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Theoretical and Experimental Studies
of Auditory Processing

Shihab A. Shamma and P.S. Krishnaprasad

This proposal describes the theoretical and experimental research into the principles of
sound processing in the auditory system. The proposal is divided into two parts. The first is a
review of the work we accomplished in the last three years under the AFOSR grant (F49620-
92-J-0500). The second part outlines our proposed research plans for the next three years.

Part I: Review of Research Results

Summary

The research reported here has been conducted over the last three years under the AFOSR
grant (F49620-92-J-0500). It is divided into four general categories of projects: (1) VLSI
implementations of the early auditory stages. (2) Functional organization of the auditory
cortex: Neurophysiology (3) Functional models of the auditory system: Psychoacoustics. (4)
Analysis of neural network architectures with wavelet transforms. We shall review briefly the
main results achieved in these four areas.

Besides the two P.Ls’ salaries, the grant supported several Ph.D. and M.S. students, a
laboratory manager, and partially a post-doctoral fellow (see list of names and degrees at the
end of this review).

I. VLSI Design and Implementations of Early Auditory Processing

Over the last few years, we have been developing and analyzing detailed models of the early
auditory stages. Our goal is to understand the underlying signal processing principles that
endow such systems with their noise robustness and feature enhancement abilities. In order for
these models to become useful components in such applications as automatic speech recognition,
their computational cost has to be reduced drastically. One approach to accomplish this is to
implement the algorithms in VLSI using (S)witched (C)apacitor (F)ilters (SCF) because they
provide several advantages(10, 11, 13, 16].

e Filter pole positions are determined not by the RC products, but by capacitor ratios.

e Capacitor ratios can be precisely controlled and are stable with temperature. Further-
more, accurate filter transfer functions can be implemented in a completely monolithic
form.

e SCF’s require very little silicon area to implement high-value resistors.

Over the last year, we have succeeded in developing such a system. Many obstacles were
solved along the way, including the design of area efficient integrators working at the relatively
low acoustic frequencies, and offset and parasatic insensitive Op-Amps for the channel adders
(Fig.1). Details of these and many other design innovations are available in the paper by Lin et
al. and J. Lin’s Ph.D. thesis accompanying this review. VLSI chips of up to 32 channels/chip
that can be combined in parallel to form a 64 channel system have been fabricated using MOSIS.
A patent of the SCF design innovations was also granted (see Fig.2 for details).
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Figure 1: (a) IC-Chip layout of the 32-channel filter bank fabricated. (b) Transfer functions
of selected 4 channels of the bank. (c) Spatiotemporal responses of the entire 32-channel filter

bank to a single tone.
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Figure 3: (a) Schematic of the transformation of the acoustic stimulus into an auditory spectrum
and then into a 2-dimensional pattern of activity in the auditory cortex. Responses of units
along the isofrequency planes are differentiated by their binaural preferences, in addition to
various monaural properties. (b) Three monaural response properties that are distinguishable
along the isofrequency planes: Asymmetry, bandwidth, and FM directional selectivity of the

response fields.

II. Functional Organization of the Auditory Cortex: Neurophysiology

There are several ongoing projects to explore the functional organization of the primary and
anterior auditory cortex. They range from neurophysiological mappings of the responses of the
various areas of the auditory cortex, to a detailed comparison of responses across the different
fields, to the exploration of the linearity of cortical responses using complex broadband stimuli.
Results from these projects are summarized below.

II.1 Neurophysiological mappings of the primary auditory cortex

The primary auditory cortex (Al) is essential for the perception and localization of sound.
Its precise role in carrying out these functions, however, remains a mystery despite extensive
knowledge gained from ablation experiments and from single and multi-unit recordings with
various complex stimuli. Two general organizational features of Al have been previously firmly
established: the spatially ordered tonotopic axis, and the alternating bands of binaural response
properties that run perpendicularly to the isofrequency planes (Fig.3a). These axes relate to
basic simple properties of the acoustic stimulus that are already established at much lower
Jevels of the auditory pathway. With the exception of the more specialized auditory system
of the bat, ordered responses to more complex stimulus features, analogous to the orientation
columns and direction of motion selectivity in the visual cortex, have been more difficult to
find in AL At present, only a few reports hint at the existence of such maps in AL

This issue was addressed in a series of experiments in the ferret Al the results of which
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Figure 4:

were published in Shamma et al.(1992) appended to this review. The study explored the
detailed organization of the excitatory and inhibitory responses of cortical cells, i.e., their
so-called receptive fields. The aim was to establish whether any systematic changes in the
balance of inhibitory and excitatory responses occur in cells along the isofrequency planes and,
if so, to determine the implications of these changes to responses to frequency-modulated (FM)
tones and spectrally shaped noise stimuli. These response features are more complex than the
determination of a single best frequency BF (tonotopicity) or the (binary) nature of a binaural
interaction (e.g., an Excitatory-Excitatory or Excitatory-Inhibitory response). The receptive
field of a cell represents, to first order, its transfer function, i.e., the way it filters or processes the
input spectrum. Similarly, FM tones reveal information about the dynamic interplay between
of the inhibitory and excitatory responses of the cell.

The basic findings of the above experiments is the existence of a spatially ordered change in
the symmetry of the receptive fields in any given isofrequency plane in AI (Fig.4). Considering
the results of experiments from over 20 animals, the outline of the distribution is as follows :
At the center of Al, units respond with a narrow excitatory tuning curve at BF, flanked by
narrow symmetric inhibitory side-bands. The receptive fields become more asymmetric away
from the center. In one direction (caudally in the ferret AI), the inhibitory side-bands above
the BF become relatively stronger. The opposite occurs in the other direction. These response
types tend to organize along one or more bands that parallel the tonotopic axis (i.e., orthogonal
to the isofrequency planes).

Many more response properties were also examined. These include the relation between
responses to spectrally shaped noise and the symmetry of the receptive fields, the selectivity of a
cell’s response to the direction of an FM tone in relation to its receptive field symmetry (Fig.4),
and the dependence of these properties on stimulus parameters such as tone intensities and
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Figure 5: (a) Schematic of the three organizational axes of the response fields in Al

inter-tone delays. Another important finding of these mapping was the columnar organization
of the responses, in which all units sampled in a given penetration were found to exhibit roughly
similar receptive field symmetry and FM selectivity.

A fundamental conjecture suggested by these results was that units along the symmetry
axis in fact encoded by their differential distribution along the isofrequency planes, a local
measure of the shape of the acoustic spectrum - specifically, the locally averaged gradient of
the spectrum. This conjecture follows from the schematics of Fig.3b where best responses
to spectral peaks or edges of different symmetries are mapped systematically across the Al
The significance of such a map stems from its enhancement and explicit representation of
such perceptually important features as the shape of spectral peaks, edges, and the spectral
envelope. This gradient map can be viewed as a one dimensional analogue of the orientation
columns of the visual cortex, since the orientation of a two-dimensional edge simply entails
specifying its gradients in two directions. These physiological results in turn suggested a series
of psychoacoustical experiments that are summarized later in this review.

I1.2 Comparison of the responses in the anterior and primary auditory fields

The characteristics of an anterior auditory field (AAF) in the ferret auditory cortex were
described in terms of its electrophysiological responses to tonal stimuli and compared to those
of primary auditory cortex (AI). The AAF is located dorsal and rostral to AT on the ectosylvian
gyrus and extends into the suprasylvian sulcus rostral to AL The tonotopicity is organized with
high frequencies at the top of the sulcus bordering the high- frequency area of Al, then reversing
with lower BFs extending down into the sulcus. AAF contained single units that responded
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to a frequency range of 0.3 - 30 kHz. Best frequency (BF) range, rate-level functions at BF,
FM directional sensitivity, and variation in asymmetries of response areas were all comparable
characteristics between AAF and Al Responses in both areas were primarily phasic. The
characteristics that were different between the two cortical areas were: latency to tone onset,
excitatory bandwidth 20 dB above threshold (BW20) and preferred FM rate, as parameterized
with the centroid (a weighted average of spike counts). The mean latency of AAF units was
shorter than in AI (16.8 ms AAF, 19.4 ms AI). BW20 measurements in AAF were typically
twice as large as those found in AI (2.5 oct AAF, 1.3 oct AI). The Al centroid population had
a significantly larger standard deviation than the AAF centroid population. The relationship
between centroid and BW20 was also examined to see if wider bandwidths were a factor in a
unit’s ability to detect fast sweeps. There was significant (P< 0.05) linear correlation in AAF
but not in AL In both fields, the variance of the centroid population decreased with increasing
BW20. BW20 decreased as BF increased for units in both auditory fields.

I1.3 Characterization of AI responses using broadband spectral ripples

As reviewed earlier in Sec.IL.1, response areas of cells along the isofrequency planes of
the mammalian primary auditory cortex (AI) are systematically organized with respect to
two properties: their excitatory bandwidths and their asymmetry (Fig.5). To measure the
response areas, these investigations employed simple tones which can be thought of as impulse-
like stimuli along the tonotopic axis. If cortical cells were to respond linearly, the measured
response areas would reflect the “impulse responses” of the system along the tonotopic axis,
and hence could be used to predict the system’s responses to arbitrary spectra. Furthermore,
by Fourier transforming the impulse response, one would obtain the corresponding “transfer
function”, which represents the system’s response to sinusoidally modulated spectra (Fig. 1B),
more commonly known in the psychoacoustical literature as rippled spectra. Consequently,
response properties measured by tonal stimuli might be equally evident from their ripple transfer
function.

The suggestion that cortical cells are linear might appear farfetched given that their rate-
level functions often exhibit threshold, saturation, and nonmonotonic behavior Nevertheless,
just as measuring with tones a cell’s bandwidth, tuning quality factor, or other linear systems
response properties is considered meaningful, certain characteristics of the ripple responses may
also prove useful, or possibly related to the properties measured with tones. It is possible as
well that nonlinearities observed with tonal stimuli are less troublesome with broadband rippled
spectra, or negligible over a certain range of stimulus parameters.

An analogous situation to the above has long existed in experimental studies of auditory-
nerve responses. There, nonlinearities such as firing rate rectification, saturation, two-tone
suppression, and adaptation are prevalent (see review in Pickles 1986). These nonlinearities,
however, did not impede measurements of transfer characteristics of auditory-nerve fibers using
single tones, noise stimuli, or acoustic clicks, all implying strong linear components in the
responses.

Our primary goal in this work was to measure the responses of Al cells to rippled spectra
at various ripple frequencies and phases, i.e., to measure their ripple transfer functions, and
the dependence of this function on the amplitude of the ripples and the overall intensity of the
sound. A second objective was to compare characteristic features of these transfer functions to
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response properties measurable using tonal stimuli, such as the bandwidth or the asymmetry
of the response area.

Such an approach has proven fruitful in analogous studies of the primary visual cortex (De
Valois and De Valois 1988). There, transfer functions measured using sinusoidally modulated
gratings reveal much about the functional organization of the system, and its response to more
complex stimuli such as oriented bars. In auditory physiology, such stimuli have only been
reported by Calhoun and Schreiner (1993). Recently, several psychoacoustical studies (Hillier
1991; Summers and Leek 1994; Vranié-Sowers and Shamma 1994a, 1994b) have converged on
the similar notion that measuring the perceptual thresholds of rippled spectra may help explain
how spectral profiles are perceived.

The results we obtained in extensive recordings of single units in the primary auditory
cortex of the ferret can be summarized as follows. Using broadband stimuli (1-20 kHz) with
sinusoidally modulated spectral envelopes (ripples), the response magnitude of each cell was
measured as a function of ripple frequency (Q) and ripple phase (®), from which a "ripple
transfer function” was constructed (Fig.6a-b). Most cells (approximately 90%) responded best
around a specific (characteristic) ripple frequency, {,. Values of (), range from 0.2 to 3 cy-
cles/octave, with the average of the distribution around 1.0 (Fig.6b). Most cells also exhibited
a linear ripple phase as a function of . The intercept of the phase function is interpreted
as the best (characteristic) ripple phase to drive the cell, ®,; the slope of the line reflects the
location of the response area of the cell along the tonotopic axis. ®, ranges over the full cycle
in a Gaussian-like distribution around 0° (Fig.6b). By inverse Fourier transforming the transfer
function, a “response field” (RF) of the cell was obtained, an analogue of the response area
measured with tonal stimuli. Parameters of the RF were compared to parameters of the tonal
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response area. The BF of the RF, BFgp, was very similar to the tonal BF, and (2, and 9,
were weakly but significantly correlated to the excitatory bandwidth and asymmetry index of
the tonal response area, respectively. The RF was found to be a stable measure of a unit’s
response regardless of ripple amplitudes or overall stimulus levels. Responses to rippled spectra
in Al closely resemble the response properties to sinusoidal gratings in the primary visual cortex
(VI). This provides a unified framework within which to interpret the functional organization
of both cortices. Details of this work are found in the manuscript entitled “Ripple Analysis in
the Primary Auditory Cortex (Part I)”, copies of which are appended to this proposal.

We have also examined the topographic distribution of response parameters using the ripple
and tonal stimuli in the primary auditory cortex (Al) (Fig.6¢c). Both single-unit and multiunit
recordings were used in these studies. As before, for each unit or cluster, responses to rip-
ples were parametrized in terms of the characteristic ripple Q, and phase @, (i.e., the best
ripple frequency and phase, respectively). Two corresponding response area parameters (us-
ing tonal stimuli) were also measured: the excitatory bandwidth at 20 dB above threshold
(BW20) which is roughly inversely proportional to (,, and the asymmetry as reflected by the
directional sensitivity index (C) to frequency-modulated (FM) tones (which is proportional to
®,). The response parameters measured from multiunit records corresponded well to those
obtained from single units in the same cluster. The topographic distribution of the response
parameters across the surface of Al was studied with multiunit recordings in four animals. In
most maps, systematic patterns or clustering of response parameters could be discerned along
the isofrequency planes. The distribution of the characteristic ripple {2, exhibited two trends.
First, along the isofrequency planes, the largest values were grouped in one or two clusters
near the middle of AI, with smaller values found towards the edges. The second trend oc-
cured along the tonotopic axis where the maximum (), found in an isofrequency range increases
with increasing BF. The distribution of the characteristic ripple phase, ®,, which reflects the
asymmetry in the response field, also showed a clustering along the isofrequency axis. At the
center of Al symmetric responses (®, ~ 0) predominated. Towards the edges, the RFs became
more asymmetric with ®, < 0 caudally, and ®, > 0 rostrally. The asymmetric response types
tended to cluster along repeated bands that paralleled the tonotopic axis. The distribution of
the response area measures BW20 and C-index exhibited similar trends along the isofrequency
planes as {2, and @, .

Details of this work are found in the manuscripts entitled “Ripple Analysis in the Primary
Auditory Cortex (Part I1)”, copies of which are appended to this proposal.

II1. Functional Models of the Auditory System: Psychoacoustics

The experimental results described above suggested that specific features of the shape of
the acoustic spectrum are being extracted and mapped in the cortex. If so, then it is likely that
important consequences must exist regarding the perception of such spectra. Very little direct
evaluation of such features as the sensitivity of subjects to the symmetry of spectral peaks and
local gradients exist. So we have developed experimental set-ups and paradigms with the help
of Dr. David Green to carry out such experiments. These are described in detail in the two
manuscripts accompanying this proposal entitled “Representation of Spectral Profiles in the
Auditory System: Parts I and II”.

Over the last year, we have finished a series of experiments on the perception of spectral

12
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Figure 7b Profile detection tests in the ripple analysis model. (A) The dashed line 1s a polynomial
approzimation o the perceptual thresholds measured with single ripples (reproduced from Fig. 3.27
in Hillier, 1991). Each data point (denoted by circles) represents the peak amplitude of r(Q,) due
to a just-detectable ripple with frequency Q,. The solid lines represent r(Q,) computed for the
profiles shown in (B). (B) The alternating, step, and single component increment profiles at thewr
Jjust-detectable amplitudes according to Bernstein and Green (1987).

peak shapes, specifically their symmetry and bandwidth. The results we obtained could be
explained elegantly by a model of auditory spectral profile perception that utilizes spectral
ripples as the elementary representational features. In particular, the model assumes that
the spectral profile is represented in the auditory system by a weighted sum of sinusoidally
modulated spectra (ripples). The analysis is performed by a bank of bandpass filters, each
tuned to a particular ripple frequency and ripple phase (Fig.7a). The parameters of the model
are estimated using data from single ripple detection experiments. The model is then used to
account for detection thresholds of more complex profiles such as the step, single component
increment, and the alternating profiles (Fig.7b). Physiological and psychophysical evidences
from the auditory and visual systems in support of this type of a model are reviewed in detail
in the accompanying manuscripts.

Based on the ripple analysis model, detection thresholds of of shape changes in spectral peak
profiles were then interpreted. Peak shape is uniquely described in terms of two parameters:
bandwidth factor (BWF) which reflects the sharpness of a peak, and a symmetry factor (SF)
which roughly measures the local evenness or oddness of a peak. Using profile analysis methods,
thresholds to changes in these parameters (defined as éBWF/BWF and 6SF) are measured
together with the effects of several manipulations such as using different peak levels, varying
spectral component densities, and randomizing the frequencies of the peaks. The ripple analysis
model could account well for the measured thresholds (Fig.8). Predictions of three previously
published models for the same profiles were also evaluated and discussed.
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Figure 8a (A) Profiles of two symmetric peaks (described in detail in Vranié-Sowers and Sh.amma
1994a). The BWF measures the 9dB-bandwidth of o peak. (B) The ripple transform magnxtudejs,
r(Q,), of the peaks in (A). The dashed lines denote the locations of the steepest low pass edges in
r(Q,). The effect of a BWF change is a shift (and not a change in shape) of the ripple transform
along the logarithmic Q, azis. For ezample, a four-fold increase in BWF (from 0.1 to 0.4 octaves),
ie., 6BWF/BWF=3 or a =0.25 resulis in a (A = logy @ =) 2 octave downward shift in r{£,).
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Figure 3b (4) Perceptual phase difference, §., at threshold (reproduced from Vranic-Sowers and
Shamma, 19945) for various ripple frequencies Q, for 161 frequency components and at 25 dB p;a/c:
to-valley amplitude. The task is to detect a change in the phase of a ripple while keeping the rippie
frequency constant. (B) Shifting the phase of the ripple transform phase of the peak profile by o

constant angle simply changes the symmetry of the profile. Solid line is a symmetric peak (BWF

, . o , L
= 0.4 octave) with mppie transform paase = 0. Dashed lines are the skewed peaks resulting from

adding three different angles to the ripple transform phase (Vranié-Sowers and Shamma. 1994a).

Figure 8:

IV. Mathematical Models of the Auditory Cortex

With these experimental data in hand, we then developed mathematical models of the
receptive fields and analyzed the nature of the responses and potential features encoded by
the cortex. The model suggests that the auditory system analyzes an input spectral pattern
along three independent dimensions: a logarithmic frequency axis, a local symmetry axis, and
a local spectral bandwidth axis (Fig.5). It is shown that this representation is equivalent
to performing an affine wavelet transform of the spectral pattern and preserving both the
magnitude (a measure of the scale or local bandwidth of the spectrum) and phase (a measure
of the local symmetry of the spectrum). Such an analysis is in the spirit of the cepstral analysis
commonly used in speech recognition systems, the major difference being that the double
Fourier-like transformation that the auditory system employs is carried out in a local fashion.
Examples of such a representation for various speech and synthetic signals are discussed in the
accompanying paper which has been accepted for publication in the IEEE Audio and Speech
Processing.

V. Analysis of Neural Network Architectures with Wavelet Transforms

The goal of this work was to achieve a coherent theoretical foundation for a class of neural
network architectures called feedforward networks. In the work of Y.C. Pati and P.S. Krish-
naprasad, it was shown that it is possible to structure feedforward networks using the theory
of discrete affine wavelet transforms. In particular, it was shown that for L?(R), it is possible
to construct frames out of sigmoids, and hence represent elements of L*(R) as feedforward net-
works with one hidden layer. The dilations and shifts that appear in such a representation are
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determined from prior knowledge of spatio-spectral concentration of the given function/map. A
major advantage of this structuring is that the coefficients to be fitted from data, being simply
the weights from the hidden layer to the output layer, enter linearly in the model, thereby
leading to a convex/quadratic optimization problem. This result, being among the very first
to place feedforward networks in the rigorous context of wavelet theory, inspired us to further
investigate the use of wavelet transforms.

One of the difficulties in extending the above result to the multidimensional setting of L*(R™)
is that a naive approach based on tensor products of scalar frames can lead to computation-
intensive formulations. Further it was not quite clear how to work out the frame theory in
this context, —in particular certain key results of Daubechies needed to be extended. In the
forthcoming M.S. thesis of T. Kugarajah, these problems are solved, and furthermore, the
results have been applied to the problem of adaptive control in nonlinear systems. This goes
quite a bit beyond the current literature based on the ad hoc use of radial basis functions to
model nonlinear vector fields.

In continuation of our effort on feedforward networks, we started looking into the possibility
of similar techniques for recurrent networks (in continuous time). More precisely, we started a
careful study of the the problem of vector field approximations in nonlinear dynamics via basis
vector fields. Prior efforts ignore the fundamental geometric differences between vector field
approximations and function approximations (vector fields do not transform under coordinate
change in the same way as scalar fields). We note for instance the use of radial basis functions in
adaptive control. Our effort, based on an understanding of geometric approximation techniques
for vector fields by polynomial vector fields, and vector wavelets (a subject that is undergoing
rapid development due to the interests of researchers in fluid mechanics and quantum field
theory) is likely to yield new insights into the structure of recurrent networks and more generally
locally interacting dynamical systems. A graduate research assistant supported by AFOSR
(Herbert Strumper) is involved in this study, as a part of his Ph.D. research.

To enhance the scope of our research in wavelet bases, we considered the problem of approx-
imation of infinite-dimensional linear dynamical systems by finite dimensional linear systems.
This fundamental problem, arising in many fields of applications of control theory ranging from
control of vibrating structures, to control of heat-flow in furnaces, to cancellation of noise in
real-time by destructive interference, is shown to have an elegant solution via rational wavelets
in the Hardy space H2(II*). The construction of such bases has opened the way for a wide range
of applications e.g. in the use of smart materials to carry out fast identification of structural
dynamics.

A direct consequence of the work of on rational wavelets was the discovery of new ways
to organize the design problem for switched capacitor filters for the auditory studies (Fig.9a).
This led to useful collaboration between Daniel Lin (Ph.D. student of Shamma) and Y.C. Pati
(Ph.D. student of Krishnaprasad). Further applications of rational wavelets are under way.

The work on rational wavelets for identfication would have remained a theoretical curiosity
if it were not possible to do fast computation of such rational wavelet models. In recent work,
new recursive algorithms have been devised for systematic approximation via basis function
representations. The new algorithms known as orthogonal matching pursuit algorithms are
applicable to a wide class of problems, ranging from fitting radial basis function approximations
to wavelet-based models for transfer functions of linear systems. These new algorithms are
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well-equipped to work with raw data as well as data subject to preliminary processing. It is of
further interest that these algorithms are well-suited to the exploitation of certain forms of a
priori knowledge (in the time-frequency plane). Several papers have resulted from this work,
and software packages are now available for the use of such algorithms on Sun workstations.
The packages include a commercial MATLAB based toolbox and a free package developed at
Stanford and Maryland. These come with effective graphical user interfaces. One M.S. student
has put the techniques and software to good use in the identification of the dynamics of flexible
beams with surface mounted piezo-electric sensors and actuators (so-called smart structures),
(Fig.9b). The algorithms are fast enough to merit consideration in real-time applications.

The recent discoveries in thalamo-cortical oscillations have led to the suggestion that oscil-
latory neural networks are playing an important part in the solution to the so-called "dynamic
binding problem”, where coherent oscillations encode the binding together of features of an
image in a receptor field. Somewhat influenced by these exciting developments, we undertook a
deep study of the properties of networks of oscillatory neurons (sometimes called rotor neurons).
We have a better understanding of the mean-field theory of a class of such networks. We have
proved new convergence theorems using arguments based on LaSalle’s invariance principle. We
have further insights into asymptotic behaviors. New implementations in analog networks are
being considered. One M.S. student (Eric Justh) is involved in this project. He is however an
NSF Graduate Fellow and hence does not need support from AFOSR. His thesis has been just
completed and a preprint based on this work is available and is being readied for submission
to a journal.

In addition to the papers listed below, several papers are under preparation including one
based on a presentation at an April 1994 Symposium sponsored by the National Academy
of Sciences Board on Mathematical Sciences. These and other papers also influenced by the
current AFOSR project will be provided for review.
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