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PREFACE
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1 Introduction

The goal of the Research and Development for Image Understanding Systems (RADIUS)
project is to develop image understanding (IU) algorithms that support model-based aerial
photointerpretation. The Computer Vision Research Laboratory at the University of Mas-
sachusetts (UMass) is funded under a three-year contract to develop algorithms for auto-
mated geometric site modeling. Delivery will be in the form of a set of IU modules, each
containing a flexible set of programs for performing modeling tasks. Although each individ-
ual task is highly automated, the image analyst (IA) maintains control of the site modeling
session by deciding when and where each program is applied.

Our goal is to provide automated IU support for the site modeling process. Given a
current partial site model, and a set of images of the site, we provide IU routines that
extend the model to include previously unmodeled site features (model extension), and
that reduce the inaccuracies in the existing model (model refinement). This process is
repeated as new images become available, each updated model becoming the current site
model for the next iteration. Over time, the site model will be steadily improved to become
more complete and more accurate. Routines for model-to-image registration support
these tasks by automatically determining the relative position and orientation of each image
with respect to the local site coordinate system. This information is needed for pro jecting the
current model onto the new image for change detection, and to determine what parts of the
new image are not currently covered in the site model. The most difficult modeling task to
automate is model acquisition, the generation of an initial site model from scratch. Early
versions of the system will rely on IA guidance to perform this important task, although
work is underway to more fully automate this process as well.

This report describes research activities performed during the first year of the UMass
RADIUS contract, Octoker 1992 — Octcber 1993. The rest of this section presents a brief
overview of the project; subsequent sections are devoted to in-depth technical discussions of
the algorithms that have been developed so far.

1.1 Program Activities

UMass plans to deliver a set of software modules that provide IU support for site model
acquisition, extension, and refinement. Each module is listed below, along with a brief
description.

1. The Feature Extraction module generates symbolic feature descriptions of incoming
imagery in order to reduce the representational gap between incoming sensor data and stored

geometric site model descriptions. Algorithms are currently available for straight line segment
eztraction and corner detection.

2. The Model-to-Image Registration module registers incoming imagery with a store
geometric site model by aligning their respective coordinate systems. This process allows a
site model graphic to be overlayed on the image and is the first step in model extension and
refinement. Registration is achieved in two stages: 8D-to-2D feature correspondence match-




ing, which determines the correspondence between site model features and extracted image
features, and robust pose determination; which uses these correspondences to determine the
precise position and orientation of the camera in the scene.

3. The Model Extension module contains routines used for site model acquisition,
extension and refinement. Given a set of interesting features seen in one image, an epipolar
feature matching procedure uses known image poses to search for corresponding geometric
features in other images taken from different viewpoints. Corresponding features are passed
to a multi-tmage triangulation routine that determines the position of the new 3D features
in the local site coordinate system. The triangulation routine can also be used to refine
the positions of old model features based on new observations detected via model-to-image
registration. This module is not yet fully developed, and may eventually contain a building
detection routine for automatically finding new buildings to be added to the site model.

4. The Vanishing Point Analysis module can be used to detect groups of oriented man-
made structures in the scene, to determine the relative orientation of 3D line structures from
a single image, and to generate an initial estimate of the rotational component of camera
pose. An algorithm for wvanishing point detection groups extracted straight line segments
into sets of lines directed towards the dominant scene vanishing points. Precise statistical
estimation of vanishing point orientation is provided for determining the relative orientation
of lines in the scene with respect to the camera, and vice versa.

5. The Image-to-Image Registration module determines feature correspondences
directly between two or more images without going through a model-to-image registration
step. It is thus useful when no models are yet available, as is the case during initial model
acquisition. When the pose of each image is already known, the epipolar feature matching
algorithm included in the Model Extension module can be used. When the pose is not
known, epipolar matching cannot be used — for this case we have experimented with an
algorithm for automated image rectification that trausforms the unconstrained perspective
image-to-image feature matching problem into one that can be solved using simpler similarity
matching. In the future, this module will contain a correlation-based stereo algorithm suitable
for generating dense digital terrain maps.

6. The Projective Structure Recovery module is the subject of future research into
nontraditional algorithms for structure recovery. In particular, algorithms for planar surface
recovery via projective invariants and 3D structure recovery via invariants are currently being
investigated.

1.2 Schedule

Below is a three-year schedule showing the significant milestones we expect to achieve during
the course of the RADIUS contract.

FY93
- Test model-to-image correspondence matching
- Test robust pose recovery
- Evaluate vanishing point analysis



- Demonstrate model extension (point features)

- Begin porting code to RCDE

FY94

- Demonstrate model refinement

- Demonstrate model extension (line features)

- Demonstrate model extension (volumetric models)
FY95

- Demonstrate acquisition of initial site models

- Test model reconstruction based on invariance

- Symbolic extraction of building surface structure
- Quantitive evaluation of all algorithms

- Finish porting all code to RCDE

1.3 Design Philosophy

The UMass design philosophy emphasizes model-directed processing under a rigorous 3D
perspective camera model. Information from multiple images is fused for increased accuracy
and reliability, using a flexible set of modules under image analyst control. These design
choices are motivated in the paragraphs below.

The UMass system is designed around the goal of building, using and maintaining ge-
ometric site models. This choice is based on the idea that model-directed processing
provides a way to perform basic image understanding tasks more efficiently and reliably
than purely bottom-up procedures. An example is model-to-image registration, where 3D
features in a site model are automatically matched with 2D image features and used to com-
pute camera pose, thus avoiding laborious hand-selection of accurate control points in the
images. The very names of tasks like model extension and model refinement were chosen to
emphasize the model-based nature of the UMass system.

Unlike several previous aerial image analysis systems that assumed nadir views only, the
UMass system can handle oblique views as well. This is possible because the system is
designed to perform a full 3D perspective analysis of the scene. This allows the system
to handle general viewpoints; indeed, many of the algorithms being used in this project are
ported directly from the Unmanned Ground_Vehicle project, where they were used in the
performance of terrestrial robot navigation. Oblique images, rather than being troublesome
data to be avoided, are instead a boon to aerial photointerpretation. Sets of oblique images
taken from widely disparate viewpoints tend to have large camera baselines and vergence
angles, which lead to more accurate triangulation results.

Many systems deal with single, monocular images or a stereo pair of images, but the
UMass system is designed to support multi-image processing. This design decision is
based on the observation that incorporating information from many views at each stage of
processing yields more reliable results. One example is a multi-image triangulation routine
that combines corresponding 2D poin*- across n images into a single 3D point estimate with
a variance that is roughly proportional to 1/n?. Multi-image processing lends itself well to

batch-style processing of several images; however it is also possible to formulate recursive




versions that support incremental processing over time.

The imagery analyst plays a key role in the system being developed. Perhaps the most
important task for the IA is determining what site features are important enough to be worth
adding to the model. To this end, the IA can guide the model extension process by pointing
to or outlining areas of interest that warrant detailed photogrammetric processing. The IA
will also be of invaluable help for tuning a small set of operational parameters for each new
domain of interest, and for interactively guiding the system through the initial stages of
acquiring a new site model. Future IU research will focus on ways to further automate the
site model acquisition process.

1.4 Report Overview
Each subsequent section in this document looks at one of the six modules listed in Section 1.1

in more detail. Progress to date on the module is reported, and sample results are shown
where available.

o p—



2 Feature Extraction

A site model will invariably be specified at a much higher level of geometric abstraction than
the pixel intensity values in an image. T‘o'lielp bridge the huge representational gap between
pixels and site models, feature extraction routines will be available to produce symbolic,
geometric representations of potentially important image features. Many types of geometric
features can be extracted from Incoming site imagery, including straight line segments, line
pencils (sets of line segments that would projectively intersect at a single point if infinitely
extended), rectilinear line groupings, curves, corner points, regions of homogeneous intensity,
and textured areas. Qur current model matching and extension algorithms rely exclusively
on straight line segments and corner features. Extracted line segments are later grouped
into line pencils by the vanishing point analysis module (see Section 3).

2.1 Straight Line Extraction

Two straight line segment extraction algorithms developed previously at UMass have been
evaluated on the RADIUS imagery. The Burns algorithm (11] begins by labeling pixels
in the intensity image according to coarsely quantized gradient orientation. A connected-
components algorithm then aggregates sets of adjacent pixels with similar gradient orienta-
tion into line-support regions, i.e. pixel regions with an intensity surface that supports the
presence of a straight line segment. Symbolic line segments are computed by intersecting a
plane corresponding to the average intensity of the line-support region with a least-squares

plane representing the underlying intensity surface in that region. Sample results are shown
in Figure 1.

The sccond line extraction algorithm to be evaluated was the Boldt algorithm [10]. Sam-
ple results Tom this algorithm are shown in Figure 2. At the heart of the Boldt algorithm
is a hierarchical grouping system inspired by the Gestalt laws of perceptual organization.
Zero-crossing points of the Laplacian of the intensity image provide an initial set of local
intensity edges. Hierarchical grouping then proceeds iteratively; at each iteration, edge pairs
are linked and replaced by a single longer edge if their end points are close and their orien-
tation and contrast (difference in average intensity level across the line) are similar. Each
iteration results in a set of increasingly longer line segments.

The Burns line extractor runs much faster than the Boldt extractor because it makes
fewer local decisions at each stage of processing and maintains fewer intermediate data
structures. Indeed, a stripped down version of the Burns algorithm has been used as a fast
line finder for real-time robot navigation experiments {18]. On the other hand, the Boldt line
extractor generally produces more accurate results (compare Figures 1 and 2). In particular,
the Burns algorithm occasionally produces line segments which are considerably skewed in
orientation. This problem is caused by oddly-shaped support regions resulting from slow
intensity gradient changes in the image. A promising solution to this problem has been
devised and is currently being implemented. For the moment, however, the less accurate but
speedy Burns algorithm is idea] for providing a “quick look” at new data by generating a set
of line segments suitable for early stages of image understanding, such as delineating man-




Figure 1: Straight line segments extracted by the Burns algorithm.




Figure 2: Straight line segments extracted by the Boldt algorithm.




made objects, computing initial estimates of camera orientation via vanishing point analysis
(see Section 3), and even coarse model-to-image registration (Section 4). Meanwhile, the
more accurate Boldt extractor is run off-line to provide the highly accurate line features
needed for precise 3D geometric analysis and model construction.

Current implementations of both algorithms are unable to handle the 1300x1000 RADIUS
modelboard 1 images in a single chunk. When processing such large images, several options
are available:

1. use a focus of attention mechanism to determine subwindows in which lines will be
extracted

2. break the image into subchunks that are processing and then pieced back together

3. reduce the size of the entire image via subsampling.

For our experiments using the modelboard imagery, a combination of the 2nd and 3rd options
is used. First, image resolution is reduced by half using Gaussian filtering and subsampling.
Each reduced image is then cut into a mosaic of overlapping subimages, each to be processed
separately by the appropriate line extraction algorithm. All line segments found are trans-
lated and scaled back into their original image coordinate system, then filtered so that each
line segment in the final set has a length of at least 10 pixels long and a contrast of at least
15 intensity levels. This procedure produces roughly 2800 line segments per image. As aside
benefit of this strategy, Gaussian image reduction alleviates the peculiar “sawtooth” noise
pattern that corrupts several of the modelboard 1 images.

2.2 Oriented Corner Extraction

A new oriented corner extractor was developed to automatically and accurately extract
building corners. The corner extractor was designed to complement the straight line segment
extractors previously described. Initial design requirements for the corner extractor were that
it should:

1. be able to locate both dihedral and triliédral corners,

2. not be sensitive to building material and lighting direction (this rules out grey-scale
template matching),

3. not be an excessive number of false positives in textured areas and

4. not be computationally expensive to run, since it will be used over large images.

One common approach to finding corners is to search for two or more line segments
with endpoints in proximity, then estimating the corner vertex as the ir. erssction of the
extended lines. This approach was rejected since we wanted an independent source of feature
information that would complement the extracted line segments, not share their defects.




Instead, a two-stage method was developed: potential corners are detected using a set of
oriented templates convolved with a Canny edge image, then the vertex position of each
detected corner is estimated to subpixel precision using a least-squares fitting procedure.
This two-stage approach yields a good balance of computation - the imprecise but fast
convolution stage quickly generates a small (compared to the number of pixels in the image)
number of candidate corner positions, then the more expensive, but highly accurate, least-
squares estimation procedure is used to precisely locate each candidate corner.

For greater computational expedience, it is assumed that the expected orientation of
lines in the image meeting to form a corner is known. This assumption is valid for corners
of buildings oriented with respect to three predominant, mutually orthogonal directions,
as occurs in many urban and industrial sites. In these cases, the expected orientation in
the image of the mutually orthogonal edges forming a dihedral or trihedral corner can be
determined automatically by vanishing point analysis (see Section 3). Although building
edges with the same 3D orientation can project to 2D edges with different orientations at
different locations in the image, this variation is predictable and often varies so slowly that
the same oriented template is valid over large portions of the 1mage.

Intermediate steps in the oriented corner detection algorithm are illustrated in Figure 3.
First, given a greyscale intensity image (Figure 3a), a Canny edge image is formed (Fig-
ure 3b). Then, for each of the three dominant orientations in the scene, an oriented line
endpoint template is built and convolved with the Canny edge image (the result of convo-
lution with one oriented template is shown in Figure 3c.) Each template is designed to give
a strong positive response at one end of a chain of edges having the correct orientation, a
strong negative response at the other end, and a zero response everywhere else. The absolute
value of each of the convolution images is then taken and the three are added together. The
result is a “cornerness” image with strong peaks (Figure 3d) in the vicinity of dihedral and
trihedral corners. For each peak attaining a given threshold, a corner hypothesis is formed.

Choosing a locally maximal peak in the “cornerness” image only localizes the vertex of
a corner to within a pixel at best, and can be off by two or three pixels due to imprecision
in the orientation of the convolution templates. To localize the vertex position to subpixel
precision, a constrained least-squares procedure is performed. For each hypothesized corner,
the Canny edges contributing to the hypothesis are analyzed to determine whether the corner
is dihedral or trihedral, and in which directions the contributing edgel chains radiate. Two
or three oriented lines constrained to meet at a single vertex are then fit simultaneously to the
contributing Canny edges in a least-squares sense, and the position of the best-fit vertex is
noted. Although the least-squares fitting procedure is moderately expensive compared to the
initial corner detection phase, it is only run in places where there is already strong evidence
that a corner exists. The final result of the corner feature extractor is a set of symbolic
corner features consisting of a subpixel vertex estimate, and the number and orientation of
image edges meeting at that vertex (Figure 4).




Figure 3: Illustration of oriented cormer detection. (a) Gray-scale intensity image. (b)
Canny edge image. (c) Results of convolving the Canny edge image with one oriented
template determined from vanishing point information. (d) The final cornerness image.
Local intensity peaks in this image correspond +o dihedral and trihedral corner hypotheses.
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Figure 4: Final set of symbolic corner hypotheses. Corner vertices are located to
precision using a constrained least-squares vertex fitting procedure.
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3 Vanishing Point Analysis

Buildings in urban or industrial areas are often oriented with respect to an underlying rect-
angular grid (city blocks, for example): When viewed from the air, their roof lines appear to
converge to two distinct vanishing points located on the horizon. For a nadir view, parallel
3D roof lines remain parallel in the image, and their vanishing points are then said to occur
at infinity. A set of lines that projectively meet at a common point of intersection is called
a line pencil. Under known camera lens parameters, vanishing point line pencils allow the
computation of three-dimensional line and plane orientations from a single image, and thus
allow the orientation of the camera to be determined with respect to the underlying local site
coordinate grid. When the camera lens parameters are not known, they can be determined
to a limited extent from vanishing point information [28).

A practical algorithm for estimating line orientations from vanishing points must address
two issues: how to cluster line segments into pencils of lines passing through a single van-
ishing point, and how to accurately estimate 3D line orientations from these line pencils.
Sections 3.1 and 3.2 discuss these topics in turn. An experimental evaluation of the accuracy
of 3D line orientations computed from vanishing point information is reported in Section 3.3.

3.1 Vanishing Point Detection

Vanishing point detection involves finding clusters of lines directly towards a single point
of intersection. A Hough-transform approach originally due to Barnard excels at quickly
clustering line segments into intersecting groups [6]. Line segments in the image are mapped
onto a histogram representing the surface of the unit sphere z2 + y? 4+ 22 = 1 centered
about the camera focal point. In practice, only the positive hemisphere z > 0 needs to be
represented, and the surface of the hemisphere is partitioned by longitude and colatitude
(see Figure 5). The sphere is a more appropriate histogram space than the image plane for
detecting vanishing points because the sphere is a compact, finite surface, while the image
plane is not.

Each line segment in the image, taken together with the camera focal point, forms a pro-
jection plane which intersects the unit (hemi)sphere in a great (semi)circle. Each histogram
bucket maintains a count of the number of.great circles passing through it; potential van-
ishing points are detected as peaks in the histogram, corresponding to areas where several
great circles intersect. Barnard chose the center of the histogram bucket containing a peak
as a point estimate of the vanishing point location.

We have modified Barnard’s basic algorithm to support statistical estimation techniques
that more accurately-determine the true vanishing point location. The most fundamental
change is that the histogram data structure is applied only as an initial clustering method
and as an efficient spatial access mechanism, but the final analysis of vanishing point lo-
cation is performed on the underlying line segment data. To achieve this, each histogram
L icket maintains a list of the line segments that pass through it in addition to the count.
After a peak is detected, the line segments within it are retrieved and statistical estimation
techniques are applied to derive a more accurate estimate of vanishing point position (see
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Figure 5: Barnard’s histogram method for finding vanishing points. A hemispherical his-
togram is partitioned by longitude and colatitude. For each line segment in the image, a
great circle of histogram cells is incremented. Potential vanishing points are detected as
peaks in the histogram, corresponding to areas where several great circles intersect.
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Section 3.2).

Peak selection in Hough-transform methods is inherently problematic [21]. In particular,
when the true position of a vanishing point on the sphere falls near a histogram boundary,
candidate line segments that should begrouped together fall into separate buckets. For this
reason we actually collect line segments from a whole neighborhood of buckets surrounding
the peak. We have implemented a routine to visit every grid cell falling within a circle of
given radius p from a given point on the hemisphere, taking into account the wraparound
that must occur due to the mapping between unit hemisphere and 2D rectangular array of
grid cells.

After the largest cluster of converging lines is detected from the histogram, all lines
contained within that cluster are deleted from the histogram, and all bucket counts are
updated. The highest remaining peak is taken as the second cluster, and so on. Multiple
vanishing point peaks are thus detected in decreasing order of number of lines contributing
to them. The number of vanishing point clusters to look for is a user-supplied parameter —
usually less than three appear in any image.

An illustration of vanishing point detection on model board imagery is shown in Fig-
ure 6. Two line pencils are detected, with roughly 900 line segments in each pencil. These
correspond to the two dominant sets of horizontal line segments in the scene. Detecting two
sets of scene horizontals via vanishing point analysis, and thus finding the horizon line of the
ground plane in the image, has proven relatively easy in the model board images. Detecting
the third, vertical vanishing point is not so easy, because the associated image lines are fairly
short and tend to fall below the line lergth filter we apply in an effort to keep the amount
of line data more manageable. When needed, we compute the vertical vanishing point an-
alytically from the two horizontal vanishing point directions. The vertical vanishing point
comnputed in this way can be used to search fcr short lines in the image that correspond to
vertical edges in the scene.

3.2 Statistical Estimation of Vanishing Points

While Barnard’s histogram method excels at quickly clustering line segments into convergent
groups, a final estimate of vanishing point location and variance should be based on the
line segments themselves rather than the arhitrary bucket boundaries of a histogram data
structure. We therefore use the histogram mechanism only for clustering and efficient spatial
access, while estimating vanishing point location using a geometric statistical procedure.
Because the vanishing point may be at infinity in the image plane, the quantity actually
estimated is a unit vector pointing towards the vanishing point. The orientation of this
unit vector is also an estimate of the 3D orientation of parallel lines having that particular
vanishing point.

Collins and Weiss [12] present a formal statistical approach to estimating line orientations
from vanishing points. Assuming that image line segments have been previously grouped into
line pencils, ihe projection plane normals for each pencil form a set of points on the sphere
clustered about a great circle perpendicular to the true vanishing point orientation vector
(see Figure 7). Collins and Weiss treat this cluster as a random sample from an equatorial
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Figure 6: An example of vanishing point detection. (a) Modelboard 1 image J8. (b) Straight
line segments extracted by the Burns algorithm (see Section 2.1). (c) and (d) The two largest
line pencils found using the vanishing point clustering algorithm described in the text. These
line pencils correspond to sets of parallel 3D line segments in the scene.
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Figure 7: Vanishing point estimation on the sphere. The projection plane normals of line
segments in a vanishing point pencil cluster around a great circle on the unit sphere. The
polar axis of the best-fitting great circle provides an estimate of vanishing point location in
the image, and of the 3D orientation of parallel lines associated with that vanishing point.

probability density function on the sphere, and estimate vanishing point orientation as the
polar azis of the density function using standard maximum-likelihood estimation techniques.

Although it works quite well in practice, the maximum likelihood estimator of Collins
and Weiss has one main shortcoming. All lines in a line pencil are treated equally, contrary
to practical experience which shows that longer lines are detected more accurately than
shorter ones, and thus should be given more credence when estimating line intersections.
A ‘new statistical estimator has now been developed, based on Bayesian estimation of the
axis of a great circle cf noisy observed points. The unknown true values of each point are
assumed to be constrained to lie exactly on a great circle, and each observation is assumed
to be perturbed by an independent probability density function on the sphere with a local
covariance computed from a simple random perturbation error model on the associated image
line segment. This has the effect of assigning smaller variances to longer lines in the image,
and hence assigning them a higher weight in the resulting estimation process.

3.3 Evaluating the Accuracy of-Orientation Estimates

An experimental evaluation of the effectiveness of the new vanishing point orientation es-
timator was carried out on images J1-J8 from the modelboard 1 data set. The goal of
this experiment was to compare 3D line orientations computed by the statistical estimator
against absolute ground truth orientations. The ground truth orientations were provided by
Lynn Quam at SRI International, who computed them using a multi-image, block adjust-
ment procedure (3] where the camera pose parameters, effective camera focal length, and
principle point (image center) for all eight images were computed simultaneously. It should
be noted that the line orientations derived from Quam’s comput.d camera pose values. are
themselves, only estimates of the true relative line orientations. However, since Quam’s
computations are based on precisely measured 3D ground and 2D image control points, they
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Table 1: Absolute orientation errors in estimated vanishing point orientations, and in the
relative angle between estimated orientations.

Abs Err in | Abs Err in | Rel Ang
Image | VP1 (deg) | VP2 (deg) | (deg)
J1 3.7 1.0 91.2
J2 3.7 2.8 91.7
J3 1.5 1.1 89.5
J4 4.7 0.5 87.3
J5 1.9 0.5 91.1
J6 2.4 2.3 90.3
J7 1.9 6.8 87.7
J8 2.0 3.5 91.9
avg 2.7 2.3 90.1
std 1.1 2.1 1.8

are expected to be inherently more accurate than vanishing point estimation methods that
are based only on generic knowledge about parallelism in the scene.

The experiment was carried out as follows. For each of eight images J 1-J8, a set of
line segments was produced using the Burns straight line extraction algorithm (Section 2.1).
This procedure produced roughly 2800 line segments per image. Barnard’s method was
then used to histogram the set of line segments from each image, and the two largest line
pencils were extracted (e.g. Figure 6). In all cases, the two largest line pencils in each
image corresponded to the tvio dominant orthogonal sets of lines in the 3D scene. Foilowing
extraction of line pencils, the vanishing point orientation estimator was applied, and the
resulting 3D line orientation estimates were compared against the ground truth relative
orientations for north-south and east-west line segments in the scene.

Table 1 tallies the results of this comparison. For each image, absolute errors between es-
timated and ground truth line orientations for the two dominant orthogonal vanishing points
in the scene are compared, along with the computed relative angle between the estimated
orientations. Sample means for the absoluiz-errors in the two vanishing point orientations
are 2.7 and 2.3 degrees. The average relative angle between the two estimated vanishing
points orientations, which in reality is 90 degrees, was computed as 90.1 degrees with a
standard deviation of roughly 2 degrees.

We note in passing that although the model board scenes are ideal for vanishing point
detection, in the sense that there are many parallel lines in two distinct orientations, they
are among the harder cases for accurate vanishing point estimation since the convergence
angle of line segments across the image is never very large. In these images each vanishing
point is significantly off the image plane, and in many cases, is far off, near infinity. The
benefits of computing line intersections on the sphere rather than the extended image plane
are very apparent in these cases.
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4 Model-to-Image Registration

Matching and registration is a ubiquitous problem in computer vision. Correspondence
matching can be broken into two general areas: model-to-image registration where corre-
spondences are identified between known 3D model features and their 2D counterparts in
an image, from which the absolute pose of the camera is computed, and image-to-image
registration where corresponding features in two images of the same scene must be deter-
mined, and from them the relative pose of the image pair. Image-to-image registration will
be covered in Section 6.

Accurate model-to-image registration is a necessary precursor for many site modeling
tasks. Proper registration between an incoming image and a stored geometric site model
determines the position and appearance of important model features in the image. The
model can then be overlaid on the image to aid visual change detection and verification of
expected scene features. Model-to-image registration using templates for movable objects
such as trucks and railway cars provides a method for locating and counting these vehicles.
Finally, correspondences determined by matching 3D model features with 2D image features,
using an initial estimate of camera pose, can be used in conjunction with a pose refinement
algorithm to recover a more accurate estimate of camera pose.

The model-to-image registration process involves two tasks: 1) correspondence matching
to determine correspondences between model features and image features, and 2) camera
resection to determine the precise geometric relationship between the image and the scene.
The first task is by far the hardest, and its success depends on finding a good initial set
of model-to-image correspondences automatically. Whether a good set of initial correspon-
dences can be found easily or not depends on the quality and completeness of initial estimates
of the image acquisition parameters. As a general rule-of-thumb, the difficulty of finding cor-
respondences is directly proportional to the number of unknown acquisition parameters (un-
constrained degrees of freedom in the model-to-image transformation space) and the amount
of uncertainty in the acquisition parameters that are known. Correspondence matching is
discussed in Section 4.1.

The second aspect of model-to-image registration is camera resection. It is important
to note that since model-to-image correspondences are being found automaticaily here, sub-
sequent camera resection routines need to take into account the possibility of mistakes or
outliers in the set of correspondences found. This implies that the camera resection rou-
tines need to use robust estimation procedures that are impervious to the effects of outliers.
When the internal orientation or “lens” parameters of the camera are accurately known, and
only the the external orientation or “pose” parameters need to be precisely determined, the
camera resection process reduces to a pose estimation problem. A robust pose estimation
procedure has been developed and tested at UMass, and it will be described in Section 4.2.
We conclude in Section 4.3 with an experimental evaluation of model matching and pose
determination using a pair of images from the Martin Marietta, Denver, Colorado site.
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4.1 Model Matching

The goal of model matching is to find the correspondence between 3D features in a site model
and 2D features that have been extracted from an image. For example, we currently use
site models that are composed of wireframe buildings; model matching in this case involves
determining correspondences between edges in a 3D building wireframe and 2D extracted line
segments from the image. To find this correspondence, we are evaluating a model matching
algorithm developed at UMass by Ross Beveridge [7]. Based on a local search approach
to combinatorial optimization, this algorithm solves for the correspondence between model
edges and image line segments, and for the transformation that brings the projected model
into the best possible geometric alignment with the underlying image data.

The local search matching algorithm searches the discrete space of correspondence map-
pings between model and image features for one that minimizes a match error function. The
match error depends upon the relative placement implied by the correspondence, and the
amount of coverage of the model by the data. That is, :

Ematch =FEg; + Eomission : (1)

In particular, fit error is computed by choosing pose parameters that cause projected model
edges to appear most similar to the image edges currently hypothesized to be in correspon-
dence with them. The similarity between image edges and projected model edges is measured
by a least-squares residual fit error. The omission portion of the error term is computed as
the percentage of projected model lines having no corresponding data lines to explain them.
The mathematical transformation that maps model features into the image is essentially a
module of the system. Our current implementation handles the four parameter 2D simi-

larity transform and the full 3D pose transform. These options are described more fully in
Section 4.1.2.

To find the optimal match, probabilistic local search relies upon a combination of iterative
improvement and random sampling. Iterative improvement refers to a repeated generate-
and-test procedure by which the algorithm moves from an initial match to one that js locally
optimal via a sequence of incremental changes (addition or removal of a model-data cor-
respondence pair) that continually reduce the match error. In an effort to find the global
optimum, the algorithm is run multiple times starting from different (random) initial cor-
respondences in the model-to-data line match.space. Even if the probability of seeing the
optimal match on a single trial is low, the probability of seeing the optimal match in a large
number of trials, started from uniformly random positions in the match space, is high.

Figure 8 presents a pictorial vignette of the model matching process. Given an incoming
image (8a), the first step is to extract a set of 2D symbolic image features (8b) — in this
case, straight line segments extracted by the Burns algorithm (11]. Also provided is a 3D
wire-frame model (8c) containing prominant site features whose locations are known with
respect to the local site coordinate system. This model will be registered with the image,
and in so doing, the position and orientation of the camera in the local site coordinate
system will be determined. The 3D model is projected into the image usir~ an initial, rough
estimate of the camera pose parameters (8d), and a set of candidate correspondences for each
projected wireframe edge is selected from the underlying image line segments (8¢). The model
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Figure 8: A pictorial summary . the model matching process. (a) Model board image J8.
(b) B}1rns lines for image J8. (c) Partial wire-frame model. (d) Initial model projection. (e)
Candidate data correspondences. (f) Best match of model to data.
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matcher then searches through this space of possible model-to-image feature correspondences
to determine the best set of matching features. The optimal correspondence found is used
to estimate the camera pose that best brings projected model features into alignment with
their corresponding image features (8f). -

The following subsections explore some of the practical issues involved in applying the
local search model matching system. Topics treated include initial estimation of the image
acquisition parameters, selection of a set of possible initial correspondences, the trade-off
between efficiency and accuracy when choosing the number of degrees of freedom in the
model-to-image transformation space, and use of a hierarchical matching strategy to further
reduce the combinatorics of correspondence matching.

4.1.1 Setting up the Match Space

Initial Estimates of Acquisition Parameters

The unconstrained correspondence matching problem is still an unsolved research prob-
lem in computer vision. As a practical matter, initial estimates of the image acquisition pa-
rameters need to be available beforehand to cut the enormous number of potential matches
down to a manageable level.

We model the image acquisition process as a projective transformation from the 3D
scene onto a 2D image plane. Using homogeneous coordinates, this transformation can be
represented by a 3 x 4 matrix of parameters, defined up to a single scale factor. Thus,
although there are 12 entries in the transformation matrix, there are only 11 independent
parameters. These parameters can be further subdivided into 5 internal (lens) parameters,
and 6 external (pose) parameters, and may be arranged in the following matrix formula,

I3 x1 3x3 I3 x4 4x1
(A Sy a U ! z
Blo]=]0 s v [Rgt] y (2)
1 0 0 1 ! z
1

which maps the 3D coordinates z, y, and z of a model point into the 2D coordinates u and v
of an image point. Here, the transformation from model to image coordinates is broken into
two stages, a 3 x4 matrix representing camera pose and the process of perspective projection,
followed by application of a 3 X 3 matrix of camera lens parameters. The pose parameter
matrix is further partitioned into a 3 x 3 orthonormal rotation matrix R (containing 3
degrees of freedom) and a 3 x 1 translation vector ¢ (containing the remaining 3 degrees of
pose freedom). The 5 camera lens parameters are represented by s, and s,, which are the
focal lengths in pixels along each of the Image axes, %o and vo, which are the pixel coordinates
of the camera principle point, and an image axis skew parameter «, which is always assumed
to be 0 unless information to the ~ontrary exists.

For our experiments, initial estimates of the camera lens and pose parameters for the
RADIUS model board imagery were determined as follows. First, nominal values for the
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internal camera parameters were filled-in from information supplied with the model board
data (namely 6.8 micron square pixels and a focal length of 47.9 mm for the 18 inch GSD
images) and by assuming the principle point to be in the numeric center of the image. To
estimate the external camera parameters; the orientation of the camera with respect to the
scene was first determined by vanishing point analysis (see Section 3), up to a four-fold
ambiguity that was resolved by identifying the direction of true north in the image by hand.
The distance of the camera from the ground was computed from the reported Ground Scale
Distance (GSD); to date our experiments have only used the 18 inch GSD images. Finally,
the intersection of the camera’s line of sight with the ground plane was estimated manually.

Selecting the Correspondence Space

Model matching performs a search through the space of possible model to data corre-
spondences. This space is initially set up by deciding which data lines in the image are
to be considered as candidate matches for each model line. Careful pruning of this space
at the start is crucial to achieving tractable run times. The problem is greatly simplified
when good initial estimates of the image acquisition parameters are available. The better
the initial estimates, the tighter the filters for picking out possible candidate data lines can
be, both in terms of orientation, position in the image, and length.

Even though the metric used to score potential correspondences is purely geometric
(Equation 1), photometric expectations such as the sign and magnitude of contrast across
a line can be enforced by prefiltering for these properties in the initial candidate generation
phase. Our tendency has been to underspecify rather than overspecify filter parameters,
however, because once a correct line pairing has been excluded by overzealous filtering in
the candidate generation stage, that correct pairing can never contribute to the match that
is eventually found.

For the experiments we have run on the model board imagery, we project ezch model line
into the image using the initial estimate of image acquisition parameters described above.
All image line segments having an orientation within 10 degrees of the projected model line
orientation, and located within 100 pixels laterally from it, are then selected as possible
matching candidates.

4.1.2 Model-to-Image Transforms

Essentially all model-to-image correspondence problems involve solving for a discrete corre-
spondence between model and image features along with an associated transformation map-
ping model features into the image. The two problems together constitute model matching:
a match being a correspondence plus a transformation. The most general transformation
typically considered involves full 3D pose: a rigid 3D model is rotated and translated relative
to the camera and then projected into the image using a known camera model. This amounts
to solving for the pose parameters in Equation 2, while holding the lens parameters fixed.

Unfortunately, this approach to matching is very expensive computationally. To see
why, consider the match error metric introduced in Equation 1, which is a combination of
geometric fit and omission terms. To compute these terms for a particular set of model-
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to-data correspondence pairs involves solving for the transformation that brings projected
model features into best alignment -with their hypothesized corresponding data lines, where
best is defined as minimizing the residual least-squares geometric fit error. Thus, to evaluate
each state in the space of potential correspondence matches, a full 3D-to-2D pose solution
must be computed. There is no known closed-form solution to the pose problem for an
arbitrary number of points and lines - exact solutions require iterative, nonlinear least-
squares techniques. In a typical run, the model matcher searches through thousands of
possible match states in its search for the optimum correspondence. If at each match state
one needs to solve the full 3D-to-2D pose problem, the resulting algorithm is prohibitively
expensive.

There is great advantage, then, in looking for alternative methods to replace solving the
full 3D-to-2D pose equations exactly at each step. We have investigated two such approaches,
both originally introduced by Beveridge [8]. These methods are four-parameter 2D-to-2D
affine (similarity) matching, and hybrid 3D-to-2D matching.

2D-to-2D Matching

The idea behind 2D-to-2D matching approximations to the full 3D-to-2D correspondence
problem, is that given good initial estimates of the lens and pose parameters of the camera,
the 3D model can be projected onto the image before matching begins, turning the problem
into a search for the 2D transformation that best brings the 2D projected model features
into correspondence with the image data features. This is the underlying motivation for the
2D similarity version of the model matcher, which seeks the best four parameter affine or
similarity transform relating a projected set of wireframe model edges with a set of image
data line segments [7).

The 2D similarity transform is a planar transformation consisting of four parameters:
a rotation angle in the plane, a 2 parameter translation in the plane, and a single global
change of scale. It is a subgroup of the more general 6-parameter affine transformation group.
Finding the best 2D similarity transform between a set of corresponding model and data lines
1s much faster than solving for full 3D pose. Indeed, Beveridge devised a closed-form solution
for determining the similarity transform that brings a set of 2D model lines into alignment
with their corresponding data lines. Because the similarity transform matcher is fast, it is
possible to run more trials in a given amount of time, thereby increasing the confidence in
finding the best correspondence.

Problems with 2D-to-2D Matching

We have run numerous matching experiments using the 2D similarity matcher on images
J1-J8 of the Model Board 1 data set, using a simple wireframe model generated from the
3D ground truth data points provided. Initial estimates of the camera pose parameters were
determined as previously described, then purturbed along their various degrees of freedom
by hand. Our experiments showed that the performance of the 2D-to-2D similarity version
of the matcher was sensitive to the accuracy of the initial camera pose. This was not entirely
unexpected - a good initial pose estimate is crucial for 2D-to-2D matching since the initial
pose determines what 2D projected model is matched against the data. Once it has Been
projected using the initial pose, the resulting 2D model can thereafter only be rotated,
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translated and scaled in 2D in an effort to fit it properly to the image. We had, however,
expected this version of the matcher to work relatively well in the aerial domain, where the
camera is far from the objects being viewed, as opposed to “close-range” domains, such as
hallway navigation, where small differences in viewpoint can cause large changes in object
appearance.

Further study revealed that the 2D similarity matcher was particularly sensitive to the
accuracy of the initial estimate for the camera look vector. The reason for this can be
explained by considering the relationship between similarity transformations of a 2D model
in the image and the effects of the six degrees of freedom of camera pose on the initial
projection of the model. Errors in the initial camera pose estimates lead to projected model
templates that deviate from their ideal 2D location, orientation, size, and shape in the image.
The four parameter similarity transformation can correct for errors in 2D image location
caused by incorrect specification of the horizontal location (e.g. latitude and longitude) of
the camera above the earth, errors in image rotation due to misspecification of the amount
of rotation of the camera about the line of sight, and global image scale changes caused
by incorrect specification of the distance of the camera from the scene. The 2D similarity
transform cannot recover from errors in image object shape, however. These shape errors
are due to incorrect estimates of the direction and amount of object foreshortening, and are
a direct result of errors in the initial orientation estimate of the camera look vector.

Figure 9 illustrates an example of the problem that can occur due to incorrect estimates
of foreshortening. Figure 9a shows an initial projected model template overlayed on one
of the model board images. The most notable discrepancy at this stage is a large error
in translation of the 2D model template with respect to its correct position in the image.
Figure 9b shows the results of applying the best four parameter similarity mapping found by
the 2D local search matcher, and Figures 9c and 9d are zoomed images showing the match in
greater detail. The overlap between the 2D model template and the image kas been greatly
improved - a four parameter similarity transformation has been found that accurately aligns
the model template on three out of four sides of the main building. However the fourth
side, shown in detail in Figure 9d, is still considerably misaligned. It has to be stressed
that this is not a failure of the 2D matching algorithm, per se. It has found the best
possible match allowed under these circumstances. The problem is that no combination
of 2D rotation, translation and uniform scaling can possibly bring the initial projected 2D
model into alignment with the underlying image, because of the excessive foreshortening in
one direction of the model template due to an inaccurate initial estimate of the camera look
vector.

Hybrid 3D-to-2D Matching

We have observed the foreshortening problem described above in many of our 2D-to-
2D matching experiments on the model board images. This has led us to abandon the 2D
similarity matching system in favor of a hybrid 3D-to-2D perspective matching system also
developed by Beveridge [9]. This system combines the speed of 2D similarity matching with
the accuracy of full 3D pose matching. In particular, the hybrid matcher interleaves 2D
similarity matching with 3D pose updates. Starting with an initial projection of the 3D
model to form a 2D model template, a full hill-climbing cycle of the 2D similarity matching
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Figure 9: Model matching using the 2D similarity transform, illustrating the effects of fore-
shortening errors. (a) Initial projection of model template. (b) Overlay after 2D similarity
model matching. (c) Close-up showing good alignment on three sides of the model. (d)
Close-up showing poor alignment on the fourth side, due to uncomprnsated foreshortening
errors.




system is performed from a random start in correspondence space. Once a local optimum
is reached, the final correspondence.between 3D model lines and 2D image line segments
is passed to a full 3D pose determination algorithm (see Section 4.2). The computed pose
provides a new estimate of camera location and orientation. This is used to reproject the 3D
model to create a new 2D model template, and 2D local search similarity matching begins
anew. The process converges when no change to the set of model-to-image correspondences
can be found that improves the match score.

The crucial difference that allows the 3D-to-2D hybrid matcher to work in cases where
the 2D-to-2D matcher fails is the 3D pose estimation and model reprojection step occuring
after each 2D similarity matching episode. This series of pose updates incrementally corrects
for any foreshortening due to incorrect initial estimates of camera pose. On the other hand,
most of the matcher’s computation time is spent evaluating the effects of adding or removing
pairs of potential correspondences, and in the hybrid matcher, this work is being done using
the simpler 2D similarity transformation equations, for which a fast closed-form solution
exists. The resulting hybrid system thus offers a clever blend of speed and accuracy.

Figure 10 illustrates the results of the hybrid 3D-to-2D matcher on the same matching
problem as shown in Figure 9. Figure 10a shows a zoomed in portion of the initial projection
of the 3D site model overlayed onto the image, and Figure 10b shows again the results of the
best match found by the 2D-to-2D similarity matching system. The results of the hybrid
3D-to-2D matching system are shown in Figures 10c and 10d. These figures show in turn the
results of matching only rooftop lines, and then all wireframe model lines, using a hierarchical
matching strategy that will be outlined below. The overlap between the projected model
and the 2D image is now very good, and all vestiges of foreshortening errors caused by the
incorrect initial estimate of the camera look vector have been removed.

4.1.3 Hierarchical Matching Strategy

Based on experimentation with the model board imagery, further steps have been taken to cut
down on the combinatorics of the matching problem. The most relevant of these innovations
is to use a hierarchical matching strategy. The run time complexity of correspondence
matching in each individual image is governed by the number of model line to data line
candidate pairs that are considered. The number of correspondence pairs that are considered
is directly related to parameters governing-the size of a search window around each model
line, and in turn, the size of this search window should be set according to the uncertainty in
the user’s current knowledge about the pose of the camera. A two stage hierarchical strategy
is currently employed. In the initial stage when pose uncertainty is large, only horizontal
model lines from building roofs are considered. There are several heuristics behind this
choice: roof lines comprise roughly a third of the total number of lines in the full model,
they are relatively long (as compared to the building verticals), and they are less likely to
be occluded (as compared to the horizontal ground lines).

Once the best corresnondence and pose are found using only roof lines, the second stage of
matching begins. The full set of model lines is projected into the image using the computeu
pose, and hidden lines are removed. Matching resumes using this more numerous set of lines,
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Figure 10: Model matching using the hybrid 3D-to-2D matcher. (a) Close-up of initial
projection of model template. (b) Overlay after 2D similarity model matching, showing
effects of foreshortening. (c) Close-up of results for 3D-to-2D matching of roof lines. Note
that foreshortening effects have been compensatec. for. (d) Close-up showing alignment after
3D-to-2D matching using the full wireframe model.
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but with a much tighter bound on search window size, since the projection of the model into
the image using the pose computed from the first stage should be fairly accurate. The goal is
to keep a near-constant upper bound on the number of model-to-data correspondence pairs
considered at each stage, thereby keeping total match time roughly constant. During the
first stage there are fewer model lines, but many more data candidates to consider; during
the second stage many more model lines are used, but each has only a small number of data
candidates that could possibly be associated with it.

4.2 Camera Resection

The result of model matching is a set of model-to-image feature correspondences between 3D
wire-frame edges and 2D image line segments. The next stage in the model extension process
uses these correspondences to resect more accurate estimates of camera pose. These updated
parameter estimates are then used to triangulate the positions of new scene features. Since
automatically generated feature correspondences may contain gross errors, called outliers, it
is important for any subsequent camera resection procedure to use robust statistical meth-
ods when computing new camera parameters. A robust algorithm for finding 3D camera
pose from a set of model-to-image point and line-based feature correspondences has been
developed at UMass in a Ph.D. thesis by Kumar [24, 25, 26].

At the heart of Kumar’s robust pose code is an iterative, weighted least-squares algorithm
for computing pose from a set of correspondences that are free from outliers. The pose pa-
rameters are found by minimizing an objective function that measures how closely projected
mode] features fall to their corresponding image features. For each point correspondence
the objective function is incremented by the squared residual distance from the image point
to its corresponding projected model point, weighted by the covariance of the extracted im-
age point. For each line correspondence, the objective function is incremented by the sum
of squares of perpendicular residual distances from the endpoints of the image line to the
projection of its corresponding, infinitely-extended model line, weighted by the expected co-
variance in the measured image line endpoints. Although systems in the past have proposed
similar objective functions, Kumar’s method of solving for the pose parameters differs from
previous approaches in two significant ways. First, both rotation and translation parameters
are solved simultaneously, which makes more effective use of the geometric constraints and
is more accurate in the presence of noise tirén techniques that decompose the problem by
solving for rotation first, followed by translation. Second, the nonlinear least-squares op-
timization algorithm used to solve for rotation and translation is based on the quaternion
representation of rotations, which provides much better convergence properties than solution
methods based on Euler angles. The results of this basic pose algorithm are a set of pose
parameters that minimize the objective function and a covariance matrix that estimates the
accuracy of the solution.

It is well known that least squares optimization techniques can fail catastrophically when
outliers are present in the data. For this reason, Kumar embedded the basic pose algorithm
described above inside a leas: 1edian squares (LMS) procedure that repeatedly samples
subsets of correspondences to find one devoid of outliers. This approach is called least
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median squares because it in effect minimizes the median-squared residual distance error
rather than the mean-squared distance. LMS is robust over data sets containing up to 50%
outliers.

The LMS algorithm works by repeatedly choosing subsets of a given size K from the
full set of available correspondences, and computing their implied pose using the basic pose
algorithm. In experiments, a subset size of K=6 has worked well [25]. For each subset,
the residual squared distance term associated with each correspondence in the set is ranked
according to magnitude, and the median residual is noted. After all subsets of size K are
processed, the one yielding the smallest median residual error is selected as being outlier-
free. Since processing all subsets of size K can be computationally expensive when there
are a large number of correspondences, in practice, just a random sample of these subsets
is generated, where the number of random subsets that need to be considered is determined

on probabilistic grounds based on an estimate of the probable number of outliers present in
the data.

After finding a (presumably) outlier-free subset, its computed pose could be used as a
robust pose estimate of the full set of correspondences. However, one final stage of pro-
cessing helps to improve the statistical properties of the pose solution. First, the full set of
original correspondences is examined using the pose computed for the best subset, and cor-
respondence pairs are removed that have a large residual error as compared with a threshold
determined by robust estimation of the mean and variance of the residual errors. Then the
weighted least-squares pose solution is run on the remaining correspondences, which are as-
sumed to be outlier-free. This last computed pose is returned as the final pose estimate. The
reason this last stage is performed is to increase the relative statistical efficiency (decrease
the variance) of the final estimated pose parameters. '

Based on a model of image noise and the assumption that the 3D model data is accurate,
closed form expressions for the uncertainty in the pose estimation results have been derived.
Kumar has shown analytically that the error in the output pose parameters is linearly related
to the noise in the input feature data (25]. He also studied the effect of errors in estimates
of the camera principle point and focal length on the resulting pose, showing that incorrect
knowledge of the principle point does not significantly affect the computed 3D location of
the sensor (although the computed rotation is affected), and that incorrect estimation of the
camera focal length only significantly affects the estimate of camera distance from the scene.

- —T

For images where internal camera parameters are not available, or not known very accu-
rately, the pose determination process could conceivably be extended to solve for both lens
(internal orientation) and pose (external orientation) parameters. The resulting highly non-
linear set of equations could best be solved if multiple images taken with the same camera
were available, in which case, a joint optimization procedure could be used to determine the
single set of lens parameters at the same time that the different pose parameters for each
view were being computed. We are not actively investigating this approach since we have
been assured that a well-calibrated set of lens parameters will always be known in advance.
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4.3 Evaluation of Matching and Pose

The Martin Marietta, Denver Colorado stereo pair distributed by TEC provided a nearly
ideal set of data for quantitatively evaliating the procedural chain of line extraction, model
matching, and pose determination. Previous evaluation of the accuracy of pose determination
using the model board imagery had been hampered by the lack of good ground truth pose
measurements. In contrast, very good ground truth camera poses were provided with the
Denver stereo pair. The only drawback is that no ground truth model of the building
was provided, and no 3D control points were available from which such a model could be
constructed. Since model matching and pose determination require an initial 3D model, one
was built by hand from the stereo pair by hand-matching distinctive corner points between
the two images and then triangulating to derive their 3D positions. From these points, an
initial building model composed of 3D line segments was created.

The camera model provided by TEC with the Denver images was more elaborate than
the one used by our model matching and pose determination algorithms. This prompted
us to update our camera model to a pinhole perspective projection followed by a full six
parameter affine lens transformation. This is the most general linear camera model used in
computer vision, and was adequate for representing the imaging transformations involved
in the Denver stereo pair. Our camera model still does not take into account nonlinear
lens aberrations, however no significant amount of nonlinear distortion was present in these
images.

Figure 11 shows the results of feature extraction, model matching and pose determination
for one of the two stereo images, labeled 75nxx. Figure 1la shows a set of line segments
extracted from a portion of the image using the Burns straight line extraction algorithm [11].
The initial 3D model lines built by hand are shown in Figure 11b. The hybrid 3D-to-2D
model matching algorithm [9] was used to automatically register these 3D model lines to the
set of extracted 2D image line segments. Figures 11c-d show c.ose-ups of the resulting model-
to-image registration. Following model matching, an estimate of the optimal camera pose
for bringing the model into registration with the image data was computed via a robust pose
determination algorithm [25]. This computed pose was then compared to the ground truth
pose provided by TEC. For image 74SXX, the difference between computed and ground truth
camera locations was 8.73 meters, while for image 7T5NXX, the difference was 6.91 meters.
The average ground truth distance from the.camera to the building was 831 meters for image
745XX and 821 meters for image 75NXX; therefore the relative error between estimated and
ground truth camera locations with respect to distance from the modeled object was 1.05%
and 0.84% respectively. Angular deviation between computed and ground truth camera look
vectors was also computed, and found to be 0.54 degrees for image 74SXX and 0.41 degrees
for image 75NXX. In both cases, the agreement between estimated camera pose and ground
truth pose is remarkably good, considering the limited extent in the image of the building
being used in the model matching and pose determination process.
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Figure 11: Model-to-image feature registration for one image of the Martin-Marietta Denver
site. (a) Line segments from a portion of 75nxx. (b) 3D partial building model. (c)-(d)
Close-up of the projected model lines overlaid over the 2D image data lines after model
registration and pose determination.
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5 Model Extension

Once a set of images has been registered using a partial site model, the goal of model exten-
sion is to find unmodeled structures and add them into the model. This task breaks down
into three stages: detecting “interesting” features in each image, finding the correspondence
of these features across multiple images, and finally, triangulating to recover 3D feature
locations in the local site model coordinate system.

The algorithms in this module are also applicable to site model acquisition and refinement.
The process of model refinement updates site feature locations from incoming model-to-
image feature matches using the same triangulation algorithm that is used during extension.
Model acquisition is basically the invocation of model extension procedures over the whole
image. The main difference is that for model extension, the pose of each image can be
determined by model-to-image registration using the current partial site model, whereas for
model acquisition, the pose must be supplied in some other way.

Figure 12 shows a pictorial sketch of model extension. Figure 12a shows a partial site
model that has been aligned to a set of image line segments using the model-to-image reg-
istration module. For clarity, only candidate data line segments are shown. Note that one
building is conspicuously incomplete; the goal of this model extension example is to com-
plete the building wireframe. In Figure 12b, four corner features were selected (by hand)
to be added to the model in order to generate the missing sides of the building roof. The
position of these corner features in the image, along with the relative pose between this
image and another view, dictates a set of epipolar lines in the second image, along which
the corresponding corner features must lie. These lines can be truncated at maximum and

-minimum disparity bounds based on global site model height bounds to determine a set of
epipolar line segments, shown in Figure 12c. The search for corresponding corners in the
second image is carried out along these bounded segments. From the corresponding image
corners that are found, the locations of 3D corner features are triangulated, and the missing
roof edges are then added to the model. The extended model can now be used for other site
model tasks. Figure 12d shows a close-up of the new site model registered to a third image,
focusing on the line segments that were added to complete the partial building model. Note
that the position and orientation of the new lines coincide well with the underlying image.

The remainder of this section describes algorithms for epipolar feature matching and
triangulation, and considers the limitations of model extension based on low-level features
such as points and lines. The use of structured object descriptions is proposed as a way
around these limitations. ‘

5.1 Epipolar Matching

Epipolar matching is easiest to describe for point features. To find the 3D location in the
scene of a selected image corner point via triangulation, the corresponding projection of that
corner feature in a second image must be located. From a single image, all that can be
determined is that the 3D corner point lies along a viewing ray in the scene, which can be
reconstructed from the 2D image corner location and the image acquisition parameters. This
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ray, as seen from a second camera, appears as an epipolar line of points in the second image,
and the corresponding projection of the 3D point into the second image must lie on this line.
This is the well-known epipolar constraint, a good discussion of which appears in (5].

The epipolar constraint greatly sin;piiﬁes the search for corresponding features in the
second image by cutting the size of the search space down from the whole image to a thin
region straddling the appropriate epipolar line. One additional simplification is possible
when the maximum and minimum height of features in the scene can be roughly bounded.
In this case, the infinite viewing ray of possible 3D point positions can be truncated at the
maximum and minimum Z-coordinate height bounds, and the resulting 3D line segment
projected to form a 2D epipolar line segment in the second image. This strategy cuts down
the size of the search region even more, leading to faster and more reliable matching results.

The main problem in epipolar matching is ambiguity. When many corner features have
been detected in the image, it is highly likely that several of them will lie in the epipolar
search region. In this case, the matching problem boils down to disambiguating among the
many potential matches to settle on a single best one. Our current implementation uses a
very simplistic strategy, namely filtering corner features on expected orientation and then
choosing the one that lies closest to the epipolar line. More sophisticated matching strategies
are possible, the most promising being the use of a third image for disambiguation (5]. The
idea is to perform epipolar matching from image 1 to image 2, to get a set of potential
matches, then from image 1 to image 3 to get another set of possibilities. These sets of
potential matches are then filtered for consistency with respect to each other; each pair of
disparities (1-2) and (1-3) must be consistent with coming from the same 3D point in the
scene. Many are not, and are weeded out as potential matches. We are currently evaluating
this approach, and are also generalizing the epipolar matching system to handle line segment
features.

5.2 Triangulation

Using the computed model-to-image feature matches determined via epipolar matching,
multi-image triangulation is performed to locate new 3D model points and lines in the model
coordinate system. Currently, only code for triangulation of point features is implemented.
The estimation of new 3D points can be done in either batch or iterative sequential mode.
Triangulation requires at least two frames, therefore the minimum batch size is two. Results
from different batches can be be integrated by the standard Kalman-filter covariance-based
updating equations.

Due to noise both in image measurements and camera pose estimates, image projection
rays will not exactly intersect at a point. Kumar has developed a 3D pseudo-intersection
method that minimizes an error equation based on the same constraints that determine the
pose [25]. The criterion underlying this error equation is that the best estimate for any model
point location is the point that minimizes the least-squares distance between the predicted
image location of the projected model point and its actual image lo. aticn, taking into account
covariances in the measured image positions and the computed pose. Two non-linear error
equations are obtained for each scene point for each image frame, thus a minimum of two

34




frames is needed to solve the system of equations. Techniques for the solution of nonlinear
systems of equations generally require an initial estimate that is close to the true solution.
The initial estimate in this case is chosen as the point that minimizes the sum of squares
of perpendicular distances to all the image projection rays, a point that is easily found
by solving a linear system of equations. Using this initial guess, an iterative procedure is
employed to solve the system of non-linear equations for each point. The iterative procedure
1s repeated until there is convergence. Usually only one iteration is sufficient for accurate
results [25]. A byproduct of this calculation is an approximate covariance matrix for the
derived 3D model point position.

The method described above can also be used for model refinement. In this case initial
model points have input covariances associated with them. The pseudo-intersection method
is used to calculate a new estimate for each initial model point. The covariance matrices of
a new estimate and an initial model point are used to fuse the two estimates and provide a
new uncertainty matrix using the standard Kalman filtering equations.

Kumar assumes that the lens parameters are known, so only uncertainty in the pose
parameter estimates is considered when computing the error in a triangulated point position.
We are extending this approach to handle uncertainty in the camera lens parameters as well.
We are also extending the triangulation equations to work for lines as well as points.

5.3 Structured Object Recovery

Model extension work at UMass previous to the RADIUS project wes based on tracking point
and line features through a motion sequence of images [26]. This is clearly inappropriate for
the present application where images from widely separated viewpoints are used. Instead,
an algorithm to perform feature matching along epipolar lines was programmed and applied
to the task cf determining corresponding corner features across a pair of images. The initial
results were not encouraging: due to the large number of detected corner features in each
image and the imprecision in the computed epipolar geometry, many ambiguous potential
matches were identified for each corner. This is a common problem, and a number of solutions
have been proposed in the literature, including filtering inappropriate image matches based
on 3D constraints and on epipolar lines from 3 or more views.

Even if correct epipolar matching of individual point and line features is achieved, sub-
sequent triangulation using these features yields little more than a cloud of 3D corners and
lines. Further processing is still needed to merge these primitive 3D features into structured
objects of interest (such as buildings). Because of these considerations, we are now exploring
an alternative approach based on more structured sets of image features, such as connected
components of lines and corners that form a partial or complete building wire frame. A
project is now underway to perform perceptual grouping of lines and corners into poly-
gons and wire frame structures, match them across multiple images using the precomputed
epipolar geometry, then finally triangulate these structures using multiple images and 3D
geometric object constraints such as incidence, parallelism, perpendicularity and coplanarity.
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6 Image-to-Image Registration

Image-to-image registration involves determining feature correspondences between two or
more images of the same scene, along with computation of the relative pose between them.
Clearly, if a model of the scene is available, model-to-image registration (Section 4) could
be applied to each image separately, and then the relative pose between images could be
computed from each image’s absolute pose. However, prior to initial model acquisition, this
is not an option. If the pose for each image is already known, then features can be matched
between images using an epipolar matching algorithm as described in Section 5, even when
no 3D model is available. But when presented with a new set of images of an unmodeled
site, neither of these approaches is applicable and another more general technique must be
used. Fast and reliable general image-to-image matching techniques exist when the distance
between views is small (2] or when features can be tracked through a motion sequence [26].
What is lacking are good methods for finding matches in monocular images taken from
arbitrary viewpoints, as is the case in the RADIUS domain.

In this section a simple method is presented that allows fast and accurate matching of
coplanar structures across multiple images. We show that the full perspective matching
problem for horizontal coplanar structures can be reduced to a simpler four parameter affine
(similarity) matching problem when the horizon line of the scene can be determined in the
image. Given the horizon line, the image can be transformed to show how the scene would
appear if the camera’s principle axis was directed straight down, parallel to gravity. That is,
given the horizon line in an aerial photograph, the image can be artificially warped to produce
a nadir view of the same scene. This process is called rectification in aerial photogrammetry.

6.1 Nadir Views

Nadir views are very popular in aerial image understanding systems because they simplify the
description of the imaging process; for example, flat, rectangular building rooftops appear as
rectangles in the image. Constraining the camera orientation to take a nadir view fixes two
degrees of its rotational freedom. The four remaining degrees of freedom, one free camera
rotation about the principle axis and three translation parameters, can be characterized by
how they affect the appearance of a horizontal plane (such as a building roof ) in the image.
For example, translation directly towards or away from the object plane manifests itself as
a uniform change of scale in the projected image. Translation parallel to the planar surface
shows up as a proportional 2D translation in the image. Finally, a rotation of the camera
about its principle axis causes the projected image to rotate by the same angle about a point
in the image plane. The projected image of a horizontal plane in a nadir view is therefore
described by four affine parameters that are directly related to the physical pose of the
camera. In other words, the function that maps object coordinates to image coordinates for
a horizontal planar structure in a nadir view is a four parameter affine mapping, often called
a stmilarity mapping.

For oblique views, the function that maps horizontal object coordinates into image coor-
dinates is no longer a similarity mapping, but is instead, a more general projective transfor-
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mation [17]. Parallel roof lines then appear to converge in the image plane, intersecting at
a vanishing point. Two or more vanishing points from different sets of horizontal, parallel
lines, form a line in the image called the vanishing line or horizon line. In nadir views, all
parallel scene horizontals remain parallel in the image, and the horizon line is said to be
“at infinity”. This convention allows the relation between oblique and nadir views to be
precisely stated. Parallel horizontal lines in the scene map to lines in the image that are di-
rected towards a vanishing point that lies on the horizon line. Nadir views are distinguished
from oblique views in that the horizon line is located at infinity. In this case, the projective
transformation mapping object coordinates from a horizontal plane into image coordinates
is a similarity transform.

These considerations lead to a simple yet powerful observation. By applying a projective
transformation that maps the horizon line in the image to the line at infinity, the vanishing
points of all horizontal lines will also appear at infinity. After this mapping has been per-
formed, all parallel horizontal lines in scene will appear parallel in the image. This implies
that the new image is a nadir view of the scene, and thus, the projective mapping of scene
horizontals into the image can be represented as a similarity transform.

6.2 Rectification

To take advantage of the simplicity of nadir views for high altitude photographs, we designed
a two stage approach to matching planar structures viewed from any orientation. The
approach consists of applying information-preserving transformations to the image to reduce
the complexity of the matching problem. First, vanishing point analysis is performed to
locate the horizon line in the image (see Section 3), and a projective transformation is
applied that rectifies the image. Second, the scere is assumed to be approximately planar
with respect to camera altitude, and image features are mztched using a 2D similarity
transformation version of the local search matcher described in Section 4.

For a pinhole camera image, the location and orientation of the horizon line determines
the 3D orientation of the camera with respect to gravity. When the equation of the horizon
line is az + by + ¢ = 0, the gravity vector, in camera coordinates, is

n=(a,5,¢)/ll(a,b, )]l | (3)

For a nadir view, the gravity vector must be parallel to the Z-axis of the camera. If the
camera could move, an oblique view could be changed to a nadir view by merely rotating the
camera to point straight down. The camera can no longer be moved physically, of course,
but the image can be transformed artifically to achieve the desired 3D rotation.

Assume the unit orientation of the gravity vector has been determined to be n, as in
equation 3, oriented into the image (¢ 2 0). To bring this vector into coincidence with
the positive camera Z axis requires a rotation of angle Cos™'(n - (0,0,1)) about the axis
n x (0,0,1). The effects of this camera rotation on the image can be simulated by an




invertible projective transformation in the image plane {23]. In homogeneous coordinates,

:z:: E F a z;
k,' yf = F G b Ys
1 —a —-b ¢ 1
where
_ a’c + b? _ ab(c — 1) _ a? + b?c
a?+b2’" g4 b2 T T g2 p?

The image is transformed to appear as if the camera had been pointing straight down,
parallel to gravity. The result, therefore, is a rectified nadir view of the scene.

6.3 Example

Because it relies on 2D image properties, image rectification is applicable when no prior
scene model is available. It thus lends itself well to the problem of image-to-image matching
of horizontal coplanar structures. In this case, both images are rectified using vanishing
point information, and one is treated as the model while the other becomes the data to be
matched. The goal is then to discover the similarity transformation that maps one set of
rectified image lines into another. We use the local search matching system described in
Section 4. Although aerial images do not often depict purely planar scenes, the method
can still be used to get coarse matching results ia cases such as high-altitude photos, or for
mapping road networks on a nearly flat ground plane.

Figure 13 shows an example of rectification-based aerial image registration. Figures 13a
and 13b show sets of straight line segments extracted from two aerial photographs of Fort
Hood, Texas. The first image presents a nadir view cf the scene, a fact verified by vanishing
point analysis, which finds two orthogonal sets of nearly parallel lines. The second image is
clearly not a nadir view, a fact again verified via vanishing point analysis. Figure 13c shows
these image lines after applying the automated image rectification procedure described above.
To unwarp the second image a generic camera model was assumed, placing the principle point
in the center of the image and optical axes along the row and column axes of the raster image.
The focal length was computed by finding the distance of the focal point from the image that
resulted in perpendicularity of the two vectors from the (variable) focal point towards the
two (fixed) vanishing points in the image: “The aspect ratio was assumed to be one-to-one.

To apply local search matching, image 1 was assumed to be the model, and rectified lines
from image 2, the data. Both line sets were filtered to include only lines greater than 100
pixels long, reducing the matching problem to 55 long lines in one image and 68 lines in the
other. Additionally, the search space was partitioned based upon the dominant orthogonal
line directions. The best match found is displayed in Figure 13d.

6.4 Limitations

Although automated image rectification based on vanishing point analysis works well in
urban and industrial aerial image domains, the combination of rectification followed by
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Figure 13: Image-to-image matching example on an aerial image: (a) image lines from nadir

view, (b) image lines from oblique view, (c)

view with rectified oblique view.

rectified oblique view, (d) registration of nadir




similarity matching to determine Image-to-image feature correspondences is limited. The
approach works well for relatively high-altitude photographs, like the Fort Hood, Texas
images shown here, where both ground-level structures and building rooftops can be treated
as nearly coplanar. The approach does not work well on the model board images, however,
since these images were taken at a lower altitude where the 3D structure of the buildings
becomes very apparent. As images in the RADIUS domain are expected to be more like
the model board images than the Fort Hood ones, the method for image-to-image matching
described in this section is no longer being pursued.

However, to the extent that some scene features are found to be coplanar and can be
successfully matched, this initial set of planar correspondences provides strong constraints
on the positions of remaining features. For calibrated cameras, the relative rotation and
direction of translation between two camera positions can be computed from the perspective
transformation describing how the appearance of a planar structure differs in the two images
[17]. This reduces the search for other 3D feature correspondences to that of induced stereo,
where corresponding feature points lie along known epipolar lines (see Section 5).

40



7 Projective Structure Recovery

In addition to traditional metric approaches to scene reconstruction via pose determination
and triangulation, we are pursuing a complementary research path that investigates the use
of projective invariants for image registration, image transference, and scene reconstruction.
The benefit of this approach is that dependence on initial estimates of the camera pose
parameters are minimized. Experimentally, we have noticed that techniques based on gen-
eralizing 2D planar invariants to account for non-coplanarity seem more robust than those
based on full 3D to 2D invariants (e.g. methods based on the essential matrix). We are
working under the hypothesis that this is so because the scene features projected onto an
aerial photograph are nearly coplanar with respect to distance from the camera. Full 3D ap-
proaches work best for sets of point positions that vary significantly in all three dimensions,
but often fail when the points are coplanar. One should not, therefore, expect such methods
to work well on aerial images.

7.1 Invariant-Based Model Extension

Previous work by Collins investigated invariant recovery of planar scene features [13]. Given
knowledge of at least four coplanar points or lines in the scene and their correspondence in
an image, a planar projective transformation (called a homography) that maps new points
and lines from the image into their proper locations on the object plane can be estimated,
without first computing pose or calibrating the camera.

When other, non-coplanar scene features are present, the mapping from world to image
is no longer completely described by a homography, and planar model extension is no longer
applicable. We have begun to explore approaches for extending planar model extension to
handle more general 3D scenes. Assume that two views of a scene are available, that at
least four coplanar points or lines are available for use as a reference plane, and that an
Image-to-image homography has been computed that transforms the projections of reference
plane point features from image one into their corresponding projections in image two.
What can be said about the transformed image of a scene point outside of the reference
plane? The location predicted for it by the planar homography will not, in general, coincide
with the actual location of the projected scene point in image two. However, the residual
difference between the predicted and actual positions of the projected point in image two are
constrained to lie along lines intersecting in a single point. These lines are called epipolar
lines, and they intersect at the epipole, which geometrically corresponds to the image of
the focal point of the camera when image one was taken. Furthermore, the direction of
each residual difference vector, either towards or away from the epipole, determines whether
the corresponding 3D scene point lies either forward or behind the plane of reference. These
results are valid regardless of either camera’s location, orientation, or calibration parameters.

For illustration, two aerial photographs are shown in Figures 14a and 14b. Figures 14c
and 14d show thirty seven corresponding pairs of points that were chosen by hand from
these images. Several sets of points delimit the tops of buildings, and are therefore coplana:
in the scene. The four pairs of coplanar points marked with a cross delineate the corners
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Figure 1: Two aerial photographs that are not well-approximated by a single plane. (a)
RADIUS Model Board 1, Image J8. (b) RADIUS Model Board 1, Image J2. (c) Interesting
points extracted by hand from Image J8. (d) Corresponding points extracted by hand from
Image J2. Some building boundaries have been added for clarity. Crosses mark points that
will be used to estimate a homography between the two images.
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of a rooftop, and these were used to estimate a homography from the first image into the
second. All points from the first image were then mapped into the second image using this
homography, and their positions were noted. Figure 15 shows residual difference vectors
between predicted locations (in black) of transformed points from image one, and actual
point locations (in white) where they were found in image two. The four pairs of coplanar
reference points align exactly, as they must by definition of the homography.

&Y

G5

%

ool

%o
0P e q.x B
Ce0y o'-\o
5
> o 8’,.\0
X X

%o O

Figure 15: Difference vectors between points from image one transformed by a planar ho-
mography into image two (black dots), and their corresponding actual positions in image
two (white dots). Points marked with crosses were used to define the homography.

All remaining residual vectors lie along infinite epipolar lines that intersect at a single
epipolar point, which in this case, is far off the image. Furthermore, note that the difference
vectors for structures taller than the rooftop used to compute the homography are oriented
in one direction, while difference vectors for structures shorter than the rooftop are oriented
in the opposite direction. This property holds in general, and can be used to qualitatively
partition scene points into three categories depending on the orientation of their residuals:
those lying closer to the viewer than the reference plane, those lying on the plane (difference
vector is zero), and those lying further away.

7.2 Approximate Height Recovery

A more detailed analysis determines the extent to which quantitative information can be
recovered from this geometric configuration. This analysis is published in {14}, and will not
be repeated here. The results of the analysis show that when the epipole is at infinity (and
thus the residual difference vectors are parallel in the image) the length of each residual
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vector is directly proportional to the perpendicular distance of the corresponding 3D scene
point from the reference plane. If the reference plane has been chosen as some horizontal
plane, such as the top of a building or the ground plane, then the relative heights of each
scene point can be determined. When.the epipole is not exactly at infinity, but is still far
away from the center of the image, then the relative heights of scene points are recovered
approximately. For a horizontal reference plane, situations leading to nearly parallel residual
difference vectors include sequences of images taken from camera positions at roughly the
same altitude. Because this method is based on projective invariants, the exact altitude,
orientation, and intrinsic calibration parameters of the camera (or cameras) do not need to
be known.

An initial test into the feasibility of this approach to height recovery was conducted using
model board images J2 and J8. The four corners points of building 34 (the one with many
long, parallel roof vents) were identified in both images and the projective transformation
relating the two sets of points was computed. This transformation was used to map several
building corner points from image J2 into image J8, and the lengths of the residual difference
vectors between their transformed positions and actual observed locations in image J8 were
measured. As described above, these lengths should be approximately proportional to the
heights of each point with respect to the height of building 34. To compare the computed
relative heights to known ground truth heights of each point, the single scale factor relating
residual vector lengths to model board Z coordinate values was estimated, and the resulting
Z values were then converted to absolute height above a nominal ground plane of Z=-2
inches. The average relative error of the computed heights of 23 test points was about 4.8%.
The results are shown in Table 2, where for ease of interpretation, all model board units (in
inches) have been converted into world units (in feet) using the fact that the model board is
a 1:500 inch scale model.

Table 2: Comparison of ground truth point height above the ground plane versus height
computed via projective invariants for 23 selected test points on model board 1. See text for
details. All heights are reported in feet.

true 29 30 33 35 37 42
computed | 20 31 29 28 38 39
rel. error { 0% 3% 12% 20% 3% 7%
true 44 46 57 58 59 61
computed | 44 43 54 60 60 63
rel.error (0% 7% 5% 3% 2% 3%
true 62 62 64 74 86 86
computed | 57 63 63 72 90 96
rel.error {8% 2% 2% 3% 5% 12%
true 86 94 148 179 224
computed | 91 97 145 178 220
rel.error (6% 3% 2% 1% 2%
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