
Technical Report

CMU/SEI-95-TR-005
ESC-TR-95-005

Carnegie-Mellon University

Software Engineering Institute

A Software Architecture
for Dependable and Evolvable
Industrial Computing Systems

Lui Sha
Ragunathan Rajkumar

Michael Gagliardi

July 1995

§§>

19951107 076
j^TRIBUTION ST ATEM

Approved for public release;
(Distribution Unlimited

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed.
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056,

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-95-TR-005

ESC-TR-95-005
July 1995

A Software Architecture
for Dependable and Evolvable
Industrial Computing Systems

Lui Sha
Ragunathan Rajkumar

Michael Gagliardi
Open Systems Engineering Project

Approved for public release.
Distribution unlimited.

DTI0 QUALITY INSPECTED 3

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office

HQ ESC/ENS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is

published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF

SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1995 by Carnegie Mellon University

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a Federally Funded Research
and Development Center. The Government of the United States has a royalty-free government purpose license
to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause
at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994.

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: DTIC-OCP, 8725 John J. Kingman Road, Suite
0944, Ft. Belvoir, VA 22060-6218.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction 1

2. Basic Requirements 3

3. Underlying Technologies 5
3.1. Real-Time Scheduling 5
3.2. The Basic Concept of Analytic Redundancy 6
3.3. Model Based Voting 8

4. Overview of The Architecture 11
4.1. Basic Structure 11
4.2. Logically Interchangeable Resources 12
4.3. System Administration 12
4.4. Sub-System Modules and Software Fault-Tolerance 13
4.5. Upgrade Transactions 13

5. Summary and Conclusion 15

Acknowledgement 17

References 19

CMU/SEI-95-TR-005

A Software Architecture
for Dependable and Evolvable
Industrial Computing Systems

Abstract: The downtime of a large industrial operation is often prohibitively ex-
pensive and a failure of a mission critical system could have disastrous con-
sequences. Lacking an effective approach to mitigate the risks in system
upgrades or to introduce third party supplied open system components, many in-
dustrial systems and defense systems are forced to keep outdated computing
hardware and software.

A paradigm shift is needed, from a focus on enabling technologies for completely
new installations to one which is designed to mitigate the risk and cost of bringing
new technology into functioning systems. Innovative technology is needed to sup-
port the task of technology insertion. Quickly and reliably turning unparalleled
American innovations into industrial competitiveness and defense technological
superiority is of strategic importance.

The Simplex architecture has been developed to support safe and reliable online
upgrade of hardware and software components in spite of errors in the new
modules. This paper gives a brief overview of the underlying technologies.

1. Introduction

Computers and computer networks have revolutionized the production of goods and delivery
of services. Nevertheless, the computing infrastructure often introduces formidable barriers
to continuous process improvement, equipment upgrades, and agility in responding to
changing markets and increased global competition. Consider the following anecdotal
scenarios from industry.

Process improvement A research department developed a process modification that im-
proved significantly the product yield and quality. With a relatively minor modification of the
processing sequence, and new set-points for key process variables, the improvements were
demonstrated on a pilot plant. Nevertheless, these improvements were never implemented
in the plant, because the line manager persuaded management that it couldn't be done cost
effectively. Although the required software modifications are simple logic modifications, the
process sequence is controlled by a set of networked PLCs (programmable logic controllers)
coordinating several valves, sensors and PID loops with several hundred lines of ladder
logic code. The technician who wrote the PLC programs left the company. The last time a
modification was attempted on the code, it took the process down completely, costing
thousands of dollars in downtime. The line manager wanted no part of installing the so-
called process improvements developed by the research department.

Equipment Upgrades: Over the years, aging equipment has been replaced with new produc-
tion technology so that the factory now has a hodgepodge of old and new equipment with

CMU/SEI-95-TR-005 T

Controllers from five different vendors, each with its own programming interface, data struc-
tures, and data communication protocol. One of the older process machines failed recently
and the best replacement was from yet another vendor. It had a considerably shorter cycle
time, improved reliability, and a more sophisticated control computer. As with previous
upgrades, however, installing the new equipment required yet another development and in-
tegration effort with yet another proprietary computing environment. It was particularly
costly to create custom interfaces to communicate with the other equipment in the system
and there was no way to predict the timing effects. Consequently, the only way the equip-
ment could be installed safely was to perform extensive tests during factory downtime. In
the end, integration cost several times the capital cost of the new equipment, and worse yet,
it took several times longer to install the equipment than was originally estimated.

As illustrated by the preceding scenarios, existing integrated computer systems do not
provide support for evolution in general and for safe online evolution in particular. Current
system architectures do not tolerate errors in the insertion of a new technology or modifica-
tion. If there is an error, the operation of the factory will be adversely impacted. It is ex-
tremely difficult to avoid all problems when new technology is inserted into systems whose
design did not anticipate those new technologies, especially when the modification is done
by someone other than the original system integrators.

This is a pervasive problem in industrial and defense systems requiring high availability,
real-time performance, and safety. Indeed, existing practice in mission critical computing
mandates an extremely conservative attitude towards the introduction of new technology
into functioning systems. While such a conservative attitude is completely justifiable and
reasonable, it has the unfortunate side effect of undermining the productivity, agility, and
quality of our industrial base. It also threatens to erode the technological superiority of our
defense in the post cold war era, where much fewer new systems are being developed.

A paradigm shift is needed, from a focus on enabling technologies for completely new instal-
lations to one which is designed to mitigate the risk and cost of bringing new technology into
functioning systems. Technology is needed to support evolving systems. Industry needs a
computing infrastructure in which upgrades will be safe and predictable, with negligible
down-time.

The Simplex Architecture is a software architecture based on open system components. It
has been developed to address these concerns. The architecture was initially developed to
support the safe online upgrade of feedback control and radar systems, regardless of
whether there were faults in the modeling, design, and implementation of new software or
computing hardware [1, 4]. This paper provides an overview of this architecture, which sup-
ports the safe evolution of the application software online. Simplex architecture also sup-
ports the safe online addition or removal of computing hardware and system software. The
rest of this paper provides an overview of the technology foundation of the Simplex Architec-
ture. Chapter 2 gives an overview of the basic requirements of the Simplex architecture.
Chapter 3 gives a very brief overview of the technological foundation and Chapter 4
provides an overview of the software architecture. Finally, Chapter 5 gives the summary
and conclusion.

CMU/SEI-95-TR-005

2. Basic Requirements
The design of the Simplex Architecture addresses three basic requirements. Firstly, an ar-
chitecture that is designed to support system evolution must itself be evolvable. Trade-off
decisions such as flexibility vs. efficiency, change from application to application. Within an
application, decision weights change as technology and user needs evolve. For example, in
many early PC applications, e.g., spread sheets, most of the available computing resources
were devoted to problem solving rather than user-interface needs. Today, a significant per-
centage of the computing power used by an application is devoted to graphical user inter-
face. A trade-off decision can, at best, be optimal at some particular given environment and
time. Thus, it is important to have the mechanisms to evolve both the application software
as well as the Simplex Architecture itself.

Secondly, application codes should be protected from changes to non-functional quality at-
tributes and vice versa. It is important to minimize the impact of changes on application
programs when the system evolves. Interfaces between components and subsystems must
be defined in such a way that tradeoffs between non-functional quality attributes such as
dependability and performance can change over time without the need for modifying ap-
plication programs. For example, when a new software component is first introduced, it may
need to be embedded in an application unit that has built-in safety checks and detailed
operational monitoring. This may impact performance adversely. When the risk of a com-
ponent decreases, some of the risk mitigation measures at runtime can be reduced accord-
ingly. These changes should be made without any modification to the application program,
since the semantic (functionality) of the application remains unchanged.

Thirdly, the architecture must provide application independent utilities to meet timing con-
straints, to tolerate hardware and software failures, to monitor system status, to configure
the system, and to provide users with templates and standardized transactions to manage
changes in general and online changes in particular. To support system evolution, we
provide users with commonly used system utilities so that they can focus on the semantics
of their applications.

CMU/SEI-95-TR-005

CMU/SEI-95-TR-005

3. Underlying Technologies

In order to allow to change software modules during runtime, an advanced real time
resource management technology is needed. In Simplex architecture, real time process
management primitives are built upon generalized rate monotonic theory [5]. In order to
tolerate both hardware and software faults, to manage changes during development, and to
support the evolution of dependable systems after their deployment, a new theoretical foun-
dation is needed to allow for well formed diversity among redundant components. The
theory of analytic redundancy provides us with such a foundation [6]. In the following, we
give a brief review of these two subjects.

3.1. Real-Time Scheduling

Generalized rate monotonic scheduling (GRMS) theory guarantees that the deadlines of
tasks will be met, if the total CPU utilization is below some threshold and if certain rules are
followed. GRMS is supported by major national standards including Ada9x, POSIX real-time
extension, and IEEE Futurebus+. The following is a synopsis of generalized rate monotonic
scheduling for uni-processor. For an overview of this theory for distributed systems, see [5],
for system developers who want detailed practical guidelines see [2]. The name rate
monotonic scheduling comes from the fact that this algorithm gives higher priorities to tasks
with higher frequencies.

A real-time system typically consists of both periodic and aperiodic tasks. A periodic task TJ
is characterized by a worst-case computation time Ct and a period Tt. Unless mentioned
otherwise, we assume that a periodic task must finish by the end of its period. Tasks are
independent if they do not need to synchronize with each other. By using either a simple
polling procedure or a more advanced technique such as a sporadic server [7], the schedul-
ing of aperiodic tasks can be treated within the rate monotonic framework. In each case C
units of computation is allocated in a period of T for aperiodic activity. However, the
management and replenishment of the capacity is different in each case. The scheduling of
periodic tasks with synchronization requirements can be analyzed as follows [3].

Theorem 1: A set of n periodic tasks scheduled by the rate monotonic algorithm
will always meet its deadlines, for all task phasings, if V i, 1 < i < n,
C, C, (C.+B.) ,..

where Bt is the duration in which task ij is blocked by lower-priority tasks. This blocking is
also known as priority inversion. Priority inversion can occur when tasks have to
synchronize. Priority inversion can be minimized by priority inheritance protocols [3]. The
effect of this blocking can be modeled as though task Tj's utilization is increased by an
amount 5/T,-. Theorem 1 shows that the duration of priority inversion reduces schedulability,
the degree of processor utilization at or below which all deadlines can be met.

The Simplex Architecture assumes that application tasks are scheduled according to the

CMU/SEI-95-TR-005

rules of GRMS and the operating system in use supports either the priority inheritance
protocol or the priority ceiling protocol and is free of unbounded priority inversion in the
management of shared resources. Both POSIX.4 OS specifications and Ada 9x runtime
specifications incorporate priority inheritance protocols and satisfy this assumption.

3.2. The Basic Concept of Analytic Redundancy

Many industrial systems and defense systems have stringent reliability requirement. The
standard practice is to replicate software on redundant computers and to use the majority of
the outputs. Unfortunately, replication provides no defense against design or implemen-
tation errors. Furthermore, voting schemes based on the replication approach suffer from
the upgrade paradox. That is, if only a minority is upgraded, the change will have no effect
on the resulting system, no matter how good the upgrade. On the other hand, if the majority
is upgraded and there is a bug, the system will fail.

To allow for safe evolution of a dependable computing system, we must go beyond replica-
tion and allow for well formed diversity among members of a fault tolerant group. What is
well formed diversity? There are three forms of redundancy: replication, functional redun-
dancy, and analytic redundancy. Given the same input, two functionally redundant systems
will produce the same output. Functional redundancy permits the use of different but math-
ematically equivalent algorithms. For example, many different programs can be written to
solve a given set of linear equations. While functional redundancy permits internal diversity
that is not visible at the input and output level, analytic redundancy permits diversity that is
visible at the input and output level.

Two analytically redundant systems need not produce identical results. However, the diver-
sity permitted by analytic redundancy is well formed in the sense that both of them satisfy
the given set of requirements. As an every day example, baby formula is analytically redun-
dant to mother's milk with respect to the model of basic infant nutritional needs. However,
they are not the same and a healthy mother's milk is known to be superior. The oxygen
mask is analytically redundant to the pressurized air system of a high flying airplane in the
sense that both of them can deliver the needed oxygen to keep passengers alive. The
Taylor series expansion of a continuous function at the vicinity of a point is analytically
redundant to the function if we only need a good approximation.

The notion of analytic redundancy is captured by a consistency model. In the context of
plant control applications, our consistency model is designed to deal with externally observ-
able events only. There is a set of consistency constraints on the input data streams to the
state machines, and a set of consistency constraints on the output streams from the
machines, and a set of consistency constraints on the state of the plant under control. That
is, we permit well formed diversity on inputs, outputs and on how a plant is controlled.

Note that our consistency model does not include predicates on the internal states of con-
trollers so that programs with different specifications and internal states can be used to

CMU/SEI-95-TR-005

satisfy the same consistency model. On the other hand, we include the states of the plant
into our model since the states of the plant must be observable in order to be controlled and
the observed state transitions of the plant allow us to evaluate the controllers.

We assume that the plant states are observable and controllable. We partition the states of
a plant into three classes, namely, operational states, mishap states, and hazardous states.
Mishap states are those states of the physical system that incur damages or injuries. Opera-
tional states are those required for the correct execution of the application. Hazardous
states are those that are neither operational states nor mishap states. Hazards are con-
ditions that cause incorrect state transitions that may result in mishap states. A function is
said to be critical if an incorrect implementation of it can generate hazards. When the state
variable is continuous, the safety margin guarding a given set of mishap states is the min-
imal distance between the given mishap states and operational states. For example, the
safety margin of falling off a cliff is the shortest distance to the edge. When the state vari-
able is discrete, a useful definition of safety margin is the minimal number of hazardous
states a system must go through before it reaches a mishap state when starting from an
operational state. An everyday example of a discrete hazardous state is the "push down"
state of a child proof cap of a medicine bottle. One may also assign weights to hazardous
states and the distance becomes a weighted sum. The weights are used to model how
strong is the barrier effect of various hazardous states.

In our consistency model, the constraints on the plant states are divided into two classes:
safety specifications (constraints) and performance specifications. Safety specifications are
predicates that exclude mishap states. The most common form of safety specifications are
the specifications of the boundary conditions of the operational states. Getting out of the
boundary of operational states leads to the activation of safety devices, e.g., too large a
current triggers the circuit breaker, and the skidding of wheels during the braking of a car
triggers the brake pumping actions of the anti-lock brake system. The class of performance
specifications (constraints) is usually stated in terms of response time1, steady state errors
and tracking errors2. In controller design, another important consideration is stability and
robustness with respect to perturbation to the plant control and variations in the parameters
of the sensor, plant and actuators. Some of the controller design objectives can be in con-
flict. For example, a fast response time calls for higher gains but too high a gain may lead to
instability and increased sensitivities to noise and system parameter variations. The different
tradeoff decisions lead to the use of different control technologies.

Since plant states can be sampled by each controller independently, the general form of
input constraints is simply a statement of the data sampling requirement for each controller.
We can, of course, specify that identical inputs must be provided to all the controllers.
However, this is generally not needed from the viewpoint of system observability. We will do
so only if such specification is easy to meet and meaningful.

1This is the response time of the plant under control, for example, the time it takes a car to reach 60 miles/hour
from resting condition.

^his measures how closely the plant following the specified set points.

CMU7SEI-95-TR-005

The consistency model also includes the optional specification of the correlations between
the output of a reference controller and the output of the new controller. Even though the
different control algorithms give different outputs, the outputs are often correlated. The cor-
relation can be quite strong when the system state is far away from the set point since any
reasonable algorithm will use a large force to push the system towards the set point. If a
strong correlation between outputs exists (conditionally) for the given application, it can be
used as an additional diagnostic tool to monitor the execution of the complex controller.

3.3. Model Based Voting
To tolerate both hardware and software failures and to support the safe modifications of
dependable systems, the voting protocol must permit well formed diversity. In a multi-
computer fault tolerant group, model based voting is a means to support well formed diver-
sity. Instead of directly comparing the output values step by step, a computer that controls a
device is monitored by others to see if it observes the consistency model. Model based
voting allows us to introduce new hardware and software technologies into the system
safely. New upgrades will be accepted as long as it improves functionality or performance
while observing the consistency model. In addition to supporting system evolution, modeled
based voting also allows us to tolerate combined hardware and software failures. The basic
requirement for a triplicated fault tolerant group using model based voting is as follows:

• tolerate an unlimited number of application design and implementation errors in
complex controller software.

• tolerate active failures and malicious attempts within one computer.

• automatically reconfigure the system into a duplex standby system after one of
the computer fails.

• support the safe online change of hardware, system software or application
software.

These requirements can be fulfilled by a leadership protocol known as the Simple Leader-
ship Protocol (SLP). While the detailed description and analysis of this protocol is too long
for this paper, the basic idea is quite simple. Under a leadership protocol, a member of a
fault tolerant group is selected as the leader who controls the plant. The rest are said to be
(registered) voters. The leader is monitored by the voters. If the majority of the voters con-
sider that the leader has violated the consistency model, the leader will be impeached and a
new leader is selected from the voters. SLP was described in detail and its properties of
were proven in [6]:

Theorem 2: In a triplicated fault tolerant group using SLP, in the event of consis-
tency model violation is detectable at time t, the leader will be impeached no later
than (f + 2Tmax), where Tmax is the longest sampling period used in the fault
tolerant group.

CMU/SEI-95-TR-005

Remark: Theorem 2 does not assume that tasks in the three computers are synchronized.
In fact, synchronizing the execution of the tasks in the three computers will not reduce the
worst case delay of leader impeachment. Finally, the sampling frequencies used by mem-
bers of the fault tolerant group need not be the same.

Theorem 3: Under SLP, the triplicated fault tolerant group can tolerate an un-
limited number of application level software errors in the complex controller
software.

Theorem 4: Under SLP, the system can tolerate active failures and malicious at-
tempts confined within one computer of a triplicated fault tolerant group.

Theorem 5: Under SLP, upon the failure of the leader in a triplicated fault tolerant
group, the system automatically reconfigures into a duplex system.

CMU/SEI-95-TR-005

10 CMU/SEI-95-TR-005

4. Overview of The Architecture

4.1. Basic Structure
Software architecture is a set of definitions and rules that define the components of a
software system, their interfaces and rules for their interaction. The Simplex Architecture
has been designed to support safe online upgrades of industrial computing systems. Thus,
it is mainly concerned with runtime components3. Compile time abstractions such as defini-
tions of objects and methods or data structures and functions will not be visible to the
Simplex Architecture. The online change of compile-time definitions is through the online
replacement of processes that use these definitions. On the other hand, runtime issues
such as the constraints on the request of memory blocks, the protocols used to schedule
processes and threads, and the run-time support for exchange of messages will be part of
the Simplex Architecture definition. Under the Simplex Architecture, the basic components
available to users to structure the runtime aspects of their applications are replacement
units, application units, processor and system configuration modules, and upgrade trans-
actions.

The basic building block in the Simplex Architecture is the replacement unit, one or more
processes with a communication template that facilitates the replacement of one unit with
another online. Replacement units are designed in such a way that they can be added,
deleted, merged or split online by a set of standardized upgrade transactions. Using the
replacement unit as the basic building block allows a uniform approach to support not only
the evolution of the application architecture but also the Simplex Architecture itself. In fact,
the replacement unit used in the architecture can itself be refined and upgraded online.

From an application perspective, an industrial system typically consists of a set of cooperat-
ing autonomous subsystems, for example, the coordination of the controls of different work-
cells in a plant. In the Simplex Architecture, an autonomous subsystem is implemented as
sub-system module, which consists of a set of specialized replacement units and we will
examine its structure later in this section. The sub-system module provides the options to
implement software fault-tolerance mechanisms that are important during the upgrade
process.

3There are, however, certain guidelines regarding the preferred approach to structure compile time abstrac-
tions. They are, however, not the focus of this paper.

CMU/SEI-95-TR-005 " — ^f

4.2. Logically Interchangeable Resources

Two or more resources can be defined to be runtime inter-changeable with respect to the
execution of a sub-system module. For example, if sub-system module M can perform its
functions on either processor A or processor B, then processors A and B are logically inter-
changeable with respect to module M, even though processor A and B may be different
physically in terms of speed and memory size. A processor and network membership ser-
vice can be defined as part of the Simplex Architecture to determine which processors and
networks are currently available in the system. If processors A and B are logically inter-
changeable, and processor A fails, the sub-system modules on processor A may then run
on processor B.

It is important to note that logical inter-changeable resources provide only the necessary
condition for re-allocating application units. To re-allocate an unit, one must also ensure
that there are sufficient CPU cycles and memory blocks to accommodate a unit.

4.3. System Administration

Sub-system modules are managed by a processor configuration manager (PCM) (one on
each processor) which is in turn managed by a system configuration manager (SCM). Both
PCM and SCM are replacement units with additional functions. The SCM interfaces with the
user through a user-interface manager, another replacement unit with special functions.
Through this user-interface, an application system administrator defines the topology of the
distributed system and the types of processors, networks, and operating systems in use.
The administrator also defines the class of interchangeable resources including processors,
processes, and networks. In addition, the administrator defines the system state variables
to be monitored.

Having defined the system topology and inter-changeable classes for sub-system modules,
the system administrator has the option to define the degree of resource failures that will be
tolerated. For example, the number of processor and network failures that the system con-
figuration manager is able to tolerate can be specified. The degree of hardware failures that
can be tolerated is, of course, bounded by the number of resources in the inter-changeable
classes that are needed to support the service. System administrators can specify the ac-
tual physical resources used by each sub-system module. However, it is generally
preferable to leave this task to the system and processor configuration managers. This al-
lows the system to quickly and automatically reconfigure itself in the event of hardware
failures.

12 CMU/SEI-95-TR-005

4.4. Sub-System Modules and Software Fault-Tolerance

A sub-system module is made of specialized replacement units: application units, a module
management unit and an optional safety unit. The safety unit is intended to implement a
safety controller when the physical sub-system is not fail-safe4. The application units are
used to implement the application-specific functions of a given sub-system. If a safety unit
is used, application units within a module can only communicate with one another and with
the safety unit. That is, the safety unit is responsible for all communications to other ap-
plication units, perhaps including device I/O. This is a necessary condition to allow the
safety unit to lock the application unit in a safe operational state.

Each sub-system module also has a module management unit, which is an instance of a
module management template. The module management template is a replacement unit
with functions that are designed to support process management, the upgrade operation
and the handling of software faults in an application unit. The separation of upgrade related
operations with application functions allows us to fulfill the second requirement. Structurally,
both the safety unit and the application units may be child processes of the management
unit and the safety unit is just a trusted and privileged application unit.

Each sub-system module also acts as a software fault-containment unit and normally runs in
its own address space(s). This provides protection against programming system faults.
Temporal faults also need to be considered. For example, an application unit can burn
more CPU cycles than expected because of some error condition. The protection against
timing faults can be provided in one of two ways. First, one can keep track of the CPU
cycles used by the application units and compare the count with an expected value. This
requires OS support and consumes CPU in the form of some scheduling overhead.
Secondly, one can assign to the safety units in a processor higher priority than those of the
application units in a processor. This approach can be implemented in an OS that supports
fixed priority scheduling and the CPU cost is in the form of bounded priority inversion to all
safety units. One may use Theorem 1 to compute the impact of these two different ap-
proaches.

4.5. Upgrade Transactions

The fundamental operation provided by the Simplex Architecture to support system evolu-
tion will be the replacement transaction, where one replacement unit is replaced by another.
During this replacement transaction, state information may need to be transferred from the
original unit to the new replacement unit. Alternatively, the new unit may capture the
dynamic state information of physical systems through input devices. Without state infor-
mation, there may be undesirable transients in the behavior of the new replacement unit

4ln a fail-safe system, when a fault or failure occurs in the system, the system fails in a safe fashion and does
not cause any damage.

CMU/SEI-95-TR-005 " 13

when it comes online. Hence, the replacement transaction of a single replacement unit is
carried out in stages:

1. The new replacement unit is created.

2. New input and any state information is provided to the new replacement unit
when it is ready. The new unit begins computations based on the data.
However, the output of the unit is monitored but not used.

3. The upgrade transaction manager waits for the output of the new unit to
synchronize or converge to a stable point.

4. Finally, the output of the old unit is turned off and the new unit is turned on.
The old unit can now be destroyed.

A two-phase protocol can be used when multiple replacement units are to be replaced
simultaneously. The first phase is to wait for all the new replacement units to reach a steady
state (step 3 above). The second phase is a distributed action that simultaneously switches
on all the new replacement units and switches off all the old replacement units. The
granularity of "simultaneity" is subject to the accuracy of clock synchronization in a dis-
tributed system. If the switching is successful, the old replacement units can be destroyed.
If any switching action is not successful, the system can automatically switch back to the old
replacement units and the replacement transaction can be aborted. The replacement trans-
action is managed by the PCMs in cooperation with the SCM.

14 CMU7SEI-95-TR-005

5. Summary and Conclusion
Industrial and defense computing systems often have stringent safety, reliability and timing
constraints. Failure in such systems can potentially have catastrophic consequences, and
system downtimes can be expensive.

In this paper, we give a brief overview of the technology foundation of the Simplex Architec-
ture. The architecture can be used to maintain the safety, reliability and real-time con-
straints of industrial and defense computing systems, despite inevitable glitches when new
technologies are introduced and integrated with existing equipment. The architecture is
based on open system components, and supports the safe evolution of the application
software architecture itself online. It will also support the safe online addition and removal of
computing hardware and system software.

Two demonstration prototypes were built and are available for demonstration. The single
computer prototype uses a personal computer controls that an inverted pendulum. The con-
troller software can be modified on the fly. Members of audience are invited to modified the
control software online. Arbitrary bugs at the application level can be inserted by the
audience. The demonstration shows that the control performance can only be improved but
not degraded. A triplicated fault tolerant group implements the model based voting. It per-
mits the safe online modification of not only the application software but the hardware and
system software. An improved minority can gain and improved the control performance.
However, no hardware or software errors at that computer can degrade the control, includ-
ing malicious attempts with root privileges at that computer. The triplicated fault tolerant
group can also be reconfigured online into a duplex system or a uni-processor system and
vice versa as needed.

Currently, the SEI is actively working with industry partners and government agencies to
mature this promising new technology.

CMU/SEI-95-TR-005 15

16 CMU/SEI-95-TR-005

Acknowledgement
This work is sponsored in part by the Office of Naval Research, in part by the National In-
stitute of Standards and Technology, and in part by the Software Engineering Institute. The
authors want to thank John Lehoczky, Jennifer Stephan, and Marc Bodson for the discus-
sion of control related issues, Neal Altman and Chuck Weinstock for the discussions on
software engineering issues, Bruce Krogh for providing the anecdotal scenario from in-
dustry, and John Leary for his review.

CMU/SEI-95-TR-005 ~~ 17

18 CMU/SEI-95-TR-005

References
1. Bodson, Marc; Lehoczky, John P.; Rajumar, Ragunathan; Sha, Lui; Soh, D.; Stephen J.;
and Smith, M. "Control Reconfiguration in the Presence of Software Failures". Proceedings
of the 32nd IEEE Conference on Decision and Control (Dec. 1993).

2. Klein, Mark H.; Ralya, Thomas; Pollak; Bill, Obenza, Ray; and Gonzalez Harbour, Mich-
ael. A Practitioner's Handbook for Real-Time Analysis. Kluwer Academic Publishers, Nor-
well, MA, 1993.

3. Sha, Lui and Goodenough, John B. "Real-Time Scheduling Theory and Ada". IEEE
Computer Vol. 23, no. 4 (April 1990).

4. Sha, Lui; Lehoczky, John P.; Bodson, Marc; Krupp, P.; and Nowacki, C. "Responsive
Airborne Radar Systems". The Proceedings of The Second International Workshop on
Responsive Systems (October 1992).

5. Sha, Lui; Rajkumar, Ragunathan; and Sathaye, S. "Generalized Rate Monotonie Theory:
A Framework for Developing Real-Time Systems". Proceedings of the IEEE Vol. 82, No. 1
(January 1994).

6. Sha, Lui; Gagliardi, Michael; and Rajkumar, Ragunathan. "Analytic Redundancy: A
Foundation for Evolvable and Dependable Systems". The Proceedings of the International
Conference on Reliability and Quality in Design (March 1995).

7. Sprunt, Brinkley; Sha, Lui; and Lehoczky, John P. "Aperiodic Task Scheduling for Hard
Real-Time Systems". The Journal of Real-Time Systems Vol. 1 (1989), pp. 27-60.

CMU/SEI-95-TR-005 19

20 CMU/SEI-95-TR-005

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
3. DISTRIBUTION/AVAILABILrrY OF REPORT

Approved for Public Release
Distribution Unlimited 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-95-TR-005

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-95-005

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT IDENnHCATION NUMBER

F19628-95-C-0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

A Software Architecture for Dependable and Evolvable Industrial Computing Systems
12. PERSONAL AUTHOR(S)
Lui Sha, Ragunathan Rajkumar, and Michael Gagliardi

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

July 1995
15. PAGE COUNT

23 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

. ßVOlVflhlß
FIELD GROUP SUB. GR.

Simplex Architect
systems

ure

iy. AbSTKAcT (continue on reverse if necessary and identify by block number)

The downtime of a large industrial operation is often prohibitively expensive and a failure of a mission
critical system could have disastrous consequences. Lacking an effective approach to mitigate the
risks in system upgrades or to introduce third party supplied open system components, many indus-
trial systems and defense systems are forced to keep outdated computing hardware and software.

A paradigm shift is needed, from a focus on enabling technologies for completely new installations
to one which is designed to mitigate the risk and cost of bringing new technology into functioning sys-

(please turn over)

20. DISTRIBUTION/AVAILABILrrY OF ABSTRACT

UNCLASSMEDAJNUMITED | SAME AS RPTQ DTIC USERS ■
21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code) 2

(412)268-7631 E
2c. OFFICE SYMBOL

ESC/ENS (SEI)

DD FORM 1473.83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OFTHIS PAGE

ABSTRACT — continued from page one, block 19

terns. Innovative technology is needed to support the task of technology insertion. Quickly and
reliably turning unparalleled American innovations into industrial competitiveness and defense
technological superiority is of strategic importance.

The Simplex architecture has been developed to support safe and reliable on-line upgrade of
hardware and software components in spite of errors in the new modes. This report gives a brief
overview of the underlying technologies.

