Final Technical Report, AFOSR-F49620-94-I-0164
Equipment for In-Situ Studies of Metal on III-IV Semiconductors
L. D. Marks
Department of Materials Science and Engineering
Northwestern University, Evanston IL 60208

This supplemental grant was used to purchase a badly needed workstation for modeling of quantitative electron diffraction patterns from surfaces. The equipment purchased was an Hewlett-Packard 715/75 workstation. For reasons which are not completely clear, this computer ended up costing $58.78 less than the quote from Hewlett-Packard upon which the proposed budget was based.

In addition to providing additional computing power for calculating diffraction patterns from surfaces (see references [1-3]), it also opened up completely new areas. Perhaps the most exciting of these is computer intensive image filtering based around Wiener filters [4-5] which have allowed us to directly resolve atomic surface structures at a resolution of better than 0.25 nm [1,3,6]. We have also used these new filter methods of image restorations in a very large number of cases for work both directly supported by AFOSR and by other agencies. It is realistic to state that with these filters we have almost completely abandoned dark-room chemical printing for digital processing of images, at a substantial long-term reduction in costs.

References
1. Atomic Structure of Si(111)-(5x2) Au from HREM, \(\chi^2 \) Electron Diffraction and Heavy Atom Holography
2. UHV Transmission Electron Microscopy Structure Determination of the Si (111) \(\sqrt{3} \times \sqrt{3} \) R30 Au Surface.
 R. Plass and L. D. Marks, Submitted to Surface Science.
3. Atomic Structure of the Si(100)-5x3 Au Surface
 G. Jayaram and L. D. Marks, Submitted to Surface Science
4. Wien-filter Enhancement of Noisy HREM Images
 L. D. Marks, Submitted to Ultramicroscopy
5. On CTF Inversion for Noisy HREM Images: A Solution But Problems
 L. D. Marks, R. Plass and G. Jayaram, in preparation
6. Unusual island structures in Ag growth on Si(100)-2x1
N. Doraiswamy G. Jayaram and L. D. Marks.
This supplemental grant was used to purchase a badly needed workstation for modeling of quantitative electron diffraction patterns from surfaces. The equipment purchased was an Hewlett-Packard 715/75 workstation. For reasons which are not completely clear, this computer ended up costing $58.78 less than the quote from Hewlett-Packard upon which the proposed budget was based. In addition to providing additional computing power for calculating diffraction patterns from surfaces, it also opened up completely new areas. Perhaps the most exciting of these is computer intensive image filtering based around Wiener filters [4–5] which have allowed us to directly resolve atomic surface structures at a resolution of better than 0.25 nm [1,3,6]. We have also used these new filter methods of image restorations in a very large number of cases for work both directly supported by AFOSR and by other agencies. It is realistic to state that with these filters we have almost completely abandoned dark-room chemical printing for digital processing images, at a substantial long-term saving in costs.