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FOREWORD

This work was performed for the U.S. Army Research Laboratory (ARL) under contract
DAAL01-94-P-2257. The calculations were made using the latest version of the S-Cubed
Hydrodynamic Advanced Research Code (SHARC). This code has been upgraded to include a
version of a K-¢ turbulence model, which has been modified by S-Cubed® for non-steady,
compressible fluid flow. The turbulence model has a rough law of the wall boundary layer modef®
and a dust sweep-up model,* both of which were used for the desert calculation; however, no
dust sweep-up has been used in the grassland calculation. The K—€ model and the rough law-of-
the-wall were also used in the near-ideal calculation. It is the combination of high-order
differencing, efficient computer algorithms, and realistic physical models that have made the

results of these calculations credible.

A conversion table has been provided in Appendix D for the reader’s use.
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SECTION 1
BACKGROUND

This calculation is the product of over four decades of research into thermally-
precursed airbiast. It has been made possible by significant advances in numerical
differencing techniques, physical modeling development, and computer hardware
- improvement. The importance of turbulence and a good boundary layer model were
demonstrated during the DIAMOND ARC experiments in 19895,

The role of pre-shock dust has been debated for many years. The thermal layer
generated over a grassiand is significantly different from that over a desert
surface62.,6b, 7, 8, The role of preshock dust is significantly reduced. The mass of ash
from pyrolyzed or burned organic material, along with some dust particulates from the
soil lofted prior to shock arrival, far exceeds the mass of preshock dust over a desert
surface. The energy released by the oxidation of organic material increases the sound
speed in the thermal layer far above that over a desert surface. The cloud of ash and
dust creates an optically-dense layer which absorbs incoming radiation before it reaches
the ground. This energy, combined with that released by the burning organic material,
produces a complex structure within the thermal layer which can be more than two
meters thick. In general, the part of the layer near the surface is cooler with the
maximum temperature (and sound speed) at some distance above the surface (Figure
1). The relative timing of the energy release by organic material, which is partially
controlled by turbulent mixing of oxygen from above, along with incident radiant energy
from the fireball and the arrival time of the shock all play a role in the structure within the
layer and the height of the layer. The resultant layer is thicker, more intense, and
extends further than the thermal layer generated over a desert surface.







SECTION 2
INITIAL CONDITIONS

The calculations described in Reference 9 were used as initial conditions for the
extended calculations reported here. The “ideal” calculation was started from a time of
. two seconds and run to a time of four seconds.

The grassland thermal layer calculation was restarted at a time of 0.23393
seconds when the shock had reached about 390 meters in ground range. The thermal
layer temperature distribution was nearly identical to that of the earlier calculation of
Reference 9. The zoning in the earlier calculation was 10 cm in the constant subgrid but
could not be continued for practical cost reasons. The minimum zone size used in the
extended calculation was increased to 15 cm, which meant that average temperatures
over the new zone size were slightly different from those averaged over 10 cm. This
change in zone size also made it necessary to stabilize the thermal layer for the zone
size of this calculation. The thermal layer was modified by averaging the results of the
THRML code over the 15 cm zoning of the SHARC calculational mesh. The average
density was determined and the energy modified until the zone was in pressure
equilibrium with the ambient atmosphere. This modification was necessary to prevent
the thermal layer from moving prior to shock arrival. The resuiting maximum sound
speed as a function of ground range is shown in Figure 2.

Both calculations (ideal and grassland) used the S-CUBED K—¢ turbuience

model. This model is an extension of the usual K—€ model, which uses a variable
coefficient for formation and dissipation of turbulence, based on local conditions and the
history of the flow. The S-CUBED modifications extend the K—& model to compressible,
non-steady flows. Both calculations used a law-of-the-wall for real surfaces in
conjunction with the turbulence model. The ideal calculation used a smooth wall Clauser
law-of-the-wall and the grassland used a rough law-of-the-wall to represent the surface
interaction. .

The ideal calculation used a shock-following subgrid with 10-centimeter zones
throughout most of the calculation. The precursor calculation used a similar shock
following subgrid, but had 15-centimeter zones for most of the calculation duration.
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SECTION 3
CALCULATED IDEAL RESULTS

The results of the extended ideal calculation are discussed in the previous
volume of this report10 Results of the ideal calculation are included here to provide a
‘ basis of comparison.

Summary plots of arrival time, overpressure, overpressure impulse, dynamic
pressure, and dynamic pressure impulse are contained in Appendix A for the resuits of
the ideal calculation. These results are compared to the results from the grassland
calculation and to experimental data from the PRISCILLA event. Waveform
comparisons at a number of selected ranges are included in Appendix B. The
waveforms are compared to the grassland calculation results and to experimental
waveforms where possible.

We have also included a number of parameter-versus-height plots at selected
ground ranges. These extend from ground level to 50 feet above the ground.
Comparisons are made with the results from the thermal layer calculation. These plots
are included in Appendix C. Overpressure, arrival time, and impuilse for the ideal
calculation show very little variation in altitude. At large distances (those beyond 4,000
feet), the rough surface has a small effect in reducing the near surface dynamic
pressure.




SECTION 4
CALCULATED GRASSLAND SURFACE RESULTS

A summary of the initial conditions is given in Section 2. Because the same
thermal layer was used for this calculation as that reported in Reference 9, the results
for distances less than 400 meters are the same as those of Reference 9 and will not be
discussed here.

No dust sweep-up model was used in the grassland calculation. We felt that the
roots of the grass would remain intact and prevent the erosion of significant amounts of
soil during the passage of the blast wave. The preshock thermal layer was loaded with
the mass of the organic material and any preshock lofted dust. These combined
materials were carried throughout the calculation and treated as fully interactive fluid
dust.

The calculation was carried to a time of 3.6 seconds and a distance of just under
two kilometers. At the end of the calculation, the positive duration of the overpressure
and dynamic pressure were complete for all ranges having overpressures greater than
or equal to five psi.

The dynamic pressures reported are the result of both air and dust contributions.
The dust contribution has been assigned a “registry coefficient” of 0.5. The dust and air
were treated as fluids and dynamic pressure was calculated as:

DP =0.5"rho*u* lul, : (N
where rho is the total density (air plus dust) of the zone.
4.1. SUMMARY PLOT DESCRIPTION.

The arrival-time curves on the first figure in Appendix A show that the precursor
separates from the ideal at a distance of less than the height-of-burst (~200 m) and
remains ahead of the ideal arrival throughout the two-kilometer ground range. The
maximum separation between precursor arrival and ideal is just over 200 meters at a
time of about 1 second and a distance of about one kilometer. The waveforms of
Appendix B show that the precursor arrives before the ideal at ranges as small as 200
meters.

The summary piots of Appendix A show that the maximum overpressure in the
grassland case is as little as one-third of the ideal overpressure. The overpressure at
the precursor front may be less than a tenth of the peak pressure occurring later in the
waveform. The overpressure impulse differs by less than ten percent from the ideal over
the entire range of comparison.

The maximum dynamic pressure is, at some ranges (e.g., 900 m), as much as a
factor of four greater than the ideal. The peak dynamic pressure curve shows that the
precursor peak dynamic pressure is greater than the ideal to a range of over 1.4
kilometers. The dynamic pressure impulse exceeds the ideal by as much as a factor of
eight between ground ranges of 600 and 850 meters, then falls below the ideal values at
ranges greater than 1.4 km.




4.2. WAVEFORM COMPARISON DESCRIPTION.

The waveforms of Appendix B show the details of many of the features described
above. At a range of 762 meters, the ground-level overpressure waveform has a
rounded front, with a negative overpressure between the front and the peak
overpressure. The peak pressure occurs nearly 300 ms after first arrival. The peak
overpressure is about one-half of that for the ideal calculation. Overpressures at three
- and ten feet are very close to those at ground level. The dynamic pressure waveform
shows that the maximum pressure occurs in a secondary peak some 200 milliseconds
behind the precursor wave. The peak is about more than four times the ideal peak. A
tertiary peak occurs about 500 ms after arrival with a peak dynamic pressure about
three times the ideal. The dynamic pressure impulse at this range is nearly an order of
magnitude greater than the ideal.

At a range of 914 meters, the overpressure waveforms are similar and the non-
ideal peak remains about half that of the ideal. A negative phase still occurs between
the precursor arrival and the peak overpressure. The precursor arrives nearly 600 ms
prior to the peak overpressure. The dynamic pressure waveform at this range is
complex with the maximum occurring over half a second after first arrival but before the
arrival of the peak overpressure. Several rounded peaks are evident, with the fifth peak
being the maximum. The peak is about six times that of the ideal. The increase in
separation time between first arrival and the peak shows that the precursor is still
growing at this range. The dynamic pressure impulse remains about an order of
magnitude greater than the ideal.

By 1,067 meters, the grassland calculation shows a rounded front, an inflection, a
long plateau and a rounded rise to a peak overpressure which is about one-third that of
the ideal. The slow rise to the peak is an indication of strong precursor development.
The dynamic pressure waveform shows multiple peaks and a rapid rise after first arrival.
The peak dynamic pressure is twice the ideal peak. The decay after the peak is reached
is much more rapid than in the ideal case and is followed by secondary peaks a fuli
second after first arrival, whichhis leads to a dynamic pressure impulse of about eight
times the ideal.

At a range of 1,219 meters, the overpressure waveform retains the precursor
form with over a half second between arrival and peak overpressure. The major
difference between precursed and ideal at this range is the long, slow rise to the peak
overpressure, with the peak about two-thirds of the ideal. The dynamic pressure
waveform shows that the peak of the precursed waveform is only about 50 percent
greater than the ideal. The impulse still exceeds the ideal by a factor of three.

By a range of 1,524 meters, the ideal and desert precursor waveforms were
nearly identical. The grassland overpressure waveform is starting to clean up. The time
between first arrival and peak overpressure has been reduced to about 300 ms. The
peak of the main wave has a sharp rise, indicating that clean-up has begun. This is
nearly 50 meters beyond the end of any significant heated layer. The extent to which
precursor waveforms can be propagated beyond the thermal layer is the result of both
the growth of the distance between the precursor and main wave during precursor
formation and the suddenness with which the organic thermal layer terminates.




4.3. VARIATION OF PARAMETERS WITH HEIGHT.

Appendix C contains comparisons of various parameters as functions of height at
selected ground ranges. The plots cover the variation with altitude from ground level to
15 meters above the ground. At the 640-meter ground range, the peak precursor
overpressure is about one-half that of the ideal with the near ground-level pressure only
about 10 percent greater than that above 10 meters in altitude. The ideal varies with
altitude to less than one percent.

At 701 meters, some variation in peak overpressure is seen, but the variations
are less than 15 percent in the precursor case. In general, the precursed maximum
overpressures are about one-half those of the ideal. The ideal shows no variation with
altitude.

The comparison at 777 meters shows the precursor pressures to be less than
half those of the ideal case. Variations with altitude are about 20 percent for the
precursor and less than one percent for the ideal. The precursor peak remains about
half of the ideal peak. This trend continues through the 899 meter ground range.

The temperature and sound speed in the thermal layer decrease rapidly beyond
a range of 1.3 kilometers. This marks the beginning of the clean-up phase of precursor
propagation. The variation with height at 0.99 to 1.11 kilometers shows little variation
with height as the layer cools. At 0.99 kilometers, the peak overpressure at 15 meters
above the surface is only about 15 percent less than near the surface, but is about one-
third that of the ideal. The ideal remains unchanged with height. By 1.11 kilometers, the
overpressure is nearly constant with height and differs from the ideal by more than a
factor of two.

The thermal layer terminated at the 1.3 kilometers range; very little pre-shock
heating was present beyond this range. The variations with height beyond the end of the
thermal layer are caused by residual differences in energy distribution in the shock and
transient flows which are attempting to equilibrate along the shock front. Variations in
height are small, of the order of twelve percent, and the differences between precursed
and ideal are of the same order.

The arrival time as a function of height plots show no surprises; the curves are
very smooth and show that the arrival at ground level is earlier than at any other height.
This is in agreement with observed arrival times on structures from the PRISCILLA
event. The precursor arrival times are earlier than the ideal for all ground ranges.
Beyond the 4,300-foot range, the arrival time does not change with height.

The dynamic pressure plots of Appendix C show that the dynamic pressure
nearest ground level is about a factor of two lower than at an elevation of three feet at
the 640-meter ground range. This is the opposite of what was observed in the desert
case and is the result of the temperature distribution within the layer. For the desert
case, the highest temperatures were at or very near ground level, whereas the peak
temperatures in the grassland case are found one to two meters above the surface. By
777 meters, the maximum dynamic pressure occurs one to two meters above the
ground. For all ground ranges less than about 1.5 kilometers, the precursed dynamic
pressure exceeds that of the ideal near ground level. At 1.49 kilometers, the dynamic
pressure near ground level is more than twice the ideal and remains above the ideal to
a height exceeding 15 meters above the surface.

As with the overpressure, several oscillations are present in dynamic pressure as
the precursor cleans up. Apparently, energy is exchanged between dynamic pressure
and overpressure as the shock front adjusts to the absence of a thermal layer.




The most dramatic effect is seen in the dynamic pressure impuilse. At a range of
701 meters, the near-surface dynamic pressure impulse from the precursor calculation
exceeds the ideal by about a factor of three, while at the two meter elevation, the ideal
is exceeded by about an order of magnitude. The impulse remains greater than the
ideal for all heights. Some effect of the boundary layer can be seen in the reduction of
dynamic pressure impulse for the ideal case also. The effect of the boundary layer is
evident at all ranges. The ideal impuise is also reduced near ground level.

The maximum impulse of the precursor is greater than the ideal at all heights, but
approaches the ideal near the 15 meter height throughout the clean-up phase, to a
distance of nearly 1.2 kilometers. The impulse drops sharply beyond 1.2 km and falls
below the ideal above a height of 6 meters at the 1.25-kilometer ground range. By 1.5
kilometers, the dynamic pressure impulse has fallen below that of the ideal for all
heights and remains below the ideal at all greater ground ranges.




SECTION 5 “
COMPARISONS OF CALCULATIONS WITH EXPERIMENTAL DATA

The summary plots of Appendix A contain comparisons of calculations with
nearly all available data from the PRISCILLA event.

The arrival-time curve shows that the grassland arrival is earlier than the vast
majority of the data. In general, the desert calculation shows good agreement with the
measured data, and its wave front always arrives earlier at any given range than does
that of the ideal case. The grassland precursor arrives over 0.4 seconds prior to the
ideal at a range of 1 kilometers. The density contour plot (Figure 3) at a time of 700 ms,
shows that the precursor extends 200 meters ahead of the free-field shock. The
upward-moving precursor shock intersects the Mach stem at a height of over 100
meters. The vortex, which contains the highest dynamic pressures and gradients, is
over 250 meters in extent and 30 meters in height. The highest velocities are found
about 200 meters behind the precursor front and at a height of 5 meters above the
surface (Figure 4). The upward-moving precursor shock is somewhat curved, indicating
the beginnings of cleanup at this time. The angle it forms with the ground is between 25
and 30 degrees. All of these characteristics indicate a stronger, more extensive
precursor than was observed in the PRISCILLA experiment.

Figure 5 shows the structure of the precursor at a time of 1.5 seconds. The
precursor shock is continuously curved from ground surface to its intersection with the
Mach stem. The precursor continues into the cleanup phase. It is still about 200 meters
ahead of the free air shock; the intersection of the upward moving shock with the Mach
stem is over 200 meters above the surface. A number of vortices have been shed from
the ground-level vortex as cleanup has progressed. One large vortex is centered 400
meters behind the precursor and 50 meters above the surface. A second vortex near
950 meters is about to be shed. Velocities near ground level are on the order of three to
four hundred meters per second. This is all occurring at distances at which the desert
precursor had nearly cleaned up.

At a distance of 1.9 kilometers, the precursor is still over 100 ms ahead of the
ideal. The Mach number of the shock at this distance is only 1.14. The distance by
which the precursor leads the ideal can never be overcome because the shocks always
travel faster than Mach 1 and the ideal and precursed shocks have essentially the same
overpressure as a function of distance for distances beyond 1.5 kilometers.

The overpressure summary plot includes experimental data from ground leve!,
three-foot and ten-foot heights. The three- and ten-foot elevation data agree better with
the ideal overpressures than with the precursor values. The calculated overpressures
are for ground level only. Two overpressures are plotted for each calculation: the first
peak and the maximum. The only range for which these curves differ in the ideal case is
during double and complex Mach reflection. This limited region extends from about 200
to 300 meters. For the precursor calculation, the peak overpressure falls below the ideal
almost immediately. As the precursor forms and generates a double peaked waveform,
the two curves diverge. At a range of 350 feet, only one peak is present, but by 500 feet
a weak shock having a peak of about 10 percent? of the maximum leads the so-called

1The agreement of the computation with the BRL waveform at 1650 feet is apparently fortuitous. The
timing on the BRL waveform is now believed to be in error; the BRL waveform should be expanded so
that the maximum peak coincides with that on the SRi peak. The BRL self-recording gages used in
PRISCILLA did not have a timing-mark generator.

10
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“main wave”. The precursed overpressure peaks fall below those of the ideal to a range
of just over 4,000 feet, the end of the thermal layer. The first peak may be as little as 10
percent of the maximum overpressure at a given range.

The calculated precursor overpressure falls below nearly all of the experimental
data beyond a range of 700 meters. It should be noted that the overpressure reaches a
relative minimum at a range of just over 1.1 kilometers, then rises to a relative maximum
at about 1.45 kilometers. This maximum is slightly higher than the ideal at this range.
The.peak then falls back to the ideal level for the remainder of the calculated ranges.
This behavior is in agreement with the experimental data from several nuclear shots,
including PRISCILLA.

The increase in overpressure as a function of ground range, beyond the 1.3-
kilometer range, has been observed experimentally and is now confirmed by calculation.
The rise and fall of the overpressure with range leads to a triple-valued function for the
range of a given overpressure; e.g., there are three ranges at which 40 KPa occurs. The
calculation indicates 900 meters, 1.4 kilometers, and 1.6 kilometers all had a peak
overpressure of 40 KPa. This triple-valued function is the cause of the non-ideal height-
of-burst curves having loops and multiple values as a function of ground range and
height of burst. These characteristics are real, calculable, and we believe that we now
understand them.

The overpressure impulse data have considerably more scatter than the peaks.
The calculations fall near the high side of the data. Both the ideal and precursed
overpressure impulses are within a few percent of one another. The causes for the data
scatter can be seen in the waveforms of Appendix B. Some waveforms fall below
ambient at a relatively early time after shock arrival, while others do not return to
ambient for an extended period. Such scatter is an indication of the difficulty of making
measurements in the nuclear environment and the variety of waveforms measured at
the same ground range. The waveforms depend on the integrated history of the
interaction of the shock with the thermal layer, and surface irregularities contribute
significantly to variations in this history.

The peak dynamic pressure summary plot shows that the peak measured values
differ, in general, by about a factor of two to three from the ideal. The grassland
calculation is above the ideal for all ground ranges beyond 150 meters.

The dynamic pressure impulse data, taken three feet above the surface, fall
below the grassland precursor calculated results. The data and the calculation indicate
that for some ranges the dynamic pressure impulse may exceed the ideal by more than
an order of magnitude.

The waveforms of Appendix B include all available desert line waveforms No
effort has been made to edit, delete, or emphasize any particular waveform or
comparison. Many of the gages did not have associated arrival times, but times were
given as relative to first signal arrival. We have shifted all grassiand waveforms so that
the first signal arrives at the time of the calculated precursor waveform. Because the
data was gathered over a dusty desert surface and the calculation represents the
thermal environment over a grassiand, we did not expect detailed agreement with the
waveforms.

The calculated waveforms of Appendix B represent the mean flow parameters at
the positions given. The calculations include the turbulent contribution as a separate
parameter. Waveforms using a combination of the mean parameters and the turbulent
contribution can be reconstructed from the calculations. This reconstruction includes a
full frequency distribution of the Kolmogorov spectrum. The resulting waveforms must
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then be low-pass filtered to the characteristics of a given gage before comparisons can
be made; this has not been done here. The calculated waveforms are therefore
somewhat smoother than the data because of the lack of the turbulent component. The
turbulence will add oscillations on the waveforms, but impulse values will not be
changed. -

As early as 107 meters the effect of the intense thermal layer can be seen on the
grassland waveform. The rise is not sharp and the peak overpressure is very rounded.

- At 137 meters the beginnings of precursor separation can be seen with a first peak of
less than 400 KPa and a rounded peak of nearly 4 MPa. This is not seen in the desert
precursor data.

By a distance of 168 meters the precursor extends over 10 ms ahead of the
“main wave,” in surprisingly good agreement with the desert data. At 198 meters the
precursor leads the main wave by nearly twice as much as measured during
PRISCILLA. This is a good indication of how much hotter this layer is than was present
in the experiment.

The precursor continues to grow with distance and by 320 meters is so far
extended that a negative phase begins to build between the precursor and the peak.
This negative phase grows in depth and duration. At a distance of 686 meters the
precursor arrives nearly 450 ms prior to the peak overpressure. A strong negative phase
continues to exist. The negative phase persists to a distance of over 900 meters.

The first indication of clean-up is after the 900-meter range where the separation
of the precursor has grown to nearly 700 ms. By 1.067 kilometers the negative phase
has filled in and the separation of the precursor has just begun to decrease.

The clean-up continues, as seen at the 1.2-kilometer range. The calculation has
a shorter separation, a rounded front, and a higher second peak. The peak is well
below that of the experimental data, indicating that the grassland thermal layer is
significantly warmer than observed in PRISCILLA at this range. The experimental
waveform falls on the ideal curve just after the peak.

The extended clean-up of the calculation is further demonstrated in the
waveforms compared at 1.5 kilometers. The experimental data shows no separation
while the calculation has over 250 ms between the first and second peaks.
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SECTION 6
CONCLUSIONS

The results of the “ideal” calculation serve as a benchmark for the definition of
the entire airblast flowfield over a realistic surface. Noel Ethridge of ARA is currently
making detailed comparisons of the results of this calculation with previous calculations
and with height-of-burst curves. The preliminary indications are that the current results
show excellent agreement with previous work. More details of this comparison will be
included in the ARA volume of this report.

The ideal calculation is being and will be used to compare and quantify the
effects of dust and thermal layers. The zone size remained at 10 centimeters in the
shock-following sub-grid to a distance of over 1.2 kilometers. The zone size in the
subgrid was then gradually increased to a maximum of 30 centimeters as the shock
approached two kilometers. The resolution is adequate for this calculation to be
considered state-of-the-art.

The grassiand calculation required some compromise on resolution. The moving
subgrid contained zones with dimensions of 15 centimeters throughout the calculation.
This compromise was necessary in order to assure completion of the calculation within
cost constraints. A grassland thermal layer caiculation with 10-centimeter resolution at
the PRISCILLA scale is still a very desirable goal. The very small zoning required for the
desert calculation is not as critical for the grassiand case because the thermal layer is
upwards of two meters thick, whereas the desert layer is the order of 15 centimeters
thick. This calculation has sufficient resolution to answer many of the questions about
thermal layer temperature distribution and the role of temperature inversions within the
thermal layer on the overall flowfield. A higher resolution calculation will require careful
reconsideration of the temperature distribution in the thermal layer, the extent of the
high sound-speed region, and the consequences of temperature gradients on precurser
cleanup.

The grassland precursor calculation results, presented here, show that the
grassland layer generates a more severe environment than a desert surface. This
comparison includes arrival times, overpressures, dynamic pressures, impulses, and
waveform details. We now have defined the flowfield for a more severe case than the
PRISCILLA event in sufficient detail to provide high quality environment descriptions.
The non-ideal effects extend well beyond those measured over the desert surface and
have significant implications for equipment deployed over vegetated surfaces.

The resuilts of this calculation are being transferred to magnetic media and will be
available for further detailed analysis in the future. The large enhancements in dynamic
pressure and dynamic pressure impulse were achieved without the entrainment of large
amounts of dust. The dust contribution to the dynamic pressure in this case was
minimal. The growth of a boundary layer and the interaction of the precursor with the
boundary layer can be more fully examined. The role of turbulence in vortex generation
and separation behind the precursor is yet to be addressed in detail. Many insights into
these phenomena and some answers are now available, but further analysis is required
to exploit fully this pair of computations.
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APPENDIX A
PARAMETER SUMMARY PLOTS

This Appendix contains summary plots of hydrodynamic parameters as a function
of ground range. Each plot contains the results of the ideal calculation, the grassland
calculation, and desert experimental data. No dynamic pressure measurements were
made at ground level. All the experimental dynamic pressure data were taken at least
. three feet above the surface. Many of the dynamic pressures from the experiment were

derived from stagnation pressure measurements at a 3-foot elevation and the
overpressure measurements at ground level. The results from the PRISCILLA
calculation show that the overpressure varies between ground level and three feet in the
region of strong precursor and the assumption of equal overpressures may be in error
by 10 percent or so.

All measured dynamic pressures are taken without regard to the type of gage or
its dust registry coefficient. The calculated dynamic pressures include the dust dynamic
pressure contribution. In the plots from these calculations, the dust is treated as a fluid
and has a registry coefficient of 0.5.
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APPENDIX B
WAVEFORM COMPARISONS

This Appendix contains waveform comparisons of overpressure, dynamic
pressure, and their impulses. Each plot contains the ideal waveform, the calculated
precursor waveform, and at least one measured waveform at the corresponding
distance. Arrival time of the measured waveform has been shifted to agree with the
= precursor calculation.

More information is available. The dust density as a function of time has been
calculated and saved. It is possible to determine the calculated air and dust dynamic
pressures independently. Any desired dust registry coefficient or a functional form of the
dust registry coefficient may be used. Mach number of the flow as a function of time is
also available at any of the station positions. Full descriptions of the turbulence
environment are also available at each station, including the turbulent energy and the
rate of turbulence dissipation.
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APPENDIX C
HYDRODYNAMIC PARAMETERS AS A FUNCTION OF HEIGHT FOR SELECTED
GROUND RANGES

This Appendix contains plots of important hydrodynamic parameters as a
function of height above the surface at several ground ranges. The ground ranges were
selected on the basis of predicted ideal overpressure levels. Results of calculated ideal

- and precursor parameters are displayed on each plot.
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VERTICAL PROFILE (10 PSI OVERPRESSURE LEVEL)
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VERTICAL PROFILE (8 PSI OVERPRESSURE LEVEL)
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PRISCILLA
HORIZONTAL DYNAMIC PRESSURE IMPULSE
VERTICAL PROFILE (5 PSI OVERPRESSURE LEVEL)
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APPENDIX D:

CONVERSION TABLE
Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY P BY P TO GET
TO GET & BY - DIVIDE
angstrom 1.000 000 X E-10 meters (m)
atmosphere (normal) 1.013 25X E+2 kilo pascal (kPa)
bar 1.000 000 X E +2 kilo pascal (kPa)
barn 1.000 000 X E -28 meter 2 (m2)
British thermal unit (thermochemical) 1.054 350 X E <3 joule (1)
calorie (thermochemical) 4,184 000 joule ()

cal (thermochemical)/cm 2

curie

degree (angie)

degree Fahrenheit

electron volit

erg

erg/second

foot

foot-pound-force

gallon (U.S. liquid)

inch

jerk

joule/kilogram (J/kg) (radiation dose
absorbed)

kilotons

kip (1000 Ibf)

kip/inca 2 (ksi)

kuap

micron

mil

mile (internadonal)

ounce

pound-force (lbs avoirdupois)
pound-force inch
pound-forcefinch
pound-force/foot 2
pound-force/inch = (psi)
pound-mass (Ibm avoirdupois)
pound-mass-foot > (moment of intertia)

pound-mass/foot 3

rad (radiation dose absorbed)
roentgen

shake
slug
torr (mm HG, 0°C)

4,184 000XE-2
3.700000 XE -1
1.745329 XE -2
te=(1"f+459.67)/1.8
1.602 19XE-i9
1.000 600 X E -7
1.000000 X E -7
3.048000XE-1
1.355 818
3785412 XE-3
2.540000XE-2
1.000000 X E+9

1.000 000

4.183

4448222 X E 43
6.894 757 X E +53

1.00000 X E 2
1.0C0O000 X E -6
2540000 XE -3
1.609 344 X E +3
2834952XE-2
4448222

1.L129 848 X E -1
L751268 XE =2
4788026 XE-2
6.894 757
4535924 X E -1

4214011 XE-2

1.601 846 X E -1
1.000000 XE -2

2579760 XE 4
1.000000 X E -8
1.459390 XE <1
1.333 22XE-1

mega joule/m2 (MJ/m=)
» giga becquerel (GBq)

radian (rad)

degree kelvin (K)

Joule (J)

joule ()

wart (W)

meter (m)

joule (I

meter 3(m3)

meter (m)

joule (J)

Gray (Gy)

terajoules

newton (N)

kilo pascal (kPa)

newton-second/m2
(N-s/m?)

meter {m)

meter (m)

meter (m)

kilogram (kg)

newton (N)

newton-meter (Nem)

newton/meter (N/m)

kilo pascal (kPa)

kilo pascal (kPa)

kilogram (kg)

kilogram-meter 2
(kgem?)

kilogram/meter 3
(kg/m?)

** Gray (Gy)

coulomb/kilogram
(Ckg)

second (s)

kilogram (kg)

kilo pascal (kPa)

* The becquerel (Bq) is the SI unit of radioactivity; | Bq = | events.
** The Gray (GY) is the SI unit of absorbed radiation.

A more complete listing of conversions may be found in “"Metric Practice Guide E 380-74,"

Amencan Society for Testing and Materials.
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ADMINISTRATOR

ATTN DTIC DDA

DEFENSE TECHNICAL INFO CTR
CAMERON STATION
ALEXANDRIA VA 22304-6145

DIRECTOR

ATTN AMSRL OP SD TA
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR

ATTN AMSRL OP SD TL
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR

ATTN AMSRL OP SD TP
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

DIR USARL
ATTN AMSRL OP AP L (305)
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U

2

HQDA

ATITN SAPID Tlnl Wi T\ IV
DR R CHAIT
PENTAGON

WASHINGTON DC 20310-0103

MS K KOM!

]

LA A4

HQDA

ATTN SARD TT MS C NASH
DR F MILTON

PENTAGON

WASHINGTON DC 20310-0103

DIR OF DEFNS RSRCH AND ENGRG
ATTN DD TWP
WASHINGTON DC 20301

ASST SECRETARY OF DEFNS
ATTN DOCUMENT CONTROL
ATOMIC ENERGY
WASHINGTON DC 20301

CHAIRMAN

ATTN J 5 R&D DIV

JOINT CHIEFS OF STAFF
WASHINGTON DC 20301

DA DCSOPS

ATTN TECH LIB

DIR OF CHEM & NUC OPS
WASHINGTON DC 20310

EUROPEAN RSRCH OFC
ATTN DR R REICHENBACH
USARDSG UK

PSC 802 BOX 15

FPO AE 09499-1500

DIR

ATTN TECH LIB

ADVNCD RSRCH PROJ AGCY
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

CDR

ATTN AMSEL RD

AMSEL RO TPPO P

US ARMY CECOM

FT MONMOUTH NJ 07703-5301

MIT

ATTN TECH LIB
CAMBRIDGE MA 02138
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ATTN PUBLIC RE

TECH LB
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DOD EXPLOSIVES SAFETY BOARD
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2461 EISENHOWER AVE
ALEXANDRIA VA 22331-0600

1 DIR
ATTN DT 2 WPNS & SYS DIv
DEFNS INTLLGNC AGCY
WASHINGTON DC 20301

8 DIR
ATTN CST) TECH LIB
DDIR
DFSP
NANS
OPNA
SPSD
SPTD
DFTD
DEFNS NUCLEAR AGENCY
WASHINGTON DC 20305

3 CDR
ATTN FCPR
FCTMOF
NMHE
FIELD COMMAND DNA
KIRTLAND ARB NM 87115
10 CIA
ATTN GE 47 HQ
DIR DB STANDARD
WASHINGTON DC 20505

2 CDR
ATTN AMSNA D DR D SIELING
STRNC UE J CALLIGEROS
US ARMY NRDEC
NATICK MA 01762

1 CDR
ATTN ASQNC ELC ISL R MYER CTR
US ARMY CECOM
R&D TECH LIB
FT MONMOUTH NJ 07703-5000
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1

CDR

ATTN SMCAR FSM W BARBER BLDG 94
US ARMY ARDEC

PCTNY ARSNL NJ 07806-5000

DIR

ATTN AIAMS YDL

US ARMY MISSILE & SPACE INTLLGNC CTR
REDSTONE ARSNL AL 35898-5500

DIR

ATTN AMSMR ATL

US ARMY RESEARCH LAB
WATERTOWN MA 02172-0001

CDR

ATTN HNDED FD

US ARMY ENGINEER DIV
PO BOX 1500
HUNTSVILLE AL 35807

CDR

ATTN CESWF PM J

US ARMY CORPS OF ENGRS
FT WORTH DISTRICT

PO BOX 17300

FT WORTH TX 76102-0300

CDR

ATTN SLCRO D

US ARMY RESEARCH OFFICE
PO BOX 12211

RSCH TRI PK NC 27709-2211

DIR

ATTN ATRC RPR RADDA
HQ TRAC RPD

FT MONROE VA 23651-5143

DIR

ATTN ATRC WC KIRBY
TRAC WSMR

WSMR NM 88002-5502

CDR |
ATTN STEWS NED DR MEASON
US ARMY WSMR

WSMR NM 88002-5158
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2

CHIEF OF NAVAL OPERATIONS
ATTN OP 03EG

OP 985F

DEPT OF THE NAVY
WASHINGTON DC 20350

CDR

ATTN RSRCH AND DATA BRANCH
US ARMY NGIC

220 7TH STREET NE
CHARLOTTESVILLE VA 22901-5396

DIR

ATTN ATRC L MR CAMERON
US ARMY TRAC FT LEE
FORT LEE VA 23801-6140

CDR

ATTN CSSD H MPL TECH LIB

CSSD H XM DR DAVIES

US ARMY STRATEGIC DEFENSE COMMAND
PO BOX 1500

HUNTSVILLE AL 35807

CDR

ATTN CEWES SS R J WATT

CEWES SE R J INGRAM

CEWES TL TECH LIBRARY

US ARMY CORPS OF ENGINEERS
WATERWAYS EXPERIMENT STATION
PO BOX 631

VICKSBURG MS 39180-0631

CDR

US ARMY NUCLEAR & CHEMICAL AGENCY
7150 HELLER LOOP, SUITE 101
SPRINGFIELD VA 22150-3198

DIR

ATTN ATRC

TRAC FLVN

FORT LEAVENWORTH KS 66027-5200

CDR

ATTN PME 117 21A

NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON DC 20360

OFFICE OF NAVAL RESEARCH
ATTN DR A FAULSTICK CODE 23
800 N QUINCY STREET
ARLINGTON VA 22217
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1

CDR

ATTN CODE SEA 62R

NAVAL SEA SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON DC 20362-5101

COMMANDING OFFICER CODE L51

ATTN J TANCRETO

NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME CA 93043-5003

CIVIL ENGINEERING LABORATORY
ATTN TECHNICAL LIBRARY CODE L31
NAVAL CONSTRUCTION BATTALION CTR
PORT HUENEME CA 93041

CDR

ATTN CODE E23 LIBRARY

NAVAL SURFACE WARFARE CENTER
DAHLGREN VA 22448-5000

WHITE OAK WARFARE CTR DETACHMENT
ATTN CODE E232 TECHNICAL LIBRARY
10901 NEW HAMPSHIRE AVENUE

SILVER SPRING MD 20903-5000

CDR

ATTN DOCUMENT CONTROL
NAVAL WEAPONS EVALUATION FAC
KIRTLAND AFB NM 87117

AEDC
ATTN R MCAMIS MAIL STOP 980
ARNOLD AFB TN 37389

OLAC PL TSTL
ATTN D SHIPLETT
EDWARDS AFB CA 93523-5000

AIR FORCE ARMAMENT LABORATORY
ATTN AFATL DOIL

AFATL DLYV

EGLIN AFB FL 32541-5000

PHILLIPS LABORATORY (AFWL)
ATTN NTE

NTED

NTES

KIRTLAND AFB NM 87117-6008
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1

AFIT

ATTN TECHNICAL LIBRARY

BLDG 640 B

WRIGHT PATTERSON AFB OH 45433

FTD Nlis
WRIGHT PATTERSON AFB OH 45433

DIR

ATTN R GUENZLER MS 3505

R HOLMAN MS-3510

R A BERRY

W C REED

IDAHO NATIONAL ENGINEERING LABORATORY
EG&G IDAHO INC

PO BOX 8757 BW! AIRPORT

BALTIMORE MD 21240

KAMAN SCIENCES CORPORATION
ATTN LIBRARY

P A ELLIS

F H SHELTON

P O BOX 7463

COLORADQ SPRINGS CO 80933-7463

DIR

ATTN TH DOWLER MS F602

DOC CONTROL FOR REPORTS LIBRARY
LOS ALAMOS NATIONAL LABORATORY
PO BOX 1663

LOS ALAMOS NM 87545

DIR

ATTN DOC CONTROL FOR TECH LIB
SANDIA NATIONAL LABORATORIES
LIVERMORE LABORATORY

P O BOX 969

LIVERMORE CA 94550

DIR

ATTN TECHNICAL LIBRARY

NASA LANGLEY RESEARCH CENTER
HAMPTON VA 23665

ADA TECHNOLOGIES INC

ATTN JAMES R BUTZ
HONEYWELL CENTER SUITE 110
304 INVERNESS WAY SOUTH
ENGLEWOOD CO 80112
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ALLIANT TECHSYSTEMS INC
ATTN ROGER A RAUSCH MN48 3700
7225 NORTHLAND DRIVE

BROOKLYN PARK MN 55428

AEROSPACE CORPORATION
ATTN TECH INFO SERVICES
P O BOX 92957

LOS ANGELES CA 90009

THE BOEING COMPANY
ATTN AEROSPACE LIBRARY
P O BOX 3707

SEATTLE WA 98124

CALIFORNIA RES & TECH INC
ATTN M ROSENBLATT

20943 DEVONSHIRE STREET
CHATSWORTH CA 91311

DYNAMICS TECHNOLOGY INC

ATTN D T HOVE

G P MASON

21311 HAWTHORNE BLVD SUITE 300
TORRANCE CA 90503

EATON CORPORATION

ATTN J WADA

DEFENSE VALVE & ACTUATOR DIV
2338 ALASKA AVE

EL SEGUNDO CA 90245-4896

DIR

ATTN DOC CONTROL 3141

C CAMERON DIV 6215

A CHABAI DIV 7112

D GARDNER DIV 1421

J MCGLAUN DIV 1541

SANDIA NATIONAL LABORATORIES
P O BOX 5800

ALBUQUERQUE NM 87185-5800

BLACK & VEATCH

ENGINEERS - ARCHITECTS
ATTN H D LAVERENTZ

1500 MEADOW LAKE PARKWAY
KANSAS CITY MO 64114
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DIRECTOR

ATTN DR T HOLTZ MS 202-14
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MOFFETT FIELD CA 94035

APPLIED RESEARCH ASSOCIATES INC
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SHELTER ENGINEERING
LITCHFIELD PARK AZ 85340
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C KREBS MDP95

ADVANCED SYSTEMS CENTER
BOX 58123

2890 DE LA CRUZ BLVD
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SVERDRUP TECHNOLOGY INC
ATTN B D HEIKKINEN

SVERDRUP CORPORATION AEDC
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ARNOLD AFB TN 37389-9998
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ALBUQUERQUE NM 87111
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ATTN R RUETENIK (2 CYS)
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R MILLIGAN

83 SECOND AVENUE
NORTHWEST INDUSTRIAL PARK
BURLINGTON MA 01830
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2 KAMAN SCIENCES CORPORATION
ATTN DASIAC (2 CYS)
P O DRAWER 1479
816 STATE STREET
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1 LOCKHEED MISSILES & SPACE CO
ATTN J J MURPHY
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P O BOX 504
SUNNYVALE CA 94086

1 ORLANDO TECHNOLOGY INC
ATTN D MATUSKA
60 SECOND STREET BLDG 5
SHALIMAR FL 32579

2 THE RALPH M PARSONS COMPANY
ATTN T M JACKSON
LB TS PROJECT MANAGER
100 WEST WALNUT STREET
PASADENA CA 91124
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ATTN N SINHA
501 OFFICE CENTER DRIVE APT 420
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1 SAIC
ATTN J GUEST
2301 YALE BLVD SE
SUITE E
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2 S CUBED
A DIVISION OF MAXWELL LABS INC
ATTN C E NEEDHAM
L KENNEDY
2501 YALE BLVD SE
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SAN BERNADINO CA 92402

1 THERMAL SCIENCE INC
ATTN R FELDMAN
2200 CASSENS DR
ST LOUIS MO 63026
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MCDONNELL DOUGLAS ASTRANTCS CORP
ATTN ROBERT W HALPRIN

K A HEINLY

5301 BOLSA AVENUE

HUNTINGTON BEACH CA 92647

MDA ENGINEERING INC
ATTN DR DALE ANDERSON
500 EAST BORDER STREET
SUITE 401

ARLINGTON TX 07601

PHYSICS INTERNATIONAL CORPORATION
P O BOX 5010
SAN LEANDRO CA 94577-0599

R&D ASSOCIATES

ATTN G P GANONG

P O BOX 8377
ALBUQUERQUE NM 87119

SCIENCE CENTER

ROCKWELL INTERNATIONAL CORPORATION
ATTN DR S CHAKRAVARTHY

DR DOTA

1049 CAMINO DOS RIOS

THOUSAND OAKS CA 91358

S CUBED

A DIVISION OF MAXWELL LABS INC
ATTN TECHNICAL LIBRARY

R DUFF

K PYATT

P O BOX 1620

LA JOLLA CA 92037-1620

SUNBURST RECOVERY INC
ATTN DR C YOUNG

P O BOX 2129

STEAMBOAT SPRINGS CO 80477

SVERDRUP TECHNOLOGY INC
ATTN R F STARR

P O BOX 884

TULLAHOMA TN 37388

SRI INTERNATIONAL

ATTN DR G R ABRAHAMSON
DR J GRAN

DR B HOLMES

333 RAVENWOOD AVENUE
MENLO PARK CA 94025
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1‘

BATTELLE

TWSTIAC

505 KING AVENUE
COLUMBUS OH 43201-2693

THINKING MACHINES CORPORATION
ATTN G SABOT

R FERREL

245 FIRST STREET

CAMBRIDGE MA 02142-1264

CALIFORNIA INSTITUTE OF TECHNOLOGY
ATTN T J AHRENS

1201 E CALIFORNIA BLVD

PASADENA CA 91109

UNIVERSITY OF MINNESOTA

ARMY OF HIGH PERF COMP RES CTR
ATTN DR TAYFUN E TEZDUYAR

1100 WASHINGTON AVE SOUTH
MINNEAPOLIS MN 55415

CDR

ATTN SSCNC YSD J ROACH
SSCNC WST A MURPHY

US ARMY NRDEC

KANSAS STREET

NATICK MA 10760-5018

SOUTHWEST RESEARCH INSTITUTE
ATTN DR C ANDERSON

S MULLIN

A B WENZEL

P O DRAWER 28255

SAN ANTONIO TX 78228-0255

STATE UNIVERSITY OF NEW YORK
MECHANICAL & AEROSPACE ENGNRNG
ATTN DR PEYMAN GIVI

BUFFALO NY 14260

DENVER RESEARCH INSTITUTE
ATTN J WISOTSKI

TECHNICAL LIBRARY

P O BOX 10758

DENVER CO 80210

UNIVERSITY OF MARYLAND

INSTITUTE FOR ADV COMPUTER STUDIES
ATTN L DAVIS

G SOBIESKI

COLLEGE PARK MD 20742
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NORTHROP UNIVERSITY
ATTN DR F B SAFFORD

5800 W ARBOR VITAE STREET
LOS ANGELES CA 90045

STANFORD UNIVERSITY
ATTN DR D BERSHADER
DURAND LABORATORY
STANFORD CA 94305

ABERDEEN PROVING GROUND

CDR USATACOM
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INTENTIONALLY LEFT BLANK.

DIST-8




