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INTRODUCTION

A number of algorithms have been devised for the measurement of multifractal
parameters. A selection of such algorithms is described in References 1 through 17. The
standard algorithms yield the Hentschel-Procaccia (ref 1) fractal dimension D(q), the
f(a)-spectrum, or other related fractal measures. Optimal utilization of these algorithms for the
analysis of experimental data requires an understanding of the practical consequences of
representing multifractal sets by imprecise and limited subsets. In the case of machine precision
fractal data, it is useful to establish guidelines for the number of points necessary to ensure
convergence to sufficient precision. Relevant results have been reported in previous papers.

Reference 2 describes a box-counting algorithm, called the agglomeration box-counting
(ABC) algorithm, that is well suited to multifractal analysis of large subsets of "pixelized data."
Reference 2 discusses the results of ABC convergence studies of two- and three-digit model
fractal subsets for -25 < q < 25. The rate of convergence for q = 0 and the nature of the
divergence for q < 0 is described.

Reference 3 reports the consequences of imprecise data on the effectiveness of the
correlation integral method (refs 4-7) and algorithms based on the Badii-Politi principle (refs 8-
11). The algorithms are applied to exact (i.e., machine precision) and randomly perturbed large
(based on the results presented in Reference 2 and some of the results presented in this report)
subsets of model multifractal sets in E* having D(q = 0) < 2. It is demonstrated that the
correlation integral method can be successfully applied to multifractal data having random errors
as large as 1 percent for such sets. The effects of random errors are evident in log-log plots of
correlation integral versus radius and an automated procedure for extracting D(q) from such
plots is described. It is also demonstrated that reliable generalized dimensions can be obtained
from imprecise fractal data by application of a generalized Badii-Politi algorithm for a range of
neighbor numbers sufficiently large that the interpoint distances are larger than the random
errors in the sets. However, the present authors have yet to devise a technique for selection of
appropriate neighbor number in the generalized Badii-Politi algorithm.

In this report, a box-based correlation integral (BBCI) algorithm that is well suited to
multifractal analysis of large subsets of “pixelized” data is described, and correlation integral and
box-counting multifractal analysis of two- and three-digit model subsets for -25 < q < 25 for
model fractal sets in E* having D(q = 0) < 2 are discussed. Typical results of a convergence
study and a table of sufficient values of the number of points in the fractal subsets for 1 and 5
percent convergence of the BBCI and the ABC algorithms for subsets of model multifractal sets
in E? having D(0) =< 2 are presented. The number of points N required for 1 and 5 percent
convergence is observed to depend on the generalized dimension D(q) at the q under
investigation as

log,,(N) = 2.54D(q) + constant

where the constant depends on the degree of convergence.




A convergence study for generalized Badii-Politi algorithms was not performed because
there are unresolved questions concerning the interplay of variations of the neighbor number
with the size of the fractal subset. Also, a satisfactory (¢.g., box-based) form of the generalized
Badii-Politi algorithra for large data sets is not yet available. However, Kostelich and Swinney
(ref 9) suggest that a substantially smaller fractal subset may be sufficient for convergence of the
Badii-Politi numerical algorithm.

NUMERICAL TECHNIQUES

The rates of convergence of box-counting and correlation integral multifractal analysis
techniques are studied in the context of numerical realizations that are well suited to the analysis
of large data sets. BBCI and ABC yield D(q) for fractal data represented as elementary
hypercube occupation numbers. When precise fractal data are available, the application of these
methods entails a loss of information; for example, a point whose coordinates are defined to
machine precision merely adds one to the occupation of the appropriate elementary box whose
position is defined by sets of three- or four-digit integers.

ABC and BBCI are relatively unaffected by the approximately 0.1 percent imprecision of
the boxed data (768x768 boxes) studied here. Reference 3 presented a systematic study of the
effects of imprecision on the effectiveness of Badii-Politi and correlation integral fractal analysis
algorithms; it is demonstrated that random deviations as large as 1 percent in the positions of the
points in a (large enough) subsct of a fractal set in E* having D(0) < 2.0 has negligible
consequences for correlation integral determinations of D(q). Although Reference 2 does not
systematically study the effects of imprecision on the effectiveness of box-counting algorithms, it
reports that ABC converges to analytic values for three-digit data for q = 0 and that essentially
the same results are obtained for two-digit data.

Box-Counting

For g # 1, the box-counting expression for the Hentschel-Procaccia generalized
dimension D(q) is determined by

. N(E) 0
(g-1)D(g) = limiln| ¥~ PX(E)|/In(E)

E-07 i=}

where i runs over N(E) occupied hypercubes (boxes) of edge length E and P,(E) is the
probability of finding a point of the fractal set in the i" box. In practice, one deals with finite
subsets of the fractal set and determines a numerical approximation to (q-1)D(q) by fitting

m{i P iq(E)} = (q-1)D(q@)In(E) + const 2)

i=1

over an "appropriate” range of E values.




The ABC algorithm employed here uses a selection of E values such that elementary
hypercubes are not split. Thus, it is unnecessary to store or search individual point coordinates,
enabling relatively simple evaluations of the left-hand side of Eq. (2); computation time is
determined solely by the number of occupied elementary boxes and thus is independent of N.
The details of ABC are described in Reference 2.

The Correlation Integral Method

For a discrete fractal set, the correlation integral takes the form

1

J1& (1 BTN o b= 3
Clg.) = nm{ﬁz (ﬁ; H(E- |x,,-x,-|)) }“ ®

N-o k

where H(x) is the Heaviside function and X; and X, run over N-clement fractal subsets. The
Hentschel and Procaccia generalized dimension is then given by

D(g) = 1@%@ @)
0+ 1n(E)

The Box-Based Correlation Integral (BBCI) Algorithm

The BBCI algorithm is a numerical prescription for determining the C(q,E). It has been
developed for application to data obtained from image analysis systems, i.e., box occupation data.
It is also particularly suitable for the analysis of large data sets. (For example, in this study 10°
point fractal subsets are analyzed.) The latter feature makes BBCI a good choice for
convergence studies.

The assignment of the members of machine precision model fractal subsets to boxes in a
768x768 array (used in this investigation) introduces errors of the order of 0.1 percent in the
particle positions. However, the results presented in Reference 3 imply that correlation integral
analysis yields < 5 percent error values of D(q) for 10° point fractal subsets having D(0) < 2.0
and random errors as large as 1 percent.

Since the BBCI algorithm has not been described in the literature before, it is described
in detail here. The algorithm is applied as follows:

1. Define an array of hypercubes (*boxes”) of edge E, appropriate for the given (or
anticipated) point set S. Refer to these boxes as elementary hypercubes or elementary boxes.

For experimental data the appropriate choice of E, should reflect the inherent
uncertainty of the coordinates of the point set within limits set by storage requirements. N.b.,
storage requirements are determined by the choice of elementary hypercubes rather than the size
of the point set; large point sets can be accommodated with relatively modest resources.




2. Compute or measure the occupation numbers n, for each elementary hypercube.

The total number of points in the subset N can then be expressed as

elementary boxes
N = E n; .
j
3. Define a reference set that comprises a subset of the occupied elementary boxes. Let
N,¢ be the number of elementary boxes in the reference set.
4. For each member of the reference set, define a set of hypercube edge lengths,
E = 2n+1)E,, where n = 0,12,..n,, .

5. For each q of interest:

a. Compute the box-based generalized correlation integrals

1

1 N, lclemenzary boxes g-1 E__.i 5
CQEE) -\-X|~ X nGEEFT ®
NSNS

for the E values defined in step 4, where r runs over the reference set, j runs over all elementary
boxes,

Nrgs
Ng = 3om
k
and
G(EE,® - {31, x;<(E 'EO)/_, for all components of x (6)
, otherwise

selects the elementary boxes contained in larger hypercubes of edge E, centered on x,. The
vectors X, and x; point to elementary hypercubes rather than members of the point set.

BBCi redu. o5 to the standard (finite N) generalized correlation integral (refs 4-7) in the
E, - 0 limit if the coordinates of the members of the multifractal subset in question are
precisely known, i.e.,

lim C(q,EE)~C(g,E)

E~0"

In practice, computation was slowed and convergence was not improved by employing
approximate hyperspheres rather than hypercubes.




b. Obtain D(q) by linear regression on

In(C(g.EEp) = const + D(g)n(E) ™

for E €l@n+DE,n=n_,...n Y withn_ >0 .

RESULTS AND DISCUSSION

The ABC and the BBCI methods have been developed for the analysis of "pixelized”
image acquisition system data. The algorithms are particularly well suited to the analysis of large
data sets and are therefore appropriate for convergence studies. The reported results are
obtained using a 768x768 array of elementary boxes. Results are not given for other size arrays.
However, as discussed in Reference 2, as the number of elementary boxes increases, the accuracy
of the converged values tends to improve but the number of points required for convergence
increases. The BBCI convergence results for the representations of the fractal sets reported here
are consistent with the standard correlation integral results reported in Reference 3 for N =
2x10° machine precision (and also for 0.1 and 1.0 percent randomly perturbed) representations
of the same fractal sets. ABC results are consistent with results obtained using standard "sorting"
box-counting algorithms at relatively small values of N for the same model sets.

CPU Time

CPU time is proportional to N? for the standard correlation integral method and is
proportional to N In(N) for standard box-counting algorithms. ABC’s CPU time depends only
on the number of elementary boxes and is essentially independent of N. BBCI's CPU time is a
function of the size of the reference set, the number of occupied elementary boxes, and the
number of hypercube edge lengths employed. The number of occupied elementary boxes
increases with N over a substantial range of N before saturating. The results were obtained using
all occupied boxes for the reference set and 40 hypercube edge lengths. Essentially equivalent
results were obtained with one-fourth of the CPU time when 25 percent of the occupied
elementary boxes comprise the reference set. BBCI's CPU time is less than ABC’s CPU time for
small N but substantially greater at large N. CPU times are essentially the same for N between
10° to 10*. For example, execution times on an SGI IRIS 4D/33-MHz workstation are 15, 25,
and 30 seconds using ABC and 35, 160, and 320 seconds using BBCI for N = 15,000, 160,000,
and 2x10° point representations of split snowflake halls, respectively.

Convergence

Convergence properties of BBCI and ABC have been determined for randomly oriented
Euclidean sets, Koch asymmetric (ref 18) [0.4,0.2] and symmetric triadic snowflakes, split
snowflake halls (ref 18), the 13-element generator Koch construction (ref 18), and the attractor
for the sixfold (D6) symmetric chaotic mapping in Figure 3 of Reference 19. BBCI (ABC)
converged within 1 percent (4 percent) of analytic values in all cases studied. The accuracy may
be improved by employing a procedure similar to that described in the Appendix of Reference 3.




Figure 1 shows typical results of applying ABC and BBCI to the model fractal sets at q=
0. BBCI results are similar at q < 0, where ABC usually diverges. The small log,o(N) variations
are not always as smooth as shown and the converged value not as well defined. The graph
displays measured D(q) versus log,(N) for the 13-element Koch construction at q =35. The
measured D(5) values are represented by open circles that are connected by lines. The
horizontal line is the analytic value of D(5) for the construction. The BBCI (ABC) converged
value is within 0.3 percent (2 percent) of the analytic value and generally BBCI (ABC) converged
within 1 percent {4 percent) of the analytic results.

Table 1 summarizes the results of the convergence studies for the fractal sets. N, (N;) is
the number of points sufficient for the algorithm to yield values converged within 1 percent &)
percent) of values obtained for the largest N studied. The N, values are generally less well
defined than the N; values because the convergence curves tend to flatten out as N increases.
The data of Figure 1 illustrate the problem implicit in using a sufficiency criterion; the BBCI N
value corresponds 0 an actual discrepancy of only 1.1 percent. The Nj discrepancies are larger
than 1.5 percent in the rest of Table 1. The values given with asterisks correspond to cases
where convergence is not clearly established at the largest N (generally of the order of 10™) and
probably overestimate N,.

Figures 2 and 3 arc semi-log plots of the Ny and N, data of Table 1 against the analytic
values of D(q) for the model fractal sets. The line in Figure 2 is obtained by least squares fitting
of the 5 percent BBCI data to the form,

log,((Ny) = aD(q) + b (8)

witha = 2.54 = 0.21 and b = -0.11 = 0.34.

The line in Figure 3 is not fit to the 1 percent BBCI data, but it is drawn parallel to the least
squares line through the 5 percent BBCI data. The constant b is adjusted (a = 2.54, b = 1.20) to
approximate the asterisk-free 1 percent BBCI results given in Table 1. ABC and BBCI converge
at about the same rate for ¢ 2 0 and require approximately 25 times more points for 1 percent
convergence than for 5 percent convergence.

The resuits presented in Table 1 and Figures 2 and 3 provide guidelines for the
application of numerical fractal analysis algorithms to muitifractal subsets and support the
contention (refs 20,21) that the number of points necessary for a given degree of convergence
increases exponentially with D.



Table 1. Sufficient values of N to yield 1% (N,) and 5% (N;) convergence.
Box-counting (ABC) does not converge for q<0 as a rule.
Values marked with asterisks are rough estimates.

q=] 2 3 0 3 25
ABC [N, 12E4 [12E4  [31E3 |
N; 3.1E3 770 770
[0.4,0.2], Asymmetric Snowtlake
D(0)=1.16.
BBCI [N, |[7.9E4 | 5.2E4 1.2E4 770 3.1E3
N, |3.1E3 |3.1E3 770 190 770
ABC [N, 1.2F4 [ 1.2E4 [ 32E4 |
N; 3.1E3 3.1E3 3.1E3
Triadic Snowflake,
D(q) = 1.26 for all q.
BBCI | N, 1.2E4 | 1.2E4 1.2F4 1.2E4 5.0E4
Ny, | 770 770 770 770 710
ABC [N, 1.8E6 | 1.6E5 | 1.6E5 |
N; 1.6ES 1.5E4 1.5E4
Split Snowilake Halls,
D(0) = 1.86.
BBCI | N, [ 1.0E8* | 2.0E7 1.6ES 1.6ES 1.6ES
N, | 1.6ES [ 1.6ES 1.5E4 1.5E4 1.5EA
ABC [N, 3.7E5S [ 3.7E5 [ 37E3 |
N; 2.9E4 2.9E4 2.9F4
13-Element Generator,
D(0) = 2.0.
BBCI [N, | 1.0E8* | 4.8E6 2.9E4 3.7ES 3.7ES
N, [4.8E6 | 3.7E5 2.9E4 2.9E4 2.2E3
N; | [.0E®* | 1.0E8F [ 1.0E3 1.0ES 1.0ES
Sixtold Symmetric Mapping,
D(0)=2.0.
BBCI | N, [1.0E7 | 1.0E7 1.0E6 1.0ES 1.0E6
N, [ 1.0E7 | 1.0E6 1.0ES 1.0ES 1.OES
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Figure 1. Hentschel and Procaccia generalized dimension D(5) versus the logarithm
of the number of points in the fractal subset for the 13-element
generator (ref 18) construction.
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Figure 2. Logarithm of the number of points for 5 percent convergence versus the
Hentschel and Procaccia generalized dimension D(q). The solid line is

given by: log,o(Ns) = 2.54 D(q) - 0.11.
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MATERIALS TECHNOLOGY LABORATORY
ATTN: SLCMT-IML (TECH LIBRARY) 2
WATERTOWN, MA 02172-0001

COMMANDER

U.S. ARMY LABCOM, ISA

ATIN: SLCIS-IM-TL 1
2800 POWER MILL ROAD

ADELPHI, MD 20783-1145

NOTE: 'i’L’cl:‘"ESE NCTIFY COMMANDER. ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,
BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,

AMSTA-AR-CCB-O, WATERVLIET. NY 12189-4050 OF ADDRESS CHANGES.
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NO. OF

COPIES

COMMANDER

U.S. ARMY RESEARCH OFFICE
ATTN: CHIEF, IPO

P.O. BOX 12211

1

RESEARCH TRIANGLE PARK, NC 27709-2211

DIRECTOR

U.S. NAVAL RESEARCH LABORATORY

ATTN: MATERIALS SCI & TECH DIV
CODE 26-27 (DOC LIBRARY)

WASHINGTON, D.C. 20375

1

WRIGHT LABORATORY
ARMAMENT DIRECTORATE
ATTN: WL/MNM

EGLIN AFB, FL 32542-6810

WRIGHT LABORATORY
ARMAMENT DIRECTORATE
ATTN: WL/MNMF

EGLIN AFB, FL 32542-6810

NO. OF
COPIES

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,

BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,

AMSTA-AR-CCB-0O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.




