NOTE ON AN ALTERNATIVE MECHANISM FOR LOGISTIC GROWTH

D. P. Gaver
P. A. Jacobs
R. L. Carpenter
November 1995

Approved for public release; distribution is unlimited.

Prepared for:
NPS Direct Funded Research Program
Naval Medical Research Institute/Toxicology Detachment
Wright-Patterson Air Force Base, Ohio
U.S. Army Biomedical Research & Development Laboratory
Ft. Detrick, MD 21702-5010
This report was prepared in conjunction with research funded by the Naval Medical Research Institute/Toxicology Detachment, Wright-Patterson Air Force Base, Ohio; the U.S. Army Biomedical Research & Development Laboratory, Ft. Detrick, MD 21702-5010; and the Naval Postgraduate School Direct Funded Research Program.

Reproduction of all or part of this report is authorized.

This report was prepared by:

DONALD P. GAVER, JR.
Professor of Operations Research

PATRICIA A. JACOBS
Professor of Operations Research

ROBERT L. CARPENTER
NMRI, Wright Patterson AFB, OH

Reviewed by:

FRANK PETHO
Acting Chairman
Department of Operations Research

Released by:

PAUL J. MARTO
Dean of Research
Title: Note on An Alternative Mechanism for Logistic Growth

Authors: Donald P. Gaver, Patricia A. Jacobs, and Robert L. Carpenter

Performing Organization: Naval Postgraduate School, Monterey, CA 93943

Sponsoring Agency: NPS Direct Funded Research Program

Abstract:

Populations of cells that make up organ tissue grow and contract. A traditional approach to modeling organ size restriction to an observed "normal" level is to postulate a physical carrying capacity: effectively a limit on the physical region that can be occupied by the organ. The purpose of this note is to provide a very simple model for a cell population that grows under the control of positive and negative growth factors. It will be seen that such a model can result in logistic growth without the necessity of postulating a physical carrying capacity.
Note on
An Alternative Mechanism for Logistic Growth

Donald P. Gaver
Patricia A. Jacobs

Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943

Robert L. Carpenter

Naval Medical Research Institute
Wright Patterson AFB, OH 45433

ABSTRACT

Populations of cells that make up organ tissue grow and contract. A traditional approach to modeling organ size restriction to an observed "normal" level is to postulate a physical carrying capacity: effectively a limit on the physical region that can be occupied by the organ. The purpose of this note is to provide a very simple model for a cell population that grows under the control of positive and negative growth factors. It will be seen that such a model can result in logistic growth without the necessity of postulating a physical carrying capacity.

Key Words: Logistic growth curves, growth factors
Note on
An Alternative Mechanism for Logistic Growth

Donald P. Gaver
Patricia A. Jacobs

Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943

Robert L. Carpenter

Naval Medical Research Institute
Wright Patterson AFB, OH 45433

1. Introduction

Populations of cells that make up organ tissue grow and contract in a manner that is roughly analogous to the fluctuations of other natural populations. Since organs are of bounded size their growth is not entirely uncontrolled and exponential overall, or otherwise a human or rat liver would either assume a totally outlandishly large size, or else shrink to zero. Neither such alternative is seen in nature, although organ sizes do vary among otherwise comparable members of the same species. And organs of mature hosts can change in size as a result of disease, toxic insult, or an operation such as partial hepatectomy, from which a liver can recover again to normal size and function.
A traditional approach to modeling population (= organ) size restriction to an observed "normal" level is to postulate a *carrying capacity*: effectively a limit on the physical region that can be occupied by the population. This formulation apparently goes back to Verhulst (1836); see Murray (1989) for recent discussion. In the organ situation this might correspond to a space of approximately pre-ordained dimension that, say, liver cells in liver tissue cannot exceed in the body of a mature human male. The space can be taken as given, introduced into other models as a parameter, and in particular cases estimated from data. It would be the maximum size of the liver compartment in a PB-PK model, for example.

There is another alternative to the above approach that depends upon recognition and measurement of the presence of various biological agents called *growth factors*. There are a number of such factors that both stimulate (positively) and inhibit (negatively) cell population growth. Growth factors are discussed by Alberts *et al.* (1994). Aaronson (1991) provides an overview of growth factors in cancer; see also Rubin, Bottaro, and Aaronson (1993). The purpose of this note is to provide a very simple model for a cell population that grows under the control of positive and negative growth factors. It will be seen that such a model can result in logistic growth without the necessity of postulating a *physical* carrying capacity. An *effective carrying capacity* appears as a result of presumed growth factor interaction with cells.

2. Model for a Cell Population Under Growth Factor Control

Suppose a population of cells is of size \(C(t) \) at time \(t \). Its individual cell growth or birth rate is \(\lambda_0 \), and its death rate is \(\mu_0 \), so its net growth rate, \(\lambda_0 - \mu_0 \), governs the manner and rate of growth. Starting with \(C(0) \) members, and left alone, the population would grow roughly like \(C(t) \sim C(0)e^{(\lambda_0 - \mu_0)t} \), which means either to
a large size \((\lambda_0 - \mu_0 > 0)\), or to zero \((\lambda_0 - \mu_0 < 0)\). Clearly such unrestricted behavior is inappropriate for describing a population of cells that constitutes an entire organ, although essentially such a model has been used to describe growth of tumors within an organ; see Tan (1991) for an overview; in particular the work of Moolgavkar and co-authors, cited in Tan (1991), is relevant.

Now introduce a quantity \(\alpha(t)\) of a positive growth factor into the vicinity of the cell population. The amount present, \(\alpha(t)\), changes cell birth rate to \(\lambda_0 + \lambda_1 \alpha(t)\), where we take \(\lambda_1 > 0\). Also introduce a quantity \(\beta(t)\) of negative growth factor; it changes cell death rate to \(\mu_0 + \mu_1 \beta(t)\), \(\mu_1 > 0\). Then changing levels of \(\alpha(t)\) and \(\beta(t)\) can certainly alter the properties of the cell population, from net growth to net decline, depending upon values of \(\alpha(t)\) and \(\beta(t)\).

Assume that the productions of both \(\alpha(t)\) and \(\beta(t)\) are regulated by cell activity in such a way that

\[
\frac{d\alpha}{dt} = \rho_\alpha C(t) - \delta_\alpha \alpha(t) \quad (2.1)
\]

and

\[
\frac{d\beta}{dt} = \rho_\beta C(t) - \delta_\beta \beta(t). \quad (2.2)
\]

That is, both are stimulated to increase by the number of cells present, and to diminish in proportion to their own concentration, possibly being removed from the cell site (organ) by blood flow or metabolism or other biological processes. Of course the above equations are prime candidates for replacement by others that more accurately depict the true interactions.

In the presence of \(\alpha\) and \(\beta\)-factors the cells in the organ grow and decline according to

\[
\frac{dC(t)}{dt} = [\lambda_0 + \lambda_1 \alpha(t)]C(t) - [\mu_0 + \mu_1 \beta(t)]C(t). \quad (2.3)
\]
So (2.1), (2.2), (2.3) form a system of three non-linear differential equations. No explicit solution seems immediately available, unless we make the quasi-static or quasi-steady-state assumption (QSSA); see Strogatz (1994) for its invocation so as to solve a non-linear dynamics problem along with some historical references, and Segel and Slemrod (1989) for a careful discussion of this approximation. Namely assume that $\alpha(t)$ and $\beta(t)$ are able to adapt very quickly to any current value of $C(t)$ to always reach a "temporary steady state":

\[
\frac{d\alpha}{dt} = \rho_\alpha C(t) - \delta_\alpha \alpha(t) \tag{2.4}
\]

\[
\frac{d\beta}{dt} = \rho_\beta C(t) - \delta_\beta \beta(t). \tag{2.5}
\]

Adopt the approximation as true, so solve (2.4) and (2.5) for $\alpha(t)$ and $\beta(t)$:

\[
\alpha(t) = \left(\frac{\rho_\alpha}{\delta_\alpha}\right)C(t) \tag{2.6}
\]

and

\[
\beta(t) = \left(\frac{\rho_\beta}{\delta_\beta}\right)C(t). \tag{2.7}
\]

Let us call $(\rho_\alpha/\delta_\alpha)$ and $(\rho_\beta/\delta_\beta)$ the prevalences of the α and β factors respectively. Insert these into (2.3) and for convenience, put $\lambda_1^* = \lambda_1(\rho_\alpha/\delta_\alpha)$, $\mu_1^* = \mu_1(\rho_\beta/\delta_\beta)$, to obtain

\[
\frac{dC(t)}{dt} = \left[\lambda_0 + \lambda_1^* C(t)\right]C(t) - \left[\mu_0 + \mu_1^* C(t)\right]C(t)
\]

\[
= (\lambda_0 - \mu_0)C(t) - (\mu_1^* - \lambda_1^*)C^2(t) \tag{2.8}
\]

\[
= (\lambda_0 - \mu_0)C(t) \left[1 - \frac{\mu_1^* - \lambda_1^*}{\lambda_0 - \mu_0} C(t)\right].
\]

This conforms exactly to the original logistic equation if the ordinary net growth rate, $\Delta = \lambda_0 - \mu_0$, is positive, as is the effective carrying capacity.
\[K = \frac{\lambda_0 - \mu_0}{\mu'_1 - \lambda'_1}. \]

(2.9)

Under the above conditions and starting from \(C(0) > 0 \), the population attains the long-run steady-state value

\[C(\infty) = K = \frac{\lambda_0 - \mu_0}{\mu_1(\rho_\beta/\delta_\beta) - \lambda_1(\rho_\alpha/\delta_\alpha)}. \]

(2.10)

The above version of carrying capacity makes intuitive sense in that

(a) it increases with net population growth rate, \(\lambda_0 - \mu_0 \);

(b) it decreases with increased prevalence of negative growth factor, \((\rho_\beta/\delta_\beta) \), and with decreased prevalence of positive growth factor, \((\rho_\alpha/\delta_\alpha) \);

(c) the inhibition effect of negative growth factor, \(\mu'_1 = \mu_1(\rho_\beta/\delta_\beta) \), must exceed the stimulative effect of the positive growth factor, \(\lambda'_1 = \lambda_1(\rho_\alpha/\delta_\alpha) \).

If any of the above conditions are violated the population development becomes radically different, but can also be interesting.

The time-dependent population size is seen to be of the familiar logistic growth form

\[C(t) = \frac{KC(0)e^{\Delta t}}{K - C(0) + C(0)e^{\Delta t}} \]

(2.11)

with \(K \) as in (2.10), \(\Delta = \lambda_0 - \mu_0 > 0 \), and \(0 < C(0) < K \).

Note that the formula has biological meaning even if \(C(0) > K \), and also if \(K < 0 \): suppose that \(\Delta = \lambda_0 - \mu_0 > 0 \) but \(\lambda'_1 > \mu'_1 \); then write \(K' = -K > 0 \) to get

\[\frac{dC(t)}{dt} = \Delta C(t)[1 + C(t)/K'], \]

(2.12)

the solution to which is
\[C(t) = \frac{K'C(0)e^{\Delta t}}{K' + C(0) - C(0)e^{\Delta t}} \quad (2.13) \]

if \(t < \frac{1}{\Delta} \ln \left(1 + \frac{K'}{C(0)} \right) \); it explodes when \(t = \frac{1}{\Delta} \ln \left(1 + \frac{K'}{C(0)} \right) \); this might plausibly model an especially malignant tumor growth. Finally when \(\Delta = \lambda_0 - \mu_0 < 0 \) and \(K' = -K > 0 \) we simply get (2.11) with \(-\Delta\) replacing \(\Delta\), once again a logistic model, but now one that decreases as \(t \) increases.

3. Stochastic Models

The above model can be "made stochastic" in various ways. One is to re-state the growth factor and cell-growth equations as a system of three non-linear Ito-type stochastic differential equations. Analytical solutions are not likely to be available, but some asymptotics might well produce explicit results.

Another approach is to assume that a stochastic version of \(C(t) \), namely \(C(t) \), is a birth-and-death process with transition rates copied from the right-hand side of (2.8). For example, \(C(t) \) evolves over state space \((0, 1, 2, \ldots) \) according to

\[P\{C(t + dt) = C(t) + 1|C(t) = i\} = (\lambda_0 - \mu_0)idt + o(dt) \quad (3.1,a) \]

\[P\{C(t + dt) = C(t) - 1|C(t) = i\} = (\mu'_i - \lambda'_i)i^2dt + o(dt); \quad (3.1,b) \]

these holding when \(\Delta = \lambda_0 - \mu_0 > 0, \mu'_1 - \lambda'_1 > 0 \); otherwise modification is needed. Although \(E[C(t)|C(0) = C(0)] \neq C(t) \) because of the non-linearity in the generator, (3.1), it can be of interest to study the above stochastic version's transient properties, such as first-passage times from low states (population size) to high, or the reverse, e.g. to \(C(t^#) = 0 \) when the population dies out.

The described approach essentially minimizes attention to the stochastics of the growth factors and ignores non-linearity, hence is a prime candidate for an
upgraded treatment. Nevertheless it is appealing for its simplicity and easy availability, and is offered as an interim approach.

4. Summary

It is shown that classical logistic growth can be induced in a non-traditional manner by hypothesized action of growth factors, rather than by action of a physical carrying capacity (although the latter may operate as well). Modification of the effective carrying capacity to be negative has biological interpretability. The resulting models may perhaps find a use in cell proliferation and cancer modeling.

References

1. Research Office (Code 08) ... 1
 Naval Postgraduate School
 Monterey, CA 93943-5000

2. Dudley Knox Library (Code 52) .. 2
 Naval Postgraduate School
 Monterey, CA 93943-5002

3. Defense Technical Information Center .. 2
 8725 John J. Kingman Rd., STE 0944
 Ft. Belvoir, VA 22060-6218

4. Department of Operations Research ... 1
 Editorial Assistant (Code OR/Bi)
 Naval Postgraduate School
 Monterey, CA 93943-5000

5. Prof. Donald P. Gaver (Code OR/Gv) ... 5
 Naval Postgraduate School
 Monterey, CA 93943-5000

6. Prof. Patricia A. Jacobs (Code OR/Jc) ... 5
 Naval Postgraduate School
 Monterey, CA 93943-5000

7. Dr. J. Abrahams .. 1
 Code 111, Room 607
 Mathematical Sciences Division, Office of Naval Research
 800 North Quincy Street
 Arlington, VA 22217-5000

8. Dr. John Bailar .. 1
 468 N St. NW
 Washington, DC 20024

9. Prof. D. R. Barr ... 1
 Dept. of Systems Engineering
 U.S. Military Academy
 West Point, NY 10996

10. Dr. Frederic Bois .. 1
 IEP-MS90-3058
 Lawrence Berkeley National Laboratory
 Berkeley, CA 94720
11. Dr. David Brillinger
Statistics Dept.
University of California
Berkeley, CA 94720

12. Dr. James G. Burkhart
MDC4-07
Environmental Toxicology Program
NIEHS
Research Triangle Park, NC 27709

13. Prof. Brad Carlin
School of Public Health
University of Minnesota
Mayo Bldg., A460
Minneapolis, MN 55455

14. Dr. Robert Carpenter
NAMRI/Navy Toxicology Detachment
Bldg. 433, Area B
Wright-Patterson AFB, OH 45433-6503

15. Center for Naval Analyses
4401 Ford Avenue
Alexandria, VA 22302-0268

16. Prof. H. Chernoff
Department of Statistics
Harvard University
1 Oxford Street
Cambridge, MA 02138

17. Mr. Harvey Clewell, III
ICF Kaiser Engineer
ICF Kaiser International Inc.
1201 Gaines Ave.
Ruston, LA 71270-3107

18. Dr. Edward G. Coffman, Jr.
AT&T Bell Telephone Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

19. Prof. John Copas
Dept. of Statistics
University of Warwick
Coventry CV4 7AL, ENGLAND

20. Prof. Sir David Cox
Nuffield College
Oxford OX1 INF, ENGLAND
21. Dr. Kenny S. Crump ... 1
 Vice President, Environment Energy Group
 ICF Kaiser Engineer
 ICF Kaiser International Inc.
 1201 Gaines Ave.
 Ruston, LA 71270-3107

22. Prof. H. G. Daellenbach .. 1
 Dept. of Operations Research
 University of Canterbury
 Christchurch, NEW ZEALAND

23. Dr. D. F. Daley .. 1
 Statistics Dept. (I.A.S.)
 Australian National University
 Canberra, A.C.T. 2606, AUSTRALIA

24. Dr. Naihua Duan ... 1
 RAND Corporation
 Santa Monica, CA 90406

25. Prof. Bradley Efron ... 1
 Statistics Dept.
 Sequoia Hall
 Stanford University
 Stanford, CA 94305

26. Dr. Guy Fayolle ... 1
 I.N.R.I.A.
 Dom de Voluceau-Rocquencourt
 78150 Le Chesnay Cedex, FRANCE

27. Prof. George S. Fishman ... 1
 Curr. in OR & Systems Analysis
 University of North Carolina
 Chapel Hill, NC 20742

28. Henry S. Gardner .. 1
 U.S. Army Biological Research & Development Laboratory
 Ft. Detrick, MD 21702-5010

29. Dr. Andrew Gelman ... 1
 Statistics Dept.
 University of California
 Berkeley, CA 94720

30. Dr. Neil Gerr ... 1
 Office of Naval Research
 Arlington, VA 22217
31. Prof. Peter Glynn
 Dept. of Operations Research
 Stanford University
 Stanford, CA 94305

32. Prof. Linda V. Green
 Graduate School of Business
 Columbia University
 New York, NY 10027

33. Prof. J. Michael Harrison
 Graduate School of Business
 Stanford University
 Stanford, CA 94305-5015

34. Dr. D. C. Hoaglin
 Department of Statistics
 Harvard University
 1 Oxford Street
 Cambridge, MA 02138

35. Dr. David G. Hoel
 Professor of Biometry and Epidemiology
 Medical University of South Carolina
 171 Ashley Ave.
 Charleston, SC 29425-0002

36. Prof. D. L. Iglehart
 Dept. of Operations Research
 Stanford University
 Stanford, CA 94305-5015

37. Institute for Defense Analysis
 1800 North Beauregard
 Alexandria, VA 22311

38. Dr. Robert C. Jackson
 Vice President, Research and Development
 Agouron Pharmaceuticals, Inc.
 3565 General Atomics Court
 San Diego, CA 92121-1121

39. Prof. J. B. Kadane
 Dept. of Statistics
 Carnegie-Mellon University
 Pittsburgh, PA 15213

40. Dr. F. P. Kelly
 Statistics Laboratory
 16 Mill Lane
 Cambridge, ENGLAND
41. Dr. Jon Kettenring ... 1
Bellcore
445 South Street
Morris Township, NJ 07962-1910

42. Dr. Ralph Kodell ... 1
Chief, Biometry Branch
Biometry and Risk Assessment
National Center for Toxicology Research
3900 NCTR Drive
Jefferson, AR 72079

43. Mr. Koh Peng Kong ... 1
OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex Road
SINGAPORE 1024

44. Prof. Guy Latouche ... 1
University Libre Bruxelles
C.P. 212, Blvd. De Triomphe
Bruxelles B-1050, BELGIUM

45. Dr. A. J. Lawrance ... 1
Dept. of Mathematics
University of Birmingham
P.O. Box 363
Birmingham B15 2TT, ENGLAND

46. Prof. M. Leadbetter ... 1
Department of Statistics
University of North Carolina
Chapel Hill, NC 27514

47. Prof. J. Lehoczky ... 1
Department of Statistics
Carnegie-Mellon University
Pittsburgh, PA 15213

48. Dr. Georg Luebeck ... 1
Fred Hutchinson Cancer Research Center
1124 Columbia
MP-665
Seattle, WA 98014

49. Dr. Colin Mallows ... 1
AT&T Bell Telephone Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
50. Prof. R. Douglas Martin ... 1
 Department of Statistics, GN-22
 University of Washington
 Seattle, WA 98195

51. Dr. Sati Mazumdar ... 1
 Biostatistics Dept.
 University of Pittsburgh
 Graduate School of Public Health
 Pittsburgh, PA 15261

52. Dr. James McKenna ... 1
 Bell Communications Research
 445 South Street
 Morristown, NJ 07960-1910

53. Dr. Ramit Mehr-Grossman .. 1
 Theoretical Biology and Biophysics
 Theoretical Division
 Mail Stop K710
 Los Alamos National Laboratory
 Los Alamos, NM 87545

54. Prof. Carl N. Morris .. 1
 Statistics Department
 Harvard University
 1 Oxford Street
 Cambridge, MA 02138

55. Dr. John A. Morrison .. 1
 AT&T Bell Telephone Laboratories
 600 Mountain Avenue
 Murray Hill, NJ 07974

56. Prof. F. W. Mosteller .. 1
 Department of Statistics
 Harvard University
 1 Oxford Street
 Cambridge, MA 02138

57. Dr. John Orav ... 1
 Biostatistics Department
 Harvard School of Public Health
 677 Huntington Avenue
 Boston, MA 02115

58. Dr. Alan Perelson ... 1
 Theoretical Biology and Biophysics
 Theoretical Division
 Mail Stop K710
 Los Alamos National Laboratory
 Los Alamos, NM 87545
59. Dr. Jim Petty
National Biological Survey
4200 New Haven Road
Columbia, MO 65201

60. Dr. Lorenz Rhomberg
Harvard Center for Risk Analysis
Harvard University
Cambridge, MA 02138

61. Dr. Rhonda Righter
Dept. of Decision & Info. Sciences
Santa Clara University
Santa Clara, CA 95118

62. Dr. John E. Rolph
Information and Operations Management
Univ. of Southern California
School of Business Administration
Los Angeles, CA 90089-1421

63. Prof. M. Rosenblatt
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093

64. Prof. Frank Samaniego
Statistics Department
University of California
Davis, CA 95616

65. Prof. G. A. F. Seber
Dept. of Statistics
Univ. of Auckland
Private Bag 92019
Auckland, NEW ZEALAND

66. Prof. G. Shantikumar
The Management Science Group
School of Business Administration
University of California
Berkeley, CA 94720

67. Prof. N. D. Singpurwalla
George Washington University
Washington, DC 20052

68. Prof. H. Solomon
Department of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305
69. Dr. Andrew Solow
Woods Hole Oceanographic Institute
Woods Hole, MA 02543

70. Prof. W. Stuetzle
Department of Statistics
University of Washington
Seattle, WA 98195

71. Prof. J. R. Thompson
Dept. of Mathematical Science
Rice University
Houston, TX 77001

72. Prof. Steven K. Thompson
Statistics Dept.
Pennsylvania State Univ.
326 Classroom Bldg.
University Park, PA 16802-2111

73. Prof. J. W. Tukey
Statistics Dept., Fine Hall
Princeton University
Princeton, NJ 08540

74. Dr. D. Vere-Jones
Dept. of Math
Victoria Univ. of Wellington
P.O. Box 196
Wellington, NEW ZEALAND

75. Prof. David L. Wallace
Statistics Dept.
University of Chicago
5734 S. University Ave.
Chicago, IL 60637

76. Dr. Ed Wegman
George Mason University
Fairfax, VA 22030

77. Dr. L. Wein
Operations Research Center, Rm E40-164
Massachusetts Institute of Technology
Cambridge, MA 02139

78. Dr. Alan Weiss
Rm 2C-118
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974-2040
79. Prof. Roy Welsch
 Sloan School
 M.I.T.
 Cambridge, MA 02139

80. Dr. Raymond S.H. Yang
 Colorado State University
 College of Veterinary Medicine and Biomedical Sciences
 Dept. of Environmental Health
 Fort Collins, CO 80523