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CRITICAL COMBINATIONS OF SHEAR ~ TRANSVERSE DIRECT STRESS FOR AN INFINITELY
LONG FLAT PLATE WITH EDGES ELASTICALLY RESTRAINED AGAINST ROTATION

By S. B. BATDORF and JOHN C. HOUBOLT

SUMMARY

& ekct solution and a c?osely concwring approximate
energy solution are P-WI for the buckling of an infinitely long
jlat p.kde under combined shear and transwse direct stre88
with edges eladically re@rained against rotation. It w found
that an appreciableJractim of the critical stress in pure shear
may be applied to the plate without any reduction in the trans-
wse compressiw stres8 necessary to produce buckling. An
interaction formulu in general use was shown to be decidedly
con8erwtimfor the range in which it is supposed to apply.

INTRODUCTION

In the design of stresaeddin structures, consideration
must sometimes be given te tlm critical stiesses for a sheet
under a combination of shear and direct stress. The upper
surface of a wing in normal flight, for example, is subjected
to combined shear and compressive str~, amd the lower
surface is subjected to combined shear and tensile str-.
The upper surface may then buckle at a lower compressive
or shear strew than if either stress were acting alone. The
critical shear stress for the lower surface may be increased
by the prasence of the tensile stress.

If the wing has closely spaced chordwise stiHenem, the
skin between two adjacent stiffenem may be regarded as a
long sheet slightly curved in the longitudinal or chordwise
direction, straight in the transverse or spanwise direction,
and loaded in shear and transverse direct stress. A con-
servative preliminary estimate of the oriticsI streesea may be
obtained if the sheet is considered to be flat and Mnitely
long. In the present paper, the oritioal stresses are comput+d
for an iniidely long flat plate loaded as indicated in figure
1 (a). The corresponding idealisation of the case of a wing
with sprmwise stiffeners, shown in figure 1 (b), was treated
in referenm 1.

CONVENTIONAL INTERACTION FORMULAS

For buckling of structures under combined loading con-
ditions, no general theory has been developed that is appli-
cable to all cases. Stress ratios (reference 2), however,
provide a convenient method of representing such con&ions.
For example, the ratio of the shear stress actually present
in a structure to the critical shear stress of tbe structure
when no other st,rwses are present may be called the shear-
streas ratio. Stress ratios may aimikrly be defied for each

type of stress occurring in the structure.

DQEIE————.——.
(i— —

(a) Type of loading problem solved in present ram.
(b) TYW of loadhg problem solwd h rekence 1.

FmmE 1.–BuckUng of an Mnftely long plate under econbhed lads.
.

It is generally assumed that equations of the type

RII’+R2’+B3’+ . . . =1 (1)

may be used to express tb e buckling conditions in the case
of combined loading (reference 3, pp. 1–18). In equation (1),
Rl, R,, and R3 are stress ratios and p, g, and T are exponents
chosen to fit the known results. (All symbols are ddned in
appendix A.) Such a formula gives the correct results when
only one type of loading is present and has the further
advantage of being nondimensional. Equation (1) implies,
moreover, that the presence of any positive fraction of the
critical stress of one type reduow the amount of another
type of stress required to produce bucldes; this implication
appears reasonable and has been proved true in some cases
(references 1,2, and 4).

h reference 2 the folIowing interaction formula is given
for an infinitely long plate wit-h ckunped edgea loaded in
shear and Iongitudiual compression

B:.6+.&=I (2)

where R, is shear-stress ratio and l?, is longitudinal direct-
stress ratio. The same formula is recommended in reference
3 for general use for the budding of any flat rectangular
plate, regardks of the direction of compression and the
degree of edge r=traint.

Later theoretical work (reference 1) shows that, to a high
degree of accuracy, for an Mnitely long plate with any
degree of edge r=traint loaded in ahear and longitudinal
compression

R:+R.=1 (3)
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The-same formula was found in reference 5 to be applicable
to simply supported rectangular plates of aspect ratios
0.5, 1, and 2; the conclusion -was drawn that interaction
curves in strcaa-raiio form are practically independent of
the dimensions of the plate.

The present analysis, however, indicates that the buckling
of an infinitely long plate loaded in shear. and transverse
compression (fig. 1 (a)) is not adequately represented either
by equation (2) or (3) or by any formula of the type of
equation (1), Two independent theoretical solutions to
this buckling problem are given in appendixes B and C.
Appendix B contains the exact solution of the cliffercntial
equation of equilibrium, and appendix C contains an ebergy
solution leading directly to an interaction formula. This
energy solution, which give9 approximate values only, was
made to obtain an initial quick survey of the problem and
to provide a check on the results of the exact solution.
Approximate interaction formulas in substantial agreement
with these results were giv~. for the cases of simply sup-
ported and clamped edges in referenti 6. “” ‘“”

RESULTS AND DISCUSSION

In figure 2, curves are given that indicate the critical
combinations of shear and transverse direct stress for an
infinitely long plate with edges elastically restrained against
rotation. These curves are computed from the .msact solu-
tion presented in appendix B. The degree of edge restraint
is denoted by e, which is defined in appendh B in such a
way that zero edge restraint corresponds to simply supported
edges and ifinite edge restraint indicatm clamped edges.
A similar set of curves is given in terms of stress ratios in
figure 3. The numerical values used to plot-figures 2 and 3,
together with the values found by the energy solution, are
given in table I.

The most stdcing feature of these results is that an appre-
ciable fraction of the critical. stress in pure shear can evi-

dently be applied to the plate without tiny reduction in the
compressive stress necessary to produce buckling. (Sco
@. 3.T. This fraction varies from about one-third to more
than one-half, depending on the degree of restraint. At
shear stresses higher than those corresponding to this frac-
tion, the compressive stress required to produce buckling is
reduced by the presence of shertr. The result that tho com-
pressive buckling stress is entirely unaflectod by tho prcwnce
of a considerable amount of shear is probably peculiar to
infinitely long plates. It is LObe oxpectod, howover, thtit
this result will be closely approached in tho caso of long
finite plates.

In figure 4 a comparison is made between the exnct solu-
tions =d the interaction formulas of equations (2] and (3).
Equation (2), which is the interaction formula in gc+nmd
use, is seen to be decidedly conservative.

CONCLUSIONS

The exact solution of the differential equation for the
buckling of an infinitely long flat plfite under combined aluxtr
and transverse direct stress with edges cihst ically rcatrainccl
against rotation indicates the following:

1. An infinitely long flat~late may be loaded with m
appreciable fraction of its critictil stress in pure shear without
causing any reduction in the transverao compressive sLress
necessary to produce buckling.

2. h interaction formula in general use for rectangular
plates in combined shear and compression is docidcdly con-
servative -when applied to an infinitely long plata in shear
and transverse compression.

LANGLEY MEMORML AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA.,Nocember 8,1944.
.-
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APPENDIX A

SYMBOLS

cl, c1

D

E
NV
N=,
/S

T,

T,

v,
v,

Y

b
b,

c
k,, k,
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functions of edge restraint coefficient E given in
appendix C

ffexural stiffness of piate per unit length, in-lb

(12(?,9))
ekwtic modulus of material, psi
compressive force per unit length, lb/in.
shearing force per unit length of plate, lb/in.
rotational stiffness per inch of restraining member

at edge of plate, lb/radian
work done by compressive force per half wave

length, in-lb
work done by shear force per half wave length,

in-lb
strain energy in plate per. half wave length, in-lb
strain energy in edge restraint per half wavelength,

in-lb
function of y associated with deflection of plate

during buckling
width of plate, in.
width of plate in obLique coordinate syatim of ref-

erence 1, in.
function of a, p, and x
critical compressive rind shear-stress coefficients,

respectively

root of a characteristic equation oi appendix B
functions of restraint coefficient ~ giwm in

appendix ~
thickness of plate, in,

displacement of buck.Ied phtte from original position
amplitude of assumed wave form of bucklo
longitudinal coordinate of plata
transverse coordinate of plate
functions of k, ~, and k.
nondimensional coefficient of edge restraint
one of two parameters determining buckle form
one of two parameters determining buckle form

(half wave length of buckle, in.)
Poisson’s ratio
direct stress
transverse direct stress, psi
shear stress, psi
angle between buckle node and y-axis

e=tm d
Ri, Rs, RSstress ratios
R. ahear%tress ratio
R. longitudinal direct-stress ratio
Cr critical (used as subscript)



APPENDIX B

SOLUTION BY DIFFERENTIAL EQUATION

Statement of problem. —The exact solution for the critical
stress at which buckIing occurs in a flat rectanguhr pkde.
subjected to combined shear and compression in its owa
plane may be obtained by solving the difkrential equation
that expresses the equilibrium of the buclded plate. The
plate is assumed to be infinitely long, and equal elastic
restraints against rotation are assumed to be present along
the two edges of the plate.

Di%’erentiaI equation.-l?igure 5 shows the coordinate
system used. The ditlerential equation for eqdibriurn of a
flat plate under shear and transverse direct stress is (from
reference 7)

It is convenient to write UVand r in terms of the dimension-
less buckling coefficients k. and k, by means of the relations

(B2)

Substitution of the expressions for r. and r from equations
(B2) in equation @l) gives

b%o b% 2#k, VW ~zk,VW
Z+2~?i+a?i+_FZ@j+_F?@=0 (B3)

Solution of differential equation.-If the plate is infinitely
long in the z-direction, all displacements must be periodic
in z and the deflection surface may be taken in the form

(B4)

where ~ is a function of y only and k is the half wave length
of the bucldes in the z-direction.
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Substitution of the expression for w from equation (B4)
in the difhrential equation (B3) gives the following as the
equation that ddmminea Y:

%+@-9$%+%%4y”0

A solution of equation (B5) is

Y=;+

where m is a root of the characteristic equation

(B5)

(B6)
—

()Except for the substitution of 2 ~
2

()

trb 2
–#k. for 2 ~ ?

equation (B6) is identiod with equation (A-6) of appendix
A of reference 8, in which equation (B3) of this appendix
was solved with kc=O. With this change, all Jhe rmdta
obtained in appendix A of reference 8 are applicable here.
The stability criterion for combined’ compression and shear
is therefore the same in form as that for shear alone, given
by equation (A-19) of reference 8, which is

(9 [
2a/3 w-~ (Cosh ‘a Ous 2f?-cos 4y)– 4#(#P-cd)

–(r+d’–(w–P2+@ fl s~ z~ Sk 2/9

+e1a(4#+&+@) cdl 2a Sin28

+B(4#-a2-@) ainh 2a COS26–4LY~ sin 47]=0 (B7

The relation betw~ k, and a, ~, and ~ is also the same in
form as that in equation (A-23) of reference 8, namely,

A

In the present report, however, a and 19have
vahes:

where

_——
(B8)

the folIowing

(B9)

209
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As in reference 8, the restraint coe%icient e is defined herein
by the relation

,=$. . ---- .—

where S is the ratio of a sinusoidally app~ied moment ta the
redting sinusoidally distributed rotation of the restraining
element measured in radians.

Evaluation of k, corresponding to a selected value of k,,—
The procedure for evaluating k,, after values of k, and c
have been chosen, is as follows: A value of bJkia selected; a
series of values of y are assumed until one ia found that,
together with the corresponding values .of a and @computed
from equation (B9), satisfies equation (B7); k, is then com-
puted from equation (J38). Another v~uc of b)~.@ selected;
a new set of values of ~, a, and ~ is found tlmt satisfies the
stabflity criterion; and a new value of k, is computed. The
entire process is repeated until the rnbimum value of k,
can be found from a plot of k~ against L/A, When c is a
function of b/h, e must be reevaluated each time a difkre.gti
value of b/h is selected. The minimum value of k, and the
chosen value of k., when inserted in equations (B2), give a
critical combination of shear and direct stress. :

Evaluation of k, when kc has value corresponiifng to
buckling as Euler strfp.— One critical combination of shear
and compression is simply k,=O and k. equals the value
corresponding to buckling as an Euler strip. The curves
giving critical stress combinations, however, did not appear
to be approaching th point as their construction pro-
gressed. It was therefore necessary to detmmine whether
values of ks other than zero are critical when the Euler com-
pressive stress is reached. .The dete@nation of k, when
k. reaches the value at which the plate buckles as an Euler
strip requires special treatment, because k,, given by equa-

tion (B8), becomes indeterminate when the wave length be-
comes iniinite as suggested by the energy solution. The

result that k becomes infinite when kt takea its Euler value
is readily checked from equation (Cl 1) for the special case

.!

of c=O; for this case p=q=r=~ and (k,)w=l. From

equation (B8) it is clear that, if k, is t.a remain finite when
the wave length approaches infinity, either y+O, case (a), or
c&+19’+0, case (b).

For case (a), when e=O, it follows from equationa (B9)
that, to small quantities of the. second order,

[
LY=’i ;–: (372+ 2ZJ2)1] (Blo)

where

If the values of a
tuted in equa~ion

,panded, with only

8=7 )

xb
‘=%

and f? from equations (B1O) are substi-
(B7) and the resulting equation is em
the lowest powem of u and -Yretained,

-t
4AL2

‘64—6#
(Bll)

Substitution of the values of a and 6 from equations (B1O)
and (Bl 1) in equation (B8) gives as the final result for e= O

“=k&’- ““ ‘“
Case n) can be analyzed by a similar mdhod, but the

anaIysis is quite complicated because terms of third ordgr
must be retained. For c=O’ and c= ~, case (a) and cage
(b) were found to lead to exactly the same result for k,.
A value of k, other than zero when k, takes its Euler value
may be found in the same manner for other values of edge
restraint. For any value of the restraint coefficient c,

where k. has the value corresponding to Euler strip buckling,
at this value of e. The relationship between this Euler value
of kc and the corresponding ~ is given by the equation
(from reference 9)

_=&= - “- “ .::
e=

tan~~-– .
2

When k. reaches the Euler value, the critical shear-stress
coefficient k, can therefore be either O or the value given by

equation (B12). The conclusion that k, can also have any
value between these limits is plausible on the basis of the
following physical considerations. The shear stress does no

work during buckling when the stress condition ia such that
the plate buckles with an infinite wave length. The effect
of shear, furthermore, is to reduce the wave lengt~l to a valuo
of the order of the width of the plate. The wave length at
the time buckling occurs ia infinite, however, when the plate
is either in pure compression or at the value of k, satisfying
equation (B12). This fact means that., for values of k.
between. O and that given by equation (B12), the shmr
stress ia not great enough to force buckling in short waves
and therefore does not assist in producing buckles. In this
range of shear stress the comprwsive stress necessary to
produce buckling is, consequently, the Euler stress,



APPENDIX C

SOLUTION BY ENERGY METHOD FOR EDGE

The critical stress is determined on the basis of the prin-
ciple that the elastic-strain energy stored in a shucture
during buckling is equal to the work done by the applied
loads during buckling. If the structure under consideration
is an infinitely long plate under combined shear and edge
comprmsion with edges elastically restrained against rota-
tion, this equality may be written

T.+ T,= V,+ V, (cl)

In reference 1 an energy solution was given for the type
of loadiig shown in figure 1 (b). The deflection function
used in reference 1 is aIao suitable for application to the
solution of the type of loading shown in figure 1 (a), whkh
is the loading considered in the present paper. The values
for T,, VI, and Vz may accordingly be taken directly from
reference 1, but T. must be recomputed to apply to the case
of t.nmsverse compressive stress.

The following substitutions are used to transform the
energy expressions from the oblique coordinates of refereDce
1, the left-hand terms of the equations, to the rectangular
coordinates (fig. 6) used in the present paper, the right-hand
terms of the equations:

b,Cos @=b)

For brevity the following notation is
tan 4=0

(C2)

f.dso adopted

3/

FImBE 6.-Coordfnatesystem med and ware forma%umecf forenenmduti IIIIXKE’ndfXC;
fneIfned lines Indfcnte nodal Ifnes of bueldes.

By use of equations (C2), the expressions from reference 1
that are used in the present paper may be rewritten as
follows :

T8=w0
, iN.ym2b6
T-f’ (C3)

RESTRAINT

where

INDEPENDENT OF WAVE LENGTH

‘= G+i-$)’’+(=)’+i(
:=(2-5)’+(+$
“=(++’)’’+(=9’++

and e is the restraint coefficient de ffned in appendix B.
The work done by the compressive force per half wave

length may be written

T.=:N,J:Jk3’’xd~—.
2 -%

(C6)

Aa in referen?e I, the assumed deflection function is

‘=w”[Y($:+)+(l+~)cOs~lcOs:(z“’)
When the expression for w from equation (C7) is substi-

tuted in equation (C?6) and the indicated operations are per-
formed,

T.= W02
%%f’+”~)

(C8)

Values from equations (C3),(C4), (C5), and (C8) are now
substituted in the buckling equation (Cl). The use of the
equations .-

eliminates IV,r and ~v. The resulting equation giv~ the
critical combination of stresses and may be -mitten as

(C9)

This equation shows that, for a selected value of k., the criti-
cal shear stress depends upon the wave length and the angle
of the buckle. Since a structure buckks at the lowest stress
at which instability can occur, k~is minimized with respect
to wave length and angle of buckle. The minimum value of
k, with rwpect to value of wave length is determined from
the condition

ak,
K“” (C?lo)

211
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which gives (when c does not depend on wave length)

(Cll)

Substitution of this value of wave length in equation (C9)
gives

The minimum value of k, with respect to angle of buckle is
found from the coudition

ak,
%=0 (cl’)

which gives

‘“m” “(’14)
If this value of d is substituted in equation (C12), the final
result is the following interaction formula, in which k.- is
given in terms of k. and the edge restraint c

k:= ’C,+3Cz (C,–k,)+(’C,–kJ 42(2 C,–Cik,) (015)

where

fa+$
cl=7-

and

c+.
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buckling of an infinitely long flat plate under combined shear and transverse direct stress with 
edges elastically restrained against rotation. It was found that an appreciable fraction of the 
critical stress in pure shear may be applied to the plate without any reduction In the transverse 
compresslve stress necessary to produce buckling.  An interaction formula In general use was shown 
to be decidedly conservative for the range in which it Is supposed to apply. 
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