A RIGOROUS WAY OF INCORPORATING SEA SURFACE ROUGHNESS INTO THE PARABOLIC EQUATION

by

Ramakrishna Janaswamy

September 1995

Approved for public release; distribution is unlimited.

This work was supported by the Navy/ASEE Summer Faculty Research Program and was conducted at the Tropospheric Propagation Branch, Division 543, NRD, San Diego, CA.
Naval Postgraduate School
Monterey, California 93943-5000

Rear Admiral M. J. Evans
Superintendent

This work was supported by the Navy/ASEE Summer Faculty Research Program and was conducted at
the Tropospheric Propagation Branch, Division 543, NRaD, San Diego, CA.

Approved for public release; distribution unlimited.

This report was prepared by:

R. Janaswamy
RAMAKRISHNA JANASWAMY
Associate Professor,
Department of Electrical and
Computer Engineering

Reviewed by: M. A. Morgan
MICHAEL A. MORGAN
Chairman,
Department of Electrical and
Computer Engineering

Released by: P. J. Marto
PAUL J. MARTO
Dean of Research
A rigorous formulation of rough earth parabolic equation (PE) is given. The formulation is based on casting the governing transform equations in terms of incident and reflected plane waves and using the rough-surface reduction factor directly in the spectral domain. Solution is performed by the well-known split-step algorithm. Inclusion of surface roughness into the PE in this manner requires a redefinition of the Fourier transform pair. Several examples are considered showing comparisons with waveguide and other models.
Abstract

A rigorous formulation of rough earth parabolic equation (PE) is given. The formulation is based on casting the governing transform equations in terms of incident and reflected plane waves and using the rough-surface reduction factor directly in the spectral domain. Solution is performed by the well known split-step algorithm. Inclusion of surface roughness into the PE in this manner requires a redefinition of the Fourier transform pair. Several examples are considered showing comparisons with waveguide and other methods.
Objective

Our research objective is to develop a rigorous method to incorporate sea-surface roughness into the parabolic equation modeling of radiowave propagation.

Introduction

The Parabolic Equation (PE) method has emerged as an extremely valuable method for assessing radiowave propagation in the lower atmosphere in the presence of ducts. Propagation loss can be easily estimated over very long ranges of the order of a few hundred kilometers for frequencies through Super High Frequency (SHF) band, and for antenna heights extending up to a few hundred meters. It is also possible to directly account for finite conductivity of the earth in the PE. Reference [1] discusses the basic idea and the various approximations involved in the development of the PE. Although there are many different ways of solving the PE [2], none seem to offer the computational advantages of the split-step algorithm, originally developed by Tappert [3], in terms of the large range steps allowable. One of the current unresolved issues is the incorporation of sea-surface roughness into the PE. Several attempts have been made in the past all of which rely on some kind of approximation or post-processing of data obtained by running the PE over smooth earth. Reference [4] discusses some of these methods in detail. In this report, we present a direct way of incorporating surface roughness into the PE. The idea behind our approach is to cast the governing transform equations in terms of incident and reflected plane waves, and then use the rough surface reduction factor available for plane waves [5] directly in the spectral domain. Of course this will necessitate the modification of the Fourier transform pair, as we will show shortly.
Theory

1. Smooth Earth

The starting point for our formulation is the standard parabolic equation, given, for example, in [1]. Assuming an $e^{-i\omega t}$ time dependence, we consider the parabolic equation in a medium with parameters (ε, μ_0):

$$\frac{\partial^2 u}{\partial z^2}(x, z) + 2ik_0 \frac{\partial u}{\partial x}(x, z) + 2k_0^2 M(x, z)u(x, z) = 0,$$ \hspace{1cm} (1)

where $u(x, z) = \sqrt{r \sin \theta} E_\phi(r, \theta)$, for horizontal polarization and $u(x, z) = \sqrt{\frac{r \sin \theta}{\varepsilon(r, \theta)}} H_\phi(r, \theta)$ for vertical polarization, (r, θ, ϕ) being the usual spherical coordinates. The coordinate system is chosen such that the source is located at $\theta = 0$ and $r = a_e + z$, where a_e is the radius of the earth and z is the height of the source relative to the surface of the earth. Furthermore, $k_0 = \omega \sqrt{\varepsilon_0 \mu_0}$ is the free-space wavenumber, x is the range axis, z is the height axis, and

$$M(x, z) = \left(n - 1 + \frac{z}{a_e} \right) \times 10^6$$

is the modified refractive index under earth-flattened approximations [1]. The quantity $E_\phi (H_\phi)$ is the $\phi-$component of the electric (magnetic) field. The complex dielectric constant, ε_{re}, of the earth is $\varepsilon_{re} = \varepsilon_r + i\sigma / \omega \varepsilon_0$, where σ is its conductivity. The parabolic equation given in (1) is to be solved subject to the approximate boundary condition

$$\frac{\partial u}{\partial z}(x, 0) + \alpha_0 u(x, 0) = 0,$$ \hspace{1cm} (2)

where $\alpha_0 = ik_0 \sqrt{\varepsilon_{re} - 1}$ for horizontal polarization, $\alpha_0 = ik_0 \sqrt{\varepsilon_{re} - 1}/\varepsilon_{re}$ for vertical polarization. The above boundary condition is approximate because it is valid for highly conductive soil satisfying $|\varepsilon_{re}| \gg 1$. If this condition is not met, equation (2) must be imposed separately for each constituent plane wave comprising u with α_0 replaced by

$$\alpha = ik_0 \cos \theta_t \left[\frac{1 - \Gamma(\varepsilon_{re}; \theta_t)}{1 + \Gamma(\varepsilon_{re}; \theta_t)} \right],$$

where Γ is the reflection coefficient for a plane wave striking the earth at an angle θ_t with the normal. The actual field, u, does not satisfy the simple condition dictated by (2).
To solve (1) subject the boundary condition (2), the following mixed Fourier transform pair is defined [1]:

\[\hat{u}(x, p) = \mathcal{F}(u) = \int_0^\infty u(x, z)[\alpha_0 \sin pz - p \cos pz] \, dz \]
(3a)

\[u(x, z) = \mathcal{F}^{-1}(\hat{u}) = \frac{2}{\pi} \int_0^\infty \hat{u}(x, p) \frac{\alpha_0 \sin pz - p \cos pz}{\alpha_0^2 + p^2} \, dp + S(x)e^{-\alpha_0 z}, \]
(3b)

where the latter term in (3b) decays with height and range and is due to the surface wave propagating on a non-perfectly conducting earth. This term is usually ignored in the solution for frequencies \(> 10 \) MHz. In the visible range \(-k_0 \leq p \leq k_0\), one may identify \(p \) with the vertical wavenumber \(k_0 \sin \psi \), where \(\psi \) is the grazing angle with respect to horizontal taken positive for waves approaching the interface \(z = 0 \).

Using the above Fourier transform pair, the solution to (1) in the presence of a slowly varying duct can be written as

\[u(x, z) = e^{i k_0(x-x_0)10^{-8} x M} \mathcal{F}^{-1} \left\{ e^{-ip^2(x-x_0)^2/2k_0} \mathcal{F}[u(x_0, z)] \right\} \]
(4)

To appreciate the development of the rough earth case, we will first rewrite the above Fourier transform pair (ignoring the surface wave) in the following equivalent form:

\[\hat{u}(x, p) = \mathcal{F}_s(u) = \int_0^\infty u(x, z)e^{ipz} \, dz + \frac{1}{\Gamma_s(p)} \int_0^\infty u(x, z)e^{-ipz} \, dz \]
(5a)

\[u(x, z) = \mathcal{F}^{-1}_s(\hat{u}) = \frac{1}{2\pi} \int_0^\infty \hat{u}(x, p) \left[e^{-ipz} + \Gamma_s(p)e^{ipz} \right] \, dp, \]
(5b)

where

\[\Gamma_s(p) = \frac{p + i\alpha_0}{p - i\alpha_0}, \quad p > 0 \]

is the plane-wave reflection coefficient for smooth earth, and subscripts \(s \) denote smooth earth case. In this form, it is clear from looking at (5b) that the total field is comprised of an incident plane wave of spectral amplitude \(\hat{u}(x, p) \) traveling towards the interface \(z = 0 \) and a corresponding reflected plane wave of amplitude \(\Gamma_s(p)\hat{u}(x, p) \) traveling away.
from the interface. Furthermore, the field \(u \) satisfies the required smooth earth boundary condition of (2). Although the expression given above for \(\Gamma_s(p) \) makes physical sense only for \(p > 0 \), we may analytically continue it for \(p < 0 \) and use the same expression to define it for negative \(p \). With this continuation, we see that \(\Gamma_s(-p) = 1/\Gamma_s(p) \). A second equivalent form which is symmetric with respect to the reflection coefficient and which makes use of the extended definition of \(\Gamma_s(p) \) can be written down as:

\[
\tilde{u}(x, p) = F_s(u) = \sqrt{\Gamma_s(p)} \int_{0}^{\infty} u(x, z)e^{ipz} \, dz - \frac{1}{\sqrt{\Gamma_s(p)}} \int_{0}^{\infty} u(x, z)e^{-ipz} \, dz \quad (6a)
\]

\[
u(x, z) = F_s^{-1}(\tilde{u}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{u}(x, p)e^{-ipz} \, dp. \quad (6b)
\]

Note that there are no approximations involved, and all the three forms of the Fourier transform pair are equivalent. Also note that the form in (6) is particularly useful in extending the PE methodology to rough surfaces. The transform \(\tilde{u} \) is seen to be an odd function of the transform variable \(p \).

2. Rough Earth

In the rough earth case, we simply replace the smooth earth spectral reflection coefficient \(\Gamma_s(p) \) with the corresponding rough earth one in the inversion formula (6b). A forward transform formula consistent with this must be defined separately. The rough surface reflection coefficient, \(\Gamma_r(p) \), is taken as

\[
\Gamma_r(p) = \rho_0(p; \sigma_h)\Gamma_s(p), \quad (7)
\]

where \(\rho_0(p; \sigma_h) \) is the rough surface reduction factor defined by [5]

\[
\rho_0(p; \sigma_h) = e^{-2p^2\sigma_h^2} I_0(2p^2\sigma_h^2), \quad (8)
\]

and \(\sigma_h \) (m) is the r.m.s. height deviation determined from wind speed, \(\mu \) (m/s), by

\[
\sigma_h = 0.0051\mu^2. \quad (9)
\]
In equation (8), \(I_0(.) \) is the modified Bessel function of the first kind of order zero. A simpler form in terms of elementary functions has been recommended in CCIR Report 1008-1 [6]:

\[
\rho_0(p; \sigma_h) \approx \frac{1}{\sqrt{3.2\chi - 2 + \sqrt{(3.2\chi)^2 - 7\chi + 9}}},
\]

where \(\chi = 2p^2\sigma_h^2 \). Figure 1 shows the comparison between the exact and the approximate \(\rho_0 \) as a function of \(\chi \). Excellent agreement seen between the two permits the use of the much simpler approximate form in actual numerical computations. The formula for \(\rho_0 \) makes physical sense only for \(p > 0 \). As in the smooth earth case, we will extend the domain of definition of \(\rho_0 \) to include \(p < 0 \). We define \(\rho_0 \) for negative \(p \) as

\[
\rho_0(-p; \sigma_h) = \frac{1}{\rho_0(p; \sigma_h)}, \quad p > 0
\]

We will present the development below for the important practical case of horizontal polarization. Vertical polarization can be handled in a similar fashion. In the subsequent discussion, we will drop the term \(\sigma_h \) from the argument of \(\rho_0(p; \sigma_h) \) and its presence will be implied. For ranges far exceeding the heights, the plane waves arrive at very shallow grazing angles and it is adequate to take \(\Gamma_h(p) \approx -1 \) for horizontal polarization. With this approximation, we use (6) to write the transform pair as

\[
\tilde{u}(x, p) = \sqrt{\rho_0(p)} \int \limits_{0}^{\infty} u(x, z)e^{ipz} \, dz - \frac{1}{\sqrt{\rho_0(p)}} \int \limits_{0}^{\infty} u(x, z)e^{-ipz} \, dz + \tilde{w}(x, p)
\]

\[
u(x, z) = \mathcal{F}_x^{-1}(\tilde{u}) = \frac{1}{2\pi} \int \limits_{-\infty}^{\infty} \frac{\tilde{u}(x, p)}{\sqrt{\rho_0(p)}}e^{-ipz} \, dp.
\]

The additional function \(\tilde{w}(x, p) \) must be included to make the pair defined in (12) consistent. Of course, it is not needed for smooth earth. Alternately, one may add a function \(w(x, z) \) to (12b) and use (12a) without \(\tilde{w} \). However, we prefer not to do this, because, in this case, the solution cannot be expressed in the convenient form of (4). The quantity \(\tilde{w}(x, p) \) is determined by the requirement that \(\mathcal{F}[\mathcal{F}_x^{-1} \tilde{w}] = \tilde{u} \). It can be obtained as

\[
\tilde{w}(x, p) = \frac{-i}{2\pi} \int \limits_{0}^{\infty} \tilde{u}(x, q)K(p, q) \, dq,
\]

5
where the kernel $K(p, q) = K(q, p)$ is
\[
K(p, q) = \frac{1}{\sqrt{\rho_0(p)\rho_0(q)}} \left[\frac{\rho_0(p) - \rho_0(q)}{p - q} + \frac{1 - \rho_0(p)\rho_0(q)}{p + q} \right].
\] (14)

For $p = q$, the kernel is
\[
K(p, p) = \frac{1}{\rho_0(p)} \left[\rho_0'(p) + \frac{1 - \rho_0^2(p)}{2p} \right].
\]

Note that (12a) and (13) constitute a Fredholm integral equation of the second kind for the unknown \tilde{u} in terms of the known function u. It can be solved by any one of the several techniques available. A simple technique to use is the method of successive approximation or the so-called Neumann series approach. In this work, we only concentrate on some simple techniques which are not necessarily efficient computationally. Note that the field, u, does not satisfy the boundary condition $u(x, 0) = 0$ as it will for the smooth earth case. However, this does not pose any conceptual or numerical problems. For smooth earth, $\rho_0 = 1$ and, consequently, $K \equiv 0$. Also, observe that both $\tilde{u}(x, p)$ and $\tilde{w}(x, p)$ are odd functions of p. We may rewrite $\tilde{w}(x, p)$ in (13) in an operator form as
\[
\tilde{w}(x, p) = -i\mathcal{W}(\tilde{u}).
\]

Denoting the identity operator by \mathcal{I} and substituting in (12a), we arrive at the desired forward transform as
\[
\tilde{u}(x, p) = \mathcal{F}_x(u) = (\mathcal{I} + i\mathcal{W})^{-1} \left[\sqrt{\rho_0(p)} \int_0^\infty u(x, z)e^{ipz} dz - \frac{1}{\sqrt{\rho_0(p)}} \int_0^\infty u(x, z)e^{-ipz} dz \right].
\]

Defining the function $u_+(x, z)$ by
\[
u_+(x, z) = \begin{cases} u(x, z) & z > 0 \\ 0 & z < 0 \end{cases}
\]

and denoting its ordinary complex Fourier transform as \tilde{u}_+,
\[
\tilde{u}_+(x, p) = \mathcal{F}_o(u) = \int_{-\infty}^\infty u_+(x, z)e^{ipz} dz,
\]
we write the complete Fourier transform pair for rough surface and horizontal polarization as

\[\hat{u}(x, p) = \mathcal{F}_r(u) = (I + i\mathcal{W})^{-1} \left[\sqrt{-\rho_0(p)}\hat{u}_+(x, p) - \sqrt{-\rho_0(-p)}\hat{u}_+(x, -p) \right] \]

(15a)

\[u(x, z) = \mathcal{F}_r^{-1}(\hat{u}) = \mathcal{F}_o^{-1} \left[\frac{\hat{u}(x, p)}{\sqrt{-\rho_0(p)}} \right], \]

(15b)

where \(\mathcal{F}_o^{-1} \) is the ordinary complex Fourier inverse

\[\mathcal{F}_o^{-1}(\cdot) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\cdot)e^{-ip\cdot} \, dp. \]

It remains to define the inverse operator \(\mathcal{P} = (I + i\mathcal{W})^{-1} \). In computing the ordinary Fourier transform pair, one would normally use an \(N \)-point FFT. Let us assume that the various quantities are bandlimited over \(-p_{\text{max}} \leq p \leq p_{\text{max}}\), and that the transform is evaluated at \(p = 0, \Delta p, 2\Delta p, \ldots, (N - 1)\Delta p\). Positive wavenumbers occur at \(p = \Delta p, 2\Delta p, \ldots, (\frac{N}{2} - 1)\Delta p\), while negative wavenumbers occur at \((\frac{N}{2} + 1)\Delta p, (\frac{N}{2} + 2)\Delta p, \ldots, (N - 1)\Delta p\). The value \(\frac{N}{2} \Delta p \) corresponds to both \(+p_{\text{max}} \) and \(-p_{\text{max}} \). Let us assume that \(\hat{u}(x, \pm p_{\text{max}}) = 0 \). This can always be achieved in practice by a suitable window in the transform domain. Since \(\hat{u} \) is an odd function of \(p \), we also have \(\hat{u}(x, 0) = 0 \). The same is true of \(\hat{w} \). Consider the vectors \(\vec{u} = [\hat{u}(x, \Delta p), \hat{u}(x, 2\Delta p), \ldots, \hat{u}(x, \frac{N}{2} - 1)\Delta p] \) and \(\vec{w} = [\hat{w}(x, \Delta p), \hat{w}(x, 2\Delta p), \ldots, \hat{w}(x, \frac{N}{2} - 1)\Delta p] \). One may use trapezoidal rule to discretize the integral in (13) as

\[\hat{w}(x, m\Delta p) \approx -\frac{i\Delta p}{2\pi} \sum_{n=1}^{N/2-1} \hat{u}(x, n\Delta p)K(m\Delta p, n\Delta p). \]

This can be written in a matrix form as

\[\vec{w} = -i\vec{W} \cdot \vec{u}, \]

where \(\vec{W} \) of order \((N/2 - 1 \times N/2 - 1)\) is the discrete version of the continuous operator \(\mathcal{W} \) with elements

\[\vec{W}_{mn} = \frac{\Delta p}{2\pi} K(m\Delta p, n\Delta p), \quad m, n = 1, \ldots, N/2 - 1. \]
The discrete form of the continuous operator, \mathcal{P}, is then $\overline{P} = (I + i\overline{W})^{-1}$, which is a matrix of order $N/2 - 1 \times N/2 - 1$. Note that \overline{W} is a full matrix and I is an identity matrix of size $(N/2 - 1 \times N/2 - 1)$. In actual computations, we use (15a) to compute \tilde{u} for positive p and extend the function over all p using odd symmetry. The operator \overline{P} then acts on the positive wavenumber part of the spectrum occurring within the square brackets of (15a). We give below approximations to \overline{P} of increasing orders of complexity and accuracy:

\[
\begin{align*}
\overline{P} &= (I + i\overline{W})^{-1} \quad \text{(exact, } O(N^3)) \\
 &\approx I \quad \text{(zeroth order, no additional operations)} \\
 &\approx I - i\overline{W} \quad \text{(first order, } O(N)) \\
 &\approx I - i\overline{W} - \overline{W}^2 \quad \text{(second order, } O(N^3)) \\
 &\approx I - i0.6438055\overline{W} - 0.5936575\overline{W}^2 \quad \text{(least-square, second order, } O(N^3))
\end{align*}
\]

Note that the \overline{P} operator need be computed only once using any one of the above approximations for a given value of wind speed. In subsequent range stepping (equation (15a)), except for the zeroth order approximation, inclusion of \tilde{u} involves one additional multiplication of the matrix \overline{P} with the vector \tilde{u} and is of order $O(N^2)$. Since an FFT is of order $N \ln(N)$, the final algorithm time for range stepping will be of order $O(N^2)$. Diagonalizing \overline{P} has the potential of reducing the matrix multiplication time to $O(N)$ and the overall algorithm time to $O(N \ln(N))$. This will be explored in the future.

3. Numerical Results

We validate our PE formulation first by running a few sample cases and comparing with results from literature. A Hanning window with sequence

\[
h(n) = \begin{cases}
1 & 0 \leq n \leq \frac{3N}{8} \\
\sin^2 \frac{4n\pi}{N} & \frac{3N}{8} \leq n \leq \frac{3N}{2}
\end{cases}
\]

is used both in the spatial and wavenumber domains. A mirror image of $h(n)$ about $n = 0$ is used for negative wavenumbers. Note that the Hanning window forces a gradual
rolloff to zero over the last quarter of the positive wavenumber spectrum. We label the present method as PEERS, which stands for Parabolic Equation Exact Rough Surface.

The first example we try is that of propagation in standard atmosphere with $M = 340 + 0.118z$, where the height z is in meters. The transmitter is at a height of $z_s = 30$ m, the frequency of operation = 3 GHz, the maximum angle θ_{max} that determines p_{max} is 1.43^0 (= 25 mrad), maximum height including rolloff is $z_{\text{max}} = 512$ m. The size of FFT is determined from z_{max} and θ_{max} by

$$N \geq 2^\frac{2z_{\text{max}} \sin \theta_{\text{max}}}{\lambda_0},$$

where λ_0 is the free-space wavelength. The height and wavenumber increments are calculated from Nyquist criterion as

$$\Delta z = \frac{2z_{\text{max}}}{N}, \quad \text{and} \quad \Delta p = \frac{2\pi}{N\Delta z}.$$

We choose the vertical increment $\Delta z = 2$ m and $N = 512$. The range step was chosen to be 200 m. Figure 2 shows propagation factor (excess signal over the free-space case) versus receiver height for at the horizontal range of 40 km. Propagation factor, PF in dB, is defined as

$$PF = 10 \log(|u|^2 x \lambda_0),$$

where x is the horizontal distance from transmitter. A positive (negative) value of propagation factor implies gain (loss) with respect to propagation in free-space. Although a direct comparison is not shown here, the lobing pattern compares very well with that given in [1].

The next example we consider is that of propagation in a tri-linear duct specified by

$$M(z) = \begin{cases}
340 + 0.118z & 0 \leq z \leq 135 \\
499.03 - 1.06z & 135 \leq z \leq 150 \\
322.33 + 0.118z & z \geq 150.
\end{cases}$$

where z is in meters. The frequency of operation is 3 GHz, transmitter height is 30 m, $\theta_{\text{max}} = 1.43^0$, and $z_{\text{max}} = 512$ m. We choose $N = 512$, $\Delta z = 2$ m, and $\Delta x = 200$ m.
Figure 3 shows propagation versus receiver height at a range of 40 km. Once again a favorable agreement with [1] was obtained.

The final example we consider for smooth earth is propagation over a strong evaporation duct. The frequency is 10 GHz and the transmitter height is at 25 m. Refractivity profile for the evaporation duct is given in Table 1. We use \(z_{\text{max}} = 150 \) m, \(\theta_{\text{max}} = 1.43^0, \Delta z = 0.293 \) m, \(N = 1024 \), and \(\Delta x = 200 \) m. Figure 4 shows a comparison of the numerical results with those obtained by the waveguide model (MLAYER) [7] for a receiver height of 25 m. An excellent agreement is seen between the two, thus validating our PE algorithm.

We now consider a wind-roughened sea surface for the evaporation duct shown in Table 1. The wind speed is 10 m/s, which corresponds to an r.m.s. sea height of 0.51 m according to (9). All other parameters remain the same as before. Figure 5 compares the propagation factor versus range for smooth and rough seas. Clearly, roughness has resulted in the reduction of the specular component as evidenced by the decreased excursions of the signal in the interference region. Furthermore, the loss increases at larger ranges. Figure 6 shows the comparison of the present numerical results with those predicted by MLAYER. Figure 7 shows comparison with TEMPER developed by the authors of [1] to also include surface roughness. It is based on first running the PE on the smooth earth case and then estimating the grazing angles using one of the spectral estimation procedures. This grazing angles is reused back into the PE to modify the results for the rough-earth case. The comparison is fair with all the results being within 1.5–2 dB of one another.

The results shown in Figure 6 were computed using the exact operator \(\mathcal{P} \) given in (16a). We will now show the effects of using other approximations for \(\mathcal{P} \). In each case we will compare the numerical results generated by the approximate operator with those generated by the exact operator. Figure 8 shows the results with the zeroth order approximation, which is the crudest. Note the shift in far-out minimum relative to the exact solution and the overall disagreement between the two results. The accuracy can
be dramatically improved by using the first order approximation. In this case no matrix inversion is required. Figure 9 shows the results with the first order approximation. There is some disagreement for very long ranges. Overall, solution by the first order operator compares favorable with the solution generated by the exact operator. Figure 10 shows the results with the second order operator. It is seen that the results are almost coincident with the exact results. Although the computation of the exact and the second order operators are both of the same complexity (of order $O(N^3)$), the second order operator can be used when inversion of a full matrix is not desired.

The last example we consider is that of a 45.7 m surface duct with refractivity profile given by

$$M(z) = \begin{cases}
350 - 0.335z & 0 \leq z \leq 45.7 \\
329.36 + 0.1164z & z > 45.7,
\end{cases}$$

where z is one again in meters. This example was considered in [4]. The transmitter is at height of 25 m, the frequency of operation = 10 GHz, and the antenna is omnidirectional. Propagation factor is calculated at a range of 200 km for various receiver heights. Figure 11 shows the results for a wind speeds of 10 m/s and 20 m/s. In both cases the results are compared with MLAYER results. It is seen that the agreement with the latter is very good, thereby validating our approach.

Future Work

Our future work will try to remove any computational inefficiencies in our algorithm. One might formulate the problem in terms of one-sided sine and cosine transforms instead of the full complex transforms defined in this work. More efficient schemes for computing the inverse operator \mathcal{P} are certainly worth pursuing. Diagonalizing the operator \mathcal{P} is another area of further investigation. Extention to vertical polarization is straightforward and will be looked at in the future.
TABLE 1. REFRACTIVITY DATA FOR EVAPORATION DUCT

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Refractivity (M units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>340.00</td>
</tr>
<tr>
<td>0.135</td>
<td>323.00</td>
</tr>
<tr>
<td>0.223</td>
<td>321.76</td>
</tr>
<tr>
<td>0.368</td>
<td>320.53</td>
</tr>
<tr>
<td>0.607</td>
<td>319.31</td>
</tr>
<tr>
<td>1.000</td>
<td>318.11</td>
</tr>
<tr>
<td>1.649</td>
<td>316.94</td>
</tr>
<tr>
<td>2.718</td>
<td>315.83</td>
</tr>
<tr>
<td>4.482</td>
<td>314.80</td>
</tr>
<tr>
<td>7.389</td>
<td>313.91</td>
</tr>
<tr>
<td>12.182</td>
<td>313.26</td>
</tr>
<tr>
<td>20.000</td>
<td>312.99</td>
</tr>
<tr>
<td>20.086</td>
<td>313.00</td>
</tr>
<tr>
<td>33.115</td>
<td>313.38</td>
</tr>
<tr>
<td>54.598</td>
<td>314.81</td>
</tr>
<tr>
<td>90.017</td>
<td>317.99</td>
</tr>
<tr>
<td>148.413</td>
<td>324.04</td>
</tr>
<tr>
<td>165.000</td>
<td>325.76</td>
</tr>
<tr>
<td>300.000</td>
<td>339.745</td>
</tr>
</tbody>
</table>
References

Figure 1. Exact and CCIR recommended formula for rough surface reduction factor \(\rho_0 \). The argument is \(\chi = 2p^2 \sigma^2_n \).
Figure 2. Propagation Factor versus receiver height at a range of 40 km in a standard atmosphere. Smooth earth, $z_e = 30$ m, $f = 3$ GHz, horizontal polarization and omnidirectional antenna.
Figure 3. Propagation factor versus receiver height at a range of 40 km in a trilinear duct. Smooth earth, $z_s = 30$ m, $f = 3$ GHz, horizontal polarization and omnidirectional antenna.
Figure 4. Propagation factor versus range at receiver height = 25 m in a 20 m evaporation duct. Smooth earth, $z_s = 25$ m, $f = 10$ GHz, horizontal polarization and omnidirectional antenna.
Figure 5. Propagation factor versus range at receiver height = 25 m in a 20 m evaporation duct. Smooth and rough sea (μ = 10 m/s), z_s = 25 m, f = 10 GHz, horizontal polarization and omnidirectional antenna.
Figure 6. Comparison of propagation factor versus range at receiver height = 25 m in a 20 m evaporation duct. PEERS versus MLAYER, $z_s = 25$ m, $\mu = 10$ m/s, $f = 10$ GHz, horizontal polarization and omnidirectional antenna.
Figure 7. Comparison of propagation factor versus range at receiver height = 25 m in a 20 m evaporation duct. PEERS versus TEMPER, $z_s = 25$ m, $\mu = 10$ m/s, $f = 10$ GHz, horizontal polarization and omnidirectional antenna.
Figure 8. Comparison of propagation factor versus range at receiver height = 25 m in a 20 m evaporation duct by exact and zeroth order operators. $z_s = 25$ m, $\mu = 10$ m/s, $f = 10$ GHz, horizontal polarization and omnidirectional antenna.
Figure 9. Comparison of propagation factor versus range at receiver height = 25 m in a 20 m evaporation duct by exact and first order operators. $z_s = 25$ m, $\mu = 10$ m/s, $f = 10$ GHz, horizontal polarization and omnidirectional antenna.
Figure 10. Comparison of propagation factor versus range at receiver height = 25 m in a 20 m evaporation duct by exact and second order operators. $z_o = 25$ m, $\mu = 10$ m/s, $f = 10$ GHz, horizontal polarization and omnidirectional antenna.
Figure 11. Propagation factor versus receiver height at range of 200 km in a 45.7 m surface duct. PEERS vs MLAYER, \(z_s = 25\) m, \(f = 10\) GHz, horizontal polarization and omnidirectional antenna.
<table>
<thead>
<tr>
<th>No.</th>
<th>Recipient</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Dudley Knox Library
Code 52
Naval Postgraduate School
Monterey, CA 93943-5101</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Dr. Ramakrishna Janaswamy, Code EC/Js
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943</td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td>CDR Gus Lott, Code EC/Lt
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Kenneth L. Davidson, Code MR/Ds
Department of Meteorology
589 Dyer Road, Room 254
Naval Postgraduate School
Monterey, CA 93943-5114</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Dr. Stephen Burk
Naval Research Laboratory
Marine Meteorology Division
7 Grace Hopper Avenue
Monterey, CA 94943-5502</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Steven W. Payne
Naval Research Laboratory
Marine Meteorology Division
7 Grace Hopper Avenue
Monterey, CA 93943-5502</td>
<td>1</td>
</tr>
</tbody>
</table>
9. William T. Thompson
Naval Research Laboratory
Marine Meteorology Division
7 Grace Hopper Avenue
Monterey, CA 93943-5502

10. Mr. Kenneth Anderson
NCCOSC RDTE DIV 543
53560 Hull Street
San Diego, CA 92152-5001

11. CDR H.G. Bancroft, III
Deputy Chief, METOC Branch (SOJ3-OW)
HQ U.S. Special Operations Command
7701 Tampa Point Blvd.
MacDill AFB, FL 33621-5323

12. Ms. Amalia Barrios
NCCOSC RDTE Division 543
53560 Hull St.
San Diego, CA 92152-5001

13. Tom Bell, Code 418200D (C2186)
Naval Weapons Center
NAWCPNS/CL
China Lake, CA 93555

Naval Surface Warfare Center
Dahlgren Division
17320 Dahlgren Road
Dahlgren, VA 22448-5100

15. Charles B. Brooks, Code 5707
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington DC 20375-5339

16. Clair Chua
Naval Research Laboratory
Effectiveness of Naval Electronic Warfare Systems
Washington DC 20375
| 18. | Chris Diamond, Code N541
Naval Oceanographic Office
1002 Balch Blvd.
Stennis Space Center, MS 39522-5001 |
|---|---|
Naval Research Laboratory
Washington DC 20735-5350 |
| 20. | Mr. Jean W. de Graff
Naval Research Laboratory
4555 Overlook Avenue, SE
Washington DC 20375 |
| 21. | L. Samuel Ditman, Code B42
Naval Surface Warfare Center, White Oak
10,901 New Hampshire Avenue
Silver Springs, MD 20903-5000 |
| 22. | G. D. Dockery
Applied Physics Laboratory
Johns Hopkins University
Laurel, MD 20707 |
| 23. | Dr. Stephen Fast
The Applied Research Laboratories
at the University of Texas-Austin
P.O. Box 8029
Austin, TX 78713-8029 |
| 24. | Mr. Claude Hattan
NCCOSC RDTE DIV 543
53560 Hull Street
San Diego, CA 92152-5001 |
| 25. | Roger A. Helvey
Naval Air Warfare Center Weapons Division
521 9th Street
Point Mugu, CA 93042-5001 |
| 26. | Mr. Herbert Hitney
NCCOSC RDTE DIV 543
53560 Hull Street
San Diego, CA 92152-5001 |
27. Guiseppe Izzi
Naval Undersea Warfare Center Division
1176 Howell Street
Newport, RI 02841-1708

28. Phil Kerr
DOD Joint Spectrum Center (JSC)
120 Worthington Basin
Annapolis, MD 21402-5064

29. CDR David G. Markham
COMSPAWARSYS (PMW 175)
Crystal Park 5, Suite 301
2451 Crystal Drive
Arlington, VA 22245-5200

30. Lee U. Martin, Code 5348
Naval Research Laboratory
Washington DC 20375-5320

31. William McIntrye
Effectiveness of Naval Electronics Warfare System (ENews)
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington DC 20376

32. Denise M. Meanor
Chief of Naval Operations (N096)
3450 Massachusetts Avenue, NW
U.S. Naval Observatory Bldg 1
Washington DC 20392-5421

33. Walter Dale Meyer
HQ Air Weather Service/XOXT
102 West Losey Street, Room 105
Scott AFB, IL 62225-5206

34. LT David Milot
NAVLANMETOCNEN
9141 Third Avenue
Norfolk, VA 23511-2394
35. Eric L. Mokole, Code 5340
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington DC 20375-5336

36. Mr. Richard Paulus
NCCOSC RDTE DIV 543
53560 Hull Street
San Diego, CA 92152-5001

37. Mr. Wayne Patterson
Office of Naval Research
ONR 322AM
800 North Quincy Street
Arlington, VA 22217-5660

38. Mary Peters, Code 7420
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington DC 20375-5350

39. Timothy Politowicz, Code 8124
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington DC 20375-5354

40. Dr. Juergen Richter
NCCOSC RDTE DIV 54
53560 Hull Street
San Diego, CA 92152-5001

41. Mr. Ted Rogers
NCCOSC RDTE DIV 543
53560 Hull Street
San Diego, CA 92152-5001

42. Jay S. Rosenthal
Naval Air Warfare Center Weapons Division
521 9th Street
Point Mugu, CA 93042-5001
43. Frank Ryan
 NCCOSC RDTE DIV
 53560 Hull Street
 San Diego, CA 92152-5001

44. S. N. Samaddar, Code 5340
 Naval Research Laboratory
 4555 Overlook Avenue, SW
 Washington DC 20375-5336

45. Dr. William J. Stachnik
 Office of Naval Research
 800 North Quincy Street
 Arlington, VA 22217-5660

46. Janet Stapleton
 NSWC/DD Code F42
 Dahlgren, VA 22448

47. Paul R. Tiedeman
 PEO(USW)ASTO-E
 2531 Jefferson Davis Highway
 Arlington, VA 22242-5169

48. Dr. John Walters, Code 5330
 Naval Research Laboratory
 Washington DC 20375-5336

49. Thomas M. Willey
 DOD Joint Spectrum Center
 120 Worthington Basin
 Annapolis, MD 21402-5064

50. Dave Williams, Code 61
 Naval Undersea Warfare Center
 Naval Undersea Warfare Center Detachment
 New London, CT 06230

51. LCDR Zdenka S. Willis
 COMNAVAIRSYSCOM (AIR-4.5M)
 1421 Jefferson Davis Highway
 Arlington, VA 22243-5120
52. LCDR James Zmyslo
 Naval Information Warfare Activity
 3801 Nebraska Avenue, NW
 Washington DC 20393

53. Dr. K. H. Craig
 Rutherford Appleton Laboratory
 Chilton, Didcot
 Oxfordshire OX11 0QX
 United Kingdom

54. Dr. Mireille F. Levy
 Rutherford Appleton Laboratory
 Chilton, Didcot
 Oxfordshire OX11 0QX
 United Kingdom

55. Sherman Marcus
 RAFAEL
 Department 88
 P.O. Box 2250
 Haifa, Israel