IMPLEMENTATION METHOD AND ACCURACY ANALYSIS
OF POSITION LOCATION IN MOBILE C³I SYSTEM

by
Zhang Zhongzheng

Approved for public release: distribution unlimited
HUMAN TRANSLATION
NAIC-ID(RS)T-0222-95 27 September 1995

MICROFICHE NR: 9500000

IMPLEMENTATION METHOD AND ACCURACY ANALYSIS
OF POSITION LOCATION IN MOBILE C3I SYSTEM

By: Zhang Zhongzheng

English pages: 15

Source: Firepower and Command Control, Vol. 18, No. 3;
pp. 49-54

Country of origin: China
Translated by: Leo Kanner Associates
F33657-88-D-2188
Requester: NAIC/TASS/Scott D. Feairheller
Approved for public release: distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL
FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITO-
RIAL COMMENT STATEMENTS OR THEORIES ADVOC-
ATED OR IMPLIED ARE THOSE OF THE SOURCE AND
DO NOT NECESSARILY REFLECT THE POSITION OR
OPINION OF THE NATIONAL AIR INTELLIGENCE CENTER.

PREPARED BY:
TRANSLATION SERVICES
NATIONAL AIR INTELLIGENCE CENTER
WPAFB, OHIO

Date 27 September 1995
GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.
IMPLEMENTATION METHOD AND ACCURACY ANALYSIS OF POSITION LOCATION IN MOBILE C'I SYSTEM

Zhang Zhongzheng, North Automatic Control Technology Institute, Taiyuan, 030006

ABSTRACT: This paper mainly discusses the implementation method of node-position location in the TDMA communication mode in a mobile C'I system and some factors affecting the accuracy of position location and their methods of correction.

KEY WORDS: Radio location, time-of-arrival location method, mobile communications, time-division-multiple-access, relay station, C'I system.

I. Introduction

Mobile communication subsystems are an important integral part of command, control, communications, and intelligence systems. However, a communications system directly affects communication efficiency. The communication mode time-division-multiple-access (TDMA) can share a transmitter by multiple communication channels with one frequency and one antenna without requiring large and easily worn-out shared control devices for
the antenna, besides having good features of antijamming techniques such as frequency expansion and frequency jumping. Therefore, TDMA is preferred by military communications operators. Thus, in field combat C^3I mobile communications, the TDMA mode is the most suitable regime of military communications.

The mobile C^3I system operating with TDMA broadcasting mode is a mobile communication system without a center. There are different numbers and levels of the system members. More time gaps are distributed for those users with high traffic and high grades. Each user in the system has a highly accurate quartz clock, and the entire system has one unified time datum. Through timing with or without a source for each user, a user can actively synchronize with the system time datum so as to establish a unified system time. This is a precise synchronizing system.

System users include the main control station, users for navigation guidance control, position datum users, and other kinds of users.

There is a relatively long history of positioning by using broadcast radio waves. However, the high-accuracy positioning technology is used in modern military practice. This can be carried out only through today's developments in science and technology. In mobile C^3I, the positioning technique to position system members is advantageous in enhancing the discriminatory capability between friend of foe by system members, thus
preventing friendly-fire casualties, and upgrading combativeness and survivability of system members. In a mobile C^3I system, the TDMA communication mode is basic. By using the time-of-arrival (TOA) surveying technique to position the system members, not only is there the comprehensive positioning capability combined with data transmission, but also one can automatically track the positions of user elements, thus greatly reducing the risk of accidents attacking friendly surface troops.

In the TDMA communication mode, the article discusses the principles of positioning multiple nodal points in the system by using the TOA surveying technique, as well as several major factors and revision methods affecting the positioning accuracy of the nodal points.

II. Implementation Method for the Principle of Positioning Nodal Points with the Mobile C^3I System

II.1. TDMA operating principle

We know that in order to operate digital communications, we must first implement network synchronization of the digital communication network. In the TDMA communication network, synchronizing is also necessary. Fig. 1 shows the classification of the TDMA signal frame structure. By citing an example, the Joint Tactical Information Distribution System (JTIDS) of the United States Armed Forces, in JTIDS TDMA periodically divides the time axis into a time element with duration of 12.8min. One time element is divided into 64 time frames, which is 12s for each frame. Each time frame is divided into 1536 time slots
Fig. 1. Schematic diagram for frame configuration of TDMA signal.
KEY: a - 12.8 min of time element = 64 time frames
b - 12s time frame equals 1536 time slots c - one
time slot equals 7.8125ms d - phase synchronization
e - accurate synchronization f - data g - transmission and guard time

Each time slot is 7.8125ms long. Therefore, each time element
includes 98,304 time slots. A time slot is composed of a
synchronizing segment, a data segment, and a transmission and
guard segment.

With the classifying of time slots in each time element a
certain number of time slots is distributed to each system member
in which signals are to be transmitted; however, in the time
not transmitting signals, the member receives signals transmitted
by other members. Each system member has an accurate time clock.
In the entire system, synchronizing is realized with the
specified network synchronizing time slots so that the entire
system network is established on a unified time datum, thus
forming a unified system time. There are two functions for the
system time: (1) all members have a unified standard on
Fig. 2. Principle of geometric structure of nodal-point positioning
a - main control station b - mobile user
 c - relay station

classifying time element, time frame and time slot, so that each transmission has a timing datum at the unified beginning point of the time slot, thus TDMA can operate normally. (2) As the beginning point in TOA surveying, as the surveying standard, a fundamental positioning navigation guidance for the nodal points is realized.

II.2. Nodal point positioning principle in TOA surveying.

In a mobile C^3I system, after precise synchronization is carried out among the entire system members, and between the main control station and the navigation guidance control users, it is required that a positioning request is issued by the mobile users with positioning requirement within the specified time slot. The higher-grade elements, having been precisely positioned, are the relay stations, which transmit received signals to the main control station. Through several relay stations involved in
surveying, the main control station relays the TOA signal, thus
determining the positions of mobile users who request
positioning.

In order to accomplish overall three-dimensional
positioning, at least four relay stations are required, as shown
in the figure. Thus, the following set of equations can be
derived.

\[(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2 = (D_o + d_i)^2 \quad i=0, 1, 2, 3\]
\[d_i = 0\] (1)

In the equation \((x, y, z)\) are the coordinates of the mobile user
positions; \((x_i, y_i, z_i)\) \(i=0, 1, 2, 3\) are the coordinates of the relay
stations; \(D_o\) is the distance between the mobile user and relay
station 0; \(D_i\) is the distance between the mobile user and the
i-th relay station; \(i=0, 1, 2, 3\).

\(d_i\) is the difference between the distance from the mobile
user to relay station 0, and the distance between the mobile user
and the i-th relay station, that is, \(d_i = D_o - D_i\), \(i=0, 1, 2, 3\).

\(R_o\) is the distance between the main station and relay
station 0.

\(R_i\) is the distance between the main control station and the
i-th relay station; \(i=1, 2, 3\).

\(r_i\) is the difference between the distance \(R_o\) between the
main control station and relay station 0, and the distance \(R_i\)
between the main control station and the i-th relay station.
That is, \(r_i = R_i - R_o\), \(i=1, 2, 3\).
TOA\(_i\) is the time of arrival for signals reaching the main control station by the i-th relay station transmitted to a mobile user, i=0, 1, 2, 3.

DTOA\(_i\) is the difference between TOA\(_0\) and TOA\(_i\) (i=1, 2, 3).

C is speed of light.

Then,
\[
\begin{align*}
 r_i &= R_i - R_0 \quad (i=1, 2, 3) \tag{2} \\
 \text{DTOA}_i &= \text{TOA}_i - \text{TOA}_0 \quad (i=1, 2, 3) \tag{3} \\
 d_i &= C \times \text{DTOA}_i - r_i \tag{4}
\end{align*}
\]

Here, since \((x_i, y_i, z_i), i=0, 1, 2, 3\) are known. By computing \(R_i\), we can obtain \(r_i\). If TOA\(_i\) is determined, by using Eq. (4) we can obtain \(d_i\). Thus, we can obtain the position coordinates \((x, y, z)\) of the mobile user and \(D_0\) by using Eq. (1).

The following explanations are applicable.

(1) There are four unknowns in Eq. (1). Since this is a nonlinear equation, multiple roots and imaginary roots may be generated. One of the methods for eliminating extra roots is as follows. If the altitude \(z\) of the position coordinates of various relay stations and the mobile user can be determined or estimated by other methods, then the horizontal coordinates \(x\) and \(y\) can be determined by using only three relay stations and three TOA. This method is helpful in reducing the number of multiple roots or imaginary roots. Another method is the utilization of outside signals to determine and to eliminate the roots thus obtained, such as determination that involves map data and other signals previously stored in computers of the main control station.
(2) TOA surveying is the key to solving the equations. The accuracy of TOA surveying directly affects the accuracy of position coordinates. Therefore, the TOA surveying technique is the key. Some measures can be adopted to enhance the accuracy of TOA surveying, such as using frequency expansion for ranging, highly-precise quartz oscillations, timely correction of the time datum, and eliminating transmission and computational errors. However, DTOA is one of the measures for eliminating the broadcast errors. In the following, we will discuss several factors affecting positioning accuracy and the revision method.

III. Analysis of Positioning Accuracy of Nodal Points

In the above mentioned positioning process, positional accuracy is determined mainly by the following error sources.

These include positional quality of datum source, and time control of the main control station; synchronizing accuracy of network members; and relative geometric relationship between mobile users and navigation guidance control users who act as relay stations; TOA surveying accuracy; and computational errors of computers.

III.1. The effect on positioning accuracy of nodal points due to positional quality and time quality.

In a C^I system in modern warfare, a system member not only should precisely know his relative position to the main control station, but sometimes it is also required to precisely know his
geographical coordinates. Ordinary users are unable to install such expensive geodetic systems, relying only on the main control station. In the discussion made in the preceding sections, a mobile user can determine his relative position from the main control station. If the main control station ascertains a geographic coordinate point as the geographic coordinate source of the system, and provides the information to other users, then when necessary a mobile user can compute his geographic coordinates. Hence, the absolute positioning accuracy of the mobile user relies on the coordinate accuracy of the datum source. By using highly-precise geodetic survey data, such as a geodetic vehicle, or a global positioning system (GPS receiver, a difference GPS receiver, to provide real time all-weather precise geographic coordinates. At the same time, the time quality of the main control station sets a limit on the positional accuracy of mobile users. Generally speaking, to satisfy system requirements, the main control has to use highly-stable, highly-accurate clocks, such as an atomic clock or a satellite clock, among others.

III.2. The effect of nodal points on positional accuracy by synchronizing accuracy.

In the foregoing we mentioned that TDMA is the basis of positioning for system nodal points; however, the TDMA network should be a synchronizing network. Hence, the synchronizing accuracy of a network member also directly affects the
positioning accuracy of system members. We know that when a network non-member intends to join the system network, first the network entering signal from the main control station should be waited for. After receiving the network entering signal, accuracy synchronization is then made with the system network. In the following, we analyze in detail the error generated by synchronization of network members. Generally, a member entering the network adopts the source timing to accomplish the timing with system time datum.

As shown in Fig. 3, when the network-entering signal from the main control station is received by user B who requested synchronization, after crude synchronization is accomplished, within the ranging time slot, user B issues the application signal for ranging to user A, who has achieved synchronization. User A determines the arrival time t_1 of user B's signal, and the time t_2 for transmitting the response signal. Together with the response signals, these two data are transmitted to user B. Based on his time datum surveying signal, and the time T from the transmission to the receiving of the response signal, based on the following equation, user B can solve for the error Δt of the time datum.

$$\Delta t = (t_1 + t_2 - T)/2$$ \hspace{1cm} (5)

Of course, this is in the situation that a system member is immobile; this can be accomplished with a single timing. When system members are in an immobile state, in the situation of approaching motion, the transmission time delay of the ranging response is less than the transmission time response of ranging
Fig. 3. Difference timing error due to different directions of motion
\(\varepsilon_a \) is the error due to backing-away motion
\(\varepsilon_a \) is error due to approaching motion

KEY: a - synchronized user A b - synchronization request of user B c - ranging time-slot
d - ranging request e - ranging response

application. From Eq. (5), we can obtain the error \(\Delta t \) of the time datum:

\[
\Delta t = \frac{(t_1 + t_2 - (T - \varepsilon_a))/2}{2} + \varepsilon_a/2
\]

(6)

In the situation of backing-away motion, the transmission time delay in ranging response is greater than the transmission time delay in ranging request. From Eq. (5), we can obtain the error \(\Delta t \) of the time datum:

\[
\Delta t = \frac{(t_1 + t_2 - (T + \varepsilon_a))/2}{2} + \varepsilon_a/2
\]

(7)

From Eqs. (6) and (7), we can see that in the situation of approaching motion, the approaching motion increases the measurement value \(\varepsilon_a/2 \). If this time datum error of measurement
is used to adjust the user's time datum, then the error $\pm \frac{\varepsilon_i}{2}$ is the result. In other words, user's time datum is advanced from the time datum of the system standard source by the period $\pm \frac{\varepsilon_i}{2}$.

Conversely, in the situation of backing-away motion, the backing-away motion reduces the time datum error by an amount $-\frac{\varepsilon_i}{2}$. If the time datum error measured at that time is based on adjusting user's time datum, then the error $-\frac{\varepsilon_i}{2}$ is produced. In other words, the user's time datum lags behind the time datum of the system standard source by a period $-\frac{\varepsilon_i}{2}$. Thus we can see that the relative motion of system members is one of the errors of system time correction thus generated.

From Fig. 3 and the analysis in Eqs. (6) and (7), we also know that the longer the time delay t_w of ranging response, the larger is the error of $\pm \frac{\varepsilon_i}{2}$ or $-\frac{\varepsilon_i}{2}$ generated by the relative motion among system members. We can see that when the time of ranging response is greater than the time of ranging request, this is also one of the errors of system time correction thus generated.

III.3. Positioning error due to geometric relationships between the mobile user and the user who acts as a relay station.

From geometry, we know that the relative geometric relationship between the user, and the user acting as a relay station will generate the effect of geometric dilution of accuracy (GDOP), which is known by many. GDOP is defined as the summation t_{RMS} of the RMS for the diametral positional error and
the linear RMS of positional error, that is, the ratio of Δr. In other words,

$$d_{\text{rms}} = \text{GDOP} \times \delta,$$

Generally speaking, in selecting a relay station the following is very important. Only those relay stations with good geometric relationships with users can be considered for use in positioning computations. If the angular difference between various sources observed from user position is about 90°, then the error is minimum that is generated by geometric relationships. Conversely, if the angular difference approaches 0 or 180°, then the error generated is the maximum.

III.4. The effect on positioning accuracy of nodal points by measuring accuracy of TOA.

The measurement accuracy of TOA is related to the following factors: bandwidth of user receiver; signal-to-noise ratio of the signal; frequency stability of clock; error in measurement electrical circuits; propagation error of radio waves; and speed of response signal by the datum source.

The transition time of a signal in a user receiver increases with decrease in bandwidth. Because of variation of aging or environmental conditions, this transient time will vary. Obviously, the narrower the frequency band of a receiver, the greater is the variation of transition time. The signal synchronization head generates timing datum pulse in the receiver. Due to noise, the timing pulse will flutter. The specific fluttering range is closely related to the signal-
to-noise ratio. However, the short term frequency stability of a clock is obvious in the accuracy effect of positioning. The propagation anomaly and multichamber reflections of radio waves in the atmosphere will affect the TOA measurement accuracy. The effect on TOA measurement by multichannel reflection is determined by amplitude and phase (these are the area and position of the reflector) of the reflection wave. The error in TOA measurement can be estimated by using the following formula.

\[\Delta t = \Delta T \cdot \rho / (1 + \rho) \] (8)

In the equation, \(\Delta t \) is the TOA measurement error due to multichannel interference; \(\Delta T \) is the delay of a direct wave by a reflected signal; and \(\rho \) is the energy ratio between the reflected signal and the direct wave.

We can see that the more intense the reflected wave, the longer is the time delay and the greater the effect.

Generally speaking, the higher the speed of response information from various sources, the higher is the positional accuracy of users. The better performance of the measurement circuit, the smaller is the measurement error that can be induced. Based on the developmental levels of modern computer technology, the computational error can be so small that it can be neglected.

IV. Conclusions

The article discusses mainly the positioning technique of a system member requesting a mobile C3I system. Application of
this technique is significant to the combativeness and survivability of the system as well as the enhancement of friend-or-foe discrimination of the system. The basis for achieving this technique is the TDMA communication mode, and the key technique is the TOA measurement technique. There is still a technical blank in China in nodal point positioning that involves using the TOA measurement technique in C^3 systems. From the previous analysis, we know that there are the following factors affecting the positioning accuracy: the positional quality of the source and the time quality of the main control station, synchronizing accuracy of a network member, the GDOP coefficient and computational errors between relay station and user. However, other than the relationship between TOA measurements and the corresponding measurement circuit performance, also closely related are signal bandwidth, signal-to-noise ratio, and propagation environment.

The author is a 27-year-old male holding the rank of assistant engineer. In 1989, he graduated from the Xi'an University of Electronics, Science and Technology. The article was received for publication on February 8, 1993.

REFERENCES

2 James W. Ramjies EPLRS accurate, integrated and secure C^3 link.
3 刘克恩，战术通信，导航定位和识别综合系统文集，北京：电子工业出版社。
4 周洪才，新颖的TDMA移动通信同步技术，通信技术与发展，1991（5）
5 刘克恩等，现代军用双工移动通信系统中的若干重要问题，通信技术与发展，1992（4）
6 邹国扬，张国盛编，移动通信，北京：宇航出版社，1989
<table>
<thead>
<tr>
<th>ORGANIZATION</th>
<th>MICROFICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B085 DIA/KTS-2FI</td>
<td>1</td>
</tr>
<tr>
<td>C509 BALLOCS09 BALLISTIC RES LAB</td>
<td>1</td>
</tr>
<tr>
<td>C510 R&T LABS/AVEADCOM</td>
<td>1</td>
</tr>
<tr>
<td>C513 ARRADCOM</td>
<td>1</td>
</tr>
<tr>
<td>C535 ARRADCOM/TSARCOM</td>
<td>1</td>
</tr>
<tr>
<td>C539 TRASANA</td>
<td>1</td>
</tr>
<tr>
<td>Q592 FSTC</td>
<td>4</td>
</tr>
<tr>
<td>Q619 MSIC REDSTONE</td>
<td>1</td>
</tr>
<tr>
<td>Q008 NTIC</td>
<td>1</td>
</tr>
<tr>
<td>Q043 AFMIC-IS</td>
<td>1</td>
</tr>
<tr>
<td>E404 AEDC/DOF</td>
<td>1</td>
</tr>
<tr>
<td>E410 AFDIC/IN</td>
<td>1</td>
</tr>
<tr>
<td>E429 SD/IND</td>
<td>1</td>
</tr>
<tr>
<td>P005 DOE/ISA/DDI</td>
<td>1</td>
</tr>
<tr>
<td>1051 APIT/IDE</td>
<td>1</td>
</tr>
<tr>
<td>FO90 NSA/CDB</td>
<td>1</td>
</tr>
</tbody>
</table>

Microfiche No: FTD95C000615
NAIC-ID(RS)T-0222-95