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ABSTRACT 

r 
A general method for solving the inverse diffraction problem is 

presented.   It is based on an identity of Bojarski which states that y (x) 

and  T(p)   are a Fourier transform pair.   Here y(x)   is the characteristic 

function of the target  (y   =  1  inside the target,   y   =  0 outside), 
2co 

p  = — _j  ,   co is the frequency,   J_ is a unit vector specifying the aspect, 

and  T(p)  can be obtained by measurement of the backscattered electromag- 

netic far-field at frequency co =  -  ]pj   and aspect J_ =   |pl    P   •   If data 

is obtained in any subset  D  of p-space, the method yields partial or com- 

plete information about the target geometry.   It is used to rederive earlier 

results very simply, and to obtain a significant new solution, in which the 

target geometry is completely determined using frequencies only in a 

practical frequency band and aspects in a narrow cone. . 

in 
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SECTION I 

INTRODUCTION 

The inverse diffraction problem requires the determination of the size 

and shape of a scattering target from given data.   For example, the far- 

field backscattered at certain aspects and frequencies may be given.   Any 

approach to the problem must be based on either the exact or some approxi- 

mate theory of direct scattering. 

As in other approaches to the inverse problem, the theory developed 

here will be based on the physical optics or Kirchhoff approximation        for 

direct scattering.   Our starting point will be a remarkable identity recently 
[2l obtained by N. Bojarski. A derivation of the identity is given in Section 

II.    There we introduce a three-dimensional space of vectors  p whose 

direction coincides with the aspect direction and whose magnitude is 

p  =   |p|   = —  where  CJ is the frequency.   We also introduce the charac- 

teristic function y (x)   of the target and a function p(p)  which can be obtained 

by measuring the far-field backscattered in the direction of p  at the fre- 
c   1    1 

quency co -=  -  |pj   .     The function y (x)   is 1 inside the target and 0 outside 

of it.   Then Bo jar ski's identity states that the functions  y(x)  and 
/—     2 -1 r *        1 T(p)  =  2v IT  (p )      p(p) + p   (-p)   are a Fourier transform pair.    Thus 

if p(p)  could be measured in all of p-space we could immediately obtain 

y (x)  and hence the target. 

In practice  p(p)   and hence  T(p)  can be measured only in a restricted 

range of aspects and frequencies, i.e., in a subset  D  of p-space.   In the 

general theory presented in Section III we show how these restricted scat- 

tering data can be used to obtain information about the geometry of the 

target.   In some cases, even when  D  is a relatively small subset of p-space, 



the target can be completely determined.   In other cases, partial but often 

useful information, such as the width function, cross-sectional area function, 

volume, etc., can be obtained. 

This suggests a possible reformulation of the inverse diffraction prob- 

lem itself.   In the usual formulations some data domain  D  is prescribed 

and one asks for proofs of the existence and uniqueness of a target that 

produces the specified data, as well as for constructive algorithms which 

yield the target geometry.   In the reformulated version, for each prescribed 

data domain  D , one asks for the maximum determination of geometric 

parameters that can be obtained and for algorithms for constructing these 

parameters.   For relatively "small" domains   D  these parameters may not 

determine the target uniquely.   In such cases we obtain only the class of 

targets (e. g., all targets with a given volume) with the specified parameters. 

For unique determination of the target, or for a given type of partial speci- 

fication, one may also ask for the "minimum" or most "accessible" data 

domain  D  needed. 

In Section IV we apply the general theory to four elementary examples. 

In these examples   D  is first all of p-space, then a plane, a line, and 

finally a point in p-space.    To readers familiar with physical optics methods 

for the inverse diffraction problem the nature of the results will be familiar, 

but the ease and simplicity with which they are obtained demonstrate the 

power of the present method.   In Section V we obtain a complete target 

specification using data in and infinitesimally near an infinite plane.   Since 

this plane passes through the origin, it contains all frequencies, and all 

aspects in some "equatorial plane" of the target.   Here, too, the results have 
r 3i 

been obtained earlier by a different method        but are now derived with great 

simplicity and elegance. 



Existing radar techniques are restricted to a frequency band of 

moderate width.   This band corresponds in p-space to the annular region 

between two concentric spheres of minimum and maximum frequency. 

Even if this annular region could be greatly enlarged by future technologi- 

cal developments, there would remain a "forbidden" low-frequency sphere 

about the origin in which the physical optics approximation, which forms 

the basis of our theory, fails.   It is clear that to obtain a practical method, 

the domain  D  must lie within the annular region.    Those examples in 

Sections IV and V that yield useful target information all violate this require- 

ment.    Therefore in Section VI we present an application of the general 

theory which yields a complete determination of the target, in which the 

domain  D  lies entirely within the annular region.   It consists of a disc- 

shaped portion of a plane which is tangent to the inner sphere and truncated 

by the outer sphere.    Thus the frequencies lie within the usable band and 

the aspects lie within a cone of semi-angle   0 .   For a sufficiently large 

upper frequency limit,    6  can be made arbitrarily small.    Thus the results 

of Section VI might form the theoretical basis for a workable radar 

recognition system. 

We note that since   T(p)  =  2vAT(p )"'   [p(p)  +  p (-p)l   , measure- 

ment of  T(p)   in a domain  D  requires measurement of  p  in  D  and in  D' , 

which is the reflection of D  through the origin.   Thus if D  corresponds to 

aspects near the   "front" of the target,   p  must unfortunately be measured 

also near the "back. "   Since this would, in many applications, be a severe 

limitation, we have attempted to eliminate the domain  D' .   In Section VII 

we present an extension of our general theory which, under suitable con- 

ditions, yields the "front half" of the target using measurements of p  in  D. 

This extension can be utilized in connection with the method of Section VI. 

In Section VIE we derive a simplified version of our general theory suitable 

3 



for targets which are bodies of revolution.   By introducing cylindrical coor- 

dinates we can, in effect, reduce the dimensions of bothj-space and x-space 

from three to two.    Some elementary examples of this simplified theory are 

presented. 

Although we have used the general theory to obtain old results easily, 

and have obtained one significantly new result in Section VI, we have not 

begun to exhaust the potential usefulness of the method.   There is good reason 

to hope that other useful applications of the theory and/or generalizations of 

the method, either by the present author or by others, may be given in sequels 

to this paper. 



SECTION II 

BOJARSKI'S IDENTITY 

The identity which forms the basis of our general theory is derived" 

from a representation for the electromagnetic far-field backscattered from 

a perfectly conducting target.   We consider an incident-plane, time- 

harmonic, electromagnetic wave with electric vector. 

E.(t,x)   =   E     eik<I-X   +  R)-iWt     . (1) 
—1 - —o 

Here  co is the frequency and  k =  a>/c   is the wave number.    The constant 

R  is the range,   I   is a unit vector in the direction of incidence, and J5 

is a constant vector orthogonal to  I .   According to the Kirchhoff, or 

physical optics approximation [ see (3. 41) of Reference l] , the backscattered 

far-field at the point x =   -RI   is given by 

2ikR-iwt 
E     =    p E      , (2) 

where 

-ik     P ,          2ikl • x ,„ , , .„. 
p  = —    \ I • n e    -     - dS (x)   . (3) 

The surface integral in Equation (3) is over the illuminated portion  L  of 

the target, and  n  is the outward unit vector normal to the surface.    The 

power cross section  a is related to p  by the equation, 

a  =  47TR2  |E J2/|E  I2   =   |P1
2

   . (4) 
S 1 



We introduce the vector 

-2kl (k -1 £ °) <5> 
which is defined for non-negative frequencies  w .    The magnitude of p  is 

p  =  2k  =  2 co/c,   and its direction is that of the unit vector  J =  -J 

directed from an origin in the target to the transmitter-receiver.   From (3) 

we see that 

p  =  p(p)  =  _1_ f p • n e_1? ' -dS(x)    . (6) 

p • n  > 0 

Here we have replaced the restriction to the illuminated region   L  by the 

condition  p • n  > 0 .    The replacement is strictly valid for all  p  only 

if the target is convex.   In general we introduce an additional approximation 

in replacing (3) by (6). 

We now note that 

p(p) + P* (-P) = -~: \ P • n e_1- ' -ds . (7) 

Here the star denotes the complex conjugate, and the integral is over the 

entire surface  S  of the target  B.   It follows from the divergence theorem 

that 

o 

P(P)  +  P* (-P)   = -1-   j  V •  (pe _1? ' -) dx    =  — J e"1? ' -dx   . 
2^    B " 2^B 

(8) 



We introduce the characteristic function of  B  defined by 

1   ,   x  in B 

r (x)   =   < > . (9) 

0   ,   x not in   B 

Then 
* 

P(p)  +  P   (-P) PIPJ   T   P   K-V)     p     .    . p -in • x 
T(p)  =  2^ — - — Je?    -dx = jy(x)e   ^    - dx   . (10) 

P B 
[2] 

This identity was first derived by Bojarski. It shows that T (p) , which 

is defined in terms of p(p) ,   is the Fourier transform of the characteristic 

function y (x) .   It follows that 

y(x)  =   (2TT)"
3
 j T(p)e? ' -dx   . (11) 

If the back-scattered field could be measured at all frequencies and all 

aspects _I , then  p(p)  would be known for all p , and (11) would yield the 

full solution of the inverse diffraction problem, i. e., the size and shape 

of  B.   In general  p(p)  is measurable only for restricted frequencies and 

aspects, i. e., in a restricted portion of p-space.    The general theory 

presented in the next section, and illustrated in succeeding sections, shows 

how the restricted information about  p(p)   can be used to yield complete or 

partial information about the target. 



SECTION III 

THE GENERAL THEORY 

Suppose   T(p)   can be obtained [by measurement of  p(p)]    in some 

portion  D  of p-space .   A convenient way of stating this is that we can 

measure the function  K(p) T(p)  where  K(p)   is the characteristic function 

of  D   (i.e.,    K  =   1 in D ,    K =   0   outside   D).   Alternatively,    K(p)   could 

be any function which is non-zero in  D  and zero outside  D .   We introduce 

the transform pair 

K(x)   =   (27T)"3 JK(P) e1? " *dp    ,     K(p)   = j\(x)e-iP " ?dx   . 

Since   K(p)   T(p)   can be measured, we can construct the function 

(12) 

f(x) =   (2TT)"
3
 JK(P) r (p) e1? ' ?dp 

-2   -5/2 f   K(P)   r * -,    in . x 
2    7T J   -f-   [p(p)   +   P   (-P)]e^    ?dp   . (13) 

P 

On the other hand, it follows from the convolution theorem for Fourier 

transforms that 

f(x)   =   \ y(x')JC(x  -   xf) dx'   =   \K(x»)y(x  -   x1) dx» (14) 

Since  f  can be constructed from measurement and 3C is known from (12), 

(14) is an equation for y (x) .   We shall see that in some cases it can be 

solved to determine y (x) , i.e., the target  B.   In other cases it yields 

partial information about  B.   It is not surprising that (14) can sometimes 



be fully solved even when  K vanishes in much of p-space, because we know 

in advance that y   is a characteristic function.   In fact, since y   is com- 

pletely determined by a two-dimensional manifold, i. e. , the surface of   B , 

we might expect that (14) can be solved even when   T(p)   can be measured 

only on a surface, i. e., a two-dimensional manifold in p-space.    This 

expectation will be confirmed in Sections V and VI. 

It is interesting to note that if 

K(-p)   =  K*(p) (15) 

then K (x)   is real and 

f(x). 2-v*/* k^> p(P)e <*• ■ :* + s±® p* (p,e-'? • ?*; 
/    p p 

i   */9      rK(p)p(p)   ip • x 
=  2-V5/2<Re      — e*?    *dp   . (16) 

J      P2 

Then the determination of K and  f  is somewhat simplified. 

In general we proceed by choosing a domain  D  in  p-space and a 

convenient function  K(p)   which is non-zero only in  D.    Then we determine 

K   from (12) and f (in terms of p) from (13).    Finally, we use (14) and the 

fact that y    is a characteristic function to obtain a partial or complete 

determination of  B.    The procedure will be illustrated in Sections IV, V, 

and VI.   It should be emphasized that those cases that yield only a partial 

determination of  B  should not be considered  a failure to solve the inverse 

diffraction problem.    Rather, it might be considered remarkable that partial, 

and often useful, information can be obtained from inadequate data. 

10 



SECTION IV 

ELEMENTARY EXAMPLES 

In this section we will apply the method of Section IE to several simple 

cases.    The results are not of practical importance, primarily because the 

domain  D  includes low-frequency regions where physical optics fails and 

both high and low-frequency regions where  p  cannot be measured by exist- 

ing techniques.   Nevertheless, the examples are useful in clarifying the 

application of the theory.   In each case we give first the domain  D  and 

K(p).   Then we determine X(x)  from (12) and  f(x)   in terms of p  from 

(13) or (16) when (15) is satisfied.    Finally we evaluate the right side of (14) 

and discuss the resulting information about the target  B. 

Example 1: 

D:   all of p-space; K(p)   =   1; J((x)    =   <5(x) , (17) 

f(x)    =  2"V5/2 (Re §-f- e ip- ' ?dp   , (18) 
P 

f(x)   =   W(x')<5(x  -   x') dx'   = y(x) (19) 

Here y (x)  is completely determined by eliminating f in (19) and (18). 

Example 2: 

D:   the plane  p     =   0;   K(p)   =   öfc^) (20) 

3 C     i(P2X2   +  *W -1 
K(x)   =   (2*)     )    e dp2dp3   =   (2TT)  

Xö(x2)ö(x3)    . (21) 

11 



-1   -5/2 ('      P(°'P2'P3)      lkX2   +   P3X
3)H       . ,_ 

f(x)   =2    IT    'fie   \     —- — e dPodpQ   ,       (22) 2 2 *2   "3 
P2     +  P3 

f(x)   =   (27T )_1 jy (x<) Ö (x2 - x2>) ö(x3 - x3«) dx< 

=   (27T)"1 jy^' , x2 , x3)dx1«    =   (27r)_1w(x2 , Xg.). (23) 

Here w (x   ,x)   denotes the "width" of the target at the point   (xg , x )  , 

i. e., the length of that part of the line parallel to the  x -axis and passing 

through the point (o, x   , x )   which is contained in the target.    Thus a 

partial description of  B  is given by (23) and (22).    The description is incom- 

plete because many different targets can have the same width-function w. 

Example 3: 

D:    the line  p£   =  pg   =   0;    K(p)   -   Ö(P2) 
ö(p

3)
; <24) 

K(x)   =   (2*f3j e   1  \±   =   (2ff)"2ö(x1)   , (25) 

i   */9    r p(pi' 0> °) ipixi 
f(x)    =    2      7T (Jte,  -2 - -rx 

Pl 

f(x) =  (27r)"2Jy(x')ö(x1  -  Xj^dx' 

= (27T)"2 j y (xx , x2- , x3')dx2'dx3' 

=   a W (27) 

12 



Here  a(x  \   denotes the cross-sectional area of the target, i.e., the area 

of that part of the plane  x    =  constant which is contained in the target. 

Thus (26) and (27) yield a partial description of   B. 

Example 4: 

D:   the point p  =   (^ , p2 , pg)   = (pQ , 0 , o) ; 

K(p)   =   ö(P2)ö(P3)6(Pi   -p0); (28) 

-3   iP0Xl 
K(x)   =   (27T)  6 e   °       , (29) 

-2 -5/2 ppy0'0) + A-po'°'°)  Vl , 
f(x)   =  2    ! §  e 

Pr 

(30) 

0 

-s r , IX ^o(xi " xi')   , 
f(x)  =   (2ir)      Jy(x') e dx' 

iP.xi  f iPnxi 
(31) =    (27rf3e    ° ^afa'^e dx^   . 

From (30) and (31) we obtain 

C    ,    x     "Vl                    1/2   KP0 '   ° '  °)   +   P    (~P0 '  ° '  °) 
J a(Xl)   6 d*x   =   27T  -2      . 

P0 (32) 

In this case the description obtained is only an integral of the area function 

a (x \   and thus yields very little information.   For   P„   =   0  the left side 

of (32) becomes the volume of the target, but the right side is indeterminate. 

However, the result is of little interest because of the failure of the physical 

optics approximation at low frequencies. 

13 



SECTION V 

THE FULL-FREQUENCY PLANE 

As in Example 2 of the preceding section, we take  D  to be the plane 

p    =   0 , but now we choose 

K(p)   =   i<5'(p^    . (33) 

Then 

r • -i P ipixi 
X (x)   =   K27T f3 j Ö« (Pl) e 

X? • ?dp  -   i (2T) "    Ö (x2 ) 6 (x3)^  Ö' (Pl) e äp1 

=   (2TT)-
1
XIö(X2) 6(x3)    . (34) 

Since (15) is satisfied we may use (16) to determine  f .    Thus 

-1    -5/2 ^   P. <-'    x   p(p)     ip   •   x . 
f(x) =  2     7T (tejiö(Pi)   ^-e i:       -dp 

P 

—    I        7T (Re ^-iö'(Pi) e1? ' 5 [lxx -^   +  X(p)] dp 
P 

(35) 

where 

a      P(P) 
A<B> = op" -T-    • (36) 

1   P 

It follows that 

f(x)   =  xia(x2>x3)   +  ß(x2   ,   x   ) (37) 

15 



where 

,        -1   -5/2Ä      f   P(°'P2'P3)       l(P2
X2   +   P3XS),    „ 

«(x2,x3)=   2    7T (Re j    - —   e dp^ 

and 

ß (X2 ' X3 

2 *3 
P2     +   P3 Z ö (38) 

x o-l   "5/2 T      fwn ^    1(P2X2   +   P^K    H )   =   2    7T Im J A (0 , p2 , p3) e dP2
dp3   ' 

(39) 

By inserting (34) in (14) we obtain 

f(x)   =   (27r)"1j,y(xI) (x^   -   x±) Ö (x^   -   xg)   6(x3«   -   xg) dx' 

=   (21T)"1 jy (xx' , x2 , x3) (xx   -   xx') dx1«    . (40) 

It follows that (37) is satisfied with 

a(X2 ' X
3)   =   {2nfl  [y2   (X2 ' X

3)   -   yi-(X2 ' X
3) ]      (41) 

and 
y. 2 

ß (x2 , x3)   =   - (2nf1 j x^dx^   =   - (47r)"
1[y2

2(x2!x3) - Y*^.*^ 

yi (42) 

Here  x    =  y     (x   , x )   and x    =  y    (x   , x  \   are the functions that 

define the two surfaces enclosing  B  as illustrated in Figure 1. 

16 



xry2(x2>x3> 

xi=yi(x2,x3) 

Figure 1.   Functional Description of Body Geometry 

We have tacitly assumed that each line parallel to the  x -axis cuts the 

2 2 
surface of the target at most twice.   Since  y     - y     =  /y   - y \   (y   + y \ . 

it follows that y   + y   = -2/3 /a and  y   - y    =  2ir a .    These equations 

are easily solved to yield 

7T a    +  ß IT a ß 
a a (43) 

Since  a  and  ß   are given by (41) ,  (42) and (36) in terms of  p(0 , p   , p ) 

d       , N 
and -r— p (0 , p„ , p_ )   we have obtained a complete determination of the 

dp      v 2       3' 

target geometry.   We note that the width function is given by 

17 



w 
\  1 '    3 /       y2        yl 

-3/2,     f   P(VP
3)     H*2X2   +   P3X3)        , 

=  IT    '    (Re  \   —    e dp
2 

P3   "      (    * 
P„     +  P ^2 *3 

This result agrees exactly with the result (22), (23) obtained by a different 

method. 

i    8P Our complete solution (43) requires a knowledge of p  and   g—■   in the 

"equatorial plane"  p    =   0 .    Thus all frequencies and all aspects in this 

plane are required.    To evaluate  ^-  (0 , p2 , p  )  we also need aspects 

infinitesimally near the equatorial plane.    This result is very closely related 

to that obtained in Eeference 3 by an entirely different method.   Since all 

frequencies are required we refer to the plane  p    =   0  as a "full-frequency 

plane!'. 

18 



SECTION VI 

THE BAND-LIMITED PLANE 

Let us recall that the magnitude  p  of the vector  p  is  p  = — , 

where  w is the frequency and  c   is the speed of light.   Thus points near 

the origin in p-space correspond to low frequencies, and distant points 

correspond to high frequencies.   The frequency is constant on spheres 

centered at the origin.   In most practical radar applications the usable fre- 

quency band is limited by minimum and maximum values  co    and <s>   .   If 

we set 

2w 2<x> 
m  = —1   ,   M  = —    , (45) 

c c 

then the usable portion of p-space corresponds to the annular region 

m  ^ p  < M between the two spheres illustrated in Figure 2.   It is im- 

portant to note that the frequency limitation is due not only to technological 

factors but to the failure of the physical optics approximation, on which our 

theory is based, at the low frequencies.    Therefore, in applying the general 

theory of Section III the region  D  should certainly not intersect a "forbidden 

sphere" about the origin in which the physical optics approximation fails. 

With the exception of example 4 of Section IV, all of the cases examined so 

far have violated this criterion, and the exceptional case yielded very little 

information about the target.   The "full-frequency plane" utilized in Section V 

passes through the origin and thus intersects the forbidden sphere. 

In this section we will take  D  to be the disc consisting of that part 

of the plane  p    =  m which lies within the outer sphere  p  =  M  of Figui 

2.    The disc is illustrated by the heavy line in Figure 2.   Its radius is 

19 



*-p, 

Figure 2.   Usable Portions of p-Space 

r~2      2 
p  = N/ M     -   m (46) 

Thus the region   D  not only avoids the forbidden low-frequency sphere but 

lies entirely within the usable frequency band.    The function  K(p) , which 

must vanish outside  D , is taken to be 

K(p) 

(    <5(Pi   -   m)     ,    p     <  M' 

(47) 

2 2 
p     >  M 

20 



Then, from (12), 

f                                •                                       imx 
K(x)   =  (2,)"            ]      6(Pl   -   m) e*   '   ^  =  (2,)"   e           6^ , Xg), 

2         2 
P   <M                                                                                            (48) 

where 

/             \                -2           f                ifP2X2 + P3X3S) 

2         2      2 
P2   +P3   <M 

We note that for  M — °° , JU  approaches infinity and   <5    approaches 

the two-dimensional delta function, 

6(VX3)   =   Ö(X
2)

Ö(X
3)   '                                 (50) 

Thus   ö    is an approximation to (50).   In fact, if we set 

(P2 ' P3)    =  b(cos/? ' sinj8) '   ( x2 ' X3)      =   r(COSO! ' sina!) > ß'   = ß   ~   a > 

(51) 

we see that 

27T            jJ, 

*,(v«s)- ^-'^■Wbeihrcosß' 
0           0 

/i                                                   r/i 

=   (27T)"1 \ b J   (rb) db   =   (27rr2)-1 \   z J (z) dz 

0                                                    0 

~   oM     J, (Mr);   r   -    /x 2   +  x 2    .                   (52) 
27rr     1 v    '               /   2            3 
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Here   J    and   J    are the Bessel functions of order zero and one, and we 

have used the identity 

[zJ^z)]    =   zJ0(z)   . (53) d 
dz 

2 
From   (52) it is easy to show that   ö (0 ,  0)   =-£-   ,    and the width of the 

large central lobe is of order  — . 
M 

to the delta-function (50) provided 

large central lobe is of order  - .     Thus   <5    will be a good approximation 

I  «  L   , (54) 

where   L  is a typical target dimension. 

Assuming that (54) is satisfied, we may approximate (48) by 

imx 
K(x)   =   (27T)"    e ö(x2) ö(x3). (55) 

Proceeding with the method of Section III we find from (13) that 

-2   -5/2        f            ,              x  P(?>   +   P* ^ e* • ?dp 
f(x)   =  2 \  5U ö(p     -   m)  

2 i „2 p 
p    -= M 

imx 
=   (7rm)     e F(m . *2 . *3 )   , (56) 

where 
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-2   -3/2 f 
F (m , x2 , x3) = 2    TT m j 

-2   -3/2 f P(™>P2'P3) 
+ P(-™ .P2.P3) 

2 2 2 m     +   P2     +   P3 
P2   +P3    <M 

x   e1 (P2X2   +  P3X3 } dp2dp3 . (57) 

By inserting (55) in (14) we obtain 

r im(x     -   x ') 
f(x)   =   (2TT)      W(x')e ö(x2   -   x2«) ö(x3   -   x3')  dx' 

imx    /-. -imx ' 
=   (27T)"    e JTC^' , x2 , x3) e dx^     . (58) 

We again introduce the functions y (x , x ) and y„(x . x ) illustrated 

in Figure 1. It is convenient to replace them by functions a(x , x ) and 

b (x    ,   xg) defined by 

1 
_w y±   =   a-b5y2   =   a + b, a  =   ^(y^y.,), b  =   - (yg   -   y^    = 

(59) 

Here w  is again the "width function".   Now, (58) yields 

a + b 
-imx1 x     n 

F(m , x2 , x  )   =   Trme f(x)   =   -    J 
-imx, „     ,.   

e dx ' 

a - b 

-ima(x2 , x3) 
=  e sin in[mb(x2 , xg)]. (60) 
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We see from (57) that   Ffm , x   , x _\   can be obtained from measure- 

ment of  p  in the disc   D  and its image  Dr   indicated by the dashed line in 

Figure 2*.   Then the functions a and b, which determine the target completely, 

can be obtained from (60) in a variety of ways.    One way is as follows.   We 

note that 

1 F 1  =  ±   sin (mb) (61) 

hence 

4-   IF]   =  ±  b cos (mb)   . (62) 
dm   ' 

We see that (62) consists of a rapidly fluctuating "carrier" modulated by the 

slowly varying function  b.    Thus the (positive) function  b  is given by 

b(X2 ' X3)   =   envel°Pe 0f  dS  I F (m ' X2 ' X3 ) '    '       (63) 

Furthermore, from (60) 

2 2 
=   je [b cos mb  -  ia sin mb] j 

'dm 

2        2 2       2 
b   cos   (mb)   +   a   sin   (mb)   . (64) 

Hence 

2 

and 

2    • 2 /   ^        !dF! (d F W a   sm   (mb)   =   ]— |      -     (-J^J-j 

2 , r   (  idF  ,2        /d|F| \2\ a   (x2, xs)   =  envelope of   j  ^_|     -   [-^-)   J. 

(65) 

(66) 

* 
In the next section we will attempt to eliminate the need to measure p in D' 
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This determines  a (x   , xo \   except for an ambiguity of sign which can be 

resolved by noting that 

1 
a  =  - — arg 

m sin (mb) 
(67) 

It is interesting to note that the condition (54) for the validity of our 

approximation of  <5    by ß  can be stated in the form 

1   «  Lju  =   L /M2   -   m2   =   LM     1   -   -5L   =   LMV 1   -   cos2 8 :    i _ ?L = LM^/7T 
N/ M 

2a; 
ML sine   =   L sin0   . (68) 

Here  co    is the upper frequency limit and   8  is the semi-angle of the cone 

of required aspect directions illustrated in Figure 2.   We note that   8  can 

be made arbitrarily small provided  OJ    is sufficiently large.   There is, of 

course, no need to take  m  =  2w/c  to correspond to the low-frequency 

limit.   We need only require that co    be greater than or equal to this lower 

limit.   Thus the disc   D will still lie in the usable frequency band. 
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SECTION VII 

HALF-TARGET RECONSTRUCTION 

If we think of the p -axis of Figure 2 as pointing in the direction of a 

transmitter as seen from the target, there are many practical situations in 

which one would like to eliminate the need of measuring p  in the region  D' 

corresponding to aspects in the "back" of the target.   One might hope to 

obtain a representation of the "front" half of the target without these measure- 

ments.    The purpose of this section is to show that this "half-target recon- 

struction" can, in principle, be accomplished by a modification of our method. 

For a given target  B  and a given unit vector   J      we introduce the 

symmetric target  B    obtained by reflecting the illuminated part  L    (at 

aspect  J   ) of the surface of  B through the origin.   A typical case is illus- 

trated in Figure 3.   The resulting  B    depends of course on the choice of the 

origin  o   in   B . 

It is clear from (3) that if p    corresponds to   B    and  p  to   B, then 

p(p) «   p0 (p)   for   J  «   JQ   . (69) 

Here  J  =  — p  =   -   I_   [ see Equation (5)] .    Furthermore, because of the 

symmetry of  B   , 

P0(-P)   =   P0(P)   • (70) 

Using subscripts   "o" to refer to   B    , we see from (13) and (70) that 

fo(x,   .  2-V5/2 ji*> [po(p,  +  „* <p,]   e'E ■ ?dp  . (71) 
P 
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Figure 3.   Representation of the Symmetric Target 

We now assume that  K(p)   vanishes except for   J  =   -   p   near   JQ 

Then from (69) 

f (x)   «   2     7T 
o - 

2_-5/2   f  K(p) jSL   [p(p)   +   p*(P)] ip • x T 
e   -     - dp   . 

(72) 

But from (14) 

f (x)  = j yo (x1) K(x -  x») dx'  = ro *K  , (73) 

and we see that, by eliminating  f (x)   in (72) and (73), we obtain an equation 

not for  y   but for the characteristic function  y     of  B   .   If we can use this ' o o 
equation to determine   B   , then we have determined the illuminated part 

28 



L    of   B .    The input data in (72) requires the measurement of 
o 

* 
p(P)   +  P    (P)   =  2(Rep (p) (74) 

in the region   D where   K(p) does not vanish.    By assumption this region 

involves aspects   J_ only near   J[ 

If, for example, we apply the method of this section to that of Section 

VI we take   J     =   (1, 0, 0)   to be the unit vector in the direction of the 

p -axis.    Then we merely replace   p   (-p) by   p (p)   in (56) and (57).    Thus 

we obtain 

.    /                     \          9-l   -3/2       f (Re(P   m ' P2 ' Ps) -o(m,x2,x3)    =  2    , m   /   —^ g -J 
/öte/p   m , p^ 

2 2 
m   +p2   + 

3 

P2    + P3"  < M" 

KP2X2   +  P3X
3) 

x e dp
2
dp3 ' (75) 

and by using  F    instead of  F  in the succeeding equations of Section VI 

we obtain not the target  B, but its symmetric replacement  B    .   We note 

that the input data for (75) require the measurement of  p  on the disc  D 

but not on its image  D'  . 
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SECTION VIII 

THE GENERAL THEORY FOR BODIES OF REVOLUTION 

In this section we will show that the general theory developed in Section 

III can be considerably simplified if the target  B  is axially symmetric.   In 

effect we will reduce the complexity of our formulas from three to two 

dimensions. 

We begin by introducing cylindrical coordinates in both x-space and 

p-space defined by 

x  =   /x   , r cos a , r sin a\ , p  =   ( p      b cos ß , b sin ß \ . (76) 

Thus 

dx = dx rdrdcu , dp = dp bdbdß , (77) 

and 

p • x = p x + br cos (ß   -  a)   . (78) 

We take the x -axis to be the symmetry axis of the target.   Then  p(p)   is 

axially symmetric (independent of ß ) , i.e., 

P  =  P(PX  ,   b)    , (79) 

and the characteristic function is also axially symmetric (independent of a), 

i. e., 

y   = y(xx , r ) . (80) 
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If we use the integral representation of the Bessel function 

J (z) 
0 

27T 

1       P    izcos( 
2TT    J 

0 

de (81) 

and take   K =   K(p     ,    b) , we find that Equation (12) becomes 

2ir      °° 

X (xi , r)   =   (2TT)"
3
 Jdpi j d/3 jbdb K(PI , b) 

i[p x    +  br cos {ß - a)l 

0        0 

iP.x, 
-   (27T)"2 J dPl j bdb K(PI , b) e JQ (br)   . (82) 

Since 

x. x '^     + (x    -   x 
2 ) \ 3 £ ') 

2 2 
=  (r cos a -  r' cos  a') 

+   (r sin a  -   r' sin ce') 

2 2 
=  r    +   (r1)     -   2rr' cos (a' a), 

(83) 

Equation (14) becomes 

f(x   , r)    =   \ dx 'r'dr'da'y (x ' , r1 \ 

x  X \  ~ V '   J(: X2   "   V)       +    (X3   '   V) 

\ dx ' \ r'dr'y   f x • , r') 

0 0 

2TT 

da' 

xX 2 2 
£    -  x '      / r    +   (r')     -   2rr' cos a' (84) 
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We will make use of the "addition theorem" for Bessel functions, 

oo 

J   \\l R    +   P2   -   2RPcos e)    =   J (R)J (P)   + 2 )  J   (R)J   (P) cos mö , 
0 0        0 LJ   m       m 

m = 1 
(85) 

from which it follows that 

2w   

P     -   2RP cos   6) d0   =   2TT J (R)J (P)   . (86) 

Then from (84) we see that 

f(xi'r) = j ^I1 j r'dr'y (V ' r') Q(Xl " V ' r> r') 
0 

(87) 

where 

Q(x± , r , r')   = J da'  K   x   ,    J 2 2 
x   ,    \l r     +   (r1)     -   2rr' cos a' 

-1 P        P pl   1 
=   (2TT)     j dPl j bdb K(?1 , b) e JQ (br) J (br') 

(88) 
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5 •r; 

On the other hand,  Equation (13) becomes 
00 

2--5/2KJ< f/x   ,  r)    =   2    IT' bdb 

0 

27T 
K(PX , b) 

x^d' 2
+b2 

o      pi  +b 

p(P1 . b)   +  p ^-Px , b) 
1   ^Vl + br cos ") 

oo 

-i -3/2 r.   r     K(pi'b) 
bdb 

2 u2 

?1    + b    L 
p (^ , b) + p* (-Pl ,  b) 

ip x 
1    1    T     /K   X x   e JQ (br)   . (89) 

The application of these formulas is much the same as in Section III. 

We choose a domain   D   in   (p   , b)-space and a convenient function 

K (p    , b)   which is non-zero only in   D.    Then we determine   Q  from 

Equation (88) and  f  in terms of measurable values of  p    from Equation (89). 

Finally, we use (87) and the fact that y (x   , r)   is a characteristic function 

to obtain a partial or complete determination of  B.   The method may be illus- 

trated by the following elementary examples: 

Example 1: 

Since 

D:   all of (p    , b)-space; K (p1 , b)    =   1 

J bdb J0(br) JQ(br»)  = -^ Ö (r  -   r') 

(90) 

(91) 

0 
* This identity is equivalent to the inversion theorem for Hankel transforms. 
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it follows that 

Q(Xi, r,r')   =   ö(Xl) 
Ö (rr; 

r'}       . (92) 

Then (87) yields 

f(Xl ' r)  = T (Xl ' r)   ; (93) 

i. e., the characteristic function is given by (93) where  f  is obtained by 

setting   K =   1   in (89) . 

Example 2: 

D:   the axial line  b    =   0; K(p    , b)  =   i   5(b)   . (94) 

From (88), 

Q(xx , r , r')   =   0(^)^(0)   =   6^)   , (95) 

and (89) yields 

1(              \          P-1   "3/2  f H        KP1  '   °)    +   P*   K '   °)   p 
iPlXl ,_„ 

f M^ ,  r \   =   2    7T \   dpx  2    e •       (96> 

By inserting (95) in (87) we obtain 

ro(Xl) 

f (Xl ' r)     = Jy   (Xl ' r') r'dr'   =      J    r'dr?   =  \Vo   (Xl)     • (97) 

0 0 

Here  r  =  r   ex. \    is the (non-negative) function which describes the "profile 

curve" of the target  B.   Thus the target is completely determined by 

eliminating  f  in (96) and (97). 
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Both of the examples discussed here suffer from the defect that   p   must 

be measured at forbidden low frequencies. 
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