GRANT NO: DAMD17-94-J-4247

TITLE: Genetic Analysis of Human Breast Cancer

PRINCIPAL INVESTIGATOR(S): Dr. Michael H. Wigler
 Dr. Nikolia Lisitsyn

CONTRACTING ORGANIZATION: Cold Spring Harbor Laboratory
 Cold Spring Harbor, New York 11724

REPORT DATE: August 14, 1995

TYPE OF REPORT: Annual

PREPARED FOR: Commander
 U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;
 distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Genetic Analysis of Human Breast Cancer

Dr. Michael H. Wigler/Dr. Nikolia Lisitsyn

Cold Spring Harbor Laboratory
Cold Spring Harbor, New York 11724

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for public release, distribution unlimited

Cancer is a disorder brought upon by the accumulation of specific mutations in the cancerous cells. Our understanding of the disease, and potentially its diagnosis and therapeutic treatment, is enhanced by defining the genetic lesions that cause it. Representational difference analysis, or RDA, was developed to do just this. RDA is a DNA subtraction methodology that finds sequences present in one DNA population, the tester, that is absent or reduced in a second, the driver (1, 2). RDA has been used to discover sequences lost or amplified in the genomic DNA of the cancerous cells (3). Genetic loss and gene amplification are hallmarks of tumor suppressor genes and oncogenes, respectively. We have been applying RDA to the discovery of sequences lost in breast cancer. At least three loci undergoing loss in breast cancer have been identified. The transcriptional potential of these loci is being explored. Characterization of many other RDA probes is in progress. We expect that the continued execution of our stated plan will accomplish our stated goal, the identification of tumor suppressor genes that are commonly involved in breast cancer.

Oncogenes, Tumor suppressors, DNA, difference analysis, Genetic Lesions

Unclassified

1

Unclassified

1

Unclassified

7
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. **Agency Use Only (Leave blank)**

Block 2. **Report Date.** Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. **Type of Report and Dates Covered.** State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. **Title and Subtitle.** A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. **Funding Numbers.** To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

- C - Contract
- G - Grant
- PE - Program
- PR - Project
- TA - Task
- WU - Work Unit
- Accession No.

Block 6. **Author(s).** Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. **Performing Organization Name(s) and Address(es).** Self-explanatory.

Block 8. **Performing Organization Report Number.** Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. **Sponsoring/Monitoring Agency Name(s) and Address(es).** Self-explanatory.

Block 10. **Sponsoring/Monitoring Agency Report Number. (If known)**

Block 11. **Supplementary Notes.** Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. **Distribution/Availability Statement.** Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

- DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."
- DOE - See authorities.
- NTIS - Leave blank.

Block 12b. **Distribution Code.**

- DOD - Leave blank.
- DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
- NASA - Leave blank.
- NTIS - Leave blank.

Block 13. **Abstract.** Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. **Subject Terms.** Keywords or phrases identifying major subjects in the report.

Block 15. **Number of Pages.** Enter the total number of pages.

Block 16. **Price Code.** Enter appropriate price code (NTIS only).

Blocks 17. - 19. **Security Classifications.** Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. **Limitation of Abstract.** This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

Michael Hughey, Aug 12, 1995

PI - Signature Date
TABLE OF CONTENTS

Page Number

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Page</td>
<td>1</td>
</tr>
<tr>
<td>Report Documentation Page</td>
<td>2</td>
</tr>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Results</td>
<td>5</td>
</tr>
<tr>
<td>Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Personnel</td>
<td>7</td>
</tr>
</tbody>
</table>
INTRODUCTION

Cancer is a disorder brought upon by the accumulation of specific mutations in the cancerous cells. Our understanding of the disease, and potentially its diagnosis and therapeutic treatment, is enhanced by defining the genetic lesions that cause it. Representational difference analysis, or RDA, was developed to do just this. RDA is a DNA subtraction methodology that finds sequences present in one DNA population, the tester, that is absent or reduced in a second, the driver (1, 2). RDA has been used to discover sequences lost or amplified in the genomic DNA of the cancerous cells (3). Genetic loss and gene amplification are hallmarks of tumor suppressor genes and oncogenes, respectively. We have been applying RDA to the discovery of sequences lost in breast cancer.

RESULTS

The application of RDA to cancer requires the availability of matching tumor and normal DNA from the same individual, as otherwise the cloning of DNA polymorphisms results. The vast majority of available tumor material is not provided with accompanying normal cell samples. However, all tumors contain normal stroma. Since many tumors are aneuploid, we have chosen to apply RDA to tumor biopsies that have been sorted by flow cytometry into aneuploid (tumor) and diploid (normal) nuclei. Our studies have confirmed the utility of samples prepared in this way (3).

To date a total of 250 human breast cancer biopsy samples have been obtained from collaborating hospitals. These include 123 from Sloan-Kettering Memorial Hospital, 58 from the Cooperative Human Tissue Network, 65 from North Shore University Hospital, and 4 from Nassau County Medical Center. DNA content analysis by flow cytometric techniques have been performed on 198 of these samples. Of the samples analyzed a total of 51 have been sorted into diploid and aneuploid fractions. From these sorted fractions DNA has been prepared for RDA. An additional 17 samples have been identified for sorting from the initial 198 analyzed samples.

Seven pairs of normal and tumor DNAs have been analyzed by RDA using DNA samples isolated from aneuploid nuclei, fractionated by fluorescence-activated cell sorter from breast cancer biopsies. Many candidate probes have been isolated. Two probes have been characterized to date. One detected loss of heterozygosity of a polymorphic marker. Another nonpolymorphic probe presumably detected homozygous loss.

The last probe has been used to screen a P1 phage human genomic library. The ends of P1 clones have been cloned and their sequences as well as
the sequence of the original probe have been used for synthesis of three pairs of
PCR primers. No additional homozygous losses have been detected with this
probe in 150 tumor DNAs isolated from our collection of cell lines.

The P1 clones described above have been located by flourescent in situ
hybridization to the long arm of chromosome 22. This region has been shown
to be frequently deleted in breast tumors. In collaboration with Human
Genome Center for chromosome 22 (The Children's Hospital of Philadelphia)
these probes have been placed on a YAC contig in a region 22q11.12 positioned
three megabases apart from the centromere, and several megabases apart from
the site of constitutional reciprocal translocation t(11q;22q) found to be
associated with increased risk of breast cancer.

In addition to these studies, we have identified loci that undergo
deletion in colon and kidney cancers. Probes from these loci detect deletion in
one breast cancer cell line. In particular two probes located on chromosomes 3
(band p21) and 20 (band p11) generated in studies of DNA losses in colorectal
tumors, have been found to be simultaneously missing in breast cancer cell line
MDA-MB-436, indicating that potential tumor supressor genes, which are
encoded in these regions, are involved in different pathways. The original two
probes have been used for screening YAC libraries and several additional
sequences from the same genomic region have been subcloned from each YAC,
using new subraction technology which we developed for this purpose.

Frequent homozygous losses of these sequences have been detected by
the polymerase chain reaction in a collection of DNAs isolated from >200
cancer cell lines of different origin and the regions of common loss on
chromosomes 3 and 20 have been identified. The probes from these regions
have been found to be homozygously lost with remarkable frequency (14.9%
and 7% correspondingly) in cell lines established from tumors of the
gastrointestinal tract (stomach, duodenum, colon, rectum). We have focused
our efforts on positional cloning of the candidate genes from these loci.

To make a physical map of the chromosome 3 region, four P1 and nine
cosmid clones have been isolated. We applied an exon-trapping system (4) to
the clones and 12 exon candidates were identified. Further analysis revealed
that two of them are evolutionarily conserved and that three are expressed in
brain and kidney. Full length cDNA is being cloned. As for chromosome 20,
two P1 clones have been isolated and were analyzed by the exon-trapping
system. Three exon candidates have been isolated. Screening of cDNA libraries
is being carried out.
CONCLUSIONS

RDA is an effective way to identify regions of genetic change in cancers, and flow cytometry is an effective way to obtain material for analysis. At least three loci undergoing loss in breast cancer have been identified. The transcriptional potential of these loci is being explored. Characterization of many other RDA probes is in progress. We expect that the continued execution of our stated plan will accomplish our stated goal, the identification of tumor suppressor genes that are commonly involved in breast cancer.

REFERENCES

PERSONNEL

Drs. Nikolai Lisitsyn, Hao Peng Xu, Peter Barker, Robert Lucito, Masaaki Hamaguchi, Linda Rodgers, Wen Wei.