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A Software Architecture 
for Dependable and Evolvable 
Industrial Computing Systems 

Abstract: The downtime of a large industrial operation is often prohibitively ex- 
pensive and a failure of a mission critical system could have disastrous con- 
sequences. Lacking an effective approach to mitigate the risks in system 
upgrades or to introduce third party supplied open system components, many in- 
dustrial systems and defense systems are forced to keep outdated computing 
hardware and software. 

A paradigm shift is needed, from a focus on enabling technologies for completely 
new installations to one which is designed to mitigate the risk and cost of bringing 
new technology into functioning systems. Innovative technology is needed to sup- 
port the task of technology insertion. Quickly and reliably turning unparalleled 
American innovations into industrial competitiveness and defense technological 
superiority is of strategic importance. 

The Simplex architecture has been developed to support safe and reliable online 
upgrade of hardware and software components in spite of errors in the new 
modules. This paper gives a brief overview of the underlying technologies. 

1. Introduction 

Computers and computer networks have revolutionized the production of goods and delivery 
of services. Nevertheless, the computing infrastructure often introduces formidable barriers 
to continuous process improvement, equipment upgrades, and agility in responding to 
changing markets and increased global competition. Consider the following anecdotal 
scenarios from industry. 

Process improvement A research department developed a process modification that im- 
proved significantly the product yield and quality. With a relatively minor modification of the 
processing sequence, and new set-points for key process variables, the improvements were 
demonstrated on a pilot plant. Nevertheless, these improvements were never implemented 
in the plant, because the line manager persuaded management that it couldn't be done cost 
effectively. Although the required software modifications are simple logic modifications, the 
process sequence is controlled by a set of networked PLCs (programmable logic controllers) 
coordinating several valves, sensors and PID loops with several hundred lines of ladder 
logic code. The technician who wrote the PLC programs left the company. The last time a 
modification was attempted on the code, it took the process down completely, costing 
thousands of dollars in downtime. The line manager wanted no part of installing the so- 
called process improvements developed by the research department. 

Equipment Upgrades: Over the years, aging equipment has been replaced with new produc- 
tion technology so that the factory now has a hodgepodge of old and new equipment with 
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Controllers from five different vendors, each with its own programming interface, data struc- 
tures, and data communication protocol. One of the older process machines failed recently 
and the best replacement was from yet another vendor. It had a considerably shorter cycle 
time, improved reliability, and a more sophisticated control computer. As with previous 
upgrades, however, installing the new equipment required yet another development and in- 
tegration effort with yet another proprietary computing environment. It was particularly 
costly to create custom interfaces to communicate with the other equipment in the system 
and there was no way to predict the timing effects. Consequently, the only way the equip- 
ment could be installed safely was to perform extensive tests during factory downtime. In 
the end, integration cost several times the capital cost of the new equipment, and worse yet, 
it took several times longer to install the equipment than was originally estimated. 

As illustrated by the preceding scenarios, existing integrated computer systems do not 
provide support for evolution in general and for safe online evolution in particular. Current 
system architectures do not tolerate errors in the insertion of a new technology or modifica- 
tion. If there is an error, the operation of the factory will be adversely impacted. It is ex- 
tremely difficult to avoid all problems when new technology is inserted into systems whose 
design did not anticipate those new technologies, especially when the modification is done 
by someone other than the original system integrators. 

This is a pervasive problem in industrial and defense systems requiring high availability, 
real-time performance, and safety. Indeed, existing practice in mission critical computing 
mandates an extremely conservative attitude towards the introduction of new technology 
into functioning systems. While such a conservative attitude is completely justifiable and 
reasonable, it has the unfortunate side effect of undermining the productivity, agility, and 
quality of our industrial base. It also threatens to erode the technological superiority of our 
defense in the post cold war era, where much fewer new systems are being developed. 

A paradigm shift is needed, from a focus on enabling technologies for completely new instal- 
lations to one which is designed to mitigate the risk and cost of bringing new technology into 
functioning systems. Technology is needed to support evolving systems. Industry needs a 
computing infrastructure in which upgrades will be safe and predictable, with negligible 
down-time. 

The Simplex Architecture is a software architecture based on open system components. It 
has been developed to address these concerns. The architecture was initially developed to 
support the safe online upgrade of feedback control and radar systems, regardless of 
whether there were faults in the modeling, design, and implementation of new software or 
computing hardware [1, 4]. This paper provides an overview of this architecture, which sup- 
ports the safe evolution of the application software online. Simplex architecture also sup- 
ports the safe online addition or removal of computing hardware and system software. The 
rest of this paper provides an overview of the technology foundation of the Simplex Architec- 
ture. Chapter 2 gives an overview of the basic requirements of the Simplex architecture. 
Chapter 3 gives a very brief overview of the technological foundation and Chapter 4 
provides an overview of the software architecture. Finally, Chapter 5 gives the summary 
and conclusion. 

CMU/SEI-95-TR-005 



2. Basic Requirements 
The design of the Simplex Architecture addresses three basic requirements. Firstly, an ar- 
chitecture that is designed to support system evolution must itself be evolvable. Trade-off 
decisions such as flexibility vs. efficiency, change from application to application. Within an 
application, decision weights change as technology and user needs evolve. For example, in 
many early PC applications, e.g., spread sheets, most of the available computing resources 
were devoted to problem solving rather than user-interface needs. Today, a significant per- 
centage of the computing power used by an application is devoted to graphical user inter- 
face. A trade-off decision can, at best, be optimal at some particular given environment and 
time. Thus, it is important to have the mechanisms to evolve both the application software 
as well as the Simplex Architecture itself. 

Secondly, application codes should be protected from changes to non-functional quality at- 
tributes and vice versa. It is important to minimize the impact of changes on application 
programs when the system evolves. Interfaces between components and subsystems must 
be defined in such a way that tradeoffs between non-functional quality attributes such as 
dependability and performance can change over time without the need for modifying ap- 
plication programs. For example, when a new software component is first introduced, it may 
need to be embedded in an application unit that has built-in safety checks and detailed 
operational monitoring. This may impact performance adversely. When the risk of a com- 
ponent decreases, some of the risk mitigation measures at runtime can be reduced accord- 
ingly. These changes should be made without any modification to the application program, 
since the semantic (functionality) of the application remains unchanged. 

Thirdly, the architecture must provide application independent utilities to meet timing con- 
straints, to tolerate hardware and software failures, to monitor system status, to configure 
the system, and to provide users with templates and standardized transactions to manage 
changes in general and online changes in particular. To support system evolution, we 
provide users with commonly used system utilities so that they can focus on the semantics 
of their applications. 
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3. Underlying Technologies 

In order to allow to change software modules during runtime, an advanced real time 
resource management technology is needed. In Simplex architecture, real time process 
management primitives are built upon generalized rate monotonic theory [5]. In order to 
tolerate both hardware and software faults, to manage changes during development, and to 
support the evolution of dependable systems after their deployment, a new theoretical foun- 
dation is needed to allow for well formed diversity among redundant components. The 
theory of analytic redundancy provides us with such a foundation [6]. In the following, we 
give a brief review of these two subjects. 

3.1. Real-Time Scheduling 

Generalized rate monotonic scheduling (GRMS) theory guarantees that the deadlines of 
tasks will be met, if the total CPU utilization is below some threshold and if certain rules are 
followed. GRMS is supported by major national standards including Ada9x, POSIX real-time 
extension, and IEEE Futurebus+. The following is a synopsis of generalized rate monotonic 
scheduling for uni-processor. For an overview of this theory for distributed systems, see [5], 
for system developers who want detailed practical guidelines see [2]. The name rate 
monotonic scheduling comes from the fact that this algorithm gives higher priorities to tasks 
with higher frequencies. 

A real-time system typically consists of both periodic and aperiodic tasks. A periodic task TJ 
is characterized by a worst-case computation time Ct and a period Tt. Unless mentioned 
otherwise, we assume that a periodic task must finish by the end of its period. Tasks are 
independent if they do not need to synchronize with each other. By using either a simple 
polling procedure or a more advanced technique such as a sporadic server [7], the schedul- 
ing of aperiodic tasks can be treated within the rate monotonic framework. In each case C 
units of computation is allocated in a period of T for aperiodic activity. However, the 
management and replenishment of the capacity is different in each case. The scheduling of 
periodic tasks with synchronization requirements can be analyzed as follows [3]. 

Theorem 1: A set of n periodic tasks scheduled by the rate monotonic algorithm 
will always meet its deadlines, for all task phasings, if V i, 1 < i < n, 
C, C,     (C.+B.) ,.. 

where Bt is the duration in which task ij is blocked by lower-priority tasks. This blocking is 
also known as priority inversion. Priority inversion can occur when tasks have to 
synchronize. Priority inversion can be minimized by priority inheritance protocols [3]. The 
effect of this blocking can be modeled as though task Tj's utilization is increased by an 
amount 5/T,-. Theorem 1 shows that the duration of priority inversion reduces schedulability, 
the degree of processor utilization at or below which all deadlines can be met. 

The Simplex Architecture assumes that application tasks are scheduled according to the 
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rules of GRMS and the operating system in use supports either the priority inheritance 
protocol or the priority ceiling protocol and is free of unbounded priority inversion in the 
management of shared resources. Both POSIX.4 OS specifications and Ada 9x runtime 
specifications incorporate priority inheritance protocols and satisfy this assumption. 

3.2. The Basic Concept of Analytic Redundancy 

Many industrial systems and defense systems have stringent reliability requirement. The 
standard practice is to replicate software on redundant computers and to use the majority of 
the outputs. Unfortunately, replication provides no defense against design or implemen- 
tation errors. Furthermore, voting schemes based on the replication approach suffer from 
the upgrade paradox. That is, if only a minority is upgraded, the change will have no effect 
on the resulting system, no matter how good the upgrade. On the other hand, if the majority 
is upgraded and there is a bug, the system will fail. 

To allow for safe evolution of a dependable computing system, we must go beyond replica- 
tion and allow for well formed diversity among members of a fault tolerant group. What is 
well formed diversity? There are three forms of redundancy: replication, functional redun- 
dancy, and analytic redundancy. Given the same input, two functionally redundant systems 
will produce the same output. Functional redundancy permits the use of different but math- 
ematically equivalent algorithms. For example, many different programs can be written to 
solve a given set of linear equations. While functional redundancy permits internal diversity 
that is not visible at the input and output level, analytic redundancy permits diversity that is 
visible at the input and output level. 

Two analytically redundant systems need not produce identical results. However, the diver- 
sity permitted by analytic redundancy is well formed in the sense that both of them satisfy 
the given set of requirements. As an every day example, baby formula is analytically redun- 
dant to mother's milk with respect to the model of basic infant nutritional needs. However, 
they are not the same and a healthy mother's milk is known to be superior. The oxygen 
mask is analytically redundant to the pressurized air system of a high flying airplane in the 
sense that both of them can deliver the needed oxygen to keep passengers alive. The 
Taylor series expansion of a continuous function at the vicinity of a point is analytically 
redundant to the function if we only need a good approximation. 

The notion of analytic redundancy is captured by a consistency model. In the context of 
plant control applications, our consistency model is designed to deal with externally observ- 
able events only. There is a set of consistency constraints on the input data streams to the 
state machines, and a set of consistency constraints on the output streams from the 
machines, and a set of consistency constraints on the state of the plant under control. That 
is, we permit well formed diversity on inputs, outputs and on how a plant is controlled. 

Note that our consistency model does not include predicates on the internal states of con- 
trollers so that programs with different specifications and internal states can be used to 
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satisfy the same consistency model. On the other hand, we include the states of the plant 
into our model since the states of the plant must be observable in order to be controlled and 
the observed state transitions of the plant allow us to evaluate the controllers. 

We assume that the plant states are observable and controllable. We partition the states of 
a plant into three classes, namely, operational states, mishap states, and hazardous states. 
Mishap states are those states of the physical system that incur damages or injuries. Opera- 
tional states are those required for the correct execution of the application. Hazardous 
states are those that are neither operational states nor mishap states. Hazards are con- 
ditions that cause incorrect state transitions that may result in mishap states. A function is 
said to be critical if an incorrect implementation of it can generate hazards. When the state 
variable is continuous, the safety margin guarding a given set of mishap states is the min- 
imal distance between the given mishap states and operational states. For example, the 
safety margin of falling off a cliff is the shortest distance to the edge. When the state vari- 
able is discrete, a useful definition of safety margin is the minimal number of hazardous 
states a system must go through before it reaches a mishap state when starting from an 
operational state. An everyday example of a discrete hazardous state is the "push down" 
state of a child proof cap of a medicine bottle. One may also assign weights to hazardous 
states and the distance becomes a weighted sum. The weights are used to model how 
strong is the barrier effect of various hazardous states. 

In our consistency model, the constraints on the plant states are divided into two classes: 
safety specifications (constraints) and performance specifications. Safety specifications are 
predicates that exclude mishap states. The most common form of safety specifications are 
the specifications of the boundary conditions of the operational states. Getting out of the 
boundary of operational states leads to the activation of safety devices, e.g., too large a 
current triggers the circuit breaker, and the skidding of wheels during the braking of a car 
triggers the brake pumping actions of the anti-lock brake system. The class of performance 
specifications (constraints) is usually stated in terms of response time1, steady state errors 
and tracking errors2. In controller design, another important consideration is stability and 
robustness with respect to perturbation to the plant control and variations in the parameters 
of the sensor, plant and actuators. Some of the controller design objectives can be in con- 
flict. For example, a fast response time calls for higher gains but too high a gain may lead to 
instability and increased sensitivities to noise and system parameter variations. The different 
tradeoff decisions lead to the use of different control technologies. 

Since plant states can be sampled by each controller independently, the general form of 
input constraints is simply a statement of the data sampling requirement for each controller. 
We can, of course, specify that identical inputs must be provided to all the controllers. 
However, this is generally not needed from the viewpoint of system observability. We will do 
so only if such specification is easy to meet and meaningful. 

1This is the response time of the plant under control, for example, the time it takes a car to reach 60 miles/hour 
from resting condition. 

^his measures how closely the plant following the specified set points. 
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The consistency model also includes the optional specification of the correlations between 
the output of a reference controller and the output of the new controller. Even though the 
different control algorithms give different outputs, the outputs are often correlated. The cor- 
relation can be quite strong when the system state is far away from the set point since any 
reasonable algorithm will use a large force to push the system towards the set point. If a 
strong correlation between outputs exists (conditionally) for the given application, it can be 
used as an additional diagnostic tool to monitor the execution of the complex controller. 

3.3. Model Based Voting 
To tolerate both hardware and software failures and to support the safe modifications of 
dependable systems, the voting protocol must permit well formed diversity. In a multi- 
computer fault tolerant group, model based voting is a means to support well formed diver- 
sity. Instead of directly comparing the output values step by step, a computer that controls a 
device is monitored by others to see if it observes the consistency model. Model based 
voting allows us to introduce new hardware and software technologies into the system 
safely. New upgrades will be accepted as long as it improves functionality or performance 
while observing the consistency model. In addition to supporting system evolution, modeled 
based voting also allows us to tolerate combined hardware and software failures. The basic 
requirement for a triplicated fault tolerant group using model based voting is as follows: 

• tolerate an unlimited number of application design and implementation errors in 
complex controller software. 

• tolerate active failures and malicious attempts within one computer. 

• automatically reconfigure the system into a duplex standby system after one of 
the computer fails. 

• support the safe online change of hardware, system software or application 
software. 

These requirements can be fulfilled by a leadership protocol known as the Simple Leader- 
ship Protocol (SLP). While the detailed description and analysis of this protocol is too long 
for this paper, the basic idea is quite simple. Under a leadership protocol, a member of a 
fault tolerant group is selected as the leader who controls the plant. The rest are said to be 
(registered) voters. The leader is monitored by the voters. If the majority of the voters con- 
sider that the leader has violated the consistency model, the leader will be impeached and a 
new leader is selected from the voters. SLP was described in detail and its properties of 
were proven in [6]: 

Theorem 2: In a triplicated fault tolerant group using SLP, in the event of consis- 
tency model violation is detectable at time t, the leader will be impeached no later 
than (f + 2Tmax), where Tmax is the longest sampling period used in the fault 
tolerant group. 
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Remark: Theorem 2 does not assume that tasks in the three computers are synchronized. 
In fact, synchronizing the execution of the tasks in the three computers will not reduce the 
worst case delay of leader impeachment. Finally, the sampling frequencies used by mem- 
bers of the fault tolerant group need not be the same. 

Theorem 3: Under SLP, the triplicated fault tolerant group can tolerate an un- 
limited number of application level software errors in the complex controller 
software. 

Theorem 4: Under SLP, the system can tolerate active failures and malicious at- 
tempts confined within one computer of a triplicated fault tolerant group. 

Theorem 5: Under SLP, upon the failure of the leader in a triplicated fault tolerant 
group, the system automatically reconfigures into a duplex system. 
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4. Overview of The Architecture 

4.1. Basic Structure 
Software architecture is a set of definitions and rules that define the components of a 
software system, their interfaces and rules for their interaction. The Simplex Architecture 
has been designed to support safe online upgrades of industrial computing systems. Thus, 
it is mainly concerned with runtime components3. Compile time abstractions such as defini- 
tions of objects and methods or data structures and functions will not be visible to the 
Simplex Architecture. The online change of compile-time definitions is through the online 
replacement of processes that use these definitions. On the other hand, runtime issues 
such as the constraints on the request of memory blocks, the protocols used to schedule 
processes and threads, and the run-time support for exchange of messages will be part of 
the Simplex Architecture definition. Under the Simplex Architecture, the basic components 
available to users to structure the runtime aspects of their applications are replacement 
units, application units, processor and system configuration modules, and upgrade trans- 
actions. 

The basic building block in the Simplex Architecture is the replacement unit, one or more 
processes with a communication template that facilitates the replacement of one unit with 
another online. Replacement units are designed in such a way that they can be added, 
deleted, merged or split online by a set of standardized upgrade transactions. Using the 
replacement unit as the basic building block allows a uniform approach to support not only 
the evolution of the application architecture but also the Simplex Architecture itself. In fact, 
the replacement unit used in the architecture can itself be refined and upgraded online. 

From an application perspective, an industrial system typically consists of a set of cooperat- 
ing autonomous subsystems, for example, the coordination of the controls of different work- 
cells in a plant. In the Simplex Architecture, an autonomous subsystem is implemented as 
sub-system module, which consists of a set of specialized replacement units and we will 
examine its structure later in this section. The sub-system module provides the options to 
implement software fault-tolerance mechanisms that are important during the upgrade 
process. 

3There are, however, certain guidelines regarding the preferred approach to structure compile time abstrac- 
tions. They are, however, not the focus of this paper. 
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4.2. Logically Interchangeable Resources 

Two or more resources can be defined to be runtime inter-changeable with respect to the 
execution of a sub-system module. For example, if sub-system module M can perform its 
functions on either processor A or processor B, then processors A and B are logically inter- 
changeable with respect to module M, even though processor A and B may be different 
physically in terms of speed and memory size. A processor and network membership ser- 
vice can be defined as part of the Simplex Architecture to determine which processors and 
networks are currently available in the system. If processors A and B are logically inter- 
changeable, and processor A fails, the sub-system modules on processor A may then run 
on processor B. 

It is important to note that logical inter-changeable resources provide only the necessary 
condition for re-allocating application units. To re-allocate an unit, one must also ensure 
that there are sufficient CPU cycles and memory blocks to accommodate a unit. 

4.3. System Administration 

Sub-system modules are managed by a processor configuration manager (PCM) (one on 
each processor) which is in turn managed by a system configuration manager (SCM). Both 
PCM and SCM are replacement units with additional functions. The SCM interfaces with the 
user through a user-interface manager, another replacement unit with special functions. 
Through this user-interface, an application system administrator defines the topology of the 
distributed system and the types of processors, networks, and operating systems in use. 
The administrator also defines the class of interchangeable resources including processors, 
processes, and networks. In addition, the administrator defines the system state variables 
to be monitored. 

Having defined the system topology and inter-changeable classes for sub-system modules, 
the system administrator has the option to define the degree of resource failures that will be 
tolerated. For example, the number of processor and network failures that the system con- 
figuration manager is able to tolerate can be specified. The degree of hardware failures that 
can be tolerated is, of course, bounded by the number of resources in the inter-changeable 
classes that are needed to support the service. System administrators can specify the ac- 
tual physical resources used by each sub-system module. However, it is generally 
preferable to leave this task to the system and processor configuration managers. This al- 
lows the system to quickly and automatically reconfigure itself in the event of hardware 
failures. 
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4.4. Sub-System Modules and Software Fault-Tolerance 

A sub-system module is made of specialized replacement units: application units, a module 
management unit and an optional safety unit. The safety unit is intended to implement a 
safety controller when the physical sub-system is not fail-safe4. The application units are 
used to implement the application-specific functions of a given sub-system. If a safety unit 
is used, application units within a module can only communicate with one another and with 
the safety unit. That is, the safety unit is responsible for all communications to other ap- 
plication units, perhaps including device I/O. This is a necessary condition to allow the 
safety unit to lock the application unit in a safe operational state. 

Each sub-system module also has a module management unit, which is an instance of a 
module management template. The module management template is a replacement unit 
with functions that are designed to support process management, the upgrade operation 
and the handling of software faults in an application unit. The separation of upgrade related 
operations with application functions allows us to fulfill the second requirement. Structurally, 
both the safety unit and the application units may be child processes of the management 
unit and the safety unit is just a trusted and privileged application unit. 

Each sub-system module also acts as a software fault-containment unit and normally runs in 
its own address space(s). This provides protection against programming system faults. 
Temporal faults also need to be considered. For example, an application unit can burn 
more CPU cycles than expected because of some error condition. The protection against 
timing faults can be provided in one of two ways. First, one can keep track of the CPU 
cycles used by the application units and compare the count with an expected value. This 
requires OS support and consumes CPU in the form of some scheduling overhead. 
Secondly, one can assign to the safety units in a processor higher priority than those of the 
application units in a processor. This approach can be implemented in an OS that supports 
fixed priority scheduling and the CPU cost is in the form of bounded priority inversion to all 
safety units. One may use Theorem 1 to compute the impact of these two different ap- 
proaches. 

4.5. Upgrade Transactions 

The fundamental operation provided by the Simplex Architecture to support system evolu- 
tion will be the replacement transaction, where one replacement unit is replaced by another. 
During this replacement transaction, state information may need to be transferred from the 
original unit to the new replacement unit. Alternatively, the new unit may capture the 
dynamic state information of physical systems through input devices. Without state infor- 
mation, there may be undesirable transients in the behavior of the new replacement unit 

4ln a fail-safe system, when a fault or failure occurs in the system, the system fails in a safe fashion and does 
not cause any damage. 
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when it comes online. Hence, the replacement transaction of a single replacement unit is 
carried out in stages: 

1. The new replacement unit is created. 

2. New input and any state information is provided to the new replacement unit 
when it is ready. The new unit begins computations based on the data. 
However, the output of the unit is monitored but not used. 

3. The upgrade transaction manager waits for the output of the new unit to 
synchronize or converge to a stable point. 

4. Finally, the output of the old unit is turned off and the new unit is turned on. 
The old unit can now be destroyed. 

A two-phase protocol can be used when multiple replacement units are to be replaced 
simultaneously. The first phase is to wait for all the new replacement units to reach a steady 
state (step 3 above). The second phase is a distributed action that simultaneously switches 
on all the new replacement units and switches off all the old replacement units. The 
granularity of "simultaneity" is subject to the accuracy of clock synchronization in a dis- 
tributed system. If the switching is successful, the old replacement units can be destroyed. 
If any switching action is not successful, the system can automatically switch back to the old 
replacement units and the replacement transaction can be aborted. The replacement trans- 
action is managed by the PCMs in cooperation with the SCM. 
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5. Summary and Conclusion 
Industrial and defense computing systems often have stringent safety, reliability and timing 
constraints. Failure in such systems can potentially have catastrophic consequences, and 
system downtimes can be expensive. 

In this paper, we give a brief overview of the technology foundation of the Simplex Architec- 
ture. The architecture can be used to maintain the safety, reliability and real-time con- 
straints of industrial and defense computing systems, despite inevitable glitches when new 
technologies are introduced and integrated with existing equipment. The architecture is 
based on open system components, and supports the safe evolution of the application 
software architecture itself online. It will also support the safe online addition and removal of 
computing hardware and system software. 

Two demonstration prototypes were built and are available for demonstration. The single 
computer prototype uses a personal computer controls that an inverted pendulum. The con- 
troller software can be modified on the fly. Members of audience are invited to modified the 
control software online. Arbitrary bugs at the application level can be inserted by the 
audience. The demonstration shows that the control performance can only be improved but 
not degraded. A triplicated fault tolerant group implements the model based voting. It per- 
mits the safe online modification of not only the application software but the hardware and 
system software. An improved minority can gain and improved the control performance. 
However, no hardware or software errors at that computer can degrade the control, includ- 
ing malicious attempts with root privileges at that computer. The triplicated fault tolerant 
group can also be reconfigured online into a duplex system or a uni-processor system and 
vice versa as needed. 

Currently, the SEI is actively working with industry partners and government agencies to 
mature this promising new technology. 
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