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CRITICAL COMBINATIONS OF SHEAR AND TRANSVERSE DIRECT STRESS FOR AN INFINITELY
LONG FLAT PLATE WITH EDGES ELASTICALLY RESTRAINED AGAINST ROTATION

By 8. B. Baroorr and Jorx C. HousoLT

SUMMARY

An exact solution and a closely concurring approximate
energy solution are given for the buckling of an infinitely long
flat plate under combined shear and transverse direct siress
with edges elastically restrained against rotation. It was found
that an appreciable fraction of the critical stress in pure shear
may be applied to the plate without any reduction in the trans-
verse compressive stress mecessary to produce buckling. An
interaction formula in general use was shown to be decidedly
conservative for the range in which it is supposed to apply.

INTRODUCTION

In the design of stressed-skin structures, consideration
must sometimes be given to tho critical stresses for a sheet
under & combination of shear and direct stress. The upper
surface of & wing in normal flight, for example, is subjected
to combined shear and compressive stress, and the lower
surface is subjected to combined shesr and tensile sfress.
The upper surface mey then buckle at e lower compressive
or shear stress than if either stress were acting alone. The
critical shear stress for the lower surface may beincreased
by the presence of the tensile stress.

If the wing has closely spaced chordwise stiffeners, the
skin between two adjacent stiffeners may be regarded as a
long sheet slightly curved in the longitudinal or chordwise
direction, straight in the transverse or spanwise direction,
and loaded in shear and transverse direct stress. A con-
servative preliminary estimate of the critical stresses may be
obtained if the sheet is considered to be flat and infinitely
long. In the present paper, the critical stresses are computed
for an infinitely long flat plate loaded as indicated in figure
1 (a). The corresponding idealization of the case of a wing
with spanwise stiffeners, shown in figure 1 (b), was treated
in reference 1.

CONVENTIONAL INTERACTION FORMULAS

For buckling of structures under combined loading con-
ditions, no general theory has been developed that is appli-
cable to all cases. Stress ratios (reference 2), however,
provide a convenient method of representing such conditions.
For example, the ratio of the shear stress actually present
in a structure to the critical shear stress of tbe structure
when no other stresses are present may be called the shear-
stress ratio. Stress ratios may similarly be defined for each

type of stress occurring in the structure.
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(a) Type of loading problem solved in present peper,
(b) Type of loading problem solved in reference 1.

F16TRE 1.—Buckling of an Infinitely long plate nnder combined loads,

It is generally assumed that equations of the type
Rl"+Rz¢+Rs"+ s =1 (1)

may be used to express the buckling conditions in the case
of combined loading (reference 3, pp. 1-18). Inequation (1),
R,, R,, and R, are stress ratios and p, ¢, and r are exponents
chosen to fit the known results. (All symbols are defined in
appendix A.) Such a formula gives the correct results when
only one type of loading is present and has the further
advantage of being nondimensional. Equation (1) implies,
moreover, that the presence of any positive fraction of the
critical stress of one type reduces the amount of another
type of stress required to produce buckles; this implication
appears reasonable and has been proved true in some cases
(references 1, 2, and 4).

In reference 2 the following interaction formula is given
for an infinitely long plate with clamped edges loaded in
shear and longitudinal compression:

RM4R,=1 (2)

where R, is shear-stress ratio and F, is longitudinal direct-
stress ratio. The same formule is recommended in reference
3 for general use for the buckling of any flat rectangular
plate, regardless of the direction of compression and the
degree of edge restraint. g
Later theoretical work (reference 1) shows that, to a high
degree of accuracy, for an infinitely long plate with any
degree of edge restraint loaded in shear and longitudinal
compression
|2+Rc=1 : (3)
205
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The same formula was found in reference 5 to be applicable
to simply supported rectangular plates of aspect ratios
0.5, 1, and 2; the conclusion was drawn that interaction
curves in stress-ratio form are practically independent of
the dimensions of the plate.

The present analysis, however, indicates that the buckling
of an infinitely long plate loaded in shear and transverse
compression (fig. 1 (a)) is not adequately represented either

by equation (2) or (3) or by any formula of the type of

equation (1). Two independent theoretical solutions to
this buckling problem are given in appendixes B and C.
Appendix B contains the exact solution of the differential
equation of equilibrium, and appendix C contains an energy
solution leading directly to an interaction formula. This
energy solution, which gives approximate values only, was
made to obtain an initial quick survey of the problem and
to provide & check on the results of the exact solution.
Approximate interaction formulas in substantial agreement
with these results were given for the cases of slmply sup-
ported and clamped edges in reference 6.

RESULTS AND DISCUSSION

In figure 2, curves are given that indicate the critical
combinations of shear and transverse direct stress for an
infinitely long plate with edges elastically restrained against
rotation. These curves are computed from the exact solu~
tien presented in appendix B. The degree of edge restraint
is denoted by e, which is defined in appendix B in such a
way that zero edge restraint corresponds to simply supported
edges and infinite edge restraint indicates clamped edges.
A similar set of curves is given in terms of stress ratios in
figure 3. The numerical values used to plot-figures 2 and 3,
together with the values found by the energy solution, are
given in table I.

The most striking feature of these results is that an appre-
ciable fraction of the critical sfress in pure shear can evi-

Jee
FigURE 2.—Critical combinations of shear-stress coeficlent &, and transverse direct-stress coefficient k. for an infinitely long plate with edges elastically restrained against rotatlon,
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dently be applied to the plate without any reduction in the
compressive stress necessary to produce buckling, (Seo
fig. 3.) This fraction varies from about one-third to more
than one-half, depending on the degree of restraint. At
ghear stresses higher than those correspofiding to this frac-
tion, the compressive stress required to produce buckling is
reduced by the presence of shear. The result that the com-
pressive buckling stress is entirely unaffected by the presence
of a considerable amount of shear is probably peculiar to
infinitely long plates. It is to be expected, however, that
this result will be closely approached in the case of long
finite plates.

In figure 4 a comparison is made between the exact solu-
tions und the interaction formulas of equations (2) and (3).
Equation (2), which is the interaction formula in general
use, is seen to be decidedly conservative.

CONCLUSIONS

The exact solution of the differential equation for the
buckling of an infinitely long flat plate under combined shear
and transverse direct stress with edges elastically restrained
against rotation indicates the following:

1. An infinitely long flat—plate may be loaded with an
appreciable fraction of its critical stress in pure shear without
causing any reduction in the transverse compressive siress
necessary to produce buckling.

2. An interaction formula in general use for rectangular
plates in combined shear and compression is decidedly con-
servative when applied to an infinitely long plate in shear
and transverse compression.

LANGLEY MEMORIAL AERONAUTICAL L/ABORATORY,
NatioNaL ApvisorY COMMITTEE FOR AERONAVUTICS,
LawaerLEY Frewp, Va., Notember 8, 1844.
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(a) Shear with tension or compression.
Fiaure 3.—Critlcal combinations of shear-stress ratio R, and transverse direct-stress ratio I, for an Infinitely long plate with edges elestically restrained against rotation.

0 L0 \ .
/ S -
\\
] ‘\2% t}éi::fb
\ -
\\ 8 AN \\&f" esent report)
8 A - ’ NN \\ \
\\ \ £ §0
N,
— - Y
e DO
6 o B el ZEEE N BN o )
RE+R = [t e e
a A, (Reference I} NS
g \ %
4 ANEAN
4 - . N ‘
boodmfmbmdddnf ot M \
Formerly proposed for” \\ \
=== both fy,ﬁes of /oclydlng \ \
£ 2 Rg™+ Re= / ] kY
(FReferences 2 and 3 \\\
\
(6) \
o £ 4 .6 .8 Lo g 2 4 o) .8 L0
Hc RC
(b) Shear with compression. FIGGRE 4—Comparison of correct interaction curves with & curve formerly proposed for
Ficure 3.—COoncluded. ' infinltely long plates under combined shear and compression.




01 ] 02

2

£

2

ko ks

208

APPENDIX A
SYMBOLS

functions of edge restraint coefficient ¢ given in
appendix C
flexural stiffness of plate per unit length, in-lb

(=)
12—
elastic modulus of material, psi

compressive force per unit length, 1b/in. -

shearing force per unit length of plate, Ibfin.

rotational stiffness per inch of restraining member
at edge of plate, lb/radian

work done by compressive force per half wave
length, in-Ib

work done by shear force per half wave length,
in-1b

strain energy in plate per half wave length, in-lb

strain energy in edge restraint per half wave length,
in-lb _

function of y associated with deflection of plate
during buckling :

width of plate, in.

width of plate in oblique coordinate system of ref-
erence 1, in.

function of «, 8, and A

critical compressive and shear-stress coefficients,
respectively

m
fl:fﬂ;fs

t
'ﬂb .
2R o

root of & characteristic equation of appendix B

functions of restraint coefficient e given
appendix C

thickness of plate, in.

in

displacement of buckled plate from original position

amplitude of assumed wave form of buckle

longitudinal coordinate of plate

transverse coordinate of plate

functions of ), v, and %,

nondimensional coefficient of edge restraint

one of two parameters determining buckle form

one of two parameters determining buckle form
(half wave length of buckle, in.)

Poisson’s ratio

direct stress

transverse direct stress, psi

shear stress, psi

angle between buckle node and y-axis

stress ratios
shear-stress ratio

" longitudinal direct-stress ratio
. critical (used as subscript)



APPENDIX B
SOLUTION BY DIFFERENTIAL EQUATION

Statement of problem,—The exact solution for the critical

stress at which buckling occurs in a flat rectangular plate

subjected to combined shear and compression in its own
plane may be obtained by solving the differential equation
that expresses the equilibrium of the buckled plate. The
plate is assumed to be infinitely long, and equel elastic
restraints against rotation are essumed to be present along
the two edges of the plate.

Differentisl equation.—Figure 5 shows the coordinate

system used. The differential equation for equilibrium of a
flat plate under shear and transverse direct stress is (from
reference 7)

(—?+z a:,:22,2,,,4—3—,37; +ort aa_ay+o',t3?=0 (B1)

It is convenient to write ¢, and 7 in terms of the dimension-
less buckling coefficients k. and k, by means of the relations

kD
TR

_ka?D
=T

Substitution of the expressions for s, and r from equations
(B2) in equation (B1) gives
b"w o'w 2«r‘k Qw7 k *w

Solution of differential equation.—If the plate is infinitely
long in the z-direction, all displacements must be periodic
in  and the deflection surface may be taken in the form

®B3)

‘rl
w=Ye? (B4)
where Y is a function of i only and A is the half wave length
of the buckles in the z-direction.
y
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FicTRE 5.—Coordinate system used in appendix B foran Infinftely long plate under combined
shear and transverse compression.

(B2)

Substitution of the expression for w from equation (B4)
in the differential equation (B3) gives the following as the
equation that determines ¥

e e e ST D)
A solution of equation (B5) is
Y =eim%
where m is a root of the characteristic equation
mi 2 (5=t | m—2e (D) e+ () =0 ®0)

2
Except for the substitution of 2 —’;\—b) —x?k, for 2 (%b) ’

equation (B6) is identical with equation (A-6) of appendix .
A of reference 8, in which equation (B3) of this appendix
was solved with k,=0. With this change, all ;the resulis
obtained in appendix A of reference 8 are applicable here.
The stability criterion for combined compression and sheaer
is therefore the same in form as that for shear alone, given
by equation (A-19) of reference 8, which is

2aﬁ(47’-——4{) (cosh 2« cos 28—cos 47)—[4'),2(5’—03)
— (8~ (4r'—f+") § | sinh 2a sin 28

+ela(4y’+o*+ ") cosh 2a sin 28
+B(4y*—a®—p?) sinh 2« cos 28—4afy sin 4y]=0 (B7

The relation between %, and a, 8, and v is also the same in
form as that in equation (A-23) of reference 8, namely,

2 _8v(a+5%) ) o
A
In the present report, however, « and 8 have the following
values:
Y PR e "b)
(B9)
o=/ —c+\/<y=+c)=—— E
where

O
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As in reference 8, the restraint coefficient ¢ is defined herein
by the relation

Sb
e=-ﬁ- L -

where S is the ratio of a sinusoidally applied moment to the
resulting sinusoidally distributed rotation of the restraining
element measured in radians.

Evaluation of &, corresponding to a selected value of k,.—
The procedure for evaluating k,, after values of %, and
have been chosen, is as follows: A value of &/\ is selected; a
series of values of v are assumed until one is found that,
together with the eorresponding values of « and 8 computed
from equation (B9), satisfies equation (B7); k, is then com-
puted from equation (B8}, Another value of &/\ is selected;
a new set of values of v, @, and g8 is found that satisfies the
stability criterion; and a new value of k, is computed. The
entire process is repeated until the minimum value of k,
can be found from a plot of k, against /. When ¢ is &
function of &/), ¢ must be reevaluated each time a different—
value of b/\ is selected. The minimum value of %, and the
chosen value of k., when inserted in equations (B2), give &
critical combination of shear and direct stress.

Evaluation of %, when k, has value corresponding to
buckling as Euler strip.—One critical combination of shear
and compression is simply %4,=0 and k. equals the value
corresponding to buckling as an Euler strip. The curves
giving critical stress combinations, however, did not appear
to be approaching this point as their construction pro-
gressed. It was therefore necessary to determine whether
values of %, other than zero are critical when the Euler com-
pressive stress is reached. The determination of %, when
k. reaches the value at which the plate buckles as an Euler
strip requires special treatment, because %,, given by equa-
tion (B8), becomes indeterminate when the wave length be-
comes infinite as suggested by the energy solution. The

k=
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result that A becomes infinite when k., takes its Euler value
is readily checked from equation (C11) for the special case

of ¢e=0; for this case p-—-g=r=% and (k)-=1. From

equation (BS8) it is clear that, if %, is to remain finite when
the wave length approaches infinity, either y—0, case (a}, or
a?t 20, case (b).

For case (2), when ¢=0, it follows from equations (B9)
that, to small gquantities of the second order,

a=1 [g— 2 (314 2u’)]}
B=v

b
T2

(B10)

where

If the values of « and B from equations (B10) are substi-~
tuted in equation (B7) and the resulting equation is ex-

panded, with only the lowest powers of « and v retained,

4r2y?
Substitution of the values of @ and S8 from equations (B10)
and (B11) in equation (B8) gives as the final result for ¢=0

k,: :t————zr —- -- —.

+/64—67°

Case Tb) can be analyzed by a similar method, but the
analysis is quite complicated because terms of third order
must be retained. For e=0 and e= =, case (a) and case
(b) were found to lead to exactly the same result for k,.
A value of k, other than zero when %, takes its Euler value
may be found in the same manner for other values of edge
restraint._ For any value of the restraint coefﬁcient. €

k2 [(en/—+2n/_¢+ e ) sin r~,/7c_,+(2 —-2e—§) cos w\(k_—-m (cos w+k, —1)]

where k. has the value corresponding to Euler strip buckling,
at this value of . The relationship between this Euler value
of k, end the corresponding ¢ is given by the equation
(from reference 9)

_ =ik Co

n[k_ S

tan

When k, reaches the Euler value, the critical shear-stress
coefficient k, can therefore be either 0 or the value given by
equation (B12). The conclusion that %, can also have any
value between these limits is plausible on the basis of the
following physical considerations. The shear stress does no

( 121“/7:‘ 6x k. — zmﬂc"-i-ﬁr\/_+2 \[‘)smn/—q-( 3"k 'f”" 3o cos1r1/k¢+(4+8e+2e’-|—,7t—l)(cos'r\/F—1)

(B12)

work during buckling when the stress condition is such that
the plate buckles with an infinite wave length. The effect
of shear, furthermore, is to reduce the wave length to a value
of the order of the width of the plate. The wave length at
the time buckling occurs is infinite, however, when the plate
is either in pure compression or at the value of k, satisfying
equation (B12). This fact means that, for values of £k,
between 0 and that given by equation (B12), the shear
stress is not great enough to force buckling in short waves
and therefore does not assist in producing buckles. In this
range of shear stress the compressive stress necessary to
produce buckling is, consequently, the Euler stress.



APPENDIX C
SOLUTION BY ENERGY METHOD FOR EDGE RESTRAINT INDEPENDENT OF WAVE LENGTH

The critical stress is determined on the basis of the prin-
ciple that the elastic-strain energy stored in a structure
during buckling is equal to the work done by the applied
loads during buckling. If the structure under consideration
is an infinitely long plate under combined shear and edge
compression with edges elastically restrained ageinst rota-
tion, this equality may be written

T+ T=V+ Vs (Cn

In reference 1 an energy solution was given for the type
of loading shown in figure 1 (b). The deflection function
used in reference 1 is also suitable for application to the
solution of the type of loading shown in figure 1 (a}, which
is the loading considered in the present paper. The values
for T,, V3, and V7, may accordingly be taken directly from
reference 1, but 7, must be recomputed to apply to the case
of transverse compressive stress.

The following substitutions are used to transform the
energy expressions from the oblique coordinates of reference
1, the left-hand terms of the equations, to the rectengular
coordinates (fig. 6) used in the present paper, the right-hand
terms of the equations:

y_¥
b b
b, cos p=b

For brevity the following notation is elso adopted
tan ¢=>~9

(C2)

B o el it i i ol i A

FIauRE 6.—Coordinate system used and wave form assumed for energysolution In appendix C ;
{nclined lines indicate nodal lines of buckles.

By use of equations (C2), the expressions from reference 1
that are used in the present paper may be rewritten as
follows:

2 N oyw?b

Tc =Wy 2\ f}. (03)

v=at ZR [ (3) a+orsntaatamnr(()s] ©o

, ®2D\e

V. g='WQ _53_' (05)

849951 —40——18

where

fi= (120 F)H'(z 12)‘*“
ReE
A

and eis the restraint coefficient defined in appendix B,

The work done by the compressive force per half wave
length may be written

b b
_l 2 2 g_w 2
Tc_zN,f_g f_é(ay de dy
2 2

As in referen-e 1, the assumed deflection function is

(Cé)

W==10, ﬂ 1’2 1>+<1+—~) cos b]cos x (z+6y) (07)

When the expression for w from equation (C7) is substi-
tuted in equation (C6) and the indicated operations are per-
formed,

N,,ﬂ‘ b (A2 (C8)

To=we 2 (. ft 1)
Values from equations (C3), (C4), (C5), and (C8) are now
substituted in the buckling equation (C1). The use of the

equations
2D
[} bz

2D
c?‘

N.,=Fk

N,=Fk

eliminates N, and N,. The resulting equation gives the
critical combination of stresses and may be written as

kmgry | 3 QO+ 4300

2¢ N2
+;j F bzf!‘l'eafl)] (09)
This equation shows that, for a selected value of %,, the criti-
cal shear stress depends upon the wave length and the angle
of the buckle. Since a structure buckles at the lowest stress
at which instability can occur, %, is minimized with respect
to wave length and angle of buckle. The minimum value of
k. with respect to value of wave length is determined from
the condition
ok,
N =0 (C10)

211
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which gives (when e does not depend on wave length)

(%)’ (1467

\Fot Bk
Substitution of this value of wave length in equation (C9)
gives
14-6* 2
=2 A Gota) o |} g 2030 (,g !
12

(C11)

The minimum value of &, with respect to angle of buckle is
found from the condition

%y (C13)
which gives
2¢ 1/2
o [3Cn)—ka [ .

(1 (Bts)-ra [ +on-Bd

If this value of 6 is substituted in equation (C12), the final
result is the following interaction formula, in which %, is
given in terms of k., and the edge restraint e:

ks==401+302 (Gz—kc)+(402—'
where
At
01==—f—
(‘_“’ +(z-3) +3
(120 ?) f”+(§‘;2)€+§
and

2fg

2_.._.

2 (24 : ) 2"'(2 H)e"‘
(120 g 2)€2+<2 4)e+2
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critical stress in pire shear may be applied to the plate without any reduction in the transverse
compressive stress necessary to produce buckling. An interaction formula in general usa was shown
to be decidedly conservative for the range in which it is supposed to apply.
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