
UNCLASSIFIED Copy 32 of 33 copies

If

IDA PAPER P-2904

AN ASSESSMENT OF THE POTENTIAL IMPLEMENTATION
OF OBJECT-ORIENTED TECHNOLOGY IN

THE DEPARTMENT OF DEFENSE

CXI
CXJ

LT>

Kathleen A. Jordan, Task Leader

Richard P. Morton
Robert P. Furick

October 1993

Preparedfor
Defense Information Systems Agency

Approved for public release, unlimited distribution: January 19,1995.

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

UNCLASSIFIED IDA Log No. HQ 93-044585

DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results ot major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address Issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower In scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done In quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

L
The work reported In this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

© 1993 Institute for Defense Analyses

This material may be reproduced by or for the U.S. Government pursuant to the copyright
license under the clause at DFARS 252.227-7013 (10/88).

t

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

October 1993
3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

An Assessment of the Potential Implementation of Object-Oriented
Technology in the Department of Defense

6. AUTHOR(S)

Kathleen A. Jordan, Richard P. Morton, Robert P. Furick

5. FUNDING NUMBERS

MDA 903 89 C 0003

TaskT-S5-1219

7. PERFORMING ORGANIZATION NAMHS) AND ADDRESS(ES)

Institute for Defense Analyses (IDA)
1801 N. Beauregard St.
Alexandria, VA 22311-1772

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-2904

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSfES)

Defense Information Systems Agency
10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, unlimited distribution: January 19,1995.
12b. DISTRIBUTION CODE

2A

13. ABSTRACT (Maximum 200 words)

This document presents the findings and recommendations of an initial study regarding the potential
implementation of object-oriented technology (OOT) in the DoD within specific information technology areas.
This document also explores some of the technology transition issues related to OOT implementation and
identifies strategy options for such a transition within the DoD. The approach to this task was to consider the
implementation of OOT with regard to current and planned DoD policy, current and anticipated DoD needs as
expressed by DoD representatives, and the general state of maturity of OOT theory and practice. A key premise
of this effort is that OOT has matured to the state whereby it may be considered for use within the DoD
information technology areas. OOT appears to offer significant advantages over process and data-driven
software development approaches, such as increased maintainability and reusability, and OOT can also
facilitate distributed computing. However, there still exists a diversity of concepts and notations for
development methodologies and a variety of mechanisms for object-oriented database technology. There
appear to be relatively few, if any, impediments within DoD information system lifecycle management and
software development standards to using OOT.

BTIC QUALITY XNRPFGTRI? %

14. SUBJECT TERMS
Object-Oriented Technology, Software Development, Technology Transition,
Software Maintenance, Software Reuse, Distributed Computing, Databases.

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
122

16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

UNCLASSIFIED

IDA PAPER P-2904

AN ASSESSMENT OF THE POTENTIAL IMPLEMENTATION
OF OBJECT-ORIENTED TECHNOLOGY IN

THE DEPARTMENT OF DEFENSE

Kathleen A. Jordan, Task Leader

Richard M. Morton
Robert P. Furick

October 1993

Approved for public release, unlimited distribution: January 19,199S.

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-S5-1219

UNCLASSIFIED

PREFACE

This document was prepared by the Institute for Defense Analyses (IDA) under the

task order, Object-Oriented Technology Implementation in the DoD. This document fulfills

a task objective to develop recommendations for the potential implementation of object-

oriented technology within specific information technology areas within the Department of

Defense. The work was sponsored by the Office of the Director of Defense Information in
coordination with the Defense Information Systems Agency.

D
D

m

ACKNOWLEDGMENTS

The authors would like to acknowledge the review and comments provided to this

effort by both internal and external reviewers. A particular word of thanks is expressed to

Mr. David Diskin of the Defense Information Systems Agency for his involvement and

support of this effort. The editorial assistance of Ms. Katydean Price and secretarial support

of Ms. Edna Jordan are gratefully acknowledged.

The following Institute for Defense Analyses research staff members were review-

ers of this document: Dr. Edward A. Feustel, Dr. Michael C. Frame, Ms. Deborah Heystek,

Dr. Richard J. Ivanetich, Dr. Reginald N. Meeson, and Mr. Glen R. White.

The following individuals provided external review:

Mr. Andrew Baer, AMS, Inc.

MSgt Ted Blanchard, U.S. Air Force

Mr. David Bulman, Pragmatics, Inc.

Col. Randy Catts, BMDO

Dr. Brad Cox, George Mason University

Dr. Fred Hathorn, ODASD(IM)

Mr. David Kriegman, SRA, Inc.

Dr. Robert Marcus, Boeing Corp.

Ms. Tamra Moore, DISA/JIEO/CIM

Mr. Gerard Russomano, DISA/JIEO/CIM

Mr. Robert Shelton, Open Engineering, Inc.

Mr. Brad Balfour, SofTech, Inc.

Mr. Grady Booch, Rational, Inc.

Mr. David Carter, DISA/JIEO/CIM

Ms. Sherrie Chubin, DISA/JIEO/CIM

Ms. Corinne Engle, DISA/JIEO/CU

Mr. Kenneth Kelley, DISA/JIEO/CIM

Mr. Huet Landry, DISA/JIEO/TBEB

Mr. Steven Merritt, DISA/JIEO/CIM

Mr. Donald Reifer, Reifer Consultants, Inc.

Dr. Randy Scott, SPC

Mr. Ben Stivers, Harris Corp.

Mr. Chris Stone, Object Management Group

Table of Contents

EXECUTIVE SUMMARY ES-1

1. INTRODUCTION 1

1.1 PURPOSE AND SCOPE 1

1.2 BACKGROUND 1

1.3 APPROACH 3

1.4 ORGANIZATION OF DOCUMENT 3

2. THE OBJECT PARADIGM IN SOFTWARE ENGINEERING 5

2.1 DEFINITIONS 5

2.2 OBJECT-ORIENTED LANGUAGES 7

2.3 SOFTWARE DEVELOPMENT METHODOLOGIES 8

2.4 COMPARISON TO PROCESS AND DATA-DRIVEN APPROACHES 9

2.5 IMPLICATIONS OF OBJECT-ORIENTED TECHNOLOGY ON RE-
ENGINEERING 11

2.6 ASSESSMENT OF THE OBJECT PARADIGM 12
2.6.1 Maintainability 12
2.6.2 Understandability 13
2.6.3 Reliability 13
2.6.4 Efficiency 13
2.6.5 Reusability 14
2.6.6 Consistency 14
2.6.7 Empirical Evidence 15

3. IMPACT ON SELECTED DOD POLICIES, PROGRAMS, AND STAN-
DARDS 17

3.1 LIFE-CYCLE MANAGEMENT (LCM) OF AUTOMATED INFORMA-
TION SYSTEMS (AISs) - DODD 8120.1 and DODI 8120.2 17

3.2 SOFTWARE DEVELOPMENT AND DOCUMENTATION STAN-
DARDS 19

3.3 INTEGRATED COMPUTER-AIDED SOFTWARE ENGINEERING (I-
CASE) PROGRAM 21
3.3.1 Software Engineering Methodologies 21
3.3.2 Business Case Analysis 22
3.3.3 Process Model for Information Management (IM) 23

3.4 TECHNICAL ARCHITECTURE FOR INFORMATION MANAGE-
MENT 25

vn

3.4.1 Data Management Services 25
3.4.2 Programming Services 28
3.4.3 Distributed Computing Services 29

3.4.3.1 Distributed Computing Environment (DCE) 31
3.4.3.2 CORBA 31
3.4.3.3 Open Distributed Processing (ODP) 32
3.4.3.4 Summary Assessment of Distributed Computing 33

3.5 DISA/CIM REUSE PROGRAM 34

3.6 DOD DATA ADMINISTRATION PROGRAM 36

4. TECHNOLOGY TRANSITION 41

4.1 LESSONS LEARNED 41
4.1.1 Technology Effectiveness 42
4.1.2 Reuse 43
4.1.3 Training 43
4.1.4 Roles and Responsibilities 44
4.1.5 Tool Support 45

4.2 GENERAL TECHNOLOGY TRANSITION STRATEGIES 45
4.2.1 System/Project-Based Strategy 45
4.2.2 Domain-Based Strategy 46
4.2.3 Enterprise-Based Strategy 46

4.3 TECHNOLOGY TRANSITION FRAMEWORK 47

5. CONCLUSIONS AND RECOMMENDATIONS 51

5.1 CONCLUSIONS 51

5.2 RECOMMENDATIONS 52

APPENDIX A. CASE STUDIES OF OBJECT-ORIENTED TECHNOLOGY
TRANSITION A-l

LIST OF REFERENCES

LIST OF ACRONYMS

vm

List of Figures

Figure 1. Process Model for IM 24

Figure 2. DoD Technical Reference Model „ 26

IX

List of Tables

Table 1. Repository Facets 35

Table 2. Technology Transition Framework for OOT 49

XI

EXECUTIVE SUMMARY

PURPOSE

The purpose of this document is to present the findings and recommendations of an

initial study regarding the potential implementation of object-oriented technology (OOT)

in the Department of Defense (DoD). This task was conducted by the Institute for Defense

Analyses (IDA) for the Defense Information Systems Agency (DISA) Center for
Information Management (CIM) Software Systems Engineering Directorate. The Office of
the Deputy Assistant Secretary of Defense for Information Management directed DISA to
investigate the potential advantages and disadvantages of applying OOT to the areas of
software development methodologies, software development standards, lifecycle process
models, the DoD Technical Architecture Framework for Information Management
(TAFIM), the Integrated Computer-Aided Software Engineering (I-CASE) Program, the
CIM Process Model for Information Management, the DoD Data Administration Program,
and the DISA/CIM Software Reuse Program. This document also explores some of the
technology transition issues related to OOT implementation and identifies strategies for
such a transition.

BACKGROUND

The application of OOT must be appropriate for automated information systems
(AISs) which are data intensive and transaction processing oriented. To date, most of these
systems have been written in Cobol, using either process-driven or data-driven analysis and
design techniques. In addition, the average size of these systems is approximately 250,000
lines of code, with the largest approaching 3 million lines of code. There is a limited amount

of new development, with most work in software maintenance. These systems have been

developed under a variety of process standards and some without a structured lifecycle
process at all.

ES-1

APPROACH

The approach to this task was to consider the implementation of OOT with regard

to current and planned DoD policy, current and anticipated DoD needs as expressed by
DoD representatives, and the general state of maturity of OOT (theory and practice). The

information gathering was accomplished through a review of both academic and trade
literature; meetings with several DISA organizations; meetings of DISA representatives in
an ad hoc OOT working group; attending the February 1993 Object World Conference in
Boston; interviews with software developers from American Management Systems Inc.,
Systems Research and Applications Inc., NASA/Goddard Space Flight Center Software

Engineering Laboratory; and a video teleconference and site visit to the Standard Systems

Center at Gunter Air Force Base, Alabama.

AREAS ADDRESSED

The Object Paradigm in Software Engineering

The object paradigm represents a shift in our perspective regarding software. At its
essence, this paradigm represents another mechanism for managing complexity whether of
the software code, design specification, or the real-world problem to be solved. The object
paradigm offers potential improvement to software maintainability and reusability through
its features of encapsulation and inheritance. Disadvantages of the object paradigm include
the diversity in its concepts and notations and the relative immaturity of object-oriented
data management technology.

Impact on Selected DoD Policies, Programs, and Standards

This effort examined the use of OOT in conjunction with the following selected
DoD policies, programs, and standards:

• Lifecycle Management of Automated Information Systems: The current
lifecycle management policy should accommodate object-oriented develop-
ment since the policy provides an incremental and evolutionary lifecycle model
which should be suited to object-oriented development.

♦ Software Development Standards: The new draft DOD-STD-SDD will allow

the specification of "objects" and otherwise does not appear to present any
methodological or structural impediments to using OOT.

ES-2

• I-CASE Program: The Minimum Features for the I-CASE Methodology

Support do not require an object-oriented methodology, but instead the

requirement is established as a Tier 1 Feature, meaning that it is expected to be

commercially available in the near term. The CEVI Process Model for

Information Management (IM), which is part of the I-CASE Request for

Proposal, requires an IDEF (Integrated Computer-Aided Manufacturing

DEFinition) approach for the functional process improvement activity which

precedes system development. If system development uses an object-oriented

approach, there will be a shift in paradigms from an IDEF perspective to an

object-oriented perspective, and there is no straight-forward conversion from

one perspective to another.

• TAFIM Data Management: Database support for OOT is still immature.

Today, ODBMS (Object-Oriented Database Management System) technology

is best suited for applications involving large complex objects where retrieval

requires navigating on the basis of relationships in the data; ODBMS technol-

ogy does not yet appear appropriate for traditional transaction processing appli-

cations. Additionally, most ODBMS bindings are only available for C++ or

Smalltalk, with only one binding under development for Ada9X.

• TAFIM Programming Services: In the current version of the TRM, the only

identified language standard is Ada83, which is "object based," not "object ori-

ented." When the new Ada9X becomes DoD policy, the TRM will specify a true

object-oriented programming language. In the meantime, however, languages

such as C++ and Smalltalk, designed specifically to support OOT, do so more

completely than Ada83. Most class libraries are available in C++ and Smalltalk,

with only recent class library development in Ada9X.

• TAFIM Distributed Computing: Although OOT appears to facilitate distrib-

uted computing through the use of encapsulation, the integration of OOT and

distributed computing technology is so immature that the very nature of the

relationship is still a matter for debate. Experience with distributed computing

in general and object-oriented distributed computing in particular is very lim-

ited.

• DISA/CIM Reuse Program: The existing repository can store and retrieve

object-oriented code and analysis, design, and prototype models, but the current

faceted scheme offers a limited search mechanism when compared to object/

ES-3

class libraries and browsers that are commercially available. It should be noted
that this capability is provided by the DSRS software and not the faceted clas-
sification scheme. To have these relationships between components identified,
they must be specified by the repository librarian when the component is
entered into the library. The search capability is limited in that the DSRS does

not allow a search based upon a specific relationship a component may have

with other components.

• DoD Data Administration: Primitive data elements (object attributes) can be

managed with the current Data Administration procedures in the DoD. The
notion of standard data does not need to change to accommodate OOT. How-

ever, if a data administration program were to take a pure object-oriented

approach, then instead of managing data models and data elements (attributes),

it would manage object/classes with their associated attributes and operations.
This repository of object/classes would look very similar to a reuse repository

of object/class definitions. Standard data elements could be viewed as domain-
independent objects that have concrete external representations and only a min-
imal set of generic operations (methods).

Technology Transition

OOT must be transitioned to an organization with regard to its existing
environment, the training and experience of personnel, the type of systems to be built, and
the anticipated opportunities for software reuse from future projects. From an analysis of a
number of case studies and technology transition literature, some basic "lessons learned"
and transition strategies have been identified.

Lessons Learned: The most significant lesson from the technology transition case
studies is that OOT is not a substitute for software engineering principles, and the promised
benefits of OOT will happen only if sound management and engineering practices are in

place. Second, the "right" design and analysis methodology is not a settled issue.
Identifying and designing classes, particularly reusable classes, requires problem domain

expertise, not just methodology expertise. The benefits from reuse may not be realized until
several object-oriented projects have been completed and reuse libraries have been built.
Both the technology transition literature and the case studies noted that there will be a
significant learning curve, with developers needing at least six months to one year to
become proficient.

ES-4

Transition Strategies: Based upon the experience papers and case studies, there

appear to be three basic strategies to transitioning to object-oriented technology: (1)

system/project based, (2) domain based, and (3) enterprise based. In the first case, OOT is

adopted as the result of the needs of a specific system development, not as a corporate-wide

adoption. In the domain-based strategy, OOT is used across multiple systems and projects

but within the same domain. In the third case, OOT is adopted enterprise-wide as part of a

corporate strategy for system development.

CONCLUSIONS

In considering whether the DoD should implement OOT within its information

system development, we have reached the following conclusions:

OOT appears to offer advantages over traditional process-driven and data-

driven approaches. The features of encapsulation and inheritance support increased

maintainability and reusability which lead to lower costs in software development and

maintenance. OOT also appears to facilitate distributed computing through the use of

encapsulation which encourages a client-server perspective.

OOT is not a completely mature technology. There still exists a diversity of

concepts and notations for development methodologies and a variety of mechanisms for an

object-oriented database technology. For now, relational database technology should

remain the primary method for simple business data, with object database technology more

appropriate for complex data types.

There appear to be relatively few, if any, impediments within DoD AIS lifecycle

management and software development standards to using OOT. The existing DoD

lifecycle process model for AISs and the anticipated software development standard should

accommodate the use of OOT.

There are impediments and technical risks within the DoD Process Model for

Information Management (IM) and the TRM that should be resolved prior to any

large-scale transition to OOT. The Process Model for IM may need to be revised to

resolve the IDEF to object-oriented transition between functional process improvement and

system development. The TRM may need to be revised to accommodate object-oriented

database technology.

A successful transition to OOT will require tools and a significant training

effort. Since the success of OOT will depend in large measure upon the capability of the

ES-5

individuals who use it, training in object concepts along with software engineering

concepts is essential, as is the support of automated tools.

RECOMMENDATIONS

The overall recommendation of this effort is that the DoD should support the
introduction of OOT into its software engineering and information technology strategy. Its
use should be considered as another tool within a larger toolkit of software engineering
mechanisms and approaches. The introduction of this technology will need to consider

functional process improvement activities, software development process and standards,

legacy systems, and emerging technical and functional architectures. A specific

organizational move to OOT should consider a number of factors: the maturity of the

technology, the ability of the organization to accept and use it, and the economic

justification. The following are some specific recommendations and actions regarding the

implementation of OOT.

Develop a technology transition strategy for the introduction of OOT. A
technology transition strategy will establish priorities for transition activities, and define
the scope and stages for the transition, the roles and responsibilities, and the mechanisms
necessary for a transition to occur. This strategy should meet the mission and information
technology needs and should consider the existing base of people and systems and the
anticipated opportunities for software reuse.

Reevaluate the Process Model for IM. The model should be reevaluated to

resolve the shift in paradigms between the Functional Process Improvement activity, which

uses an IDEF approach, and the system development activity, which could potentially use
an object-oriented development approach.

Do not mandate OOT as an approach for all software development nor adopt
any specific object-oriented methodology or technique at this time. Further analysis is
needed to determine which object-oriented technique or techniques are desirable for
application development. Software engineering activities require a variety of techniques,
including event and process modeling and prototyping. Considerations such as

performance and efficiency could conceivably require a non-object-oriented design.

Make OOT concepts part of Ada and software engineering training. Develop

and institute a training program that incorporates OOT in software engineering, Ada, and

design and analysis methods. Although object-oriented methodologies such as OOA have

a variety of notations, they are still useful in teaching the object paradigm. For OOA and

ES-6

OOD methodologies, the non-object-oriented aspects such as functional and dynamic
modeling should also be included.

Support efforts toward a commonly accepted definition for OOT. A definition is
needed that accommodates Ada and the software engineering concepts that support high

reliability and maintainability. This will have an effect upon the mechanisms used for
defining objects, particularly comparing the inheritance vs. encapsulation qualities of OOT.

Encourage the development of ODBMS bindings for Ada9X. Currently, most
ODBMS bindings exist for either the C++ or Smalltalk programming languages. The DoD
should encourage the development of ODBMS bindings for Ada9X, including the
investigation of emerging standards such as the SQL3 and ODMG-93 (Object Data

Management Group) specifications.

Develop a standard set of Ada class libraries. All commercial object-oriented
languages contain a set of library classes shipped as an intrinsic addition to the language
standard. These classes are usually built-in abstractions such as sets, collections, arrays,
bags, and strings. These built-in classes have standard methods associated with them. To
aid the development of object-oriented applications in Ada9X, the DoD should develop a
standard set of library classes similar to the predefined classes in Smalltalk and C++.

ES-7

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this document is to present the findings and recommendations of an
initial study regarding the potential implementation of object-oriented technology (OOT)

to specific information technology areas within the Department of Defense (DoD). This
task was conducted by the Institute for Defense Analyses (IDA) for the Defense
Information Systems Agency (DIS A) Center for Information Management (CIM) Software
Systems Engineering Directorate. In response to this new technology, the Office of the
Deputy Assistant Secretary of Defense for Information Management (ODASD(IM))

directed the DISA to investigate the potential advantages and disadvantages of applying
OOT

This document provides a preliminary assessment and recommendations regarding
the implementation of OOT within the information technology areas of requirements
analysis, software design, functional process improvement, software development
standards, lifecycle process models, the DoD Technical Architecture Framework for
Information Management (TAFIM), Integrated Computer-Aided Software Engineering (I-
CASE) Program, the CIM Process Model for Information Management, the DoD Data
Administration Program, and the DISA/CEvI Software Reuse Program. This document also
explores some of the technology transition issues related to OOT implementation and
identifies lessons learned and strategies for such a transition.

1.2 BACKGROUND

As software systems have become more complex, the software engineering
community has employed a number of different approaches for structuring software
specifications and code. These approaches have been used in an attempt to make the

software more maintainable, thus reducing overall lifecycle costs. Until recently, most

approaches separated functions and data, structuring software around the functions to be

performed and organizing data around information flows. Object-oriented approaches,
however, address both functions and data together, structuring software specifications and

1

code around objects rather than functions. Object-oriented approaches to software analysis,
design, and programming have become increasingly popular, and the object-oriented
perspective has also been extended to other areas of information technology such as
database design and software reuse.

The DoD is exploring new information technologies such as OOT in an effort to
produce high quality, reliable, and maintainable software while also reducing software

development and maintenance costs. In its draft Software Technology Strategy [DOD91],
the DoD expressed the following objectives for its software and information technology
base for the year 2000:

• Reduce equivalent software lifecycle costs by a factor of two.

• Reduce software problem rates by a factor of 10.

• Achieve new levels of DoD mission capability and interoperability via soft-
ware.

In a similar manner, the objectives of DoD's Corporate Information Management
Initiative are to reduce information system development and maintenance costs and to

"deliver DoD growing requirements with less resources." The former Director of Defense
Information (DDI) defined a goal of an "80/20% development/maintenance ratio," with a
"technology asset life that would be two to three times greater than the technology

innovation cycle" [STR91]. The DoD has employed the so-called "traditional"
technologies such as process and data-driven approaches to software development. And
while the approach alone is not the sole determinant for software cost efficiency and quality,
it does have a major effect upon those aspects. As a result, the DoD is investigating OOT
as another means to improve software quality and to reduce software costs.

As the Corporate Information Management Initiative is primarily concerned with
automated information systems (AISs), the application of OOT must be appropriate for
systems that are data intensive and transaction processing oriented. To date, most of these

systems have been written in Cobol, using either process-driven or data-driven analysis and

design techniques. In addition, the average size of these systems is approximately 250,000

lines of code, with the largest approaching 3 million lines of code. There is a limited amount

of new development, with most work in software maintenance. These systems have been

developed under a variety of process standards and some without a structured lifecycle
process at all. As a result, for many systems, there are few requirements and design
artifacts. Current estimates for Central Design Activity (CDA) staffing range from 33,000

to 34,000 computer specialists and 3,400 to 3,500 computer scientists. Their background is
primarily in Cobol, with about one-half having attended college [DIS93].

1.3 APPROACH

The approach to this task was to consider the implementation of OOT with regard
to current and planned DoD policy, current and anticipated DoD needs as expressed by
DISA representatives, and the general state of maturity of OOT (theory and practice). This

task considered the general areas of information system development and maintenance,

including requirements analysis and specification, design, reuse, architectures, databases,
data administration, and technology transition.

The information gathering was accomplished through a review of both academic
and trade literature; meetings with several DISA organizations; meetings of DISA
representatives in an ad hoc OOT working group; attending the February 1993 Object
World Conference in Boston; interviews with software developers from American
Management Systems Inc., Systems Research and Applications Inc., National Aeronautics
and Space Administration (NASA)/Goddard Space Right Center Software Engineering
Laboratory; and a video teleconference and site visit to the Standard Systems Center at
Gunter Air Force Base, Alabama.

1.4 ORGANIZATION OF DOCUMENT

Section 2 discusses the object-oriented paradigm in software engineering,
reviewing the object definition, its advantages and disadvantages, its effect in analysis and
design methodologies, and its implications for reengineering. Section 3 considers the
impact of OOT upon selected DoD policies, programs, and standards, including the DoD
Directive 8120.1, DoD-STD-SDD, the TAFIM, the I-CASE Program, the DoD DISA/CIM
Reuse Program, and the DoD Data Administration Program. Section 4 discusses the lessons

learned and general strategies for transitioning to OOT Section 5 summarizes the

conclusions and provides specific recommendations for the implementation of OOT with
regard to the areas noted above. Appendix A provides case studies of OOT transitions.

2. THE OBJECT PARADIGM IN SOFTWARE ENGINEERING

At the heart of OOT is the object paradigm, and while the object paradigm itself is

not new, its application to information technologies has grown significantly within the last

five years. The object-oriented paradigm represents a shift in our perspective regarding

software. At its essence, this paradigm represents another mechanism for "managing

complexity" [B0087] of the software code, design specification, and the real-world

problem to be solved. Originally applied to programming languages, the object paradigm

has been applied to software development methodologies, database technology, and

software reuse. This section examines the changes implied by the object paradigm in

software engineering, with specific attention to analysis and design methodologies and the

implications for the reengineering of legacy systems. This section also considers the

general advantages and disadvantages of the object paradigm when compared to process-

driven and data-driven software engineering approaches. Issues related to business process

and system lifecycle models, databases, and programming languages are discussed in

Section 3 in the context of specific DoD policies, programs, and standards.

2.1 DEFINITIONS

The definition of the object paradigm is still not a settled issue today. If we consider

object-oriented languages and software development methodologies as instances of the

object paradigm, we would find that there is still substantial variability in concept and

notation [SNY93, NEL91]. This may be due to the fact that the object paradigm is not

formalized; and possibly because object technology can be applied to different activities

within the software lifecycle. Wegner [WEG90] also notes that the programming language

used may affect the object-oriented paradigm. The Object Management Group (OMG), a

non-profit industry consortium, is pursuing a standard set of terminology and concepts for

the object paradigm. But beyond OMG's efforts, there appears to be relatively little public

technical discourse regarding object definitions. There are occasional articles about the

object definition; however, these analyses generally do not look at the programming,

design, and analysis perspective together. See Snyder [SNY93] for further discussion

regarding the diversity of definitions.

Below are a set of definitions taken from several sources, and where there exists

some notable diversity, more than one definition has been included. These definitions are
not a complete list, but are included here to explain some of the more common ideas behind
OOT.

Object: From a programming language perspective, an object is a "self-contained
set of variables which can only be manipulated by a set of methods (procedures) defined
exclusively for that purpose" [NEL91].

From an analysis and design perspective, an object is "something you can do things
to. An object has state, behavior, and identity; the structure and behavior of similar objects

are defined in their common class. The terms instance and object are interchangeable"

[B0091];... "an abstraction of something in a problem domain, reflecting the capabilities

of a system to keep information about it, interact with it, or both; an encapsulation of

Attribute values and their exclusive Services" [COA90].

From a general perspective, "All objects embody an abstraction. An object
explicitly embodies an abstraction that is meaningful to its clients. Although an object may
involve data, an object is not just data" [SNY93].

Class: "A class can be defined as a description of similar objects, like a template or
cookie cutter" [NEL91]. The class of an object is the definition or description of those
attributes and behaviors of interest.

Operation/Method: "Some action that one object performs upon another in order
to elicit a reaction" [B0091]. "A Service is a specific behavior that an Object is responsible
for exhibiting" [COA90].

Message: Mechanism by which objects request services of each other. Sometimes
this is used as a synonym for operation.

Abstraction: "Abstraction consists of focusing on the essential, inherent aspects of
an entity and ignoring its accidental properties" [RUM91].

Encapsulation: "(also information hiding) consists of separating the external
aspects of an object, which are accessible to other objects, from the internal implementation
details of the object, which are hidden from other objects" [RUM91]. "The act of grouping
into a single object both data and the operations that affect that data" [WIR90].

Inheritance: "Inheritance is the sharing of attributes and operations among classes
based on a hierarchical relationship" [RUM91]. "Subclasses of a class inherit the

operations of their parent class and may add new operations and new instance variables.

Inheritance allows us to reuse the behavior of a class in the definition of new classes"

[WEG90].

Polymorphism: The same operation may behave differently on different classes

[RUM91]. Subclasses may have different forms (implementations), yet all conform to a

common profile defined by a superclass.

There is general agreement within the object-oriented community regarding the

basic principles of encapsulation, inheritance, and polymorphism. However, work remains

to be done in formalizing the object model and specific implementation issues arising from

these principles. Wegner [WEG90] provides a relatively thorough discussion of the object

paradigm. However, he believes that the formalism may vary based upon the object-

oriented language considered. Wegner notes the existence of "subparadigms" of object-

based programming: object based, class based, and object oriented. He continues that these

"subparadigms . . . associated with Ada, Smalltalk, and Actors likewise determine non-

overlapping research communities that rarely talk to each other. Small linguistic

differences yield large paradigm shifts" [WEG90]. At this time, most formal models of

object-orientation appear to be based on the object-oriented languages that implement
them.

2.2 OBJECT-ORIENTED LANGUAGES

Although the object paradigm has recently become popular, it is not a new concept.

In programming languages, the concept of OOT was introduced over 25 years ago with the

development of Simula in 1967 by Ole Dahl et al. [DAH70]. Simula introduced the idea of

classes and objects, which is considered central to the object notion. Smalltalk, which was

developed in the 1970s by the Xerox Palo Alto Research Center Learning Research Group,

extended the object/class notion by making everything in the language an object. Smalltalk

evolved throughout the 1970s with releases every two years, culminating in Smalltalk-80.

Along with this were the ideas of "layers of abstraction" [DIJ69], information hiding

[PAR72], and abstract data types [LIS74]. The languages CLU and Alphard provided some

of the first implementations of abstract data types and encapsulation, although without

inheritance. By the late 1970s, these ideas were coming under the scope of what we now

call "object oriented." Object-oriented concepts of inheritance and encapsulation were

incorporated into non-object-oriented languages such as C resulting in C++ and into Pascal

resulting in Ada and Object Pascal [B0091]. By the 1980s the object-oriented paradigm

began to accommodate software design, initially as a support for software engineering in

Ada [FIC92a]. It was later extended for requirements analysis building upon ideas in entity-

relationship data modeling.

In general, languages that support all object-oriented principles (abstraction,

encapsulation, inheritance, and dynamic polymorphism), such as Smalltalk, are considered

"object oriented"; languages that support only abstraction, encapsulation, and static

polymorphism, such as the current version of the Ada programming language, Ada83, are

considered "object based" [B0091]. The anticipated revision to Ada, Ada9X will have

mechanisms for true single inheritance and dynamic polymorphism, making it a true

object-oriented language.

2.3 SOFTWARE DEVELOPMENT METHODOLOGIES

In addition to object-oriented programming languages, several object-oriented

software development methodologies have been created over the last 10 years. These

methodologies generally include elements to support both object-oriented analysis (OOA)

and object-oriented design (OOD). These methodologies present an alternative to the

structured analysis (process-driven) and information engineering (data-driven)

methodologies traditionally employed with information system development.

Compared to object-oriented programming languages, object-oriented software

development methodologies take a different perspective regarding objects. Object-oriented

development methodologies view an object as something in the real world to be modeled

and represented in software. The objects in analysis and design are those perceived in the

"real world" (problem domain) such as persons, tangible things, and events [COA90] and

those in the "system" (solution domain) such as scroll bars, menus, and windows. The

abstractions for analysis and design are based upon those "objects."

One of the earliest OOD methodologies was developed by Booch [B0083] as an

accompanying design technique with the Ada programming language [FIC92]. As such,

this technique was specific to the Ada language but has since been expanded and refined to

accommodate other programming languages. In addition to Booch's methodology (which

has been updated [B0091]), other methodologies have appeared, with varying degrees of

analysis and design elements, most of these within the last five years. These methodologies

include those developed by [BUH90, MEY88, WIR90, RUM91, COA90, SHL92, JAC92,

EMB92, and MAR92].

Object-oriented methodologies provide a series of techniques and notations for
modeling software. The primary model is the "object" model, which is a model of objects/

classes with their associated attributes and operations. Next, most methodologies create a
dynamic model which defines the behavior of each object. This dynamic view is
accomplished with a state-based technique such as state transition diagrams. Last, a
functional or process model is created for the identified states of the object. This process
view is accomplished with a notation such as data flow diagrams (DFDs). In general, most

object-oriented methodologies consist of three basic views: object, dynamic, and process.

With regard to object-oriented concepts, there appear to be two general approaches
to these development methodologies. Coad, Rumbaugh, Shlaer-Mellor, and Martin take an
"extended data modeling" or "entity-driven" approach. These methodologies stress the
definition of the class with its attributes, operations, and relationships to other classes.
There is less emphasis upon the interaction and message passing between classes and more
emphasis upon commonalities between classes and the construction of inheritance
hierarchies and aggregation structures.

Jacobson, Booch, Colbert, and Wirfs-Brock emphasize object responsibilities and
interactions. These approaches are more "specification oriented" or "responsibility driven"
in that they emphasize the contract (i.e., interface) between interacting objects. Fichman
[FIC92a] notes that some techniques emphasize inheritance, while others emphasize
encapsulation and object-interaction, and that "the design tradeoffs between maximizing

encapsulation (by emphasizing object responsibilities) versus maximizing inheritance (by
emphasizing commonalities among classes) are subtle ones."

2.4 COMPARISON TO PROCESS AND DATA-DRIVEN APPROACHES

The object-oriented perspective of software development presents a contrast to the
so-called traditional process-driven and data-driven approaches. The goal of a process

driven approach is to produce a top-down, functional decomposition of the intended
software [FIC92a]. In this approach, three viewpoints are established: process, entity
(object), and dynamic behavior), with the process abstraction serving as the primary basis
for domain partitioning. In a process-driven approach, such as Modem Structured Analysis

[YOU89], a domain is initially modeled during requirements analysis as cooperating
asynchronous processes (using DFDs). Next, the domain is then modeled with entity-
relationship diagrams using the data identified in the DFDs as a starting point. Finally, the
dynamic behavior is modeled using state-transition diagrams. The design stage continues

with further process or functional decomposition for the software implementation. In the
object-oriented development methods, we find the same general views; however, the
object/class abstraction is the primary basis for partitioning the domain, with the process
and dynamic views subordinate.

In a data-driven approach, such as Information Engineering [MAR92], the problem
domain is first modeled during requirements analysis by the entities observed. These
entities serve as a primary abstraction during analysis. The analysis stage continues with
modeling by a variety of methods which include process decomposition and process

dependency modeling. The design stage then takes a process or functional perspective and

models the system by a successive, functional decomposition of system capabilities.

Specific algorithms are developed in a pseudo-code referred to as "action diagrams," which

are eventually translated into source code. Data models are further refined for database

design. Although entities are the initial abstraction defined during the requirements analysis

phase, they do not serve as the basis for software design. As with the process-oriented
approaches, the process or function serves as the basis for software design.

In comparing the object-oriented methodologies to traditional approaches, there are
multiple views (object, dynamic, process) in each; however, in the object-oriented
approaches, the object serves as the primary abstraction for both analysis and design, with
behaviors and processes subordinate to the object Fichman [FIC92a] observes that OOA
methodologies represent a radical change from the process-driven structured analysis
approaches but only an incremental change from the data-driven information engineering

approaches. OOD methodologies represent a radical change from both process and data-
driven design approaches.

With process-driven methodologies, the process serves as the primary abstraction

for both analysis and design. In data-driven methodologies, the entity serves as the primary
abstraction for analysis, but the process is the primary abstraction for design. In both the
process and data-driven methodologies, the resulting software implementation is process
or functionally oriented, with data globally available and not localized to specific
procedures. Non-localized data leads to what is known as the "ripple effect" in software
maintenance, in which changes to one module generate a "ripple" of changes in other
modules. Thus, the maintenance problems associated with non-localized, global data are
not solved with either the process or data-driven approaches.

10

2.5 IMPLICATIONS OF OBJECT-ORIENTED TECHNOLOGY ON REENGI-
NEERING

Currently, a substantial portion of the DoD software development is expected to be
in the maintenance or reengineering of existing legacy systems. Legacy systems,
particularly those that have evolved over many years, are often characterized by
unstructured code, obsolete or non-existent documentation, and a mix of languages and

platforms. Reengineering, which is "the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new form" [CHI90],

is motivated by a number of conditions: the need to upgrade system functionality or to

improve performance, or to move to another platform. A reengineering effort often includes

reverse engineering the existing system to extract design and analysis information, refining
the new specifications, and then forward engineering the new system based upon the new
specifications. The reengineering may also require the refinement of existing code into a
more structured form before it is reverse-engineered. The reengineered system could
simply reflect a new design or could also incorporate new requirements.

Given that the overall design will probably be the result of some form of a

functional decomposition process, functionally based analysis and design specifications
will have to be "transformed" to an object-oriented model. Since this capability does not
exist with current CASE tool technology, this transformation is still a manual process.

An approach to reengineering is the use of system "wrapping." This is where a
system or part of a system is isolated within a specially constructed interface or wrapper.
This interface provides an object-oriented appearance to other systems. Taylor [TAY92],
who provides a discussion on system wrapping, notes that the design and implementation
of the legacy system will affect the degree of wrapping that can occur. For example,

systems that used a functional decomposition approach and have high inter-module
coupling may be harder to break apart into "wrappable" pieces. Although system wrapping
is not full-scale reengineering, it may offer an interim solution to transitioning legacy
systems to an object-oriented environment.

If a non-object-oriented system is to be reengineered, the transition to OOT should

be evaluated with a cost benefit analysis that considers the analysis and design approaches
used, the extent of the reengineering effort, the potential for reuse (in other systems or
domains), the anticipated life of the system, and any anticipated upgrades.

11

2.6 ASSESSMENT OF THE OBJECT PARADIGM

The object paradigm has some distinct advantages and disadvantages. Some are
inherent in its concept and others are the result of its maturity. Although the object
paradigm is still evolving, these features also have to be considered in comparison to the

process and data-driven methodologies, which at this time constitute the primary
alternative paradigms for software development.

2.6.1 Maintainability

One of the most powerful features of OOT is encapsulation. This is essentially the

capability to separate an abstraction (idea) from its implementation. In this manner, there

is a specification which provides an external view and an implementation which provides

an internal view. Objects can only "see" other object specifications and cannot make

changes to the internal state of an object directly (for example, the direct assignment of an

object's instance variable). In limiting the visibility between software components, the use
of encapsulation can reduce the degree of coupling, thus making the software more
maintainable and understandable. Software objects interact with each other through an
interface specification. With this separation, it is possible to have the underlying
implementation change without affecting the specification. Without a change to the
interface, there should not be an effect upon other objects that use that interface.

A second aspect of OOT is that data and the associated operations for that data are
localized within the software implementation. That is, data (which maintains the state of
the object) is not globally visible to the entire system and can only be changed by those

operations within its scope. This "informational cohesion" mitigates the "ripple effect"
seen with functionally decomposed designs, where changes to data (which is globally
visible) affect modules throughout the system. This feature of OOT makes it superior to
process and data-driven approaches. With those approaches, data tends to be global with
visibility unrestricted across the entire application [B0087].

The use of inheritance, while very powerful, can also lead to very complex
inheritance hierarchies. This complexity can be significant when multiple inheritance is
used, resulting in possible inheritance clashes. Inheritance can also violate the principle of
encapsulation by providing access to "hidden" inherited properties [NIE89]. Fichman

[FIC92a] notes that the approach for defining objects using encapsulation (i.e.,

composition) is significantly different than that used with inheritance (i.e., classification).

12

Wilde and Matthews [WIL93] observe that the use of OOD (and OOT in general)

may not necessarily lead to more maintainable systems if the object-oriented strategies lead
to "a profusion of relatively small program parts with many potentially complex
relationships." A developer attempting to derive a subclass from a library "must often look
at method source code to see the other objects involved in the more complex algorithms.
When they did need to read the code, they often had to trace long sequences of message
sends to find [the subclass]" [WIL93].

2.6.2 Understandability

To some degree, the object notion is an attractive basis for modeling a system since
we can easily observe "objects" in the real world. This ability serves the concern noted in
the Ada language standard to consider software development as a "human activity"
[DOD83]. In addition to programmer understandability, there appears to be improved
communication with customers concerning requirements. Anecdotal evidence indicates
that objects are easier to describe and discuss with customers than software functions and
procedures.

2.6.3 Reliability

Where reliability is defined as the ability to detect and handle anomalous
conditions, the reliability aspects of OOT will depend substantially upon the programming
language chosen. For instance, Smalltalk is a weakly typed language (all variables are just
"objects"), and methods are not matched against the object until run time. Ada and C++ are
both strongly typed languages, so the methods and constraints of a variable are matched
against the variable's type at compile time. Program reliability is enhanced with the use of
strong typing since more errors will be detected at compile time rather than at run time.

2.6.4 Efficiency

There can be some performance risks associated with using OOT. Booch [B0091]
notes the performance risk related to the encumbrance of classes which results in excessive
object code. Efficiency in object-oriented languages can be degraded if the language allows
for dynamic polymorphism, that is, where methods are resolved (matched to objects) at run
time. This resolution requires a search up the inheritance tree of classes to find the class that

has the needed method. A dynamic method invocation may take 1.75 to 2.5 times as long

13

as a simple subprogram call, but this overhead can be offset by the limiting the use of run-

time resolution [B0091]. There are techniques to improve the lookup time such as method

caching, in which searches are done with a single hash table lookup [RUM91].

2.6.5 Reusability

The object-oriented feature of inheritance can contribute substantially to software

reuse. A new subclass can be defined in terms of an existing (parent) superclass, and new

attributes and operations can be added to the subclass. NASA/Goddard's Software

Engineering Laboratory (SEL) believes that the use of OOD has also contributed to higher

levels of reuse. OOD was used by the SEL in conjunction with Ada and domain analysis,

with limited use of inheritance. In terms of reusability and reconfigurability of software, the

SEL considered OOT the "most influential technology studied by the SEL" [STA93a].

One of the strengths of the object-oriented approach is the possibility for

development of reusable class libraries for specific domains. These libraries could be

standardized across technical areas, or business domains, to improve productivity and

quality. In the past two years, a number of these libraries have started to appear in certain

technical areas. About a dozen commercial class libraries have been developed in specific

technical areas, such as image processing or sound control for CD-ROM. As experience

with OOT matures, commercial class products may develop in business domains such as

hospital administration, logistics, or other business functions.

2.6.6 Consistency

The definition of the object paradigm itself varies to some degree in both concept

and representation. These differences are especially noticeable when moving from the

analysis and design perspective to the implementation perspective. Snyder [SNY93] states

that "the groups involved with object technology lack a shared understanding of the basic

concepts and a common vocabulary for discussing them." For example, he observes that an

"object" is also known as an "instance, class instance, surrogate, [and] entity" and that the

concept of encapsulation can mean three distinct concepts: "information hiding,"

"embedding," and "protecting." As noted earlier, the OMG now has a standard set of

terminology and concepts for the object paradigm.

While most methodologies employ some form of a graphical notation to describe

classes and relationships, there is no consensus yet regarding object-oriented notation. This

14

may be one reason that CASE tool support for object-oriented development methods tends

to be limited to the vendor providing the methodology. Mazzucchelli [MAZ92] observes

that the developers of methodologies are also vendors of their own proprietary CASE tools.

This differs from the structured methodologies market in which there are several CASE

tools available for a single methodology. It should be noted that this situation may recently

be improving: a couple of the more well-known methodologies such as Schlaer-Mellor and

Rumbaugh are now supported by more than one tool vendor.

2.6.7 Empirical Evidence

Another weakness of OOT is that the bulk of empirical evidence showing that it is

a superior software technology is just now emerging [LEI93]. Even though OOT is not a

new technology, there are relatively few published case studies or experience papers with

statistics on productivity. Of the 7 years of proceedings from the ACM Conference on

Object-Oriented Programming Languages, Systems, and Applications (OOPSLA), there

were 253 papers published. Of those, only Lewis et al. [LEW91] and Champeaux [CHA92]

provided statistics on productivity or reuse improvements. Reuse and maintenance issues

were usually addressed in the panel sessions held (there were 47 panels held during those

years). Within the last year, there have been some published OOT success stories. However,

most of these cases have been published by promoters of OOT. David Taylor [TAY92]

reviewed 18 case studies where object technology has been implemented, and the OMG

will soon publish a collection of 26 OOT success stories, called Objects in Action. Another

possible reason for few published case studies is that OOT has been seen as a competitive

edge by companies using it, and as a result companies have been unwilling to publicize

their experiences [BAE93]. The most promising measures of experience come from the

NASA/Goddard SEL, which has been maintaining statistics for over 16 years [STA93a].

15

3. IMPACT ON SELECTED DOD POLICIES, PROGRAMS, AND
STANDARDS

One of the first concerns with introducing any new technology is whether the exist-
ing infrastructure of policy, procedures, standards, and organizations will support its imple-
mentation. This section examines the use of OOT in conjunction with the following
selected DoD policies, programs, and standards:

• "Life-Cycle Management (LCM) of Automated Information Systems (AISs)" -
DODD 8120.1 and DODI 8120.2

• Software Development and Documentation Standards

• Integrated Computer-Aided Software Engineering (I-CASE) Program

• Technical Architecture Framework for Information Management/Technical
Reference Model (TAFIM/TRM)

• DISA/CIM Reuse Program

• DoD Data Administration Program

3.1 LIFE-CYCLE MANAGEMENT (LCM) OF AUTOMATED INFORMATION
SYSTEMS (AISs) - DODD 8120.1 and DODI 8120.2

Current policy regarding lifecycle process models is expressed in the DoD Direc-
tive (DoDD) 8120.1, "Lifecycle Management Phases and Milestones for Automated Infor-
mation Systems" and its accompanying DoD Instruction (DODI) 8120.2, "Automated

Information System (AIS) Life-Cycle Management (LCM) Process, Review, and Mile-
stone Approval Procedures." DoDI 8120.2 defines four major types of program strategies
for the development of an automated information system:

• Grand Design Program Strategies: "They are characterized by acquisition,
development, and deployment of the total functional capability in a single incre-
ment. The required functional capability can be clearly defined and further
enhancement is not foreseen to be necessary. A grand design program strategy

17

is most appropriate when the user requirements are well understood, supported

by precedent, easily defined, and assessment of other considerations (e.g., risk,
funding, schedule, size of program, or early realization of benefits) indicates
that a phased approach is not required."

• Incremental Program Strategies: "They are generally characterized by acqui-
sition, development, and deployment of functionality through a number of
clearly defined system 'increment's' that stand on their own. The number, size,
and phasing of the 'increment's' required for satisfaction of the total scope of

the stated user requirement must be defined by the AIS PM [Program Manager],

in consultation with the functional user. An incremental program strategy is

most appropriate when the user requirements are well understood and easily

defined, but assessment of other considerations... indicates a phased approach

is more prudent or beneficial."

• Evolutionary Program Strategies: "They are generally characterized by the
design, development, and deployment of a preliminary capability that includes
provisions for the evolutionary addition of future functionality and changes, as
requirements are further defined ... The total functional requirements the AIS
is to meet are successively refined through feedback from previous increments
and reflected in subsequent increments. Evolutionary program strategies are
particularly suited to situations where, although the general scope of the pro-

gram is known and a basic core of user functional characteristics can be defined,
detailed system or functional requirements are difficult to articulate ..."

• Other Program Strategies: "They are intended to encompass variations and/

or combinations of the [above] program strategies ..., or other program strate-
gies not listed above; e.g., OMB Circular A-109 ... acquisitions, commercial-
off-the-shelf (COTS), nondevelopmental item (NDI), and commercial item
acquisitions."

The 8120 directive and instruction are not the same as software development stan-
dards, such as DOD-STD-2167A or the draft DOD-STD-SDD. Those development stan-
dards define the required products (software and documentation) of the software
development process. The 8120 instruction defines four basic processes that may be
applied when developing software. The draft DOD-STD-SDD notes three (grand design,

incremental, and evolutionary) options for software development processes, but does not
require a specific type of process.

18

Support for OOT

Overall, the available OOT literature on lifecycle process models notes the need for
an iterative process such as an incremental, evolutionary, and rapid prototyping approach

for object-oriented software development [PIT93]. The iterative approach to software

development has also become widely accepted with the recognition that is it very difficult

to specify requirements completely and correctly before the design and implementation

activity, and second, that even if requirements were specified "perfectly," they will very

likely change throughout the life of the system. An iterative process allows the refinement

of object models of requirements and design after they have been initially defined. The

"grand design," waterfall approach is recognized as less desirable for software develop-

ment in general, whether object oriented or not.

Object-oriented methodologies may vary in their support of an iterative lifecycle.

Two software development projects by McDonnell Douglas [FAY91, FAY92] compared
the use of two different OOA methodologies: one top-down and the other, bottom-up. This
effort noted that the Shlaer-Mellor approach, which they considered bottom-up, was less

amenable to an iterative approach due to the fact that all objects needed to be defined before
other modeling (process and state) could continue. This effort also used Colbert's OOA
approach, which was top-down in defining objects, and found that it worked better with an
iterative lifecycle. The conclusion was that certain methodologies may be better suited to

different lifecycle models. If the methodology works better with a "grand design," i.e., sin-
gle phase development, then this type of effort should probably be one where the require-
ments are well understood at the beginning of development or perhaps a reengineering
effort where no new requirements are being defined.

Assessment

The program strategies of DoDD 8120.1 and DODI8120.2 can easily accommodate
the use of object-oriented software development. The issue may be as to the type of meth-
odologies chosen rather the allowable lifecycle models.

3.2 SOFTWARE DEVELOPMENT AND DOCUMENTATION STANDARDS

The current policy regarding software development and documentation is defined

in two major standards: DOD-STD-2167A, "Defense System Software Development," and

DoD-STD-7935A, "DoD Automated Information Systems (AIS) Documentation Stan-
dards." These two standards are currently being harmonized into a single standard known

19

as Software Development and Documentation (SDD) Standard, DOD-STD-SDD, the draft

version, and when approved, DOD-STD-498. The latest draft of the SDD, dated 22 Decem-

ber 1992, has been issued for formal coordination and review. The SDD will combine the

current standard for embedded weapons software development (DOD-STD-2167A), with

the standard for automated information systems (DOD-STD-7935A). The SDD, which is

now in its fifth revision, is expected to be approved in 1993.

Support for OOT

Within requirements analysis, where OOA would apply, there are no methodologies

imposed directly by any of the standards. The Data Item Description (DE)) for a Software

Requirements Specification (SRS) of DOD-STD 2167A requires a specification of soft-

ware functions with their associated inputs and outputs, and the Functional Description

(FD) of DOD-STD 7935A is also a description of software "functionality."

The creation of the new standard should eliminate a number of problems perceived

with the earlier standards. There is a specific objective in the SDD, to "improve compati-

bility with non-hierarchical design methods, e.g., object-oriented ..." The SDD does not

require a specific requirements or design methodology. Requirements and design specifica-

tions can be not only of the required functionality but of "objects," thus accommodating an

object-oriented approach.

With regard to software development process, DOD-STD 2167A and DOD-STD

7935A did not mandate a particular process model. However, DOD-STD 2167A specified

certain software development activities and milestones as a required part of the develop-

ment. This specification of activities with milestones was often interpreted as a "grand

design," waterfall process. The SDD recognizes three of the process models (grand design,

incremental, and evolutionary) described in DoDD 8120.1/DODI 8120.2 as valid strategies

for software development. The SDD also removes the rigid requirement for development

milestones so that a waterfall process is not unintentionally imposed.

Assessment

Overall, the SDD does not appear to present any methodological or structural

impediments to using object-oriented methodologies such as OOA or OOD. Nor does the

standard require a software development lifecycle that would impede the development of

object-oriented software models or components.

20

3.3 INTEGRATED COMPUTER-AIDED SOFTWARE ENGINEERING (I-
CASE) PROGRAM

The I-CASE program will provide the DoD Central Design Activities with a soft-

ware engineering environment using a combination of (COTS) hardware and software

components and run-time licenses. This environment will provide full lifecycle, automated
tool support for business case analysis, software development, maintenance, and reengi-
neering of AIS applications. The implementation of the I-CASE environment will take
place over the next three to five years, based upon the success of the pilot programs. When

operational, the I-CASE effort will provide support for integration, system services, user

services, hardware, software, maintenance, and training [ICA92].

Currently, the acquisition of the I-CASE environment is in the pre-award demon-
stration phase, with demonstrations being conducted at each offerer's site. Contract award
is anticipated around September 1993, with a formal test and acceptance period through
February 1994. The initial I-CASE pilot programs are expected to begin around May or
June 1994.

The support for OOT provided by the anticipated I-CASE environment was evalu-
ated by reviewing the I-CASE Request for Proposal (RFP) [ICA92] in the areas of software
engineering methodologies, business case analysis, and the I-CASE Process Model for
Information Management (IM). The I-CASE features detailed in the RFP are divided into
three categories: Minimum, Tier 1, and Tier 2. Minimum Features are those that must be
available at the time of contract award. Tier 1 Features are expected to be commercially

available in the near term but are not required at contract award. Tier 2 Features are expect-
ed to be commercially available but not in the near term.

3.3.1 Software Engineering Methodologies

The I-CASE RFP specifies a variety of tools including those to support different
software development methodologies. Tool support for any particular software develop-
ment methodology is specified under "Methodology Support" (section 10.3.2.2.3).

Support for OOT

Within methodology support of the I-CASE RFP (section 10.3.2.2.3), the Minimum
Features require that the I-CASE SEE (software engineering environment)

provide software tools that support at least one specific, widely used, soft-
ware development methodology that conforms to the life cycle process de-

21

scribed in Section J, Attachment 4, Process Model for Information
Management. The software development methodology shall be any or all of
(1) functional; (2) data driven; (3) object-oriented; and (4) state transition
oriented [ICA92, p. 170].

Under the Tier 1 Features, the I-CASE SEE should

provide software tools (e.g., combination of tools) to support object-orient-
ed and one other development methodology outlined in paragraph
10.3.2.2.3.a.

Under Tier 2 Features, the I-CASE SEE should

provide software tools to support three or more different software develop-
ment methodologies ..., one of which is object-oriented; support tailoring
of each methodology; and be able to capture the output as assets for reuse
[ICA92,p. 170].

Assessment

Since the Minimum Features for the I-CASE methodology support do not require

an object-oriented methodology, this capability will depend upon the specific tool suites

offered. Although it is likely that object-oriented methodology support will be a part of the

proposed tool suites, there is no guarantee that an object-oriented tool will be supplied with

the initial delivery. Additionally, if an object-oriented tool is proposed, it will to some

degree impose its own variant of the object-oriented development methodologies with it.

3.3.2 Business Case Analysis

In addition to software methodology support, the I-CASE SEE will provide support

for business case analysis. In business case analysis, which precedes software develop-

ment, business models are developed to support a number of business assessment activities,

including risk analysis, activity-based costing, and transform flow analysis.

Support for OOT

For business case analysis the I-CASE SEE will not support an object-oriented

approach but rather an IDEF approach to modeling the enterprise. The RFP (section

10.3.2.3.2.2) states that the I-CASE SEE will "provide a capability to produce a high-level

functionally-oriented business case analysis that supports the concept of continuous pro-

cess modernization and quality improvement." Minimum features are to provide "business

case analysis functionality (IDEFO and IDEF1X)." The IDEFO model is a process model

representing the activities of an enterprise. The IDEF1X model is an information model

which represents the "structure and semantics" of information in an enterprise.

22

Assessment

A point of concern is the approach used for business case analysis. As noted, the
business case analysis approach starts with a process model in IDEFO and then develops an
information model in IDEF1X. Although the entities in the IDEF1X are initially derived

from the IDEFO model, the correlations between process and data are not as easily localized

as when taking an object-oriented approach. In an object-oriented approach, processes are
subordinate to data. With the IDEF approach, the data are subordinate to processes in the
initial IDEFO modeling. Using both the IDEFO and IDEF1X models, it is possible to con-

struct an object model, but the transformation to an object model from the IDEFO and IDE-
FIX models is a process that requires an interpretation of the models' semantics;

approaches for transforming these models are still under development and are generally
proprietary.

3.3.3 Process Model for Information Management (IM)

The I-CASE specification has incorporated the Process Model for IM (Figure 1) as
its process for information management and systems development. The basic philosophy

of the Process Model is that applications, data, and infrastructure have different lifecycles
and hence should be developed and maintained separately. Previously, data and applica-
tions have been tied together in the same system, resulting in system-specific data elements
which have little interoperability with other systems. In a similar manner, system-specific

and proprietary hardware and software (infrastructure) have presented impediments to
interoperability. These tightly coupled systems of data, applications, and infrastructure
became vertical "stovepipes" that were not interoperable or compatible. The objective of

the Process Model was to define a process with associated products that allowed for the sep-
arate lifecycles of data, applications, and infrastructure.

Support for OOT

There is little explicit mention of OOT in the Process Model. The model accommo-
dates a variety of development approaches for application development, but uses an IDEFO
and IDEF IX approach for business process modeling. OOD is included in the Process

Model as one of several mechanisms within the Design activity of Application Implemen-
tation. Otherwise, there is no specific mention of OOA methods or OOT for database devel-
opment or infrastructure services. The data management portion of the Process Model is

defined explicitly in terms of "data," "data architectures," and "data requirements," and not
"objects."

23

X
tu

Z
O u

o g
"0.0

c o
ca u,
<u

O

«.s
^ c

o S

X)

Q

X

CO

£

c

E

>->
C 00

o
•4-»
cd
4-* c tu <u

CO E
X) V
c3

■*-» a.
CO

Q E

S: 50I

c

ca

"a,
<

ca u
el
OH

<

1-
3

■*->

CJ
3
b

ca *-»
c
u
E

ca -^

c B

u .o

o

s u o
a.

u
3
DC

24

Assessment

As noted earlier, the Functional Process Improvement (Business Case Analysis)

activity uses IDEFO and IDEF1X to model the business domain. If the system development,

which follows Functional Process Improvement, uses an object-oriented approach, there

will be a shift in paradigms from an IDEFO and IDEFIX to object-oriented perspective.

There is no straight-forward conversion from one perspective to another. An object-orient-

ed approach to enterprise modeling should make the transition from Functional Process

Improvement to system development easier, but it remains to be determined whether

object-oriented enterprise modeling is appropriate for the functional domain.

3.4 TECHNICAL ARCHITECTURE FOR INFORMATION MANAGEMENT

Existing architectural policy is provided in the form of the Technical Architecture

Framework for Information Management (TAFIM). One particular volume of the TAFIM

is the Technical Reference Model (TRM), which describes an open system environment in

terms of an architectural model and a standards profile. This section addresses the impact

OOT would have on the environment described in the TRM (see Figure 2). While there

may be minor impact on all of the architectural components, the most significant impact

will be on the following selected areas:

a. Data Management Services

b. Programming Services

c. Distributed Computing Services

In all cases, the impact is described here as being exclusively on the standards pro-

file and not on the architectural model. This reflects the fact that the TRM is intended to

describe the environment in which mission applications exist, and the services required to

support them. The actual grouping of services into service areas is somewhat arbitrary,

reflecting the natural divisions that occur in the industry. These groupings do not have to

change to support OOT. Certain services need to be added; these can easily be mapped into
the existing service areas.

3.4.1 Data Management Services

The need for additional data management services relates to the need to store,

update, and retrieve objects in much the same way that current systems store, update and

retrieve data. An object-oriented database management system (ODBMS) is a system that

provides a persistent store for the objects of an object-oriented environment along with the

25

Figure 2. DoD Technical Reference Model

26

same types of services found in a traditional DBMS, such as backup and recovery, concur-

rency control, consistency control, access control, and query processing. In general, the pri-

mary motivations for using a DBMS of any kind are data sharing (which necessitates the

control services) and query processing. Mere persistence can more easily be obtained

through the use of files. The traditional DBMS concepts need to be adapted to object-ori-

ented perspectives in some cases, particularly those related to query processing. An

ODBMS is not the only way to provide DBMS services to an object-oriented environment.

The rest of the system may be entirely object oriented with the DBMS being relational or

some other type.

State of the Technology

The existing TRM only recognizes SQL as a standard interface to database manage-

ment systems. SQL3, currently under development, is expected to support OOT. However,

enthusiasts of ODBMS reject the notion of extending what is essentially relational technol-

ogy as an approach to implementing an ODBMS.

Several vendors offer products that claim to be an ODBMS. However, there is no

generally agreed model of object database management. As a result, at this time there is no

agreement on what services an ODBMS should provide. A subgroup of OMG is attempting

to define such a standard, but is having difficulty getting the results accepted within the

ODBMS community. Moreover, vendors of relational systems are likely to back the SQL3

approach that embeds support for OOT within relational products. Still, principal sponsors

of the OMG effort have agreed to produce conformant products within one year of the stan-
dard's publication.

The performance of ODBMSs appears to be superior to that of relational DBMS

(RDBMS) for some applications and inferior for others. In systems that have to deal with

large, complex objects, for example, systems used to design hardware and software, one

vendor of ODBMS technology claims performance improvements of two to three orders of

magnitude. But that same vendor admits that for large transaction processing applications,

relational technology is still substantially better. Over time, the performance of ODBMS

technology is expected to improve to make it more appropriate for a wider range of appli-

cations, but it is unlikely to ever replace other DBMS technology completely.

At the moment, there is no interoperability between competing ODBMS products.

The promised OMG standard is intended to rectify that situation.

27

Most of the experience with ODBMSs is in areas of hardware and software design.

In general, only small pilot projects have been attempted in business data processing.

Most existing ODBMSs have language bindings only for C and C++, with some

support for Smalltalk. Bindings for Ada are currently under development by EVB, Inc. and

ITASCA, with an expected release by November 1993.

Assessment

Database support for OOT is still immature. It appears that there is something,

sometimes a lot, to be gained from optimizing a DBMS for particular types of access pat-

terns, and the applications for which OOT has been the technology of choice seem to be

one of the cases where relational technology is not most optimum. However, this may be

an implementation issue more than a data model issue. As experience with object-based

applications grows and their requirements for DBMS support become better understood,

performance will undoubtedly improve. Adopting OOT will require DBMS support for

objects when data sharing and query processing are needed, but it is not yet clear if the data-

base management area of the architecture will have to be augmented to permit both rela-

tional and OOT technologies, or if support for OOT within an extended relational system

will be adequate. In fact, as experience with OOT in general grows and the types of appli-

cations to which it is applied expands, some of them may still benefit more from traditional

relational DBMS technology. Today, ODBMS technology is best suited for applications

involving large complex objects where retrieval requires navigating on the basis of rela-

tionships in the data, but ODBMS technology is not appropriate yet for traditional transac-

tion processing applications.

3.4.2 Programming Services

The area of Programming Services is defined to include the full range of support

used in the development of engineered software. In every phase of the software engineering

life cycle, if the work of that phase uses OOT, then the tools required to support that work

will be different from those of the more traditional approaches.

Object-oriented programming languages date back to the late 1960s with the devel-

opment of Simula. Shortly after that, Smalltalk was introduced and made available and

extolled widely in the United States. Several other object-oriented languages were intro-

duced more recently, most notably C++ which became very popular because it would run

on virtually any platform that supported C.

28

State of the Technology

The most popular object-oriented programming language is C++, with Smalltalk
getting most of the remaining marketshare. Both C++ and Smalltalk are supported by

developers of tools and reusable object libraries. Commercial object-oriented components

of other areas of the architecture, such as an ODBMS, generally provide bindings for one
or both of these two languages and rarely any others.

The current version of the Ada programming language, Ada83, is considered object
based, not object oriented, since it lacks constructs for inheritance and dynamic binding; it
does, however, provide strong support for encapsulation with the package and private type

constructs. A form of single inheritance is possible using derived types. The anticipated

Ada9X will provide mechanisms for true single inheritance and dynamic polymorphism.
With these features Ada9X will be considered an object-oriented language, but is likely to
continue to have difficulty making inroads into the object-oriented community.

Assessment

The current version of the TRM defines the Programming Services area to include
programming languages, bindings, and CASE tools and environments, but the only identi-

fied language standard is Ada, which is also Congressionally mandated. Since the current
Ada83 is "object based," the current TRM does not specify a true object-oriented language.
When the new Ada9X becomes DoD policy, that gap will be filled and there will be no issue
with respect to the availability of an approved object-oriented programming language. In
the meantime, however, languages designed specifically to support OOT do so more com-
pletely than Ada83. There is currendy no policy related to the use of CASE tools and envi-
ronments, but the pending procurement of I-CASE may result in a policy directive to
require its use. For more information on I-CASE and OOT tools, see Section 3.3.

This, however, represents only the policy aspect of object-oriented programming
services. The fact remains that most of the current work in object-oriented programming is
being done in C++ or Smalltalk. It is primarily in these languages that commercially avail-
able class libraries and ODBMS bindings can be obtained. Class libraries and bindings for
Ada have just recently become available with more under development.

3.4.3 Distributed Computing Services

Distributed computing services are those concerned with the mechanisms that per-

mit service requestors to interact with service providers in a transparent way. Both request-

29

ors and providers may be applications or the implementations of platform services. The

specification of just how much behavior is included within the domain of distributed com-

puting has not been agreed to completely within the industry. Several options have been

proposed under the label of a reference model or architecture for distributed computing.

They are all treated as reference models in the discussion that follows. Evaluating the

impact of the introduction of OOT on the distributed computing services depends on the

selection of the distributed computing reference model (DCRM) made by DoD.

The specific definition of what services are included within distributed computing

depends upon the choice of a DCRM. Several such models have been proposed, including

the following:

a. Advanced Networked Systems Architecture (ANSA), a research product of the

Alvey Program in the United Kingdom, and now managed by Architecture

Projects Management Limited

b. Distributed Computing Environment (DCE) from the Open Software Founda-

tion (OSF)

c. Common Object Request Broker Architecture (CORBA) from the OMG

d. Basic Reference Model of Open Distributed Processing (ODP) (ISO/IEC

10746)

The ANSA effort is the oldest of these, and the ANSA participants have played

major roles in the definitions of all of the others. As a result, the basic concepts are quite

similar, but the different membership structures of the sponsoring groups have led to a dif-

ferent focus in each group. The ANSA effort includes an implementation that has been used

largely as a proof-of-concept testbed, but has also been used in at least one production sys-

tem by NASA. The other three are discussed in more detail in the paragraphs below.

It should be noted that OOT, while neither necessary nor sufficient for distributed

computing, generally facilitates distributed computing because of the way it encourages

encapsulation. The object paradigm generally encourages a client-server view of the rela-

tionship between one object and another. While client-server computing is, again, not syn-

onymous with distributed computing, it is one way to provide the natural separations that

permit transparency mechanisms to be implemented.

30

3.4.3.1 Distributed Computing Environment (DCE)

DCE is a distributed client-server environment developed by the OSF. The process
by which DCE was developed differs from other efforts in that it was based entirely on
existing technology. OSF invited vendors of COTS products to supply services in several
areas. The vendors had to be willing to supply source code and to demonstrate the working

of the product. The proposals were then evaluated and one product was selected for each
area. OSF then integrated these products into a working system.

State of the Technology

The OSF is presently marketing a specification and a reference implementation of
DCE and is working on a specification and a reference implementation of an extension

called Distributed Management Environment (DME). The OSF also announced its inten-
tion to adopt the CORBA standard in a future version of DCE and DME. X/Open is work-

ing on the adoption of the DCE specification as part of its set of open specifications as well
as CORBA.

Assessment

The DCE is not intended to be object oriented. The DCE is considered more client-
server oriented, but the distance between client-server and object-oriented with respect to
distributed computing is a subject of considerable debate. For example, there are those that
argue that inheritance makes no sense in a distributed system, and to them, the distinction
between client-server and object-oriented is largely a choice of words. Others disagree, and
to them the adoption of DCE would mean that OOT was not adequately supported, thereby
leaving a policy issue if one wanted to do "real" distributed object-oriented computing.

3.4.3.2 CORBA

An object request broker (ORB) is a program that provides a location and imple-
mentation independent mechanism for passing a message from one object to another.

Objects are registered with the ORB, providing details on the services the object accepts
and the invocation mechanism for invoking those services. The ORB then accepts messag-

es for registered services for registered objects, locates the objects on the same or a different

platform, and passes the message to the object. When multiple platforms are involved, each
is said to have its own ORB that interoperates with the others.

It should be noted that the basic function of an ORB does not necessarily require
the invoked object to actually be an object in the object-oriented sense. In fact, one of the

31

advertised benefits of the ORB concept is that it can be used as a way of encapsulating leg-
acy systems to permit them to be invoked by object-oriented objects. This concept can be
generalized to the point where the major benefit of ORB technology in the near term may
very well have nothing whatever to do with OOT, but rather serve as the missing link in the
arbitrary interconnection of disparate systems.

State of the Technology

The OMG has recently adopted the CORBA as a specification of the architecture
for ORBs, and several vendors have already announced products that conform to it. As not-

ed earlier, OSF has announced its intention to adopt CORBA in a future release of DCE.

Version 1.1 of the specification is somewhat limited in that it does not require interopera-

bility between the ORBs of different vendors. This problem is intended to be corrected in

Version 2.0 of the CORBA specification. Until this happens, all cooperating ORBs in a net-

work will have to be the same brand. X/Open is also adopting the CORBA specification as
part of its set of open specifications.

Assessment

As one might expect, experience with building and using an ORB is limited. Still,
the systems that have been built appear to offer great promise for the technology. The major
concern is the impact of the ORB on the overall performance of the system. As a result,
performance has been one of the areas implementors have been concentrating on, and it

appears that substantial progress has been made. Whether or not the performance will be
adequate for production systems remains to be seen.

3.4.3.3 Open Distributed Processing (ODP)

ODP is intended to become a reference model for distributed processing in the same
mold as the Open Systems Interconnection (OSI) reference model for communications. As
a reference model, ODP defines classes of services and provides a structure for a hypothet-
ical set of components that will be needed to provide those services. That is, the intention
is specifically to be a framework within which to develop standards for services necessary

to provide a wide range of transparencies in computing, and is not itself a standard for any
services.

32

State of the Technology

ODP is not yet an approved International Standard, and is not expected to become
one for a few more years. The current draft is still incomplete, but its basic structure has
been defined. OMG has established a liaison with ISO to converge ODP and CORBA.

Assessment

ODP is largely object oriented to begin with. If it is adopted as the DoD reference
model for distributed computing, the inclusion of OOT in the distributed computing servic-

es area of the TRM would be automatic. It will be several years, however, before imple-
mentations are expected to be available.

3.4.3.4 Summary Assessment of Distributed Computing

The integration of OOT and distributed computing technology is so immature that
the very nature of the relationship is still a matter for debate. Experience with distributed
computing in general and object-oriented distributed computing in particular is very limit-
ed. A number of university and industrial research projects have developed most of the
needed concepts and mechanisms to the point where it is believed that production quality

systems can be built. A few organizations that see their requirements as compelling have
actually built or are building the first of these systems, but the numbers are very small. For
example, DCE and CORBA have been on the market for only a short time. Implementa-
tions of DCE are currently available on several computers, but the number of language

bindings available for each implementation is small, generally only one. Still, vendor inter-
est seems to be very high. In particular, Unix International, the consortium that defines the
requirements and specifications for Unix implementations, has recently decided to add a
CORBA-compliant ORB to its 1993 road map.

The three candidate technologies described here are not entirely unrelated. ODP is
the most complete reference model. DCE and CORBA both represent technologies that

start the process of populating the reference model with component standards even before
the reference model itself is complete. As noted earlier, DCE and DME will make use of
CORBA in the future.

ODP has not been approved as an International Standard. Additional components
are likely to be added. The standardization process currently in effect for DCE and CORBA

does not exactly follow the approach recommended for open standards. If the current pro-

ponents of DCE and CORBA offer their efforts to the international standards community,

33

they will have to relinquish control. Since these are primarily vendors, it is not yet certain
that they will do that. On the other hand, both DCE and CORBA have been adopted by X/

Open, which has a level of legitimacy that is closer to that of the international standards

community.

3.5 DISA/CIM REUSE PROGRAM

The DoD currently has a Software Reuse Initiative (SRI), which is being carried out
by the DISA/CIM Reuse Program Office (RPO). The SRI is promoting a strategy of sys-
tematic reuse, "where opportunities are predefined and a process for capitalizing on those

opportunities is specified" [DOD92]. The SRI is considering the types of domains appro-

priate for reuse, the types of products, the acquisition and development process, the asso-

ciated business models, metrics, and standards to support software reuse. A key element of

realizing software reuse will be the definition of software architectures, which result from

domain-specific analyses.

Within DISA, the DISA/CIM RPO is also implementing a reuse program to serve

the IM community within DoD. The RPO considers OOT as part of its general strategy for
accomplishing reuse and is using an object-oriented approach for domain analysis. In addi-

tion to OOT, the RPO has proposed four basic principles to promote software architectures
and domain analyses for its community:

• Support the analysis of problems and systems in specific domains. Exploit these
domains to support reuse-in-the-large by building domain specific tools such as
program (application) generators, very high-level languages, and domain-spe-
cific reusable component parts (source code libraries).

• Ensure that reuse is treated as an integral part of software engineering.

• Employ reuse-oriented flexible architectures, with the goal is to achieve "black
box reuse."

• Provide the ability to locate and share reusable components across domains and
among services. Provide a network of interconnected reuse library systems.

DISA/CIM Reuse Repository
DISA presently stores its reusable software components in a Central Reuse Repos-

itory, managed by the Center for Software Reuse Operations in DISA/CIM. This software
library is replicated at four sites around the country, and is available to all DoD agencies

34

and authorized contractors. The Center began in August 1992, with the transfer of the

Army's Reusable Ada Products for Information Systems Development (RAPID) program

to DISA. This transfer included 1,600 Ada source code packages, with the largest package

containing 300,000 lines of code. The library now contains 2,580 modules of Ada, Pascal,

Fortran, and C++ source code, and textual descriptions of source code stored elsewhere. In

total, the library now holds approximately 2.2 million lines of code.

To access the library, users enter the system via Internet and enter their needs from

a menu of ten categories. There is no browser through an object/class hierarchy as is

becoming standard in object-oriented languages. Rather the user picks criteria from the 10

categories, and the system searches for a match in the repository. Table 1 contains the 10

categories which describe the language and the functionality of each module.

Table 1. Repository Facets

Facet Description

Component type Module type, such as design or implementation

Function Process that the software performs, such as sort, assign

Object The conceptual object represented, such as stack, window, person

Language

Algorithm

Data representa-
tion

Unit type

Certification level

Environment

The language used, such as Ada, Cobol, Fortran

Any special method used with the software, such as bubble, hash,
etc.

Data structures, such as record, pointer, arrays

The language specific unit, such as file, procedure, package

Level 4 means compiled and tested by DISA. Ninety percent of the
component presently in the repository are at level 1 (lowest level -
no criteria).

Originator

Hardware needed to run the component

A reference to the organization that contributed the software

Components in the DSRS repository are classified with a faceted classification

scheme. A faceted system does not rely on a hierarchical breakdown of a universe, but

instead builds up and synthesizes from the subject statements of particular documents. A

faceted system is fluid, and new top-level divisions (facets) can be added as the need arises.

35

In the current DSRS repository, there are 10 top-level facets, and 1,300 second level divi-
sions (terms) distributed under these facets.

Assessment

The existing repository can store and retrieve object-oriented code and analysis,
design, and prototype models, but the current faceted scheme offers a limited search mech-
anism when compared to object/class libraries and browsers that are commercially avail-
able. In the DSRS, there is a browser that allows a user to see those components that have

a defined relationship with a specific component. With the Ada components, it is common

to see dependency or "withing" relationships identified between related components. In a

similar manner, components with a parent or child relationship can be identified. It should

be noted that this capability is provided by the DSRS software and not the faceted classifi-

cation scheme. To have this relationship identified, it must be specified by the repository

librarian when the component is entered into the library. It other words, these relationships
are not established automatically. However, the DSRS does allow transitive dependencies
so that "grandparent" or "grandchild" classes can be identified, but these must be explicitly
defined by the librarian. The search capability is limited in that the DSRS does not allow a
search based upon a specific relationship a component may have with other components.

To enhance component reuse, the DoD may also want to consider developing stan-
dard library classes in Ada9X and graphical class browser support as part of the DSRS
capability. Commercial object-oriented languages such as C++ or Smalltalk contain a set
of library classes that are shipped as an intrinsic addition to the language standard. Such

libraries include input/output class libraries, math libraries, and a library for a graphical
user interface.

3.6 DOD DATA ADMINISTRATION PROGRAM

The mission of the DoD Data Administration program is "to provide for effective,
economic acquisition and use of accurate, timely, and shareable data to enhance mission

performance and system interoperability" [DOD92a]. Its scope extends to all levels, includ-
ing "installation/base, strategic, tactical, theater, research and development and administra-
tive support programs." The Data Administration program is seeking cost reduction and
interoperability through the standardization of data element names and definitions. Its goals
are to have a centrally controlled, DoD-wide data repository, standard data, and the use of
common procedures and tools. It is currently using IDEF1X for data modeling and wants

36

data elements to "convey a single, information concept" as required by DoD 8320.1-M-l,
DoD Data Element Standardization Procedures [DOD93].

The definition of data elements is achieved through a "model-driven" or entity-driv-
en approach. Entities are derived first, then their associated attributes, as opposed to defin-
ing attributes and then grouping them based upon functional dependencies. A data element

is a "named identifier of each of the entities and their attributes that are represented in a
database" [DOD93]. The data element consists of a "prime word" (and modifiers) and a
"class word" (and modifiers), with optional property modifiers. The class word with the

modifier designates the category and data type to which the data element belongs. Current-
ly, there are 17 predefined class words defined in DoD 8320.1-M-l.

The definition of each data element includes the element name, the type of data
(alphanumeric, alphabetic, numeric, integer, etc.), as well as a listing of all possible domain
values. The names and domains are intended to be according to logical, not physical, con-
siderations. Data elements do not include any connotations regarding technology (hard-
ware or software), physical location (databases, files, or tables) or function (systems,
applications or programs).

Data Administration for OOT
Object-oriented technology collects several data elements into one unit, called a

class. Instances of each class are called objects, and each object contains specific data ele-
ment values. As an example, consider a typically complex object like an employee, with a
name, address and salary. In the example below, the name and address are independent
classes used by the employee class to store data.

CLASS EmployeeClass
-- attributes

EmpAddress: AddressClass
EmpName: NameClass
Salary: integer

-- methods

SetSalary()
GetSalary()

CLASS AddressClass
-- attributes

Street, City, State: CStringClass
ZipCode: integer

-- methods

SetAddress(;
GetAddress(]

37

This simple example shows the three kinds of attributes present in object-oriented

languages:

a. The primitives in the programming language (integer, float, character, refer-

ence, pointer, etc.) as noted by the Salary attribute in the EmployeeClass.

b. Predefined library classes that can accompany the language. The CStringClass

in the AddressClass above is meant to demonstrate such an example. This class

could have been written by the programmer, but a String class is usually avail-

able in a predefined library.

c. References, pointers or incorporation of other complex objects. The Employee-

Class above includes two other user-defined classes as members, AddressClass

and NameClass.

This example also lists the two most basic methods, one to Set() the value of a sim-

ple attribute, and one to Get() the value of the attribute. Every simple attribute such as Sal-

ary needs at least two basic functions, Get() and Set() to manipulate the attribute.

In all commercial object-oriented databases now on the market, persistent storage

is at the attribute level. In these products, an object with nested child objects is stored as an

ordered sequence of parent attributes followed by an ordered sequence of child attributes.

The order of storage and the method of storage is vendor dependent, and no standard order

of storage has emerged.

A complex object can be decomposed into simple attributes for persistent storage.

These attributes can be managed with the current Data Administration program, and there

are no substantial changes in Data Administration needed for object data management

Built-in class libraries, like the CStringClass above, can also be managed by current

Data Administration procedures. These complex objects again decompose into simple

attributes which can be controlled by Data Administration at the data element (attribute)
level.

Assessment

For object technology, data management can still be at the primitive data element

level inside each class: every complex object can be unraveled into the primitive data ele-

ments of its components, and management of these primitive data elements (object

attributes) can be accomplished with the current Data Administration procedures in the
DoD.

38

In addition, building class libraries and managing object data are still new technol-
ogies. Early users of object technology have needed several pilot projects to properly define
class structures and class methods. At this early stage in the development of object tech-
nology, operations and methods on primitive data elements are too variable by domain to

rigidly define. Since classes and appropriate methods cannot be easily predefined top down,
it is best to provide data administration at the primitive data element level.

One issue that has arisen is how data and reuse repositories might be integrated. As
noted previously, the current Data Administration program coordinates the development of
standard format and naming conventions for exchanging data across organizations and
domains. This program does not take an object-oriented approach (i.e., managing object/

class definitions); instead it uses the IDEF1X data modeling to identify data entities and

attributes that are common across different DoD business areas. The IDEF1X entities and

attributes provide the basis for data element names and definitions. The current data ele-
ments could serve as a source for object/class attributes. The data elements, however,

remain distinct from object/class models and the abstractions defined for the domain of
interest.

If the Data Administration program were to take a pure object-oriented approach,
then instead of managing data models and data elements (attributes), it would manage
object/classes with their associated attributes and operations. This repository of object/
classes would look very similar to a reuse repository of object/class definitions. And under
this scenario, the function of data administration and reuse would be synonymous. The
object models in this case would provide the source of standard data elements. The stan-
dardization of data would not have to be implemented internal to the object, but rather
could be an external format that cooperating systems could both use and that would be man-
aged by a central data administration authority. Standard data elements could be viewed as

domain-independent objects that have concrete external representations and only a minimal
set of generic operations (methods). Separate domains would be expected to define their

own internal views and representations of these standard objects and provide the necessary
conversions to and from the external exchange format. Most likely, they would also enrich
and extend the set of domain-specific operations.

39

4. TECHNOLOGY TRANSITION

The use of OOT does not automatically guarantee more successful software devel-
opment projects. OOT must be transitioned to an organization with regard to its existing
environment, the training and experience of personnel, the type of systems to be built, and
the anticipated opportunities for software reuse from future projects.

To understand the experience of transitioning to OOT, representative samples of
OOT transitions were examined. These case studies are provided in Appendix A. Most of
the case studies include experience from more than one system. We looked for samples that
were MIS-type applications, that were moving from Cobol to an object-oriented environ-
ment, and, if possible, were implemented in Ada. Three of the five case studies are from

private industry: Brooklyn Union Gas, American Management Systems (AMS), and Sys-
tems Research and Applications (SRA); the fourth is from the Software Engineering Lab-
oratory (SEL) at NASA/Goddard Flight Center; and the last is the Base Level System
Modernization (BLSM) project at the U.S. Air Force Standard Systems Center. From an

analysis of these case studies and technology transition literature, some basic strategies
have been identified as a means for transitioning to OOT.

4.1 LESSONS LEARNED

The infusion of OOT into development organizations has not been without mis-
takes. There are "lessons learned" that should be regarded as part of any technology tran-
sition strategy. This section looks at a sample of lessons learned in the following areas:

• Technology effectiveness

• Reuse

• Training

• Roles and responsibilities

• Tool Support

41

4.1.1 Technology Effectiveness

The first and probably most significant lesson is that OOT is not a substitute for soft-
ware engineering principles, and the promised benefits of OOT will happen only if sound

management and engineering practices are in place. Page-Jones recommends that an orga-
nization should be "circumspect" about adopting OOT. And that if developers are adopting

OOT because they have had difficulties using structured techniques, then they will proba-
bly have difficulty using object-oriented methods. He also notes that OOT requires a high
degree of engineering discipline beyond even that practiced by experienced software engi-

neers. He stresses that without proper consideration and planning, the use of object-orien-

tation will be relegated to the "Method of Great Hope for about a year" [PAG92]. The effect

of "object mania" was cogently described by Burton Leathers of Cognos, from its less than

successful experience in using OOT [LEA90]:

Nonetheless, the fact that we were using an OOPL [object-oriented pro-
gramming language] was important because it contributed to an attitude
which would not otherwise have existed. It was very true and is still some-
what true that OOP protagonists are true believers. The very real benefits of
using OOP are presented in a very one-sided fashion which too often leads
to the view that OOP is a panacea. This better than life outlook induced a
euphoria in management which caused suspension of the normal procedures
and judgment criteria. As a result, the product was inadequately defined,
schedules were unrealistic and the design process was wholly inadequate.
As difficulties manifested themselves, panic response set in and all the prob-
lems so graphically described by Brooks in The Mythical Man-Month ap-
peared. The final insult was that the lack of adequate management controls
caused the project to carry on—at great expense—far beyond the time it
should have died.

The second point regarding effectiveness, is that the "right" design and analysis
methodology is not a settled issue. AMS notes that "object development is widely misun-
derstood" and that "no single methodology, by itself, was sufficient for large-scale transac-
tion processing systems." It also noted that all notations had "pros and cons"; however "all
will work" [AMS93a].

The third point was that domain engineering (i.e., defining relevant objects in the
application domain) cannot be done in the "abstract" [STA93b]. Identifying and designing

classes, particularly reusable classes, requires problem domain expertise, not just method-
ology expertise. An organization must complete a number of projects before the domain is
sufficiently understood for building class libraries. Most early users of object technology

have found class design to be an iterative process. NASA/Goddard found it necessary to

42

build one complete application before classes could be finalized for each domain. Other
early users have had similar experiences [LEI93, BR092]. Pittman [PIT93] also warns

against relying on the "domain idiot," someone who is versed in object concepts but knows
little of the domain.

4.1.2 Reuse

The benefits from reuse are often cited as the major reason for adopting an object-

oriented approach. These benefits, however, may not be realized until several object-orient-
ed projects have been completed and reuse libraries have been built. Page-Jones [PAG92]

notes that the "benefits from reuse will not be immediate" and that an organization should

"beware of inflated productivity claims." Reductions in lines of code will be the result of
having a "sound in-house library and about five years of elapsed time." AMS estimates that
it will take one to two years before there are payoffs in reuse [AMS 93].

In addition to managing expectations, reuse must also be planned for. Building reus-
able software requires organizational commitment and engineering discipline. NASA/God-
dard's substantial success with reuse resulted from making reuse a primary concern and not
just a by-product of its engineering process [WAL93a]. Because reuse must be considered
at design, an organization should expect a substantial overhead in making a product reus-
able. Page-Jones [PAG92] estimates that "it takes about 20 person-days per class to build
for the here-and-now," with "about 40 person-days per class to build in solid reusability for
future projects."

SRA found that reuse across its Ada systems was limited because of different soft-
ware architectures and implementations, with different DBMSs and with different bindings
and GUIs (graphical user interfaces). It found that reuse was less attributable to inheritance
and verbatim reuse than the reuse of code templates [SRA93c]. In a similar manner, the

BLSM effort appears to have substantial reuse by developing standard screen templates
[BLS93a].

4.1.3 Training

While the potential payoff for using OOT is high, learning the object-oriented par-

adigm may be a daunting task, particularly for those developers with years of functional-
based development experience. Learning how to identify objects requires time and training,
and object-oriented methodologies vary in their degree of guidance. Both the technology
transition literature and the case studies noted that there will be a significant learning curve,
with developers needing at least six months to one year to become proficient [PAR92].

43

Page-Jones [PAG92] estimated that "a shop of over 100 people will need at least 3 years to

convert to object-orientation." NASA estimated that an organization should plan for a 5 to

10 year conversion [STA93].

The timing and type of training will also have affect the success for OOT conver-

sion. In a number of case studies, developers were trained in Smalltalk as an initial step in

learning object concepts. In addition to learning Smalltalk, training in software engineering

concepts was also considered essential. For maximum benefit from training, it should be

given just prior to actual use or "just-in-time" training [PAR92, BLU91]. Taligent [TAL93]

recommends a "total immersion" approach to learning object-oriented concepts. In addi-

tion, object concepts need to be used and exercised during training; it is recommended that

students produce an object-oriented product from their training.

One additional concern regarding training is that it is necessary for those other than

the development team, such as customers and management, to understand object-oriented

concepts. Specifications for requirements and design that use object-oriented notations may

not be easily understood [WAL93].

4.1.4 Roles and Responsibilities

The use of OOT may require the establishment of some new roles and responsibil-

ities that are specifically suited to OOT, such as domain expert/analyzer, class architect,

object/class librarian, and reuse tester/specialist [AMS93a]. The domain expert is someone

who is knowledgeable in the application domain, not necessarily however with the object

modeling and software engineering aspects.

An organization may also want to establish a "technology receptor group" as a

means of transferring technology within the organization. In both the AMS and BLSM cas-

es, a specialized core group was trained and then later used as mentors to the developers

who received the next round of training. Parkhill calls this a "Technology Receptor Group";

it essentially serves as an entry point for new technologies for an organization. The BLSM

effort created a "Cadre" of government personnel who served as the mentors. The initial

AMS team provided a focus for OOT expertise. The important quality to note here with the

mentoring groups is that technology transition is recognized as a human activity. A major

obstacle is getting the developer who has been implementing code in a procedural mindset

to understand the object-oriented paradigm. This transition takes practice, time, and a high

degree of interaction with mentors.

44

4.1.5 Tool Support

As with the use of almost any methodology, the success of OOT will be enhanced
if there are software engineering tools to support the chosen object-oriented methodology.

This is especially true for object-oriented methodologies since these approaches make
extensive use of graphical notations. Managing and updating these notations often require
automated support. In the JIAWG (Joint Integrated Avionics Working Group) experience
in using OOA, the lack of a CASE tool to support the Coad-Yourdon OOA approach was

a serious impediment to its success [BLU91]. Fayad et al. [FAY91] also note that it is nec-
essary to get CASE tools that support a project's particular object-oriented method.

Another observation regarding many of the object-oriented analysis and design
CASE tools was that developers of methods are also vendors of their own proprietary tools.
This situation is different from the structured methodologies market, where a set of com-
mon structured methodologies is supported by several tools [MAZ92]. As noted earlier, a
couple of the more popular object-oriented methodologies such as Schlaer-Mellor and
Rumbaugh are now supported by more than one tool vendor.

4.2 GENERAL TECHNOLOGY TRANSITION STRATEGIES

Based upon the experience papers and case studies, there appear to be three basic
strategies to transitioning to object-oriented technology: (1) system/project based, (2)
domain based, and (3) enterprise based. In the first strategy, OOT is adopted as the result
of the needs of a specific system development, not as a corporate or domain-wide adoption.
The system-based strategy was more typical of Brooklyn Gas and SRA. In the domain-
based strategy, OOT is used across multiple systems and projects but within the same
domain as typified by NASA/Goddard's experience. In the third case, OOT is adopted
enterprise-wide as part of a corporate strategy for system development. In this broader

strategy, there are considerations for standard architectures, methodologies, and processes.
This type of situation was more evidenced by the AMS and BLSM efforts.

4.2.1 System/Project-Based Strategy

The system/project-based strategy is driven by the demands of a specific project.
This may be the result of imposing a design or implementation requirement (such as lan-
guage) that is better suited to an overall object-oriented approach. Or its use may be the
result of the specific motivation of the development team that has an interest in using OOT.
This use of OOT is more "bottom-up." There is no requirement for all domain or enterprise-

45

wide software development to be object oriented. The degree of reuse may vary according

to the specific reuse goals of the organization.

4.2.2 Domain-Based Strategy

A domain-based strategy is one in which the use of OOT is not mandated enter-

prise-wide, but has been adopted for a specific domain of applications. In this approach,

there is planning for reuse since multiple systems will be developed within the domain. The

NASA/Goddard SEL falls into this category, since OOT is not required but has been incor-

porated into systems development which is relatively confined to the flight dynamics

domain. Even before NASA started using OOT, it was planning and building for reuse with

components, specifications, and architectures.

4.2.3 Enterprise-Based Strategy

In the enterprise-based strategy, the implementation of OOT is adopted throughout

the software development enterprise. In this sense, OOT is more mandated rather than just

available. The use of OOT with other changes may be seen as a competitive edge, such as

the ability to get products to market quicker or to respond to customers needs faster. The

use of OOT is expected for the long term and there exists the expectation of the future use

of "objects." Hence, there will be an effort to build reusable libraries and architectures. This

type of transition is best illustrated by AMS. Although it wasn't truly enterprise-wide, the

BLSM case is grouped here because it took a broader perspective than just the system or

domain, building reusable classes across three different domains. Both AMS and BLSM

adopted OOT as a larger strategy, not just based upon the requirements of a specific system

development.

These transitions contained elements of the following transition strategy recom-

mended by David Parkhill [PAR92]:

1) Start small: A company should choose a project that is low risk, but real, not a

toy project. One danger with embarking on an OOT transition is that OOT is oversold to

management and expectations are set too high. The result is that the early use of OOT is on

high visibility, high risk projects. Since the use of OOT introduces a major factor of com-

plexity, other risks should be minimized. In a similar manner, an organization should use

only those portions of technology that are sufficiently mature [PAG92].

2) Train a core group: Training a core group allows the transfer of technology to

happen "through people and mentors" [PAG92]. Parkhill calls this a "Technology Receptor

46

Group," and it should be set up six months to one year prior to production use. This core
group should consist of developers who are quick learners and highly motivated to learn
OOT. They will serve as teachers/mentors to the organization's developers. Everyone
should receive object training, but a core group may receive additional training. Members
of this group often serve as mentors to small development teams.

3) Use the core group as mentors: The establishment of a mentor group reflects
the need for solid, in-house working OOT expertise and its availability to new developers

learning the object paradigm. Noted over and over with this technology is that it requires a
different perspective in problem solving; and that shift in thinking may not happen as the

result of a one-week course, but takes practice and with guidance from OOT experts.

4) Plan for a substantial conversion time: An organization should anticipate and

plan for a substantial conversion time for a OOT transition. The core mentor group should
be set up six months to one year prior to actual production use [PAR92]. Page-Jones
[PAG92] estimates a 3-year conversion process for a shop of 100 people.

5) Identify testbed applications and start prototyping: One essential aspect of
this technology is that it must be used and practiced. In both the AMS and BLSM cases,
organizations conducted prototyping (in Smalltalk) before actual system development.
This opportunity to do hands-on work helps developers to refine their understanding of
object-oriented concepts.

6) Measure key process indicators: It is important for an organization to know
what works and what doesn't. It should measure such factors as design and implementation
time, component reuse, and error rates.

4.3 TECHNOLOGY TRANSITION FRAMEWORK

Object-oriented technology should be introduced according to the maturity of the
technology and the environment. Certain aspects of OOT are more mature than others. For
example, object-oriented programming languages are more mature than object-oriented
database technology. In addition to the maturity of the technology, the environment into

which it will be introduced will be a significant factor to its operational success. The orga-

nization may have policies and programs that effectively prevent the use of a new technol-
ogy. Or there may be a lack of training and tools for software engineers. Whatever the
technology, there are a number of factors that will contribute to a technology's success or
failure.

47

Table 2 is a proposed framework for illustrating suggested stages of OOT technol-
ogy infusion into an organization. This framework has five stages:

• Impeded

• Passive

• Active

• Optimized

• Coordinated

Impeded: The initial state of the transition model is considered "impeded" because

existing policies, standards, and dependence on other technologies impede the widespread

use of the new technology. Use of the technology happens under special conditions, where

exceptions or waivers are granted to standard policies and procedures. The use of the tech-

nology conflicts with instituted methods for acquisition and development.

Passive: In this stage, the technology does not have any major impediments or over-

riding technical risks. Its use, however, is not encouraged either through policy or tool and
training provisions. Its use may be in pilot projects, which at this stage are not required to
receive exemptions to existing policies and standards. Tools and training are acquired in an
ad hoc, project-specific manner.

Active: Tools and training are widely available and supported, and the use of the
technology may be encouraged. Use may still be system or project specific. There exists an
environment where users can gain experience with the technology and a variety of methods
and approaches may be employed. No institutionalization of the technology yet exists.

Optimized: In this state, use has accelerated and improved to the point where as a

community, there develops some consensus regarding the value of different approaches and

methods. By this point the use of the technology is not new and there is a well-developed

community of experienced practitioners. Technical issues have been resolved to secondary

or tertiary status. There is the development of reusable class libraries. The technology can
start to be exploited in innovative ways and there exists the opportunity to pursue common
definitions and interproject coordination.

48

Table 2. Technology Transition Framework for OOT

Stage Characteristics Transition to
Next Stage Enterprise Actions Organizational

Actions

Coordinated - Standards - Integration with - Monitor OOT and - Keep skills
- Integrated other technologies other technologies and tools up-
- Interconnectivity to-date

- Interproject coordi-
nation

- Architectures

Optimized - Skilled level of - Integrate OOT use - Coordinate a selec- - Develop
practice into (across tion of OOT meth- standard

- Reuse of classes projects and the ods class librar-
- Selective use of DoD Enterprise - Resolve inter-orga- ies

methods domains) nization/project
impediments

Active - Training and tools - Assess and opti- - Assess OOT use - Evaluate
in place. mize OOT use across enterprise approaches

- People getting - Fund early domain- to OOT
experience based use - Look for

- Using mix of - Disseminate OOT opportunities
approaches assessments and for domain-

- Non-integrated information based use of
- Project specific OOT

- No multi-system/
domain coordina-
tion

Passive - No policy impedi- - Introduce OOT - Fund early projects - Acquire
ments - Establish training technology

- No major technical policy - Conduct
risks pilot projects

- Ad hoc - Get tools
- Non-integrated and training
- Project specific
- Pilot projects
- No organized train-

ing and tools

Impeded - Impediments still - Eliminate or mini- - Technology assess- - Conduct
exist mize technical, ments exploratory

- Maybe some economics, policy, - Enterprise needs projects
exploratory or cultural impedi- assessment - Identify tech-
experimental work ments -Analysis of policy nical risks

- Nonoperational - Revise policy, stan- and issues
- Specialized dards, programs

projects on waiver

49

Coordinated: There exists sufficient experience to agree on standards, protocols,

and common methods. The variety of approaches in the technology may have evolved to a
closer consensus by this point. This should be evidenced by common definitions. Use is
enterprise-wide, with common established policies, procedures, standards, and building
blocks. Opportunity exists to integrate with other technologies.

This framework is intended to be applied to specific enterprise and organizational
actions and is intended to accommodate the varying maturity of OOT and the varying abil-
ities of different organizations to adopt it. For the DoD, the enterprise-level actions are
those to be undertaken at the OSD level and would be effective DoD-wide. The organiza-

tion-level actions are those specific to an individual organization, such as a Central Design

Activity, considering or undergoing a transition to OOT. Ultimately, the actions taken

should help the organization or enterprise move to the next stage in the transition frame-

work.

50

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

In considering whether the DoD should implement OOT within its information
system development, we have reached the following conclusions:

OOT appears to offer advantages over traditional process-driven and data-
driven approaches. The features of encapsulation and inheritance support increased
maintainability and reusability which leads to lower costs in software development and
maintenance. OOT also appears to facilitate distributed computing through the use of
encapsulation which encourages a client-server perspective.

OOT is not a completely mature technology. There still exists a diversity of
concepts and notations used in development methodologies and a variety of mechanisms
for object database technology. For now, relational database technology should remain the
primary method for simple business data, with object database technology more
appropriate for complex data types.

There appear to be relatively few, if any, impediments within DoD AIS lifecycle
management and software development standards to using OOT. DODD 8120.1/
DODI 8120.2 and the anticipated DOD-STD-SDD do not present any impediments to using
an object-oriented approach. Both support iterative and incremental lifecycle development
models. The existing DoD lifecycle process model for AISs and the anticipated software
development standard should accommodate the use of object-oriented technology.

There are impediments and technical risks within the DoD Process Model for
IM and Technical Reference Model that should be resolved prior to any large-scale
transition to OOT. The Process Model for IM may need to be revised to resolve the IDEFO
and IDEF1X to object-oriented transition between functional process improvement and
system development. The TRM may need to be revised to accommodate object-oriented
database technology.

A successful transition to OOT will require tools and a significant training
effort. Since the success of OOT will depend in large measure upon the capability of the

51

individuals who use it, training in object concepts along with software engineering

concepts is essential, as is the support of automated tools.

5.2 RECOMMENDATIONS

The overall recommendation of this effort is that the DoD should support the

introduction of OOT as part of its software engineering and information technology

strategy. The introduction of this technology will have to consider the large-scale

consolidation of DoD information systems currently underway, their migration to open

standards, and ongoing reengineering efforts. The integration of this technology will also

need to consider functional process improvement activities, software development process

and standards, legacy systems, and emerging technical and functional architectures. The

move to OOT should be based upon a number of factors: the maturity of the technology,

the ability of the environment to accept and use it, and the economic justification that such

a transition is warranted.

The following are some specific recommendations regarding the implementation of

OOT in the DoD. These recommendations are grouped according to the four transition

stages defined in the Technology Transition Framework in Table 2.

Risk Minimization and Impediment Resolution

Develop a technology transition strategy for the introduction of OOT: A

technology transition strategy will establish priorities for transition activities, define the

scope and stages for the transition, the roles and responsibilities, and the mechanisms

necessary for a transition to occur. This strategy should meet the mission and information

technology needs. It should also consider the technology transition approaches described

in Section 4.2.

As part of a technology transition strategy, conduct a business case analysis for

transitioning to OOT. This transition could directly affect over 40,000 DoD software

developers. Nearly all reports regarding technology transition suggest that the adoption of

OOT cannot be made without adequate training in software engineering and object

concepts. Such an analysis would need to consider the existing base of people and systems

and the anticipated opportunities for software reuse. The benefits for reuse appear to be

more achievable within a particular domain or functional area. One scenario, for example,

would transition projects on the basis of their functional areas.

52

Develop example scenarios for the use of OOT. It may also be useful to develop

example scenarios that would map the use of OOT onto the existing DoD information
infrastructure of policy, procedures, programs, and standards. These scenarios would

uncover those areas where risk may exist. Although this document has provided an

assessment of OOT use for a number of areas, there remains the entire acquisition and
development process to consider. A basic scenario would include a "To-Be" model of OOT
use that could present in one picture the use of OOT starting from functional process
improvement through software development to database development.

Participate in or monitor those organizations developing standards regarding
OOT. The DoD has an interest in seeing that standards bodies consider the needs of the
DoD. For example, the Object Management Group currently has over 300 member

companies and is developing standards for a variety of object concerns, including
methodologies, notations, and architectures.

Reevaluate the Process Model for Information Management: This reevaluation
should consider the development process, products, roles, and the Process Model for
Information Management. The addition of object-oriented analysis and design techniques
as mechanisms during application development is relatively trivial. The model should be
reevaluated to resolve the shift in paradigms between the functional process improvement
activity, which uses an IDEF approach, and the system development activity, which could
potentially use an object-oriented development approach.

Conduct controlled studies to resolve specific technical issues. There are a
number of specific technical issues within OOT that have yet to be resolved, such as the

different mechanisms for distributed computing, the different approaches to object-oriented
analysis and design, or the combination of organizational, domain, and project
characteristics that make OOT the preferred development paradigm. In addition, specific
studies and working experience may help determine a set of criteria for transitioning and
applying OOT to particular organizations and projects. The DoD could then encourage
object-oriented projects in those domains that fit the criteria for object technology.

Introduction of OOT

Establish testbed sites for investigating and exercising OOT. Investigate the
types of problems where object-oriented approaches in analysis and design may be more

desirable. Such sites could pursue pilot projects in OOT, with particular emphasis on
reengineering legacy systems to OOT.

53

Make OOT concepts part of Ada and software engineering training. Develop
and institute a training program that incorporates OOT as a part of software engineering,

Ada, and design and analysis methods. Although object-oriented methodologies such as
OOA have a variety of notations, they are still useful in teaching the object paradigm. For

OOA and OOD methodologies, the non-object-oriented aspects such as functional and

dynamic modeling should also be included. For groups ready to begin an object-oriented
project, the DoD may also want to consider concentrated object-oriented training, including
other object-oriented languages such as Smalltalk or Eiffel for introducing object concepts.

Do not mandate OOT as an approach for all software development nor adopt
any specific object-oriented methodology or technique at this time. Further analysis is

needed to determine which object-oriented technique is desirable for application

development. The use of OOA alone, for example, will not guarantee a requirements

specification that will be correct and complete. Software engineering activities require a

variety of techniques, including event and process modeling and prototyping. Likewise

with design, OOD may not be the optimal design approach for every implementation.
Considerations such as performance and efficiency could conceivably require a non-object-
oriented design.

Assessment and Optimization of OOT

Encourage the development of ODBMS bindings for Ada9X. Currently, most
ODBMS bindings exist for either the C++ or Smalltalk programming languages. The DoD
should encourage the development of ODBMS bindings for Ada9X, including the
investigation of emerging standards such as SQL3 and ODMG-93 (Object Data
Management Group) specifications.

Encourage domain-based use of OOT. Eventually, the use of OOT should move
from beyond the system/project perspective to that of a domain or functional area. It is with

a domain-based use of OOT that we expect to see the benefits of extensive software reuse,
as evidenced by the technology transition case studies and literature. A domain-based
approach may also provide a means of transitioning OOT to an eventual enterprise-wide
usage.

Integration of OOT into the DoD Enterprise

Support efforts towards a commonly accepted definition for OOT. A definition

is needed that accommodates Ada and the software engineering concepts that support high

54

reliability and maintainability. This will have an effect upon the mechanisms used for
defining objects, particularly comparing the inheritance vs. encapsulation qualities of OOT.

Develop a standard set of Ada class libraries. All commercial object-oriented
languages contain a set of library classes shipped as an intrinsic addition to the language

standard. These classes are usually built-in abstractions such as sets, collections, arrays,
bags, and strings. These built-in classes have standard methods associated with them. To
aid the development of object-oriented applications in Ada, the DoD should develop a

standard set of library classes similar to the predefined classes in Smalltalk and C++. These
classes can speed the development of object-oriented systems using Ada 9X.

55

APPENDIX A.

CASE STUDIES OF

OBJECT-ORIENTED TECHNOLOGY TRANSITION

A-l

A.l NASA/GODDARD SOFTWARE ENGINEERING LABORATORY

A. 1.1 SYSTEM/PROJECT CHARACTERISTICS

A.l.1.1 Background

The Flight Dynamics Division (FDD) of NASA's Goddard Space Right Center,

Greenbelt Maryland, develops two types of software:

1. Ground Support Software. This type of software program receives actual

telemetry data back from a satellite and processes it in real-time or batch

mode. Real-time processing includes user interaction with windows and

user interfaces.

2. Simulation Software. These programs create large test files that can be used

as input to the Ground Support Software in item (1) above. The simulation

programs are entered and run in batch mode. These simulations are used to

test and develop various algorithms for insertion into future ground support

software.

Development of this software occurs as a joint venture between FDD and the

Computer Sciences Corporation (CSC), Goddard's primary outside software contractor.

For 23 years, the System Sciences Division of CSC has worked with Goddard to develop

software for the space program. In 1992, FDD employed about 25 software engineers and

CSC employed nearly 100 engineers and programmers. These employment figures do not

include administrative and staff support personnel.

Since 1986 FDD estimates it has completed about 30 new ground support and

simulation programs (items 1 and 2 above). The average size of program has ranged from

100,000 SLOC to 300,000 SLOC. In the mid-1980s, FDD began to experiment with object-

oriented technology, and since 1986 11 of these 30 projects have been built using object-

oriented development methods. The large number of projects and long time duration

probably make FDD the most extensive user of object-oriented software methods in the
government.

The Software Engineering Laboratory at Goddard (SEL) has been a catalyst in the

introduction of these new object-oriented methods into NASA. SEL is a joint venture of

FDD, CSC, and the University of Maryland Computer Science department. Since 1976,

this joint venture has been funded and sponsored by NASA. Its purpose is to help Goddard

A-3

measure and improve the software development process at the Goddard Space Flight

Center. Much of the emphasis and study of OOT has come through the SEL.

A.1.2 PURPOSE AND TYPE OF APPLICATIONS

A typical FDD project lasts between 2 and 4 years, and ranges in size from 100,000

to 300,000 SLOC. The software applications can be best described as scientific batch mode

software. The software models physical processes, and makes extensive use of matrix

transformations, and vector algebra. The simulation programs, item (2) above, run in batch

mode with no user interaction. The program results are returned in batch mode as a printout.

The Ground Support Software, item (1) above, includes both user interactive and batch

mode programs.

The domains of each project are narrow in the sense that they examine a subset of

spacecraft control, such as attitude determination and control, rather than the entire

spacecraft or ground support system. Each new software project also builds from the

software used in the last similar spacecraft project. The 11 completed OOT projects include

3 early Ada ground simulators built between 1985 and 1988, three Fortran ground support

systems, and four telemetry simulators built from 1988 to 1992.

A.l.2.1 Size of Systems

During the seven years FDD has been experimenting with OOT, developers have

completed eleven projects using OOT methods. These projects have ranged in size from

100,000 SLOC to 300,000 SLOC, and generally have taken between 2 to 4 years to

complete. These 11 projects represent about 30% of all work at the FDD since 1986.

A.l.2.2 Languages

Seventy-five percent of all Goddard software development uses Fortran, fifteen

percent uses Ada, with the remainder in various languages. However, for the projects

completed in OOT, the Goddard developers primarily used the Ada language. Of the 11

OOT projects, 7 have been in Ada and 4 in Fortran.

Fortran and Ada are not normally considered object-oriented languages, but by

using the basic object-oriented principles of encapsulation, abstraction, and modularity,

FDD has been able to apply Fortran and Ada successfully in its object-oriented

development.

A-4

A.1.3 PROJECT MANAGEMENT AND TECHNOLOGY TRANSITION

A.l.3.1 Level of Effort and Duration

A typical object oriented project has taken two to four years to complete. The

software development team consists of 5 to 15 people organized into 3 or more subgroups.

To develop a project, Goddard tries to match application experts in a specific field, like gyro

physics, with software specialists who can translate the physics into structured systems.

A. 1.3.2 Staff Skills and Experience

FDD and CSC have been developing space software for the past 23 years. In 1992,

there were about 25 government software developers at FDD and 100 CSC developers.

About 20% of these developers use object-oriented methods.

Introduction of OOT began with the introduction of Ada to the FDD in 1985.

Previous Ada experiments had produced designs and code that looked like Ada versions of

Fortran systems. So in 1985 the first team was trained in a variety of design methods,

including Booch's Object-Oriented Design method, stepwise refinement, and process

abstraction. The University of Maryland provided training classes on data abstraction.

FDD's capability to use object-oriented methods has grown in the past seven years.

Prior to the OOT efforts, data for each simulation was stored in one large global database

where it could be accessed by a Fortran program. Initial OOT efforts were to simply break

up the single large database into segments, and store the segments with local procedures

that acted on each segment. This segmentation of the database proved successful, and led

FDD to increase abstraction and encapsulation efforts in other OOT projects. Current

efforts are now focused on layered architectures of objects that can act as services to other
higher-level objects.

CSC personnel work alongside government personnel in the development of each

project. About half of the CSC software developers have been with CSC for over five years

and the average tenure for FDD software developers is about six years. Most developers in

both organizations are college graduates, but not necessarily computer science graduates.

CSC finds that a new hire who understands physics, astronautics, and space vehicles can be

trained to develop software for these applications. Understanding the domain is the key

element for these scientific applications. Interviews with FDD and CSC personnel indicate

A-5

it takes two to four years for a development team to reach an expertise level with the OOT
technology.

A. 1.3.3 General Technology Transition Strategy

The introduction of OOT began in 1985 with the use of the Ada programming
language in the laboratory. To introduce the technology, FDD picked those software
developers who expressed an interest in object-oriented methods. About 20% of the
development staff liked Ada, and wanted to work on object-oriented methods. CSC and
FDD picked people from this group.

Object-oriented methods are not mandated for new projects, and Goddard lets each
development team decide which techniques best apply to their projects.

A.1.4 TECHNICAL APPROACH

A.l.4.1 Lifecycle Process Model

The FDD uses a formal design method based on the "waterfall" approach to
software development (requirements, analysis, design, coding, test, and maintenance). It
allows the use of either structured design or object-oriented techniques, based on the
specific needs of each project.

A. 1.4.2 Standards Used

The FDD process for software development has been developed in-house, and is
called the "Recommended Approach to Software Development." This set of guidelines
allows the use of either structured design or object-oriented methods, based on the specific
needs on each project.

A.l.4.3 Methodologies Used

In 1986, training was given in Booch Object-Oriented Design, since it was the only
method available at that time. The University of Maryland also conducts classes through
the SEL on data abstraction methods. However no formal methodology (data-driven,

structured analysis, etc.) is used by FDD. Each project is examined on its merits, and the
best methods chosen for that project.

A-6

A.l.4.4 Development Environment

Most object-oriented development is done using Ada. Development is done on the

VAX/VMS system using DEC compilers and VAX software editors and tools. VMS

configuration management software and performance analyzers are used during

development. Some Fortran object-oriented development is done on an IBM mainframe

with a minimum set of tools, mainly compilers and editors.

A.l.4.5 Reuse of Components

The managers at CSC think that software reuse has progressed through 4 levels over

the past 10 years at CSC. In the late 1970s, there was reuse of people, assigning the same

development team to the next similar project. Then in the early 1980s, a second-level of

reuse occurred as CSC focused on the reuse of code. By the mid-1980s CSC reached a third

level, with development of reusable processes for development. Starting in 1989, at the

fourth level, CSC is attempting to focus on reuse in the full lifecycle, from requirements to

maintenance.

The largest benefit from reuse has been the encapsulation of the database segments

with local procedures. This encapsulation has caused reuse of code and segments to

increase from about 20% to 70% today. Objects which are common throughout a design or

common to several designs are held as standard utility libraries. Other packages call these

libraries to obtain needed services.

A.1.5 PROJECT RESULTS

In domains where reuse is possible, OOT methods have enabled a three-fold effort

decrease, from 320 staff-hours/KSLOC to about 140 staff-hours/KSLOC. Converting the

figures to monthly production, this represents a productivity gain from 50 SLOC/staff

month to about 150 SLOC/ staff month today, while project cycle time has been cut

approximately in half. During this increase, the error rates have dropped from 4.5 errors/

1000 SLOC in the early 1980s to about 0.8 errors/SLOC today. Most of the improvement

has come from reusing tested code (verified and validated), rather than from improved

system testing or improved ease of maintenance.

The FDD introduced the programming language Ada at the same time object-

oriented methods were introduced into FDD. Managers at both FDD and CSC feel the

A-7

major change was the use of the object-oriented methods rather than any particular
language. In fact much of the code (75%) is still written in Fortran.

A.l.5.1 Lessons Learned

a. For NASA, the SEL serves as a catalyst for new ideas, and the introduction of
new technology. Most of the papers on OOT and the metrics of performance,
and some of the training were performed by the Software Engineering Labora-
tory. This catalyst helped foster the new technology in NASA, gave validity to
the new technology, and made the transition easier for the organization.

b. Managers at CSC indicated there is a need to train both managers and software

developers in object-oriented methods. Originally, developers were trained in

OOT and managers were not. This left the managers at a disadvantage in

evaluating the status and quality of development and finished products.

c. The greatest benefits from OOT came from encapsulation and abstraction, not
from any particular language or methodology. The introduction of OOT
methods in 1986 was more important than the simultaneous introduction of
Ada.

d. OOT cannot be mandated from above as organization-wide method. Rather,
each project must be evaluated on its own merits for the use of the best design
methods.

e. Even in the narrow domains in which it works, FDD found that domain analysis
cannot be done in the abstract. There is a need to first complete a project using

OOT methods, and then to generalize from the finished project. FDD used a

bottom-up approach and developed the project from modules. FDD and CSC
managers indicated that the bottom-up approach gave developers a better
understanding of the details of the abstractions.

f. NASA used the same measurement and evaluation procedures for OOT as for
procedural software projects. There was no need for different procedures for
OOT projects. However, there was a need for mapping products and

terminology to standard procedures within FDD. For example, "unit" needed to
be defined for tracking, testing, and documentation purposes.

g. Not every software developer was interested in the new technology. Only 20%

of the developers wanted to work in OOT and in Ada. The interested parties

A-8

•

were generally younger, with a need to keep resumes current and a desire to
keep abreast of the latest technology. Even after eight years, FDD has not

mandated OOT throughout the organization.

h. To develop OOT projects, NASA uses the tools that come integral to the VAX

software environment. CSC and FDD found that software tools need to be

integral to the platform that will execute the program. In the past several years

FDD has tried numerous design and requirement tools. It found that vendor
claims of interoperability were often not supported, and the projects could not
move easily to execution without fixes and recompilation. Several years ago
SEL determined that automated tools compound the design problems unless
people first understand the "pen and pencil" methods.

i. NASA has found that the OOT projects run slower than the Fortran-based
procedural projects. Studies by FDD and the SEL have found that this problem
is not caused by the object-oriented methods, but by a decision to use variable
length records for database storage. Originally, OOT developers were told that
performance considerations did not matter in this experimental technology. So
they focused on cleanness and simplicity of the code. Users of the code,

however, complained that speed was slower than the procedural methods. In
hindsight, managers now feel that the object-oriented methods should have
focused on both the new technology and the speed needed to match existing
applications.

A-9

A.2 BASE LEVEL SYSTEM MODERNIZATION (BLSM)

A.2.1 SYSTEM/PROJECT CHARACTERISTICS

A.2.1.1 Background

The U.S. Air Force manages a number of its software initiatives at the Standards
Systems Center, Maxwell Air Force Base - Gunter Annex, Montgomery, Alabama. One
major effort is the Base Level System Modernization (BLSM) program, which is migrating

a total of 36 standard base-level systems to an open systems environment. Currently, there

are three pilot projects being developed under the BLSM program: (1) Logistics Module-

Base Level (LOGMOD-B), (2) Air Force Operation Resource Management System

(AFORMS), and (3) Manpower Data System (MDS).

A.2.1.2 Purpose and Type of Applications

The LOGMOD-B system is a tool for base level logistics planners for planning and
executing mobility support for worldwide deployment of forces. The AFORMS system
tracks Air Force flying and ground training programs for each weapon systems at each base.
The MDS system manages Air Force manpower requirements and tracks authorizations for
those resources [HAR93].

A.2.1.3 System Size

The estimated size of the new LOGMOD-B is 60,000 SLOC, with 3,191 function

points and an overall 35% increase in functionality. The original LOGMOD-B was 235,000
LOC or 1,885 function points. The original AFORMS was 340,000 SLOC of Cobol, with
the estimated size for the new system at 6,807 function points.

A.2.1.4 Implementation Language

The implementation language for BLSM projects was Ada83; Ada9X will be used
when it becomes available. Smalltalk was used for full function operational prototypes.

A-10

A.2.1.5 Hardware

The target hardware platforms, which are Unix based, are the HP 9000-700 for

LOGMOD-B and the HP 9000-700 and Unisys 2200 for AFORMS and MDS. The target
platform may also move to Intel 80486.

A.2.1.6 DBMS

For the LOGMOD-B and AFORMS, the BLSM effort is using a relational DBMS.

The BLSM team did try an ODBMS approach and found substantial performance

improvements over their initial RDBMS designs. They ran into problems, however, with

concurrency, data base integrity, and providing accessability of the data base for ad hoc

reports and external interfaces. This situation was determined to be a problem of current

ODBMS COTS products, rather than the ODBMS concepts. The BLSM team resolved

these issues and their earlier RDBMS performance problems by bringing in one of Harris

DBMS experts. The result was a "hybrid" approach that used a combination of object-
oriented design and the relational technology.

A.2.1.7 PROJECT MANAGEMENT AND TECHNOLOGY TRANSITION

A.2.1.8 Level of Effort and Duration

Unknown.

A.2.1.9 Staff Skills and Experience

The development team consisted of a mix of government and contractor (Harris)

personnel. Their experience and training were originally in non-object-oriented methods

and Cobol, with some Ada expertise. For learning OOT the BLSM team initially learned
Smalltalk, with the following course of training:

• Object-Oriented Analysis (OOA) Training: 1 week or condensed 3-day class

• Object-Oriented Design (OOD) Training: 1 week or condensed 3-day class

• Polymorphism/Inheritance (PI) Ada Training: 14 days total

A-ll

A.2.1.10 General Technology Transition Strategy

The BLSM effort made the transition to OOT by setting up a core group that served

as a technology transfer/mentoring group. This core group received training in object

concepts and then, in turn, served as "object mentors" to new object developers. BLSM also

used "just-in-time" training, where individuals are trained just prior to using a technology.

A.2.2 TECHNICAL APPROACH

A.2.2.1 Lifecycle Process Model

BLSM used a "tailored recursive spiral" lifecycle process model. For example,

LOGMOD-B is divided into 14 increments, each consisting of classes and objects that are

"functionally" grouped. The team built prototypes in Smalltalk to validate data and

functional requirements, then implemented the increments in Ada. Increments 1 and 2 are

currently in the implementation/test phase.

A.2.2.2 Standards Used

The BLSM effort used DOD-STD-2167A, tailoring it accordingly "to

accommodate an object-oriented development approach using Ada and an incremental

development methodology." Other "standards" used were the DoD 8320.1-M-l for data

element standardization [HAR93].

A.2.2.3 Methodologies Used

The BLSM effort developed its own "object-oriented methodology" which was

based upon the Coad/Yourdon Object-Oriented Development Methodology. The object-

oriented methodologies of Booch and Rumbaugh were also considered; the BLSM team

chose Coad/Yourdon for its simplicity, having one underlying representation. The BLSM

team used Peter Coad for consulting and training. In follow-up interviews with the BLSM

team members, they noted that they may use the Rumbaugh approach. Although Coad/

Yourdon was simple, it may not be sufficiently robust in the long term.

A.2.2.4 Management of Phase Transitions

OOT was used throughout the development lifecycle except for the implementation

of the database which was relational. The BLSM team felt that the transition from phase to

A-12

phase was much easier with the object-oriented approach. One of the reasons the BLSM
team decided to try object-oriented analysis was that it was having difficulty transitioning
from a Structured Analysis (functional decomposition) approach during requirements
analysis to object-oriented design.

A.2.2.5 Development Environment

The hardware development environment consisted of Unix-based workstations for

analysis, documentation screen generation, design, and prototyping; Rational workstations

for the design, code, and test of Ada software; and VAX systems hosting a relational

database and supporting configuration management. PCs and Macintosh computers were
used to support planning, storyboarding, and graphics.

Software tools consisted of Coad's OOA Tool for object modeling and analysis,
Smalltalk for prototyping, Screen Machine for screen generation, the Rational
Environment and tools for design and coding, and ORACLE for the RDBMS [HAR93].
Other tools were developed in-house such as an Ada Code generator and a tool to export
requirements documentation from OOA Tool, reformatted to meet DOD-STD-2167A
standards and imported to Interleaf, desktop publishing software.

A.2.2.6 Reuse of Components

Across the three systems classes were shared through a corporate object model,
with a notable example being the generation of screens. The original three systems had 133
unique screens. The BLSM effort created 12 generic screens, from which standard screens
with a common look and feel were generated. The resulting standard screen use ranged
from 37% to 60% across the systems.

In general, the reuse across the three systems has been limited (15 to 19%). The

levels are believed to be low because the three systems are in different domains. BLSM
expects to see higher levels of reuse with additional work in the same domains.

A.2.3 PROJECT RESULTS

A.2.3.1 Current Status

The BLSM effort is still early in development, with increments 1 and 2 of
LOGMOD-B currently in the implementation/test phase.

A-13

A.2.3.2 Benefits

The benefits from using OOT appear to be in the growing levels of software reuse,
which are expected to result in reduced development costs. As noted in B.1.3, the size of

LOGMOD-B is approximately 25% of the original system in terms of lines of code, but has

35% more functionality. The BLSM team also expects better adaptability and easier
maintainability from the new implementation

A.2.3.3 Lessons Learned

a. Configuration control and management are a necessity, particularly when the

object models grow in size and complexity. While read access was available to

everyone, write privileges to objects had to be limited and controlled [HAR92].

b. One object representation makes the development easier. The BLSM team

members encountered difficulties transitioning from one object notation to
another. However, they did state that they would like the ability to use any
object notation. Ideally, a tool would translate between different notations
automatically.

A-14

A.3 BROOKLYN UNION GAS CUSTOMER RELATED INFORMATION SYS-

TEM (CRISII)

A.3.1 SYSTEM PROJECT CHARACTERISTICS

A.3.1.1 Background

Brooklyn Union Gas distributes natural gas to industrial, commercial and

residential customers in Brooklyn, Staten Island, and most of Queens. The company is the

fifth largest gas distribution utility in the world, with 1,100,000 customers and annual sales

of about $900 million. Ninety percent of the customers are residential households. The

company employs 3,500 people, and 200 of these people work in the Information

Technology area.

In 1984 the New York Regulatory Agency began requiring that Brooklyn Gas

segment customers by age, and other socio-economic factors. The Regulatory Agency

further required that the cost of service be tied to these factors. For Brooklyn Gas, it was

no longer sufficient to only know a meter number and amount of gas usage. Specific

attributes needed to be attached to each meter to determine billing rates. The existing

information system was not sufficient to provide this information.

Prior to 1985, the corporate information system was an integrated mainframe

running IBM MVS. The system was installed in 1971, and was so intertwined that 12

programmers were needed full-time to maintain the status quo and fix errors in the system.

No improvements were being made, and the existing system could not meet the new
regulatory requirements.

In 1984 Brooklyn Gas began studies for a new information system to handle all

corporate information: accounting, scheduling, billing, credit checks, and marketing. In

1986, five programmers began work on a pilot version of the new system. Prototyping was

done to develop user interfaces and complex routines.

It was decided that the new system should be totally separate from the old system,

rather than an extension. Work on the new system began in 1987, and was completed in

March 1990. The finished system had 900,000 SLOC and cost $48 million to develop.

Brooklyn refers to it as the CRISII (Customer Related Information System II).

A-15

A.3.1.2 Purpose and Type of Application

The new system handles all business transactions of Brooklyn Union Gas, from

meter reading to billing and maintenance scheduling. The main functions are outlined

below:

Meter reading -1 million readings monthly input from hand-held meter readers

Billing - 30,000 to 40,000 bills processed nightly

Cash processing - real-time and batch processing of payments

&edit and collection - 60,000 to 90,000 credit related transactions per day.

Field service orders - real-time assignment of maintenance workers

Other services - general ledger posting, statistical reports - (250 nightly)

A.3.1.3 System Size

The old system had 1.5 million lines of code. The new system has 900,000 lines of

code, structured as 650 classes, with 8,600 methods. The methods contain a total of 70,000

message-sending locations.

A.3.1.4 Implementation Language

The system is written in PL/1 with object-oriented extensions to provide an

execution and development environment. In 1986 the system was prototyped using

Smalltalk for some of the early work.

A.3.1.5 Hardware

CRISII runs on an IBM 3090-300J mainframe under the MVS/XA operating

system. About 100,000 on-line user inserts or updates are handled every day, and about 1

million insertions and deletions though batch processing are handled every night.

A.3.1.6 DBMS

Data is stored in a DB2 relational database. There are 130 relational tables, with the

largest single table holding 70 million rows. Total active storage is 100 Gigabytes. An

interface-level object handles all translations between the database and the object-oriented

system.

A-16

A.3.2 PROJECT MANAGEMENT AND TECHNOLOGY TRANSITION

A.3.2.1 Level of Effort and Duration.

Total development time was 400 staff years spread over a 3-year period from 1987
to 1990. Peak employment was about 250 people in 1989.

The original budget for the project was $46 million. This budget was developed in

1987 after prototypes were completed, and the budget included all costs from prototyping.
Actual cost was $48 million, $2 million above the estimate made three years earlier.

A.3.2.2 Staff Skills and Experience

The same team leader, Tom Morgan, was present on the project from its initial plan
in 1984 until completion in 1990. Morgan led the original team that developed the
Smalltalk prototype, and continued as the development project leader. Both Morgan and his
direct supervisor have been Brooklyn Union Gas employees since 1971.

The project management team consisted of a core team (five key people), and eight
other groups. These working groups started with 10 to 20 people each, and handled 5 major

functional areas of work (meter reading, billing, credit, service processing, and cash

processing). Each group assumed responsibility for the functionality within that area. In
each area, this included designing the user interface, designing the interface with
peripherals, and tying these peripherals into the underlying objects. Brooklyn programmers

were augmented by new hires and by consultants employed by Anderson Consulting
Company.

A.3.2.3 General Technology Transition strategy

This was a company-wide project discussed and planned for four years before start
up. The initial concept was developed by five programmers working for six months in a
separate team environment.

A.3.3 TECHNICAL APPROACH

A.3.3.1 Lifecycle Process Model

Unknown.

A-17

A.3.3.2 Standards

Unknown.

A.3.3.3 Methodologies

Custom object-oriented methods in the PL/1 programming language.

A.3.3.4 Approach for Persistent Objects

To support a transaction-oriented system, the object system assigned each user a

processing thread for the duration of the user's session with the system. Each thread has an

associated instance of a root Context Object. This "Context" class is the container class that
holds the current object and thread.

When an object is created, it is initialized in one of two ways. A totally new
persistent object is given a unique identifier, a table location, and empty attributes. A new
object for an existing customer, for example, a monthly bill object, is immediately
initialized with data physically stored in a relational database. Each database row has an
identifier guaranteed to be unique across the 170 tables in the system.

A.3.3.5 Development environment

Tools were constructed by the team early in the project. Many traditional mainframe
components were used, including IBM's ISPF, DB2, and PL/1 preprocessors.

No canned CASE tools were used on the project.

The literature indicates that the heart of the tools was an extensible entity-relation-
attribute dictionary with information about the applications that makeup CRIS-II and its
environment. This dictionary appears equivalent to the common data repository found in
many CASE implementations.

Development was done in the IBM 3090-300 environment.

A.3.3.6 Management of Phase Transitions

The system was not implemented in phases. The system was developed
incrementally and tested as each module was finished.

A-18

In June 1989, 70 MB (megabytes)of data was loaded into the new system for

testing, and the first gas bill was produced by the new system. Early speed of the system

was slow and required "tuning" of the object methods to improve performance. From June

to December 1989, about 800 system investigations were needed each month to check on

problems. In January 1990, the system was handed over to the users, and the system was

stable after one week. System problems dropped to 100 per month by March 1990, and 50

per month in 1991.

A.3.3.7 Reuse of Components

In June 1990, a new hire was able to add a module of 2, 000 lines of code to the

system in 3 staff-weeks of time. This module was a new interface for use by company

attorneys. The module worked correctly and accessed 40,000 lines of code in the just

completed CRIS-II. While this is not a demonstration of reusing the same components, it

does demonstrate the productivity possible from access to existing objects.

A.3.4 PROJECT RESULTS

A.3.4.1 Current Status

The system has been in use for three years. Improvements are made as required by

customers. System investigations now average 10 per month for problems or questions.

A.3.4.2 Benefits

The Information Technology office feels the new system is much improved from the

previous system. There are fewer system maintenance calls, the system is faster, and 8

programmers can maintain the system instead of 12. Of more importance to Brooklyn Gas,

the object orientation allows the company to adapt the system to specific marketing and
billing needs.

The new system is maintained by 8 programmers; the old system was maintained

by 12 programmers, a savings of $500,000 per year. The cost to develop was $48 million

for 400 staff years of work. Total system size was 900,000 SLOC.

A-19

A.3.4.3 Lessons Learned

The object-oriented approach used by Brooklyn Gas did not have automatic
constructor or destructor functions for objects. When an object went out of scope, the
language compiler did not guarantee destruction of the object. Reclaiming storage from the

heap was done with custom functions developed by the programmers. The lack of
automatic constructor/destructor functions was the largest source of technical program
errors. The developers noted that a real garbage collector would have been invaluable.

A-20

A.4 AMERICAN MANAGEMENT SYSTEMS, INC.

A.4.1 SYSTEM/PROJECT CHARACTERISTICS

A.4.1.1 Background

American Management Systems (AMS), Inc., is a management and information

services company that recently began a transition to object-oriented technology for its

information systems development. This transition was started in 1990 in response to a

changing environment and customer requests for downsizing, client-server architectures,

and object-oriented systems. An earlier key component of AMS's success was the

development in 1980 of its "Core Foundation Software." This common layer was written

in Cobol and eventually served over 600 systems. Beginning in late 1990, AMS began

developing new reusable foundation software, dubbed "Core 2000 Foundation Software,"

that would be object oriented and take advantage of current and anticipated technologies.

To date, AMS has completed five object-oriented projects and is planning to transition a

large percentage of its 2,500 software developers company-wide to object and client-server

technology.

A.4.1.2 Purpose and Type of Application

The type of object-oriented applications developed by AMS were information

management systems such as a financial transaction management system and a facilities

management system.

A.4.1.2.1 System Size

The initial object-oriented projects consisted of about 80 classes, each with 12 to 15

methods, totaling approximately 16,000 to 20,000 LOC per system. AMS is currently

involved in 9 object-oriented systems, ranging from 3,000 to 8,000 function points.

A.4.1.3 Implementation Language

Smalltalk and C++ are being used as implementation languages.

A-21

A.4.1.4 Hardware

Although much of AMS's work had consisted of development on mainframes
(primarily IBM), its work is moving to client/server configurations with Intel-based
workstations, Unix-based servers, and host interoperability.

A.4.1.5 DBMS

AMS intends to used relational DBMS technology for the next three to five years
with its object-oriented applications.

A.4.2 PROJECT MANAGEMENT AND TECHNOLOGY TRANSITION

A.4.2.1 Level of Effort and Duration

AMS's early object-oriented demonstration projects were staffed with
approximately five people for about eight weeks. Its current object-oriented projects are in
various stages of design and development, some with staffing levels of 20 to 30 people for
approximately one year [BAE93].

A.4.2.2 Staff Skills and Experience

The existing AMS skill base was predominantly Cobol and C developers.

A.4.2.3 General Technology Transition Strategy

AMS began its transition to OOT as part of developing of its "Core 2000
Foundation Software." The use of OOT was motivated by a recognition that complex

systems needed more advanced design and development techniques and methods, client
requests for object technology, and by the belief that the transition from design to

implementation was difficult using the more traditional, structured techniques. The AMS
developers also evaluated CASE technology and information engineering tools for use in

this transition. One conclusion they reached was that code generators constrained their

underlying software architectures. After evaluating a number of object-oriented
approaches, they determined that Jacobson's use-case approach was most effective for their
analysis activities and Wirfs-Brock's method for object design.

A-22

To implement OOT, AMS's transition strategy was to "start small," develop some

pilot projects, and evaluate the success of those pilots. To initiate this transition AMS chose

a pilot team of five people who were recognized as "quick learners" and a system domain

they already knew. This initial team received one week of classroom training in Smalltalk

and object concepts, continuing with hands-on work in an eight-week apprentice program.

The Smalltalk-object training has now been extended to two weeks. AMS estimates that it

takes at least one month of hands-on work to understand object-oriented concepts

[AMS 93b]. In conjunction with object concepts, AMS developers are learning and using

client-server, open system, graphics user interface (GUI), and RDBMS technology. AMS

intends to train another 500 developers in 1993 and another 2,000 developers through 1995.

At that point, a majority of their developers would be trained and using OOT.

A.4.3 TECHNICAL APPROACH

A.4.3.1 Lifecycle Process Model

AMS has its own lifecycle process model called "Lifecycle Productivity System"

(LPS). The LPS methodology was originally based upon Structured Analysis and Design

techniques for mainframe system development but which has been extended to

accommodate Rapid Application Development, client-server, GUI, and object technology
[BAE93].

A.4.3.2 Standards Used

The standards used are based upon client requirements.

A.4.3.3 Methodologies

AMS evaluated several object-oriented analysis and design methodologies,

including those of Booch, Rumbaugh, Wirfs-Brock, Coad/Yourdon, Shlaer/Mellor,

Jacobson, Martin, and Reenskaug. The conclusion of its study was that no single

methodology was sufficient; in particular, "high-level analysis (domain definition) [was]

not fully addressed" [AMS93a]. AMS now uses parts of different methodologies in

combination. It employs the "Use-Case Driven Approach" defined by Jacobson for

requirements analysis, then transitions to object-oriented design, using the Wirfs-Brock

A-23

approach and CRC (Class-Responsibilities-Collaborators) for designing specific classes

and roles.

A.4.3.4 Development Environment

The development environment included the Objectory tool by Objective Systems,

which supports the Use-Case Driven Approach by Jacobson, Smalltalk from both

ParcPlace and Digitalk, and C++ from Borland, Microsoft, and IBM.

A.4.3.5 Reuse of Components

AMS noted that the benefits from reuse may not be immediate (other than the reuse

of the available base classes) since application development must be done to get reusable

components. It is seeing high levels of reuse (within the 80% range) for projects where

other object technology applications have already been completed.

A.4.4 RESULTS

The initial systems developed using OOT are being used for demonstration; nine

new information systems are currently under development

A.4.4.1 Benefits

Statistics regarding benefits in terms of quality, time, and cost were not available,

although its research indicates that the reuse for new object-oriented projects within the

same domain appears to be substantial at approximately 80%. AMS is still determining

what specific metrics it should use to assess productivity gains [BAE93].

A.4.4.2 Lessons Learned

The following are some lessons learned from AMS experience with object

technology [AMS93a]:

• "Object development widely misunderstood.

• Payoffs take time (1-2 years)

• Object design tools are still scarce ...

• The 'Right' design methodology is not clear.

A-24

Traditional CASE tools vendors are two or more years behind.

Reuse must be accepted as a goal and planned and designed into software prod-
ucts.

"New roles and responsibilities:

Computer Human Interaction Expert

Technical Architect

Configuration Manager

Object librarian (includes reuse tester)

"Pitfalls

Don't expect magic. Software development (especially analysis and design) is
still hard.

Insufficient training.

Expecting significant results in the first 6 months.

Selecting the wrong first project

Time critical

Too large

Forcing the use of a structured analysis and design [when using an object-ori-
ented language].

Uncontrolled prototyping.

Forgetting to think about configuration management"

A-25

A.5 SYSTEMS RESEARCH AND APPLICATIONS (SRA) CORP.

A.5.1 System/Project Characteristics

A.5.1.1 Background

System Research and Applications (SRA) Corporation is a professional technical
services company that provides systems integration and development for both the
government and commercial sector. SRA began considering OOT in 1986, anticipating its

use for its Ada development projects. At that time, it determined that an object-oriented
design approach would work better with the Ada language. Since then, SRA has used

object-oriented design across a number of other applications and in other languages,

including C, C++, and Smalltalk.

A.5.1.2 Purpose and Type of Applications

The SRA applications that have used OOT range from command and control,

document processing, engineering data management, and image management and

processing. These applications include the following major systems:

• Standard Installation/Division Personnel system (SIDPERS-3), Army WWM-
CCS (Worldwide Military Command and Control System) Information System
(AWIS), Joint Operations Planning and Execution System (JOPES): Informa-
tion management systems in Ada for personnel management and command and
control.

• Picture Network International (PNI): Text and image management system in C,
C++, Smalltalk.

• Storage and Retrieval for Intelligence Statistics and History (STARFISH): Doc-

ument processing and management system in C++ for Joint National Intelli-
gence Development Staff.

• Spare Parts Production and Reprocurement Support System (SPARES): engi-

neering data management system, implemented in C++, for the Air Force Mate-

riel Command (AFMC) at Wright-Patterson AFB, Ohio.

A-26

A.5.1.3 System Size

The Ada projects have ranged from 30 to 850,000 LOC, and the C, C++ and,
Smalltalk projects have ranged from 60,000 to 200,000 LOC.

A.5.1.4 Implementation Languages

Ada, C, C++, and Smalltalk were used as implementation languages.

A.5.1.5 Hardware

The hardware is primarily Unix-based platforms, although there were some DEC
VAX, Burroughs BTOS, and PC-DOS work.

A.5.1.6 DBMS

Other than the PNI system, which uses a proprietary DBMS, the object-oriented
projects have used relational DBMSs such as Sybase, Oracle, and XDB.

A.5.2 PROJECT MANAGEMENT AND TECHNOLOGY TRANSITION

A.5.2.1 Level of Effort and Duration

The level varied according to specific projects.

A.5.2.2 Staff Skills and Experience

The SRA developers who learned and used OOD had a mix of skills and
backgrounds, including Ada, C, and Cobol. One observation made by SRA was that the
particular language background of the developers did not seem to make a difference as to
whether or not someone would understand object-oriented concepts; acquiring an
understanding of OOT appeared dependent upon the individual. SRA also noted that those

with Cobol backgrounds were able to make the object-oriented (and Ada) transition
successfully [KRI93b].

For OOT training, SRA developers received three to five days of training from
David Bulman in his Model Based Object-Oriented Design (MB OOD) methodology for
Ada development and some supplemental training from John Palmer in his Essential
Systems Analysis.

A-27

A.5.2.3 General Technology Transition Strategy

The transition to OOT by SRA was motivated by the use of Ada, with the

realization that traditional structured approaches would not work well with Ada and by the
experience from its natural language/artificial intelligence group which had been using

Lisp. Their first object-oriented-Ada project was on AWIS as a subcontractor to TRW. SRA
transitioned to OOT for other projects, basing its decision to use OOT upon the language

used and the nature of the application. Where the language was object based or object-
oriented, SRA felt that object-oriented design would be the most appropriate.

A.5.3 TECHNICAL APPROACH

A.5.3.1 Lifecycle Process Model

SRA uses a lifecycle process model that is similar to that in DOD-STD-2167A but

also has a business process improvement modeling phase prior to requirements analysis. In
general, they employ an iterative approach to application development: first building a '

basic software infrastructure, then developing one thread at a time.

A.5.3.2 Standards Used

The standards used were based upon the requirements of the specific project. For
most of the DoD projects, DOD-STD-2167A and DOD-STD-7935A were followed.

A.5.3.3 Methodologies Used

SRA evaluated several methodologies, including those of Booch, Berard, Buhr,
Colbert, Coad, Wirfs-Brock, and Jacobson. One of its observations regarding these
methodologies was that there was little separation between requirements analysis and

design. While this "closeness" is often put forth as an advantage of these object-oriented

approaches, SRA believed that these two activities should remain distinct, each having
different objectives and, as a result, different products. The requirements specification

should describe the required, externally visible behaviors of the system, while the design
should describe the internal structures, functions, and algorithms. SRA expressed a concern
that the specification of objects during requirements may arbitrarily impose a design and
implementation constraint for constructing those objects [KRI93b].

A-28

For analysis and design, SRA employed a number of different notations and
approaches. For Ada projects, SRA used Bulman's MBOOD methodology. In this

approach, a domain is modeled in the analysis phase from four perspectives:

• process (data flow)

• control (state transition)

• data (entity-relationship),

• user-interface (screens)

From these models, objects and operations are identified for the subsequent design.

For the non-Ada projects, SRA has used the Rumbaugh method for design and the IDEFO

and IDEF1X methods for requirements analysis. These methodologies were also

supplemented with concepts from John Palmer's Essential Systems Analysis, which
distinguishes between the "essential" (non-implementation dependent) and the
implementation models of the system.

A.5.3.4 Development Environment

SRA has used a variety of development tools, including GE's OMT tool and

ParcPlace's OBA for the PNI; OMT and Cadre's Teamwork for SPARES and STARFISH;
and the Rational Development Environment for the Ada projects (AWIS, JOPES,
SIDPERS). The Rational provided the capability to reverse engineer code to Booch
diagrams, but not the reverse. Separate drawing tools were used to support any graphical

analysis and design notations for Ada projects.

A.5.3.5 Management of Phase Transitions

SRA has not used a pure object-oriented approach on the very front end of its
system developments. With the MBOOD approach, SRA first develops process, state, data,
and user interface models during analysis. Then, in transitioning to design, object

abstractions are derived based upon their commonality across defined processes. Those
processes then serve as the operations for that object.

A.5.3.6 Reuse of Components

For SIDPERS, 41% of the code was unique to the CSUs; 10% was verbatim reuse
(such as Grace and Booch components); 22% was partial reuse (from design templates);

A-29

16% was constructive reuse (resulting from code generation); and 11% consisted of
Computer Software Configuration Item (CSCI) common components. Statistics for reuse
within other projects were not available.

A.5.4 PROJECT RESULTS

A.5.4.1 Current Status

These projects are in various phases of development: STARFISH is in the
operations and maintenance phase and the PNI system and SPARES are both in
implementation.

A.5.4.2 Benefits

Although statistics were not available, SRA noted that those applications using

object-oriented design seemed to require less maintenance. Particularly in the case of the
Ada applications using OOT, there were fewer "withing" dependencies between packages,
and hence less recompilation was required for changes.

A.5.4.3 Lessons Learned

Below is a summary of the lessons learned from SRA's experience with OOT
[SRA93b]:

a. The transition to OOT may be difficult in the beginning: this transition will

depend upon the specific developers, although their background may not be a
factor as noted above.

b. A "clash of methods" may occur when trying to integrate old (non-object-
oriented) software with object-oriented software.

c. Keep object tree/class structure shallow: SRA originally defined deep
hierarchies of tightly coupled objects in its designs and subsequently found that
such deep hierarchies were difficult to maintain.

d. "Regression testing becomes more crucial (particularly with C++)": one of the

problems encountered was that it was not obvious which modules were affected
by changes.

A-30

LIST OF REFERENCES

[AMS93a] American Management Systems, Inc., "Object Methodology, Analysis, and
Design-Case Studies," Briefing, Object World '93 Conference, Boston,
MA, 1993.

[AMS93b] American Management Systems, Inc., Interviews with AMS
representatives: Andrew Baer, Director of Object Technology; Gordon
McDonald, and John Kemper, at DISA/CIM/XE, Fairview Park, Falls
Church, VA, 25 February 1993.

[AND89] J.A. Anderson, J. McDonald, L. Holland, and E. Scranage, "Automated
Object-Oriented Requirements Analysis and Design," Proceedings of the
Sixth Washington Ada Symposium, June 26-29, 1989, pp. 265 - 272.

[BAE93] Phone interview with Andrew Baer, Director of Object Technology,
American Management Systems, Inc., 28 April 1993.

[BLS93a] BLSM Briefing notes, presented 3-4 March 1993, Standard Systems Center
(AFCC), Maxwell AFB-Gunter Annex, AL.

[BLS93b] BLSM Interviews, conducted 3-4 March 1993, Standard Systems Center
(AFCC), Maxwell AFB-Gunter Annex, AL.

[BLS93c] BLSM Questionnaire Responses, 25 January 1995, Standard Systems
Center (AFCC), Maxwell AFB, Gunter Annex, AL.

[BLU91] D. Blue, Joint Integrated Avionics Working Group (JIAWG) Domain
Analysis Description, prepared for Naval Weapons Center, China Lake,
CA, by CTA Inc., Ridgecrest, CA, 30 September 1991.

[B0083] G. Booch, Software Engineering with Ada, Benjamin/Cummings, Menlo
Park, California, 1983.

[B0087] G. Booch, Software Engineering with Ada, Second Edition, Benjamin/
Cummings, Menlo Park, California, 1987.

[B0091] G. Booch, Object-Oriented Design With Applications, Benjamin/
Cummings, Redwood City, California, 1991.

[B0092] Eric W. Booth and Michael E. Stark, "Designing Configurable Software:
Compass Implementation Concepts," white paper, NASA/Goddard Space
Flight Center, MD, 1992.

[BR082] F. Brooks, The Mythical Man-Month, Addision-Wesley, Reading, MA,
1982.

References - 1

[BUH90] R.J.A. Buhr, Practical Visual Techniques in System Design With
Applications to Ada, Prentice Hall, Englewood Cliffs, NJ, 1990.

[CAT91] Roderic Geoffrey Galton Cattell, Object Data Management: Object-
Oriented and Extended Relational Database Systems, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1991.

[CHA92] D. de Champeaux, A. Anderson, & E. Feldhousen, "Case Study of Object-
Oriented Software Development," OOPSLA92.

[CHI90] E, J. Chikofsky and J. H. Cross, n, "Reverse Engienering and Design
Recovery: A Taxonomy," IEEE Software, January 1990.

[COA90] P. Coad and E. Yourdon, 00A - Object-Oriented Analysis, 2nd Edition,
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[COX86] B.J. Cox, Object Oriented Programming: An Evolutionary Approach,
Addison-Wesley, Reading, Massachusetts, 1986.

[DAH70] O. Dahl, B. Myhrhaug, and K. Nygaard, The Simula 67 Common Base
Language, Publication No. S-22, Norwegian Computing Center, Oslo,
1970.

[DAV93] J. Davis and T. Morgan, "Object-Oriented Development at Brooklyn Union
Gas," IEEE Software, January 1993.

[DIJ69] E. Dijkstra, Notes on Structured Programming, Structured Programming,
Academic Press, 1969.

[DIS93] D. Diskin, Notes Regarding DoD Staffing at Central Design Activities,
March 1993.

[DMR92] Defense Management Report Decision-918, Subject: Defense Information
Infrastructure, 1992.

[DOD83] Department of Defense, Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A-1983, 17 February 1983.

[DOD91] Department of Defense Software Technology Strategy, Draft, prepared for
the Director of Defense Research and Engineering (DDR&E), December
1991.

[DOD92] Department of Defense Reuse Program Initiative Office, "DoD Software
Reuse Vision and Strategy," Crosstalk, No. 37, October 1992.

[DOD92a] Department of Defense, "Data Administration Strategic Plan," Defense
Information Systems Agency, July 1992.

[DOD93] Department of Defense, Data Element Standardization Procedures,
Defense Information Systems Agency, January 1993.

[EMB92] David W. Embley, Barry D. Kurtz and Scott N. Woodfield, Object-Oriented
Systems Analysis: A Model-Driven Approach, Yourdon Press, Englewood
Cliffs, New Jersey, 1992.

References - 2

[FAY91] M. Fayad et al, "Mission Generation System (MGS): An Application of
Shlaer-Mellor's Object-Oriented Method," IEEEIAIAA 10th DASC '91
Proceedings, IEEE Press, 1991.

[FIC92] R. Fichman and C. Kemerer, "Adoption of Software Engineering Process
Innovations: The Case of Object-Orientation," Sloan WP No. 3434-92,
Sloan School of Management, Massachusetts Institute of Technology, June
1992.

[FIC92a] R. Fichman and C. Kemerer, "Object-Oriented and Conventional Analysis
and Design Methodologies," IEEE Computer, Vol. 25, No. 10, October
1992.

[HAR92] "Lessons Learned (LL) for the Base Level System Modernization
(BLSM)", Harris Data Services Corp., Standard Systems Center (AFCC),
Maxwell AFB, Gunter Annex, AL. 14 September 92.

[HAR93] "Software Development Plan (SDP) for the Base Level System
Modernization", Harris Data Services Corp., Standard Systems Center
(AFCC), Maxwell AFB, Gunter Annex, AL, 15 January 93.

[ICA92] I-CASE Program Management Office, "Integrated-Computer Aided
Software Engineering (I-CASE) Request for Proposal," Standard Systems
Center, Gunter AFB, AL, 1992.

[JAC92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson and Gunnar Overgaard,
Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1992.

[JAC93] I. Jacobson, "Is Object Technology Software's Industrial Platform?," IEEE
Software, January 1993.

[KIM90] Won Kim, Introduction to Object-Oriented Databases, MIT Press,
Cambridge, Massachusetts, 1990.

[KRI93a] Interview with David Kriegman, Director, Software Technologies, Systems
Research and Applications Corporation, 10 March 1993.

[KRI93b] Phone interview with David Kriegman, Director, Software Technologies,
Systems Research and Applications Corporation, 20 April 1993.

[KRU92] C. Krueger, "Software Reuse," ACM Computing Surveys, Vol., 24, No. 2,
June 1992.

[LEA90] B. Leathers, "Panel: OOP in the Real World," Proceedings of the European
Conference on Object-Oriented Programming Languages ECOOP '90,
Ottawa, Canada, October 1990.

[LEI93] E. Leinfuss, "Managing Class Libraries Takes Discipline," Software
Magazine, Client/Server Computing Special Edition, January 1993.

[LEW91] J. Lewis, S. Henry, D. Kefura, & R. Schulman, "An Empirical Study of the
Object-Oriented Paradigm and Software Reuse," OOPSLA'91.

References - 3

[LIS74] B. Liskov and S. Zilles, "Programming with Abstract Data Types,"
Proceedings of ACM SIGPLAN Conference on Very High Level Languages,
ACM 1974.

[MAR92] James Martin and James Odell, Object-Oriented Analysis & Design,
Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[MEY88] Bertrand Meyer, Object-oriented Software Construction, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[MAZ92] L. Mazzucchelli, "Holding onto what really matters," Object Magazine,
November-December 1992.

[MEY88] B. Meyer, Object-Oriented Software Construction, Prentice-Hall,
Englewood Cliffs, New Jersey, 1988.

[NEL91] M. Nelson, "An Object-Oriented Tower of Babel," OOPS Messenger, ACM
Press, 2,3 July 1991.

[NJE89] O. Nierstrasz, "A Survey of Object-Oriented Concepts," Object-Oriented
Concepts, Databases, and Applications, ACM Press, New York, New York,
1989.

[PAG92] M. Page-Jones, "Object orientation: the importance of being earnest,"
Object Magazine, July-August 1992.

[PAR72] D. Parnas, "On the Criteria to be Used in Decomposing Systems into
Modules," Communications of the ACM, 15, May 1972.

[PAR92] D. Parkhill, "Object-oriented technology transfer: techniques and
guidelines for a smooth transition," Object Magazine, May-June 1992.

[PIT93] M. Pittman, "Lessons Learned in Managing Object-Oriented
Development," IEEE Software, January 1993.

[PRI87] R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability,"
IEEE Software, Vol. 4, No. 1, January 1987.

[RUM91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-
Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, New
Jersey, 1991.

[SRA93a] Systems Research and Applications Corp., "SRA Corporation Model Based
Object-Oriented Design," Briefing at IDA, 10 March 1993.

[SRA93b] Systems Research and Applications Corp., "SRA Corporation Experience
with Object-Oriented Technologies," Briefing at IDA, 10 March 1993.

[SHL88] S. Shlaer and S.J. Mellor, Object-Oriented Systems Analysis: Modeling the
World In Data, Yourdon Press: Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

[SHL92] Salley Shlaer and Stephen J. Mellor, Object Life-styles: Modeling the World
in States, Yourdon Press, Englewood Cliffs, New Jersey, 1992.

References - 4

[SNY93] A. Snyder, "The Essence of Objects: Concepts and Terms," IEEE Software,
January 1993.

[STA87] M. Stark and E.V. Seidewitz, "Towards a General Object-Oriented Ada
Life-Cycle," Proceedings of the Joint Ada Conference, Fifth National
Conference on Ada Technology and Washington Ada Symposium, U.S.
Army Communications-Electronics Command, Fort Monmouth, New
Jersey, pp. 213- 222.

[STA93a] Mike Stark, "Impacts of Object-Oriented Technologies: Seven Years of
SEL Studies," Goddard Space Flight Center, MD, 1993.

[STA93b] Interview with Mike Stark, engineer at NASA/Goddard Space Flight
Center, Computer Sciences Corp., Greenbelt, Maryland., 29 March 1993.

[STR91] P. Strassman, Briefing on Corporate Information Management Initiative,
1991.

[TAF92] Technical Architecture Framework for Information Management, Defense
Information Systems Agency, 1992.

[TAL93] Taligent, "Lessons Learned from Early Adopters of Object Technology,"
white paper, Taligent, Inc., Cupertino, CA, 1993.

[TAY90] David A. Taylor, Object-Oriented Technology: A Manager's Guide,
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1990.

[TAY92] David A. Taylor, Object-Oriented Information Systems: Planning and
Implementation, John Wiley & Sons, Inc., New York, New York, 1992.

[YOU89] E. Yourdon, Modern Structured Analysis, Prentice Hall, Englewood Cliffs,
NJ, 1989.

[WAL93] Sharon Waligora and James Langston, "Maximizing Reuse: Applying
Common Sense and Discipline," white paper, Computer Sciences
Corporation, MD, 1993.

[WEG90] P. Wegner, "Concepts and Paradigms of Object-Oriented Programming,"
OOPS Messenger, ACM Press, 1,1, August 1990.

[WEL90] F. Wild, "A Comparison of Experiences with the Maintenance of Object-
Oriented Systems: Ada vs. C++", Proceedings ofTri-Ada '90, Baltimore,
Md., 1990.

[WIL93] N. Wilde and P. Matthews, "Maintaining Object-Oriented Software," IEEE
Software, January 1993.

[WIR90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented
Software, Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

References - 5

LIST OF ACRONYMS

AFB

AFMC

AFORMS

AIS

AMS

ANSA

API

AWIS

BLSM

CASE

CD

CDA

CD-ROM

CIM

CORBA

COTS

CRC

CRISII

CSC

CSCI

CSU

DBMS

DCE

Air Force Base

Air Force Material Command

Air Force Operations Resource Management System

Automated Information System

American Management Systems

Advanced Networked Systems Architecture

Application Program Interface

Army WWMCS (Worldwide Military Command and Control Sys-

tem) Information System

Base Level System Modernization

Computer-Aided Software Engineering

Committee Draft

Central Design Activity

Compact Disk - Read Only Memory

Center for Information Management

Common Object Request Broker Architecture

Commercial off the Shelf

Class-Responsibilities Callaborators

Customer Related Information System II

Computer Software Component; Computer Sciences Corporation

Computer Software Configuration Item

Computer Software Unit

Database Management System

Distributed Computing Environment

Acronyms - 1

DCRM

DDL

DFD

DID

DISA

DME

DML

DoD

DODD

DODI

EEI

FD

FDD

GUI

HP

I-CASE

IDA

IDEF

IM

I/O

IS

ISO/IEC

JIAWG

JOPES

KLOC

LCM

LOGMOD-B

Distributed Computing Reference Model

Data-Definition Language

Data Flow Diagram

Data Item Description

Defense Information Systems Agency

Distributed Management Environment

Data Manipulation Language

Department of Defense

Department of Defense Directive

Department of Defense Instruction

External Environment Interface

Functional Description

Flight Dynamics Division

Graphical User Interface

Hewlitt-Packard

Integrated Computer-Aided Software Engineering

Institute for Defense Analyses

Integrated Computer Aided Manufacturing (ICAM) Definition Lan-

guage

Information Management

Input/Output

Information System

International Organization for Standardization/International

Electrotechnical Committee

Joint Integrated Avionics Working Group

Joint Operations Planning and Execution System

[Thousand] Lines of Code

Life-Cycle Management

Logistics Module Base Level

Acronyms - 2

•

LPS Lifecycle Productivity System

MB Megabyte
• MBOOD Model Based Object-Oriented Design

MDS Manpower Data System

MIS Management Information System

• NASA National Aeronautics and Space Administration

NDI Nondevelopmental Item

ODASD(IM) Office of the Deputy Assistant Secretary of Defense for Information

•
Management

ODBMS Object-Oriented Database Management System

ODP Open Distributed Processing

OMB Office of Management and Budget
• OMG Object Management Group

00 Object Oriented

OOA Object-Oriented Analysis

• OOD Object-Oriented Design

OOPL Object-Oriented Programming Language

OOPSLA Object-Oriented Programming Languages, Systems, and Applica-

•
tions

OOT Object-Oriented Technology

ORB Object Request Broker

OSE Open Systems Environment
• OSF Open Software Foundation

OSI Open Systems Interconnection

PI Polymorphism/Inheritance

• PM Program Manager

PNI Picture Network International

RAPID Reusable Ada Products for Information Systems Development

• RDBMS Relational Database Management System

Acronyms - 3

•

RFP

RPO

SDD

SEE

SEL

SIDPERS

SLOC

SPARES

SRA

SRI

SRS

STARFISH

RFP

TAFIM

TRM

WWMCCS

Request for Proposal

Reuse Program Office

Software Development and Documentation

Software Engineering Environment

Software Engineering Laboratory

Standard Installation/Division Personnel System

Source Lines of Code

Spare Parts Production and Reprocurement Support System

Systems Research and Applications

Software Reuse Initiative

Software Requirements Specification

Storage and Retrieval for Intelligence Statistics and History

Request for Proposal

Technical Architecture Framework for Information Management

Technical Reference Model

Worldwide Military Command and Control System

Acronyms - 4

