerous drifters since the 1980s
and with a large increase in data-density starting in the early 1990s. A small-scale
region, also of interest to the International Ice Patrol, is the NW Atlantic Ocean.

In the near future, assimilation of either the edited data or the mapped fields
into numerical circulation models forced by real-time winds is recommended for
the long-term goal of accurate and reliable sea surface velocity estimates that are
needed for USCG activities. Robinson and his research group at Harvard University
have shown that this is feasible, given the necessary resources. A group at the
National Weather Center is working with Mellor (Princeton) on such a system
for the East Coast. Rosenstiel School of Marine and Atmospheric Science Ocean
Pollution Research Center at the University of Miami is experimenting with a very
high resolution numerical circulation model in the Florida Straits area and has been
supplying forecasts to the Brother to the Rescue for finding Cuban rafters lost at
sea. In the long run, although this is more costly, it is the best approach. In the
interim, we hope that the use of the MGSVA in USCG SAR operations will lead to
more optimal searching strategies, save lives, and reduce fuel consumption through
more efficient SAR flights.
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