1 Introduction

Abstract

We discuss fundamental formation and agreement problems for autonomous, synchronous mobile robots with limited visibility. Each robot is a mobile processor that, at each discrete time instant, observes the relative positions of those robots that are within some constant V > 0. The problems we discuss involve the given algorithm and then moves to that position.

The main difference between the two robots is the initial distance. In particular, if the initial distance is large enough, the robots can move in such a way that they eventually come into contact. The main difference between the two robots is the initial distance. In particular, if the initial distance is large enough, the robots can move in such a way that they eventually come into contact.

In this paper, we continue the authors’ previous work on formation and agreement problems for autonomous mobile robots [1][2][3][4][5][6]. The goal of the problem is to let the robots from a given geometric figure or distribution of distributed autonomous robots that operate under distributed control of the given algorithm and then moves to that position.

In this paper, we continue the authors’ previous work on formation and agreement problems for autonomous mobile robots [1][2][3][4][5][6]. The goal of the problem is to let the robots from a given geometric figure or distribution of distributed autonomous robots that operate under distributed control of the given algorithm and then moves to that position.

In this paper, we continue the authors’ previous work on formation and agreement problems for autonomous mobile robots [1][2][3][4][5][6]. The goal of the problem is to let the robots from a given geometric figure or distribution of distributed autonomous robots that operate under distributed control of the given algorithm and then moves to that position.
Leader election can also be considered as an agreement problem. The problem of agreeing on a common x-y coordinate system, which is perhaps the most fundamental agreement problem when initially the robots do not have a common coordinate system, is discussed in [12] [13].

In many of the works mentioned above, including the authors' previous works, it is assumed that the sensor range of a robot is unlimited, that is, a robot is capable of seeing other robots regardless of the distance to them. (Exceptions include the works that discuss collision avoidance strategies that use only local information.) In this paper, we assume that each robot has only limited visibility, in the sense that it can see and know the relative positions of only those robots that are within distance V of itself, for some constant $V > 0$. V therefore represents the visibility range of the robots. Under this assumption, we discuss fundamental formation and agreement problems, namely, the formation of a single point by the robots and agreement on a common x-y coordinate system and the initial distribution, and present algorithm for solving them except for the problem of agreement on direction (a subproblem of agreement on a coordinate system), which is not solvable even for robots with unlimited visibility.

It turns out that algorithms for robots with limited visibility can be considerably more complex than those for robots with unlimited visibility that solve the same problem. Similarly, proving the correctness of such algorithms for robots with limited visibility can be much more involved compared with the proofs for the case of unlimited visibility. This is mainly due to the fact that, under limited visibility, the behavior of a robot is based only on local information available to that robot, whereas the correctness of the algorithm can only be derived from the global behavior of the entire set of robots.

The model of the robot system we use is basically the same as that given in [12] [13], except that the robots have only limited visibility. Namely, each robot is a mobile processor that repeatedly does the following: Observe the relative positions of the other robots in its range, compute its next position using the given algorithm, and then move to that position. The algorithm can use, as input, the positions of other robots observed by the robot in the past. We assume the following: (1) Initially, the robots do not have a common x-y coordinate system. (2) Initially, the robots do not have a sense of direction. (3) The robots are indistinguishable by their appearances. (4) All robots execute the same algorithm for determining their movement.

In this paper, we only consider the case when the robots are synchronous, that is, they always observe other robots and move simultaneously at discrete time instants 0, 1, 2, ….. It has been reported in [12] [13] that certain formation and agreement problems can be extremely hard (or even unsolvable) if the robots are not guaranteed to be synchronous. The case of asynchronous robots is left for future research.

Taking into consideration collision avoidance of robots with volume is of course important, but for simplicity, in this paper we represent a robot as a point, and assume that two or more robots can occupy the same position simultaneously and the robots do not block the views of others.

We introduce the problem of forming a single point by the robots in Section 2, and present an algorithm for solving it in Section 3. The correctness of the algorithm is shown in Section 4. Section 5 discusses agreement problems. Concluding remarks are found in Section 6. Due to space limitation, some details are omitted in this version. All the missing details can be found in the full version of this paper.

2 The Single Point Formation Problem

Let $R = \{r_1, \ldots, r_n\}$ be the set of robots. We denote by $r_i(t)$ the position of robot r_i (in the 2-dimensional Euclidean space) immediately before the move at time instant t. $r_i(t)$ is called the position of r_i at t. The multiset $P(t) = \{r_1(t), \ldots, r_n(t)\}$ then denotes the distribution of the robots at t. $P(t)$ is a multiset, since it is possible that $r_i(t) = r_j(t)$ for some $i \neq j$. So $P(0)$ denotes the initial positions of the robots. Given $P(t)$, define a graph $G_t = (R, E_t)$, called the visibility graph at time t, by $(r_i, r_j) \in E_t \iff dist(r_i(t), r_j(t)) \leq V$, where $dist(p, q)$ denotes the Euclidean distance between points p and q. That is, there exists an edge between r_i and r_j in G_t if and only if r_i and r_j are mutually visible at t. See Figure 1.

For convenience, we introduce the following notation. $S_i(t)$ denotes the set of robots that are visible from r_i at t, that is, $S_i(t) = \{r_j | dist(r_i(t), r_j(t)) \leq V \} \subseteq R$. Note that $r_i \in S_i(t)$. We denote by $C_i(t)$ the smallest enclosing circle of the set $\{r_j(t) | r_j \in S_i(t)\}$ of the positions of the robots in $S_i(t)$ at t, and $c_i(t)$ its center. Clearly, for any set S of points, the smallest enclosing circle of S is unique and is effectively computable [4]. The following property is well known [4].

The proof is omitted.

Proposition 1 Let C be the smallest enclosing circle of a set S of points. Then either
Figure 1: Hollow circles are the initial positions of 100 robots. Visibility graph G_0 consists of these circles and the edges among them. Solid circles are their final positions after the execution of the algorithm for the single point formation problem given in Section 3. Small dots represent their intermediate positions. Note that the robots in each connected component of G_0 have moved to a single point.

1. there are two points p, q in S on the circumference of C such that the line segment pq is a diameter of C, or

2. there are three robots p, q, r in S on the circumference of C such that the center c of C is inside $\triangle pqr$.

The single point formation problem is the problem of moving the robots in the same connected component of G_0 to a single point in finite steps, where G_0 is the visibility graph at time 0. Our goal is to design an algorithm for the robots that achieves this, regardless of the initial distribution $P(0)$.

Note that two robots that belong to different connected components of G_0 need not move to the same point. In fact, under limited visibility, there is no deterministic algorithm for moving all robots to a single point. To see this, suppose that there are only two robots r_1 and r_2, such that (1) the local coordinate system of r_1 is obtained from that of r_2 by a translation of distance d, for some $d > V$, and (2) initially, r_1 and r_2 are at the origin of their respective local coordinate systems. Then initially, neither r_1 nor r_2 sees any other robot, and the situation looks identical to both. So if the algorithm they use is deterministic, they move (simultaneously) in the same manner using their respective local coordinate systems. This means, by the assumption on their coordinate systems, that the robots are again distance d apart and the situation looks identical to both. This argument continues, and thus the robots can never converge to a single point.

3 Algorithm

We present an algorithm for solving the single point formation problem. Intuitively, the algorithm solves the problem by achieving the following two subgoals at every time instant t: (1) The robots in the same connected component of G_t "get closer" in some sense at $t + 1$, and (2) robots that are mutually visible at t remain mutually visible at $t + 1$.

First of all, at every time instant t, if r_i does not see any robot other than itself (i.e., $S_i(t) = \{r_i\}$), then r_i does not move at t. Otherwise (i.e., $S_i(t) \supset \{r_i\}$), to achieve the first subgoal, we move r_i towards the center of the smallest enclosing circle of the positions of all the robots that r_i can see. Formally, at t, r_i moves towards the center $c_i(t)$ of $C_i(t)$, over some distance $MOVE$ to be specified below. See Figure 2.

If r_i moves at t as mentioned above, then we achieve the second subgoal as follows. Let $r_j, i \neq j$, be one of the robots in $S_i(t)$, that is, r_j is visible from r_i at t. Let m_j be the midpoint of $r_i(t)$ and $r_j(t)$. If the next positions of r_i and r_j are both inside the disc D_j with center m_j and radius $V/2$, then r_i and r_j can still see each other at $t + 1$. See Figure 3. Formally, given the direction of the move (towards $c_i(t)$, as explained above), r_i computes the maximum distance ξ_j that it can move in that direction without leaving D_j, as follows. If $\text{dist}(r_i(t), r_j(t)) = 0$, then clearly $\xi_j = V/2$. Otherwise, let $d_j = \text{dist}(r_j(t), r_j(t))$ be the distance between r_j and r_j at t, and $\theta_j = \angle c_i(t)r_j(t)r_j(t)$ the direction of the move of r_j with respect to the ray from
Thus in the following, let \(t_0 \) be the smallest time instant such that no two connected components merge after \(t_0 \). Fix a connected component \((S,A)\) of \(G_{t_0} \), and for each \(t \geq t_0 \), let \(CH(t) \) be the convex hull of the positions of the robots in \(S \) at \(t \), that is, \(CH(t) \) is the convex hull of the set of points \(\{r_j(t) | r_j \in S\} \).

Lemma 2 states that the diameter of \(CH(t) \) never increases, and Lemma 3 states that once the robots in a connected component gets sufficiently close to each other, then they move to the same position in one step.

Lemma 2 For any \(t \geq t_0 \), \(CH(t+1) \subseteq CH(t) \).

Proof The proof is omitted due to space limitation.

Lemma 3 If the diameter of \(CH(t) \) is no greater than \(V \), then all the robots in \(S \) move to the same point at \(t \).

Proof It can be shown that every robot \(r_j \in S \) moves to \(c_i(t) \), and the point \(c_i(t) \) happens to be the same for all robots in \(S \). We omit the details due to space limitation.

Therefore, what remains to be proved is that the diameter of \(CH(t) \) decreases to a value that is not greater than \(V \). (Note that Lemma 2 alone does not guarantee this.) Now, by Lemma 2, we know at least that the series \(\{CH(t) : t = t_0, t_0 + 1, \ldots\} \) converges. So suppose that it converges to \(CH \), where \(CH \) must clearly be a convex polygon, including, as special cases, a point and a line segment. We will show in Lemma 4 given below that \(CH \) is indeed a single point. We need the following technical lemma, Lemma 4, in order to prove Lemma 5.

Lemma 4 Suppose that at \(t \), (1) the robots that are visible from \(r_j \) are located on the arc or the apex of a sector with apex \(r_j(t) \), apex angle \(\varphi \) and radius \(V \), where \(0 \leq \varphi < \pi \), and (2) at least one robot that is visible from \(r_j \) is located on the arc of this sector. (See Figure 4.) Then at \(t \), \(r_j \) moves over distance at least \(min\{V/2, V \cos(\varphi/2)\} \) and at most \(V/\sqrt{2} \).

Proof Let \(\varphi' \), \(0 \leq \varphi' \leq \varphi \), be the smallest angle such that the robots visible from \(r_j \) lie inside the wedge with apex \(r_j(t) \) and apex angle \(\varphi' \). The lemma follows from the following argument.

Case 1: \(0 \leq \varphi' \leq \pi/2 \). See Figure 4. In this case, \(GOAL = (V/2)/\cos(\varphi'/2) \) and \(LIMIT \geq V/2 \). Then, since \(MOVE = min\{GOAL, LIMIT\} \) and \(V/2 \leq (V/2)/\cos(\varphi'/2) \leq V/\sqrt{2} \), we have \(V/2 \leq MOVE \leq V/\sqrt{2} \).
Case 2: $\pi/2 < \varphi' < \pi$.
In this case, $\text{GOAL} = \text{LIMIT} = V \cos(\varphi'/2)$, and hence $\text{MOVE} = V \cos(\varphi'/2)$. Thus $V \cos(\varphi'/2) = \text{MOVE} < V/\sqrt{2}$. \Box

Lemma 5 CH is a point.

Proof First, we assume that CH is a convex polygon other than a single point or a line segment, and derive a contradiction. Let α be an arbitrary corner of CH, and φ the internal angle at α. Let $\delta > 0$ be an arbitrary (small) real number. By the assumption of convergence, there exists a sufficiently large time instant t_1 such that at any $t \geq t_1$, all the robots in S are in the δ-neighborhood of CH, and there exists at least one robot in the δ-neighborhood of α. Let CH' be the convex polygon obtained from CH by translating each edge of CH outward over distance δ. See Figure 5. Note that CH' contains the δ-neighborhood of CH. Let α' be the corner of CH' corresponding to α. Let $\triangle abc \subseteq CH'$ be the smallest isosceles triangle containing the δ-neighborhood of α, such that $ab = ac$ and corner a is at a'. Then there exists at least one robot in $\triangle abc$ at any time instant after t_1. So we let r_1 be a robot that is in $\triangle abc$ at $t+1$, that is, $r_1(t+1) \in \triangle abc$, where $t > t_1$, and examine the position $r_1(t)$ of r_1 at t. We use symbols $S_i(t)$, $C_i(t)$ and $c_i(t)$ defined previously. By Proposition 1 and the fact that all the robots in S are in CH' at t, the center $c_i(t)$ of $C_i(t)$ is in CH'. There are two cases, depending on the relative positions of $c_i(t)$ and $\triangle abc$.

Case 1: $c_i(t)$ is inside $\triangle abc$.
See Figure 5. By Proposition 1 and the fact that all the robots in S are in CH' at t, there exist two points p,q in CH' such that pq is a diameter of $C_i(t)$. This, together with the condition that $c_i(t) \in \triangle abc$, implies that (1) there exists some $\epsilon > 0$ that depends only on δ and CH, such that all the robots in $S_i(t)$ (including $r_1(t)$) are in the ϵ-neighborhood of α, and (2) this ϵ can be made arbitrarily close to 0 by choosing sufficiently small δ. So assume that ϵ is very small. Then, since the robots in S constitute a connected component of G_t and ϵ is much smaller than the distance from α to any other corner of CH, there is at least one robot, say r_k, that is not visible from r_1 at t, but that is visible from some robot, say r_j visible from r_1. That is, there exist $r_j \in S_i(t)$ and $r_k \in S - S_i(t)$ such that $r_k \in S_j(t)$. See Figure 6. This means that the robots that are visible from r_j at t are either within distance 2ϵ (≈ 0) of $r_j(t)$, or at distance greater than $V - 2\epsilon$ ($\approx V$) of $r_j(t)$ (and there is at least one such robot, called r_k above). So the situation is similar to that described in Lemma 4, and thus the distance of the movement of r_j at t must be almost the same as that given in Lemma 4. Thus at $t+1$, r_j is at distance at least about $\min\{V/2,V \cos(\varphi'/2)\}$ from α, and at distance at most about $V/\sqrt{2}$ from α, where δ can be chosen in advance so that ϵ is much smaller than $\min\{V/2,V \cos(\varphi'/2)\}$. Thus at $t+1$, r_j is visible from every robot in the ϵ-neighborhood of α. So if δ (and thus ϵ) is chosen sufficiently small, then at $t+1$, every robot in the ϵ-neighborhood of α moves out of that region. So immediately before the move at $t+2$, there are no robots in the δ-neighborhood of α. This is a contradiction. (End of Case 1)

Case 2: $c_i(t)$ is outside $\triangle abc$.
See Figure 7. Since $r_i(t) \notin \triangle abc$ implies $r_i(t+1) \notin \triangle abc$ contradicting the assumption, we have $r_i(t) \in \triangle abc$. Also, clearly the distance over which r_i moves at t is $\text{MOVE} = \text{LIMIT}$, where LIMIT is not greater
than the length of a longest side of $\triangle abc$, which can become arbitrarily small if δ is chosen to be small, for any fixed value of φ. Now, by the definition of LIMIT, in order for the value of LIMIT to be small, there must exist a robot $r_j \in S_i(t)$ such that $\text{dist}(r_i(t), r_j(t)) \approx V$ and $\theta_j = \angle c_i(t)r_i(t)r_j(t)$ is close to or greater than $\pi/2$. On the other hand, since $c_i(t)$ is the center of the smallest enclosing circle of $S_i(t)$, $\text{dist}(r_i(t), c_i(t)) \leq V$ holds. Therefore, if δ is chosen to be sufficiently small, then $\text{dist}(r_i(t), c_i(t))$ can become arbitrarily close to 0. So, if the value of δ is modified to be slightly larger (but still sufficiently small) so that $c_i(t)$ is inside (new) $\triangle abc$, then the argument used in Case 1 can be applied to show that the diameter of $C_i(t)$ must be very small. This implies that $\text{dist}(r_i(t), r_j(t))$ must be very small, contradicting $\text{dist}(r_i(t), r_j(t)) \approx V$. (End of Case 2)

The claim that CH is not a line segment can be shown in a similar way, and we omit the details. Therefore, eventually the diameter of $CH(t)$ becomes no greater than V, and then by Lemma 3, all the robots in S move to a single point in one step. Thus CH is a point. \Box

By the lemmas given above, we obtain the following theorem.

Theorem 1 The algorithm solves the single point formation problem correctly.

We remark that the proof of the correctness of the algorithm of Section 3 is much more complex than that of an algorithm given in [13] for converging the robots with unlimited visibility to a single point. This is due to the fact that, under limited visibility, the behavior of a robot is based only on local information available to that robot, whereas the correctness of the algorithm can only be derived from the global behavior of the entire set of robots.

5 Agreement Problems

In this section, we discuss two basic agreement problems for the robots, namely, agreement on a common x-y coordinate system and agreement on the initial distribution. Here, agreement means that the robots should obtain, in finite steps, a common understanding of the given concept. As we discussed in Section 2, however, under limited visibility some robots may never belong to the same connected component of G_t for any t during the execution of the given algorithm. So we cannot expect all robots to agree on the given concept. So in the following, we only require the robots that belong to the same connected component...
of G_0 to reach an agreement. (Of course, additional robots that happen to be merged into a new connected component may also be able to agree.)

5.1 Agreement on an x-y coordinate system

Agreement on a common x-y coordinate system means that the robots should obtain, in finite steps, a common understanding of the origin, unit distance, and direction of the positive x-axis. As is shown in [13], however, agreement on direction is not possible in general, even if the robots have unlimited visibility.

On the other hand, agreement on the origin and unit distance can be achieved using the algorithm of Section 3 for forming a point. As we discussed in Section 4, the robots that belong to the same connected component of G_0 (and possibly some additional robots) eventually move to the same point, say p, at some time instant t, in such a way that at this moment, they do not see any other robot not located at p. Next, at $t+1$, each robot r_i in S moves to the midpoint of p and its previous position $r_i(t-1)$. Since the distance between p and $r_i(t-1)$ is at most V by the definition of LIMIT, the distance between p and $r_i(t+1)$ is at most $V/2$, and thus any two robots in S are still mutually visible at $t+1$. Then the robots can adopt, as the common unit distance, the radius of the smallest enclosing circle of the positions of the robots in S at $t+1$. Note that by construction, the size of the unit distance is no more than $V/2$.

The operation described above works correctly, except when additional robots not in S become visible to some robots in S at $t+1$. If this happens, then the new set of robots (including the robots in S) that constitute a new connected component of G_{t+1} must repeat the entire process, starting with the agreement on the origin. (This is unavoidable in general, since there can be more than one connected component in G_0.) To see if this has happened, we let the robots in S execute one step of the algorithm of Section 3 at $t+1$. If no additional robots become visible at $t+1$ to any of the robots in S, then since the diameter of the convex hull of the positions of the robots in S at $t+1$ is not greater than V, by Lemma 3 all the robots in S will again move to a single point, say p', at $t+1$. (p' is not necessarily the same as p.) If on the other hand additional robots become visible at $t+1$ to some robots in S, then either (1) not all the robots in S move to the same point at $t+1$, or (2) all robots in S move to the same point at $t+1$ and all of them find at $t+2$ that the number of robots in their connected component has increased. (Note that by Lemma 1, robots that are mutually visible remain mutually visible during the execution of the algorithm of Section 3.) In either case, the robots in S realize that they have to restart the process for agreement on the origin and unit distance.

The following theorem follows from the discussion given above. We omit the proof.

Theorem 2 The agreement problem on the origin and unit distance is solvable for synchronous robots under unlimited visibility.

5.2 Agreement on the initial distribution

Agreement on the initial distribution requires that the robots in a connected component of G_0 obtain a correct understanding of the initial positions of all the robots in that component. This can be solved as follows.

First, the robots agree on the origin and unit distance, using the method given in the previous subsection. Let p be the origin, and d the size of the unit distance, where $d \leq V/2$ by construction. Then all the robots move to p, say at t. At $t+1$, each robot r_i in S moves towards its initial position $r_i(0)$, over distance $(1-1/2^x)d$, where x is the distance from p to $r_i(0)$ measured in the units of d. Note that since $0 \leq x < \infty$, we have $0 \leq 1-1/2^x < 1$, and hence $0 \leq (1-1/2^x)d < d \leq V/2$. Thus at $t+1$, the robots in S are still mutually visible, and every robot r_i in S can figure out, for every robot r_j in S, the direction of $r_j(0)$ from p and distance to $r_j(0)$ from p, by observing the position $r_j(t+1)$ and using the knowledge of the size of d. Therefore at $t+1$, the robots in S have discovered and agreed on their initial distribution. The case when additional robots become visible to the robots in S during this operation can be handled easily, as we did in the previous subsection. We omit the details.

The following theorem follows from the discussion given above. We omit the proof.

Theorem 3 The agreement problem on the initial distribution is solvable for synchronous robots under limited visibility.

6 Conclusion

We discussed formation and agreement problems for autonomous, synchronous robots with limited visibility. The algorithm we presented for the single point formation problem is oblivious, in the sense that the
position of robot \(r_i \) at time \(t + 1 \) is determined only from the positions of other robots that \(r_i \) observes at \(t \). One might wonder whether the same problem can still be solved by an oblivious algorithm when the robots are asynchronous (i.e., when the robots are not guaranteed to move simultaneously all the time), but unfortunately, it has been shown in [13] that no oblivious algorithm exists for the single point formation problem for asynchronous robots, even if the robots have unlimited visibility. On the other hand, a nonoblivious algorithm for the single point formation problem has been reported for asynchronous robots with unlimited visibility in [13]. It is an interesting open problem to determine whether or not the same problem can be solved by a nonoblivious algorithm for asynchronous robots with limited visibility. Furthermore, it is not known exactly what class of geometric figures can be formed by synchronous robots under limited visibility. (A point is an example of such a figure.) Some results in this direction have been reported in [13] for synchronous robots with unlimited visibility. Investigation of this problem for robots with limited visibility is suggested for future research.

As for the agreement problems we discussed, our results show that the limitation on the visibility of the robots has no effect on whether or not they are solvable, with, of course, a minor qualification that under limited visibility, not all the robots may be able to agree on the given concept. However, under limited visibility, the robots must first get sufficiently close to each other (for example, they move to a single point), before reaching an agreement. In many cases, this is not necessary if the robots have unlimited visibility. So the limitation on the visibility tends to increase the complexity of the algorithms. One challenging open problem regarding agreement is to decide whether or not asynchronous robots with limited visibility can discover and agree on their initial distribution. We suggest this problem for future research.

References

