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Abstract

Energetic nitrogen atoms play a significant role in the chemistry and thermal balance of the
thermosphere. The nocturnal energy distribution is calculated and the importance of including
the center of mass motion is demonstrated. The center of mass motion gives rise to an extended
component of fast atoms. The calculation of the energy distribution includes the loss of energetic
nitrogen atoms in reactions with molecular oxygen. The density of energetic atoms and their
energy distribution are strong functions of local time, altitude, and latitude.
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1. Introduction

Reactions of energetic N(*S) atoms with Oz molecules

may be a significant source of nitric oxide molecules in
the atmosphere [Solomon, 1983; Lie-Svendsen et al.,
1991]. The sources of energetic N(*S) atoms in the
daytime have been explored by Gerard et al. [1991,
1993] and by Shematovich et al. [1991, 1992], who cal-
culated the resulting energy distribution and pointed
to their importance in producing NO in the daytime
thermosphere. Sharma et al. [1993] argued that the
reaction of N(%S) atoms with O yields NO molecules
in highly excited rotational and vibrational levels and
proposed that they are responsible for the anomalous
infrared emission features detected in the spectrum
of the dayglow by Smith and Ahmadjian [1993] and
Armstrong et al. [1994]. Nocturnal sources of ener-
getic N(%S) atoms also exist. Scattered solar radia-
tion at 58.4 nm and 30.4 nm from the extended he-
lium geocorona produces Ot ions by photoionization
of oxygen atoms and N7 ions by photoionization of
nitrogen molecules and scattered solar Lyman alpha
radiation at 121.6 nm photoionizes NO molecules to
produce NO* ions. Some O ions are produced by
charge transfer with oxygen atoms of H* ions trans-
ported from the dayside. The ions undergo chemical
reactions leading to fast N(%S) atoms. The fast N(*S)
atoms, reacting with Oz, may contzibute to the noc-
turnal rotationally enhanced NO emission which over-
laps the thermal emission spectrum produced by the
excitation of NO by oxygen atom impact.

2. Sources of Nonthermal Nitrogen
Atoms
The OT ions may react with N,
Ot 4+ N, — N(*S) + NOt +1.09 eV (1)

to produce N(*S) atoms with kinetic energies up to
0.74 eV with a rate coefficient k; given as a function
of temperature T' by [Roble et al., 1987]

ky = {1.533 — 0.592(T/300) + 0.086(T/300)%}

x10712 cm?® s~1.

The NOT ions present in the nocturnal atmosphere
undergo dissociative recombination

NOT +e— N(*S) + 0+ 2.75 eV (2)
with a rate coefficient

kp = 9.2 x 10~3(T./300)7%% cm®s~!

and
NOt 4+ e — N(®*D)+0 +0.38 eV (3)

with a rate coefficient k3 = 3.3 x 1077(T,/300)~%-%°
cm® s~ [Roble et al., 1987] where T is the electron
temperature. Reactions (1), (2), and (3) are the ma-
jor sources of nitrogen atoms at night. Dissociative
recombination of N} is negligible [ Tohmatsu, 1990] in
comparison. Following reaction (3), energetic N(%S)
atoms are produced by the reactions

N(®*D) + O(®P) — N(%S) + O(°P) +2.38 eV (4)
and
N(*D) + O(®*P) — N(*S) + O(*D) + 0.41 V. (5)

The sum of the rate coefficients k4 and ks of reactions
(4) and (5) has been measured at thermal energies
[Piper, 1989; Fell et al., 1990]. No experimental data
are available on the branching ratio of the individual
reactions but Bates [1989] has tentatively concluded
from an examination of the potential energy curves of
NO calculated by Michels [1979] that at room tem-
perature, process (5) is strongly favored.

To calculate the source function of energetic N(*S)
atoms we adopted the ion and electron densities in the
international reference ionosphere [Rawer et al., 1978]
and the neutral particle densities and temperatures
in the MSIS-86 [Hedin, 1987] model atmospheres for
quiescent nighttime conditions near solar maximum.
The altitude profiles of the ion and electron densities
are reproduced in Figure 1. The N'{ densities are too
small to appear in the figure. We make the arbitrary
assumption that in reaction (1) none of the energy is
taken up in internal modes of NO*. The fast atoms
lose energy mostly in elastic collision with the ambient
atmosphere. For these exploratory investigations we
adopted a hard sphere potential to describe the elastic
collisions [Andersen and Shuler, 1964; Oppenheim et
al., 1977). The fast atoms are lost in reactions with
0O

N(*S)+ 0, - NO+O (6)

to form NO. The kinetics of reaction (6) have been
explored by Gilibert et al. [1993, 1995] and Duff et
al. [1994] who calculated the classical trajectories on
the NO, potential energy surfaces and determined the
fraction of collisions that are reactive. In our calcu-
lations we adopted the cross sections of Duff et al.
[1994] which show reaction occurring at kinetic ener-
gies of the nitrogen atoms above 0.43 eV. Below 0.43
¢V, the nitrogen atoms are preferentially removed by




the reaction with NO,
N+NO—-N,+0 (M)

which has a rate coefficient of 2 x 107! ¢cm?® s71, in-
dependent of temperature [Koshi et al., 1990]. The
thermalization by elastic collisions is rapid compared
to the time scales of the transport phenomena that
are important in determining the density of thermal
N(*S) atoms, which we took from the MSIS model at-
mospheres. Superimposed on the thermal background
are the nascent N(*S) atoms which react with O, as
they slow down, producing NO. We took the NO den-
sities from the empirical model of Smith et al. [1993].

3. Energy Distribution

Shematovich et al. [1991, 1992] took account of
the numerous daytime sources of energetic nitrogen
atoms and solved the Boltzmann equation to obtain
the daytime steady-state energy distribution. They
assumed that the energy spectra of the sources could
be represented as delta functions centered at the spe-
cific initial energies, determined by the exoergicities
of the processes that produce the nitrogen atoms.
These representations of the source spectra are valid
in the center of mass frame. In the laboratory frame
they are considerably broadened because the angle
between the velocity of the center of mass and the
relative velocity of the separating systems varies ran-
domly. Figure 2 is the Newton diagram for the dis-
sociative recombination reactions (2) and (3). If Wy
and Wo are the velocities of the nitrogen and oxy-
gen atoms, respectively, in the center of mass frame
and V., is the velocity of the center of mass, the
velocities of O and N in the laboratory frame are
Vo = Wo + Ve and Vy = Wx + Vo . Their
magnitudes are {Wo2 -{-chz—{~ZWOVm.‘cosO}l/2 and
{Wn?+ Ve? = ZWNV}mcoss@}l/z where © is the an-
gle between Wq and V. The velocities of O and N
are related by the conservation of linear momentum
so that MoWo + Mxy'Wyx = 0 where Mo is the mass
of the oxygen atom and My is the mass of the nitro-
gen atom. The circles in Figure 2 denote the loci of
the atom velocities in the center of mass frame. The
spread in velocities obtained by adding vectorially the
velocity of nitrogen in the center of mass frame to the
velocity of the center of mass produces a width = in
the source spectrum of the order (Ak BT)I/ 2 where A
is the exoergicity. The detailed analysis is presented
in the appendix. For the nitrogen atoms resulting

from reactions (1), (2), (4), and (5), the widths are ,

large compared to kpT.

At low altitudes, reaction (1) is unimportant as a
source of N. Figure 3a shows the result of an accu-
rate calculation of the source functions at an altitude
of 130 km for reactions (2), (3), and (4) for a tem-
perature of 550 K, compared to Gaussian functions
with a half-width of kT, assuming that reaction (5)
is negligible. Figure 3b is identical except that re-
action (4) is replaced by reaction (5). The inclusion
of the center of mass motion has a dramatic effect
on the source spectrum. We calculated the energy
distribution function P(F) by solving the Boltzmann
equation

7] o ’ ' '
-a—t—P(E') =0= L B(E',E)P(E')dE

_K(E)P(E) + Q(Er t) - O‘(E)t)P(E)’ (8)

where the kernel B(E', E) is the rate of transfer of
kinetic energy from E' to E, Q(E,t) is the source
function of atoms with energy F, a(E,1) is the sink
function that denotes the frequency of reactive colli-
sions in which nitrogen atoms are lost, and

K(E) = /0 " B(B, B')E’ )

is the frequency of elastic collisions that remove atoms
with energy E. The distribution function P(E) is
normalized so that [° P(E)dE equals the density of
nascent nitrogen atoms. The source and sink func-
tions depend on the local time t, which is a parameter
in (8). The kernel is a sum,

B(E',E) = ZB,-(E', E), (10)

of energy transfer rates B;(E’, E) occurring through
collisions of the energetic nitrogen atoms with the
constituents N,, O, and O of the ambient atmo-
sphere. For hard sphere potentials the kernel may be
expressed in analytical form [Anderson and Shuler,
1964; Oppenheim et al., 1977). The sink term de-
scribes the loss of nitrogen atoms in reactions (6) and
(7). The effects of including the center of mass motion
in the source function are illustrated in Figure 4 which
presents the steady state distribution in the atmo-
sphere at an altitude of 130 km corresponding to the
source functions in Figure 3. The peaks are smoothed
out by the inclusion of the center of mass motion and
an increase by orders of magnitude occurs in the high
energy tail of the distribution function above 2 eV.
In Figure 5 we present the source functions arising
from reactions (1) through (5) at altitudes of 130 km,




160 km and 200 km at local midnight. For Figure
5a we assume that only reaction (4) quenches N(?D)
and for Figure 5b we assume that only reaction (5)
quenches N(2D). Below 130 km the energetic nitrogen
atoms are produced mostly by dissociative recombi-
nation and by quenching N(?D) but at higher alti-
tudes the reaction of OF with N is the major source.
Figure 6 gives the energy distributions P(E) of the
nascent atoms at 19.20 local time at altitudes of 130
km, 160 km, and 200 km, and at a latitude of —28.0°,
and a longitude of 102.4°. The thermal Maxwellian
distributions are also shown. Because the nitrogen
atoms live longer at higher altitudes where molecu-
lar oxygen is a relatively less abundant constituent,
and because the bath gas has a higher temperature,
the thermal component of the distribution persists to
larger energies. The choice of the quenching channel
(4) or (5) is of little consequence. Figure 7 is similar
to Figure 6 but for local midnight. Even at mid-
night there is present a significant abundance of ener-
getic atoms. Figure 8 shows the energy distribution at
19.30 local time for a different latitude, —48.0°, and
longitude, 105°, based on the internal reference iono-
sphere data. The different initial jon composition is
reflected in the energy distribution function. Figures
6-8 show that energetic atoms are present through the
night and that their density and energy distribution
are strong functions of the geophysical parameters.

The reactions of the energetic atoms populate ex-
cited rotational and vibrational levels of NO. The re-
sulting infrared emission [Sharma et al., 1993] has
been seen during the daytime [Smith and Ahmadjian,
1993; Armstrong et al., 1994}, and Armsirong et al.
[1994] have suggested it may be the source of a weak
rotationally excited component present in quiescent
nighttime spectra. Quantitative calculations will be
needed to determine whether or not the supply of en-
ergetic atoms is sufficient to explain the observed in-
tensities.

Appendix

At time t the energy spectrum of the source func-
tion Q(E,1) of the fast nitrogen atoms in the labora-
tory frame (LF) can be written as the product

QB 1) = Qu(ta(E), Qolt) = | " o(B,14E, (1)

where Qo(t) is the total rate of production of fast
atoms and ¢(E) is the normalized source function of
the atoms in the LF, such that [g(E)dE = 1.

Transforming the distribution function from the
center of mass frame (CMF) to the LF, we obtain

q9(E) = / 6 [E' - My(Vem + WN)2/2]
XF(ch)chmfo(WN)dWN, (12)

where fo(Wy) is the velocity distribution function of
the fast nitrogen atomsin the CMF and F(Vn,) is the
distribution function of the center of mass velocities.
If fo(Wn) is isotropic (see Figure 2) and the reaction
generates a monoenergetic flux of atoms with velocity
W.,

Vem?® + W..2
q= /6 [E - MN(—CHL—;— + chW*cosG))]
X F(Vem) Vem>@Vem27sin©do. (13)

The velocity of the fast atomic particles in the CM
frame W, depends on the exoergicity of the chemical
reaction A :

IMoATY?
o ] , (14)

w, = [
MnM

where M = My + Mo. Integration with respect to
the angle variable © leads to a restriction on the mag-
nitude of CM velocities allowed for the given E and

W,:
Vmin S ch S Vma.x» (15)
where
Vmin = W, — (21;"/MN)1/2 ' (16)
Vmax = Wi + (2E/My)'/? (17)

The velocity distfi‘bution of the CM motion is Maxwellian.
Using it we obtain an analytical expression for the
source function:

M\ 1
F) =
a(B) (27rkT) MW,

MV MV
X {exp [—— T |~ P | T 5T . (18)
The source energy distribution function ¢(F) may

now be calculated using the dependence of W, on the
exoergicity A. The result is

()= GV GR T ME+ Moa
e (rART)V/2 P MxkT
E 1/2
xsinh[ZEAMo M), 1)

kT My




For large values of the ratio A/kT the position of
the maximum of ¢(F) and the energy width 7 of the
source function in the LF are given approximately by

Mo

Emax ~ —————A, 20
B My + Mo (20)

and 12
7o UMo M) T (AKT)Y/2, (21)

My + Mo

A similar result can be obtained from the analyses of
Whipple [1974] and Wallis [1978].
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Figure 1. The altitude profiles of the ion and electron densities.

Figure 2. Newton diagram relating the velocity vec-
tors of the N and O atoms and the center of mass frame
with those in the laboratory frame. V., is the velocity
of the center of mass.

Figure 8. The thermal spectrum at 550 K is compared
to the calculated distribution, taking into account the
center of mass motion. The peaks on the right are due
to reaction (2) and on the left to reaction (4) in Figure
2a and reaction (5) in Figure 2b. The center of mass
motion causes a broadening of the distribution to a few
tenths of an electron volt.

Figure 4. Energy distribution function P(E) of nascent N atoms from the source
function of Figure 2a at midnight and 130 km altitude as a function of the transla-
tional energy from a thermal source (broken line) and taking account of the center
of mass motion (solid line). The Maxwell distribution at a local temperature of 560
K is shown as the dashed-doted line.

Figure 5. reference Figure 5. Energy spectrum of the
source function Q(FE,t) at 130 km, 160 km and 200
km at midnight. Figures. 5a and 5b assume reactions
(4) and (5), respectively, for the deactivation of N(2D)
atoms by O(3P) atoms.

Figure 6. Energy distribution function P(E) of nascent N(*S) atoms
at 130 km, 160 km and 200 km. The solid lines assume reaction (4)
and the broken lines assume reaction (5) for the deactivation of N(2D)
atoms by O(*P) atoms. The geophysical parameters are 19.20 local
time, latitude —28°, and longitude 102.6°. The dashed-doted curves
indicate the Maxwellian velocity distributions.

Figure 7. As in Figure 6 except the local time is midnight.

Figure 8. As in Figure 6 except the local time is 19.30, the latitude
is —48° and the longitude 105°.
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