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FINAL REPORT FOR GRANT #N00014-93-1-0450

We had extensive progress during the last year, as summarized below.

M Demonstration of room-temperature spectral hole burning in CdS quantum dot samples.

) Fabrication of the first quantum dot slab and channel waveguides and measurements of

femtosecond pulse propagation in these waveguides.

3) Fabrication of the first circular grating in a quantum dot waveguide.

The following describes these achievements in more detail.

We succeeded in demonstrating spectral hole burning at room temperature in CdS quantum dot
samples prepared by the sol-gel and glass-fusion techniques. Figure 1(a) shows the linear absorption
spectrum of a CdS dot sample prepared by the conventional glass-fusion method."? Figure 1(b) shows
changes in absorption of the sample when pumped at 419 nm and 447 nm at room temperature. Transient
spectral hole burning due to state filling is observed in the sample as absorption bleaching whose peak
follows the frequency of the exciting laser. With extended laser irradiation of the sample for 2 hours at
the same pumping wavelengths, persistent spectral changes are observed that are not very sensitive to the
laser excitation frequency, as shown in Fig. 1(c). Note that the -AaL signal in Fig. 1(b) has a positive
peak on the low-energy side and a negative peak on the high-energy side, in contrast to Fig. 1(c) where
a negative peak appears on the lowéenergy side.

We extended our previous model calculations* to this case in order to understand the measured
results. Figure 2 shows the results of our calculations, which include quantum-confinement effects,
electron-hole Coulomb interaction, and surface polarization effects. The calculated linear absorption
spectrum of Fig. 2(a) resembles that of Fig. 1(a) from experiment. The measured transient absorption
changes of Fig. 1(b) are reproduced by theory in Fig. 2(b), which results from the bleaching of the lowest
quantum-confined transition [positive low energy peak in Fig. 2(b)] and induced absorption due to the
two-pair transitions on the high-energy side [the negative peak in Fig. 2(b)]. This indicates the transient
absorption changes can be explained as saturation of a selected size of semiconductor quantum dots.
Figure 2(c) represents quantum-confined Stark effect calculations on our quantum dot samples. The
similarity between the calculated Fig. 2(c) and the measured Fig. 1(c) indicates that the persistent
absorption changes may have their origin in the quantum-confined Stark effect in quantum dots.
Therefore, the theory-experiment comparison suggests that under strong laser irradiation, photo-excited
carriers are ejected out of the volume of the quantum dots into surface states or into the surrounding glass

matrix, as schematically shown in Fig. 3. The presence of carriers in trap sites at the glass-
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Figure 1. (a) The linear absorption spectrum of a CdS quantum dot sample at room temperature. The
positions of the pumps used in (b) and (c) are shown by the small peaks at wavelengths of 419 nm and
447 nm. Solid (dashed) spectra in (b) and (c) are associated with pumping at 419 nm (447 nm). (b) The
change in the absorption (-Acl) obtained as a result of this pumping. The absorption bleaches and
spectral holes are generated, which shift as the pump wavelength is changed. This figure clearly
demonstrates transient spectral hole burning at room temperature in a quantum dot sample. (c) The
persistent absorption changes obtained when the sample was photodarkened as a result of extended pump
exposure, showing that the persistent absorption changes are not very sensitive to the laser excitation

Jfrequency.
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Figure 2. (a) Calculated linear absorption and (b) the absorption change (-AcL) obtained for a quantum
dot sample for pump wavelength of 550 nm inside the first quantum-confined transition. The position of
the pump wavelength is shown by the small peak. This curve is similar to the experimental results shown
in Fig. 1(b). (c) Calculated quantum-confined Stark effect showing the change in absorption (-Aal) as
a result of the application of a dc electric field. The absorption changes calculated here are similar to
the experimental results shown in Fig. 1(c).




semiconductor interface results in changes of the optical properties of the sample, which are collectively
known as photodarkening. This mechanism is supported by calculations showing that for quantum dots
with small radii, the induced surface polarization leads to electron-hole localization around the
semiconductor-glass interface.’

In addition to these results, we have also succeeded in fabricating the first cadmium sulfide
quantum dot sol-gel glass channel waveguide using the potassium ion-exchange technique. The
waveguides were optically characterized and we performed femtosecond pulse propagation measurements
in these waveguides to search for dispersive solitons in semiconductors. Our cross-correlation
measurements show significant pulse shaping after femtosecond laser pulses are propagated through the

waveguide.

Figure 3. Schematic representation of the mechanism of the photodarkening effect indicating the tunneling
of the photogenerated charged carriers out the quantum dot into traps in the glass surrounding the dots,
which changes the overall static Coulomb field around the quantum dot.

The measured transmission spectrum of the CdS quantum dot waveguide is shown in Fig. 4. The
transmission drop for short wavelength is due to the long tail absorption of the CdS quantum dots. The
noise comes primarily from the spectral response of the silicon detector used. The sudden drop in
transmission near 700 nm corresponds to the cut-off frequency of the quantum dot waveguide, which is
a function of the index of refraction difference between the host glass and the ion-exchanged waveguide.
The inset of Fig. 4 shows the absorption spectrum of the quantum dot sample itself. The lowest quantum-
confined transition appears as a shoulder in the spectrum.

Femtosecond pulse propagation through the CdS quantum dot waveguide was studied using a
continuously tunable amplified colliding pulse mode-locked (CPM) dye laser system (Fig. 5). The 60-fs

pulses centered at 620 nm from the first amplifier stage were divided into two beams. One beam served
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Figure 4. Measured spectral transmission of the CdS quantum dot waveguide. The inset is the absorption
spectrum of the quantum dot sample.
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Figure 5. Experimental setup for the cross-correlation measurement. BS (50/50 beam splitter), EG
(ethylene glycol jet), IF (interference filter), M1 (2.5X microscope objective lens), S (CdS quantum dot
waveguide), M2 (5X microscope objective lens), L1 (f = 30 cm collimating lens), L2 (f = 10 cm focusing
lens).




as a reference for the cross-correlation measurement, and the other beam was focused on the ethylene
glycol jet to generate the white continuum. Using an interference filter, the test beam spectrum was
selected at 687 nm for the pulse to be in the high transmission state, and was reamplified with the second
stage amplifier. The full width at half maximum of the test beam was 110 fs. Then the test beam was
end fired to the CdS quantum dot waveguide. The output surface of the sample was imaged on the iris
to block the unguided light. The output of the waveguide and the reference beam were focused on the
300-um-thick KDP crystal to sum the frequencies. The sum frequency signal was detected with a
photomultiplier tube, varying the time delay on the reference beam.

The time and spectral profiles of the input and output pulses of the waveguide were measured and

are shown in Fig. 6. For an intensity of 12 GW/cm?, the pulse developed into 3 peaks after it propagated
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Figure 6. The cross correlation and spectrum of the femtosecond pulse after propagating 8-mm-long CdS
quantum dot waveguide. (a) 110 fs input pulse profile and its spectrum. (b) The output pulse shape and
spectrum with 12 GW/cm? input intensity.




through the CdS quantum dot waveguide with broadened and modulated spectrum. The origin of the
pulse breakup is currently under investigation. It may be the result of either coherent effects® or
launching of a soliton in the quantum dot waveguides. For II-VI semiconductors dispersed in borosilicate
glass, the nonlinear index of refraction, n,, is negative for photon energies below the bandgap and above
half of the bandgap.”® The host glass material has normal group velocity dispersion for this wavelength
region A\ < 1.5 um). Therefore, it is possible in principle to generate solitons in semiconductor
quantum dot waveguides.® Additional experiments are needed to uniquely determine the origin of the
pulse breakup.

We also succeeded in fabricating the first circular grating on one of our quantum dot slab
waveguides for investigation of laser properties. This is very new and we have not had a chance to

characterize it yet.
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