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Abstract 

In many real-world tasks, the ability to focus attention on the important features of the input is crucial for good 
performance. In this paper a mechanism for achieving task-specific focus of attention is presented. A saliency 
map, which is based upon a computed expectation of the contents of the inputs at the next time step, indicates 
which regions of the input retina are important for performing the task. The saliency map can be used to 
accentuate the features which are important, and de-emphasize those which are not. The performance of this 
method is demonstrated on a real-world robotics task: autonomous road following. The applicability of this 
method is also demonstrated in a non-visual domain. Architectural and algorithmic details are provided, as 
well as empirical results. 
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1. Introduction 
Many real world tasks have the property that only a small 

fraction of the available input is important at any particular 
time. On some tasks this extra input can easily be ignored. 
But often the similarity between the important input features 
and the irrelevant features is great enough to interfere with 
task performance. Two examples of this phenomena are the 
famous "cocktail party effect", otherwise known as speech 
recognition in a noisy environment, and image processing of 
a cluttered scene. In both cases, the extraneous information 
in the input can be easily confused with the important fea- 
tures, making the task much more difficult. 

In this paper, we will use the representation of a neural 
network's hidden layer, trained to perform a time sequential 
task, to make predictions of what the next inputs will be. 
These predictions can be used as a pre-processor for the next 
inputs; they can provide a mechanism to focus the network's 
attention on the important features. In the next section, focus 
of attention is described in greater detail, and the notion of a 
saliency map is introduced. The cognitive foundations of 
focus of attention are also briefly explored. In section 3, the 
task of interest, autonomous road following, is presented, as 
well as results of using selective attention to improve perfor- 
mance on this task. In section 4, a synthetic problem is 
described; it contains many of the same difficulties as the 
road following task, yet lends itself to easier interpretation 
and analysis. The problem also serves to exhibit the benefits 
of a saliency map in a non-vision oriented task. Finally, in 
sections 5 & 6, conclusions and suggestions for future 
research are presented. 

A previous paper [Baluja & Pomerleau, 1994] presented 
preliminary results of using a task-specific saliency map on 
two simulated vision-based tasks. The findings of that paper 
are summarized in section 2.1; the results of that paper are 
expanded upon in section 3, to make them applicable to real- 
world tasks. In this paper, a method used to create an ade- 
quate number of training examples for training the saliency 
map is presented. These issues were not present in the tasks 
explored in [Baluja & Pomerleau, 1994] as the examples 
were created artificially and were inexpensive to generate. 

2. Focus of Attention: Background and 
Implementation 

Focus of attention has been studied in a variety of con- 
texts. One of the largest branches of study has examined 
attention in static images. For example, [Triesman & Gelade, 
1980] [Hulbert & Poggio, 1985] describe a study in which a 
subject recognizes the letter "S" mixed in a field "X'"s and 
"T"s of various colors. The "S" pops out to the subject, sug- 
gesting a preattentive and parallel processing of the image. If 
an object must be distinguished by "conjunctive" features 
such as color and shape, the search seems to be performed in 
a more serial fashion [Hulbert & Poggio, 1985]. The most 
commonly accepted analogy for this is termed the "spot- 
light" hypothesis. The spotlight moves from one location to 
another, the area in which it focuses are operatively defined 
to be the areas in which an improved performance is found 

in the tasks of stimulus detection, identification, localization, 
or simple and choice response times [Umilta, 1988]. 

Computational models of the spotlight mechanism have 
been proposed in the context of artificial neural networks 
[Mozer, 1988][Koch & Ullman, 1985]. Mozer makes the dis- 
tinction between "data-driven" and "conceptually-driven" 
guidance of the spotlight. A simple case of "Data-Driven" 
guidance is that the spotlight should be drawn to objects, but 
not to empty spaces in the visual field. A "Conceptually- 
Driven" spotlight is controlled directly by a "higher level of 
cognition" (goal driven). This is necessary when reading, in 
which text must be scanned from left to right. 

When longer time intervals are introduced, the process of 
focusing attention becomes more challenging; objects can 
move and change. Nonetheless, people can routinely solve 
the problem of focusing, and maintaining, attention on mov- 
ing and changing objects. This ability to do this with "odd- 
man-out"2 features has been has been called indexing [Ull- 
man, 1985]. The ability to index is a prerequisite for visual 
motor coordination and object description [Trick & Pyly- 
shyn, 1991]. Nonetheless, not all items can be indexed in this 
way. [Allport, 1989] suggests a more complicated procedure, 
termed "selection-for-action" which introduces the task-spe- 
cific nature of focusing. Information about irrelevant fea- 
tures or objects must be filter out, to avoid crosstalk and 
confusion with respect to the feature or objects of interest. 
This model relates to the model presented in this paper. 

In our attempts to design a mechanism to focus attention, 
the goal was to create a conceptually driven expectation 
which can maintain attention on moving objects which may 
change shape, orientation and position. Further, as different 
tasks will require analyzing different portions of the scene, 
the focus of attention must be task-specific (selection-for- 
action). The focus of attention must designate as important 
only the portions of the scene which are necessary for com- 
pleting the task. The next section describes the mechanism to 
implement this type of attention focusing. 

2.1. Creating a Conceptually Driven Saliency Map 
Saliency maps have been used in the field of computer 

vision to direct processing to only the relevant portions of 
the scene. However, in many studies, saliency maps have 
been constructed in a bottom-up manner [Clark and Ferrier, 
1992]. A very cursory summary of the bottom-up approach 
is that multiple different feature detectors are placed around 
the input image. Each type of feature detector may contain a 
weight associated with it, to signify the relative importance 
of the particular feature. The region of the image which con- 
tains the highest weighted sum of the detected features is the 
portion of the scene which is focused upon. The approach 
taken in this paper is very different. The features and their 
weightings are developed simultaneously with the saliency 
map to solve the particular task. In this proposed method, the 

1. It should be noted that a moving the "spotlight of attention" does 
not necessarily entail eye movements. [Umilta, 1988] discusses the 
relationship between eye movements and focus of attention. 
2. These are features which are distinguished by attributes such as 
color, or by motion in an otherwise stationary background. 
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expectation of where the features will be in the next frame 
plays a key role in determining which portions of the visual 
scene are going to be focused upon. This will be explained in 
this section. 

The first step in creating a conceptually based saliency 
map is determining which portions of the image are impor- 
tant. The creation of a saliency map is based upon a very 
basic analysis of the neural network. The underlying premise 
is that if a strictly layered (connections are only between 
adjacent layers) feed-forward neural network can solve a 
given task, the activations of the hidden layer contain, in 
some form, the important information for this task from the 
input layer. One method of finding out what information is 
contained within the hidden layer is to attempt to reconstruct 
the original input image, based solely upon the representa- 
tion developed in the hidden layer. This method of recon- 
struction is closely related to Input Reconstruction 
Reliability Estimation (IRRE) [Pomerleau, 1993]. The reli- 
ability estimation in IRRE is made by reconstructing the 
input image by using linear transformations of the activa- 
tions in the hidden layer, and comparing the resulting recon- 
struction with the actual image. The greater the similarity 
between the actual input image and the reconstructed input 
image, the more the internal representation has captured the 
important input features, and therefore the more reliable the 
network's response. Figure 1 provides a schematic of IRRE. 

This method is related to auto-encoding networks. In 
these networks, the output is trained to reproduce the input 
layer [Cottrell & Munro, 1988]. The hidden layer, which is 
usually used as a bottleneck, captures important features for 
reconstructing the input. The difference between these net- 
works and the ones employed in this study is that the net- 
works used here were not trained to reproduce the input layer 
accurately; they were trained to perform well on a specific 
task. All of the representational power in the hidden units is 
devoted to solving the task only. The portions of the input 
which can be reconstructed accurately are the portions of the 
input which the hidden unit activations have encoded to 
solve the task. If the requirement of task-specificity did not 
exist, auto-encoder networks, or methods such as principal 
components analysis could capture many features of the 
input. However, the features found by these methods are 
important for reconstructing the image, not for solving the 
particular task. As only a fraction of the features found may 
be important for the task, it is difficult to focus attention on 

weights 
trained to 
reduce task 

outputs inputst 
(reconstructed 
inputs) 

weights 
trained to reduce 
reconstruction 
error. 

Figure 1: Using the activation of the hidden layer to reconstruct 
the input. The weights between the input and hidden layers are 
trained to only reduce task error, not reconstruction error. Extra 
hidden layers for reconstruction can be used. 

task-specific features based upon these methods. 
Although IRRE provides a method to determine which 

portions of the input the network finds important, a notion of 
time is necessary to focus attention in future frames. Instead 
of attempting to reconstruct the current input, the network is 
trained to predict the next input (in Figure 1, this corresponds 
to changing the subscript t to t+1, in the reconstructed 
inputs). The next input is predicted based upon the important 
task-specific features in the current image. 

The prediction can be trained in a supervised manner, by 
training the network to predict the next set of inputs in the 
time sequence. The training example (the next inputs) may 
contain noise or extraneous features. However, since the hid- 
den units only encode information to solve the task, the net- 
work will be unable to construct the noise in its prediction. 
More details on this idea, and methods to use the expectation 
of the next inputs, are described in the next sections. 

2.2. Differences in Expectation and Realization 
To this point, a method to create an expectation of what 

the next inputs will be has been described. There are two 
fundamentally different ways in which to interpret the differ- 
ence between the expected next input and the actual next 
input. The first interpretation is that the difference between 
the expected and the actual input is the point of interest 
because it is a region which was not expected. This has 
applications in anomaly detection, or in the analysis of visual 
scenes in which the object of interest is moving across a sta- 
tionary background. 

In the second interpretation, the difference between the 
expected and actual inputs is considered noise. This interpre- 
tation is used throughout the rest of the paper. Processing 
should be de-emphasized from the regions in which the dif- 
ference is large. This makes the assumption that there is 
enough information in the previous inputs to specify what 
the important portions of the next image will be. As will be 
shown in the tasks described in sections 3 and 4, this method 
has the ability to remove spurious features and noise. It is 
interesting to note that in this interpretation, it is important 
that the prediction of the future state not be too accurate. If 
the prediction matched the next image exactly, the noise in 
the next image would also be reconstructed. Although the 
network is trained to predict future inputs with example 
training images which may contain noise, the network is not 
able to reproduce the noise due to the hidden layer's limited 
capacity, the task-specific hidden units, and the task-specific 
nature of training. The implementation of the saliency map is 
described in the next section. 

2.3. Using Expectation to Filter Noise 
In this study, the saliency map was used as follows: the 

difference between the expectation of input imaget+i 
(derived from input imaget) and the actual input imaget+j 
was calculated. This difference image was scaled to the 
range of 0.0 to 1.0. The smaller the difference, the closer the 
value to 1.0. Each pixel of the difference image was then 
passed through a sigmoid; alternatively, a hard-step function 
could have been used. This results in the saliency map. This 
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map indicates the portions of the input to which the network 
should be paying attention. In order to emphasize these 
regions for the input, the saliency map is multiplied, pixel by 
pixel, with input imaget+1. The result after multiplication 
was used as the input into the network. This has the effect of 
lowering the activation of the portions of the input which do 
not match the expectation. The portions of the input which 
match the expectation are left unaltered. Examples of this fil- 
tering, for the task of autonomous road following, are shown 
in section 3. 

Training the neural network with a saliency map may 
require more pattern presentations than training a network 
which does not employ one. With feedback to the inputs, the 
system becomes dynamic. As the training for the task 
improves, the saliency map becomes more refined, and more 
of the correct information is filtered out of the images. The 
images input to the network later in the training process pos- 
sess different qualities than the those input earlier in training. 
Because the network is trained to reduce the task error, the 
hidden representation changes to adapt to the new images. 
This causes changes in the prediction of the next inputs, and 
the cycle continues. The cycles ends when either the system 
reaches a stable state or training is stopped. In practice, the 
system can be trained by using the standard backpropagation 
algorithm, with small learning rates, albeit with longer train- 
ing times. 

One of the problems encountered in focusing attention 
using this method, is the necessity to determine the features 
which are important for solving the task before the task is 
solved. The difficulty is that since the important features are 
task-specific, and are developed from the network's hidden 
layer, the task must first be solved. This "chicken-and-egg" 
problem is avoided in many situations because some of the 
images used for training may not contain noise. Therefore, a 
small amount of learning is able to proceed without explicit 
focus of attention. Once a few of the important features are 
determined, the system can, in many cases, bootstrap itself. 
In the implementations described here, the system is trained 
to build the saliency map and solve the task simultaneously. 

2.4. Relations to Other Recurrent Neural Networks 
The use of the feedback connections proposed are related 

to other recurrent neural networks [Jordan, 1989][Stornetta, 
1988]. At time t, the Jordan network uses feedback from the 
output units of time t-1, combined with feedback from the 
context units at time t-1, to create new context units. These 
units are used as additional inputs in the current time-step. 
The Stornetta architecture uses the context units as a prepro- 
cessor of the input units [Hertz et. al, 1993]. The context 
units are arranged with one-to-one connections with the 
inputs, and have feedback connections from themselves, 
which carry activation from the previous time step. 

There are several important distinctions between the Jor- 
dan and Stornetta architectures and the one used in this 
paper. The first is that the Stornetta architecture uses context 
units which are able to form arbitrary representations. In the 
architecture presented here, the feedback is from units which 
have a very defined task. The feedback is the prediction of 

the next inputs. Also, the feedback is multiplicative, and acts 
like a filter, unlike the architecture in the Jordan networks. 

Another large difference in these networks is that the 
feedback units are explicitly trained in a supervised manner. 
In architectures like the Stornetta, the context units are 
trained in a manner similar to the training of the hidden 
units. The representations which are formed are created to 
reduce the error in a subsequent output layer. 

Finally, the last difference is in the problems which these 
architectures are designed to address. Although most of the 
recurrent networks which have been explored in the litera- 
ture have attempted to address the problem of sequence rec- 
ognition and reproduction, this architecture is not suited to 
these tasks as the feedback is restricted to be the prediction 
of the next inputs. 

3. Image Based Autonomous Road Following 
One of the principle motivations for creating an algorithm 

which can focus attention is to perform visual processing in 
cluttered scenes. A real-world application which requires 
such attention focusing is autonomous road following. 

In the domain of autonomous road following, the goal is 
to control a robot vehicle by analyzing the scene of the road 
ahead, and choosing a direction to travel based on the loca- 
tion of important features like lane markings and road edges. 
This is a difficult task since the scene ahead is often cluttered 
with extraneous features such as other vehicle, pedestrians, 
trees, crosswalks, road signs and other objects that can 
appear on or around a roadway. For the general task of 
autonomous navigation, these extra features are extremely 
important; however, for the restricted task of road following, 
these features are distractions. While we have had significant 
success on the road following task using simple feed-for- 
ward neural networks to map images of the road into steer- 
ing commands [Pomerleau, 1993], these simple methods fail 
when presented with cluttered environments like those 
encountered when driving in heavy traffic, or on city streets. 

3.1. The ALVINN Road Following System 
ALVINN is an artificial neural network based perception 

system which learns to control CMU's NAVLAB vehicles by 
watching a person drive. ALVINN's architecture consists of 
a single hidden layer backpropagation network. The input 
layer of the network is a 30x32 unit two dimensional "ret- 
ina" which receives input from the vehicle's video camera. 
The correct steering direction is determined from the activa- 
tion of 30 output units. The output units attempt to create a 
gaussian centered around the correct steering direction. If the 
Gaussian is centered around unit 1, this indicates the vehicle 
should make a sharp left, if the center is around unit 30, the 
vehicle should make a sharp right, etc. To teach the network 
to steer, ALVINN is shown video images from an onboard 
camera as a person drives. For each image, it is trained to 
output the steering direction in which the person is steering. 

Recently, there has been an emphasis on using the 
ALVINN system as a driver warning device. In one of the 
proposed uses of this system, the model will warn drivers if 
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they begin to drift over lane markings (indicating that they 
may be entering a lane with on-coming traffic, or leaving the 
road, etc.). The system must be robust with respect to other 
road features, such as road and off-road boundaries, cars, or 
other lane markings. Experiments for this task are described 
in the next section. 

3.2. Eliminating Noise Using a Saliency Map 
The purpose of using a saliency map within this domain is 

to eliminate features of the road which the neural network 
may mistake as lane markers, and therefore output an incor- 
rect steering direction. Training the network to solve the task 
by focusing on the important regions of the scene is 
described below. 

Approximately 1200 images were gathered from a camera 
mounted on the left side of a car, pointed downwards and 
slightly ahead of the vehicle. The car was driven through city 
and residential neighborhoods around Pittsburgh, PA. The 
images were subsampled to a 30x32 pixel representation. In 
each of these images, a single X location of the lane marker 
was hand marked around the 20th row. (The total interactive 
time was -25 minutes). The task is to produce a gaussian of 
activation in the outputs, centered around the X location of 
the lane marker in the 20th row of the image. Sample images 
and target outputs are shown in Figure 2. 

In training the network, there are several problems which 
must be addressed. The first is that there is only a limited 
amount of training data. Further, assuming that the driver has 
directed the car well, the center line has probably stayed 
within a small region of the input image. Therefore, the net- 
work has not been trained to recognize lane-markers outside 
the middle regions of the image. Additionally, because the 
prediction task attempts to forecast future inputs, it is impor- 
tant not to bias the network to memorize the image transi- 
tions in the training set. For example, had the driver chosen a 
slightly different action, the location of the important fea- 
tures in the next set of inputs may have been different. 

In order to alleviate these problems with the training set, 
the following modifications were made: In training, extra 
images were created by translating the original images to the 
left or right by up to 5 columns. The portions of the image 
which were not specified after the translation were filled in 

1 2 

Figure 2: Three sample input images and target outputs. Image 
1 shows the region from which the lane marker was hand 
selected. In image 2 there is an extra lane marking. In image 3 
the lanemarker is not completely visible. 

with the last previous real pixel value in the current row. The 
output was also translated either to the left or right by the 
same amount as the image. This translation yields usable 
images because the camera is pointed downwards. If the 
camera had been pointed more ahead of the vehicle, more 
sophisticated rotations would have been required to maintain 
the correct perspective, as were used in [Pomerleau, 1991]. 

The sequential nature of focusing attention dictated that 
these images could not simply be added to the training set. 
For example, an image at time t, which is translated 3 steps 
to the left, should not be followed by an image at time t+1 
which is translated 3 steps to the right. If it were, the impor- 
tant features would jump a large distance, and this is unlikely 
to happen in practice. To avoid this problem, the expanded 
training set is used in the following manner: the image at 
time step t+1 is chosen at a random translation which differs 
by, at most, ±1 from the image at time step t. This ensures 
that large jumps of the important features are not present 
between consecutive time steps. As the network is trained 
through many passes through the training set, images are 
seen with different translations. 

In addition to using the translated images as described 
above, to ensure that the network learns many of the possible 
transitions from any image, the errors from predicting 25 
potential next input images are used. These 25 "next input" 
images are created as follows: the images at time steps t-2, t- 
1, t, t+1 & t+2, are translated by 0,1 & 2 columns to the left 
and right. The error between the predicted next state and 
these 25 images are used for the backpropagation algorithm. 
This training is done because any of the 25 images are rea- 
sonable expectations for the next input, based upon the cur- 
rent inputs. In many tasks, using previous time steps, or time 
steps beyond t+1 may not work (see section 4). Nonetheless, 
for this domain, the important features, such as the lane 
markings, will remain relatively consistent for short periods 
of time, and can be used in training future predictions. 

After training in the manner described above, the results 
of this experiment were very promising. The lane tracker 
was able to remove various types of distracting noise from 
the images (See Figure 3). The performance of the lane 
tracker with the saliency map revealed a 15-20% improve- 
ment over the lane-tracker without the saliency map. The 
improvement was not greater because many of the image in 
the test set do not contain noise; with these images, a stan- 
dard ANN can be used to accurately estimate the lanemarker 
position. Nonetheless, in order to maintain a user's trust in a 
driver warning system, it is crucial that false alarms are min- 
imized. Further, since the system is designed to take control 
of the vehicle in hazardous situations, under no circum- 
stances may the system be distracted by spurious lanemark- 
ing or similar appearing features. The saliency map has 
provided an effective mechanism to focus attention on the 
important portions of the scene. 

This task is made easier because the relevant features are 
in approximately the same location in many images, and are 
very similar in shape. This is not, however, required for the 
algorithm to work well. Example tasks in which this was not 
the case can be found in [Baluja & Pomerleau, 1994] and in 
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Original 
Image 

Saliency Map 
(created from last 
image) 

After Applying 
Saliency Map 

Figure 3: Images before and after applying the 
saliency map. In images 1 the edge of the road is 
bright enough to cause distractions. In 2, the two 
lane markings may confuse the lane tracker, and 
cause it oscillate between the lane markings. In 3, a 
passing car is removed from the image. 

the next section. 

4. Determining State Transitions in Noisy 
Environments 

In this section, we describe a synthetic problem which 
contains many of the difficulties of the road following task, 
yet lends itself to easier interpretation and analysis. This 
problem also serves to demonstrate the saliency map's abil- 
ity to work in non-visual domains. 

In this experiment, there are 20 inputs and 2 outputs. Only 
1 input is turned on (activation of +1) in each example. Out- 
put 1(0,) should be turned on if the input which is turned on 
is an input between 1 and 10 (I1-I10); output 2 should be 
turned off (activation of -1). If the input which is on is Iir 

I20, the role of the output units should be reversed. The 
inputs turn on in a random order, which is determined at the 
beginning of the run; the order remains the same throughout 
the run. These chains proceed 20 steps, in which each input 
is turned on exactly once. After the 20 steps, the cycle 
repeats. The transitions can span any size gap in the input 
layer. This is unlike the previous task, of road following, in 
which features did not make large spatial jumps between 
successive frames. Also, the previous task was not as easily 
defined, as many "next images" were equally possible from 
each image. 

The task, as described above, can be solved easily by a 
standard neural network. In fact, the order of activation is 

irrelevant. The task becomes more difficult when random 
inputs can turn on in addition to the input which should be 
turned on. With the addition of noise, the order of activation 
becomes important. When there is more than one input 
turned on, O, should only be turned on if the underlying pro- 
cess dictates that an input IrI10 should be on. It should not 
turn on when the process dictates, for example, that I16 

should currently be on, and random noise has turned on I5. In 
the cases in which noise exists in the input units, it is neces- 
sary to be able to determine what the underlying transitions 
are, in order to determine which activated input is noise, and 
which is not. It was found that using a network with two hid- 
den layers yielded good performance on this task. As in the 
previous task, although the hidden layers are connected to 
the prediction layer, the errors on the prediction do not influ- 
ence the training of connections from the hidden layer to the 
input layer. The outputs specifying the next set of inputs is 
directly analogous to the expectation outputs used in the pre- 
vious application. 

Several forms of noise were tested in this experiment. The 
first introduced randomly occurring noise into the input 
layer. The state of a randomly chosen input is flipped (i.e. if 
it was activated to +1, it is changed to -1, and vice-versa). 
With large amounts of training, networks both with and 
without a saliency map are able learn the appropriate transi- 
tion rules. In fact, a neural network is not necessary for 
learning the transition rules. A simple method to learn these 
rules is to count, for each activated input at time t, which 
inputs turn on in time step t+1. Even with a large amount of 
noise, the transition rules can quickly be found. 

A much harder task is to use a second, independent, pro- 
cess to turn on inputs in a different order. In this task, only 
one of the processes is of interest, and the other process is 
noise. For this problem, the simple counting method 
described above will not work. The motivation for using two 
processes, instead of simple randomly occurring noise, is 
that this method more closely relates to real-world tasks, in 
which distractions may be coherent, structured features or 
objects which persist through multiple time steps. Examples 
of these include multiple voices or conversations in the con- 
text of speech recognition or multiple lane markers in the 
context of road following. 

4.1. Experiments - Results 
The task described above with two processes was con- 

ducted as follows: In each input presentation, two inputs 
were turned on. One corresponded to the actual process of 
interest, the other to the noise process. Approximately every 
100 pattern presentations, each process was restarted ran- 
domly from a randomly chosen position in each sequence. 
See Figure 4 for an example. 

There are two measures of performance for the task 
described above, each are measured every 4000 pattern pre- 
sentations. The first is to measure how well the transition 
rules of the real process were discovered. This is determined 
as follows: each input is individually turned on in separate 
presentations (total of 20). For each presentation, the unit 
with the highest activation in the expectation portion of the 
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outputs is determined. If this corresponds to the next input 
which would be turned on if the sequence was being pre- 
sented, the output is correct. 

The second measure of performance is how well the net- 
works perform on the main task (turning on either Oj or 02). 
This is determined as follows: the error on 500 pattern pre- 
sentations is measured. The inputs include noise from the 
distracting process. To ensure that the network has not mem- 
orized how to de-emphasize the noise process when started 
in a particular position with respect to the real process, the 
noise and real process are restarted 10 times in random loca- 
tions. The sum square errors, over all presentations, on the 
two output units are summed. 

There are three training methods examined in this paper, 
these correspond to training the hidden units using the train- 
ing signal from either the main task, or the expectation out- 
puts, or both. The training method which corresponds to the 
method used with the lane-marking task, described in the last 
section, is "Main-Task Only". In the "Prediction Task Only", 
only the errors from the expectation are used to train the hid- 
den units. The features developed for solving the prediction 
task must be used to reduce the main task error. In the "Both 
Tasks" training procedure, errors from the expectation out- 
puts and the main task outputs are used. 

All three of these methods are attempted with and without 
the saliency map. A typical run is shown in Figure 5. The 
large oscillations in performance are due to the significant 
noise in the training and testing. If the network recognizes 
the wrong features, and mistakes the noise process for the 
real process, errors increase dramatically. The results for all 
six of the training sessions are shown below, in Tables I & II. 
Runs are continued for 3xl06 pattern presentations. In order 
to judge whether the differences in the average performances 
are relevant, the significance for the differences in sum 
squared error are measured here. Each network was trained 
12 times, with random initial starting weights. For these 
tests, a two sided Mann-Whitney test is used at the 95% sig- 
nificance level. This test is a non-parametric (the underlying 
distribution is not assumed to be normal) equivalent of the 
standard two-sample pooled r-test. The differences in the 
means, measured by both criteria, are significant between 

TRANSITIONS «i "t o»®oot®o «oootooo 
m 0M008S0 OMOOSSO 

Real Process 
2 -> 4 -> 3-> 1 

c <N @oo®#oo® o®o@o©o© 
fooitoo® oo®®oo@® 

v> IN oieooeso 8©OOBSOO 
Noise Process "S 3 

S3 3 — o 

iOOBiOOS oo##oo«§ 

l->3->4->2 time    ► 

Figure 4: An input/output sequence for the task described. 
The real and noise process transitions are shown on the 
left. After 8 time steps, the processes are restarted in 
random positions, the real process at step 2, and the noise 
process at step 3. Oj should be on if the real process has 
turned on Ij or I2, O2 should be on if the real process has 
turned on I3 or I4. 

using a saliency map and not, in training with the "main 
task", and with "both tasks". The differences, measured by 
both criteria, are not significant with the networks trained 
with only the "prediction task". Networks trained only for 
prediction do not perform well on the main task. Networks 
trained to perform the main task perform significantly better. 
The networks trained to reduce the task error, and which use 
a saliency map, perform the best. 

The difference between training with "both tasks" and 
training only with the "main task", when using a saliency 
map, is significant when measured in task error, but not 
when measured in transition rule error. These results suggest 
that training the hidden units just on the main task provides 
enough information to do well on both the prediction and 

Error x 103 Task Error 
1.1 
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0.3 

0.2 

0.1 

0.0 

Without Saliency Map 

0.00 1.00        2.00        3.00        4.00 5.00        6.00 

Error Incorrect Transition Rules 
1 1 1 r 

Without Saliency Mat 

0.00        1.00        2.00        3.00        4.00 

Patterns x 106 

5.00 6.00 

Figure 5: Typical run using only the main task to train hidden 
units. Extended run shown for 6xl06 pattern presentations. 
Runs shown with and without saliency map. 
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Table I: Lowest Task Error (Sum Squared Error of Both 
Outputs, 500 patterns). 

Saliency 
Map 

Table 
Interpretation 

How the Hidden Units were Trained 

Main Task Prediction Task Both Tasks 

With Avg, Std. Dev 101.3, 82.2 651.0,89.8 117.2,35.3 

Min, Max 30.5, 298.9 504.2,830.1 81.0,216.4 

Without Avg. Std. Dev 380.1,34.3 603.1,84.8 389.8, 25.5 

Min, Max 294.5,424.8 464.1, 716.7 335.4,424.1 

Table II: Lowest Number of Incorrect Transition Rules 
(20 maximum) 

Saliency 
Map 

Table 
Interpretation 

How the Hidden Units were Trained 

Main Task Prediction Task Both Tasks 

With Avg, Std. Dev 0.6, 1.3 2.4, 2.7 0.0, 0.0 

Min, Max 0.0,4.0 0.0,7.0 0.0,0.0 

Without Avg. Std. Dev 6.2, 0.24 4.4, 0.28 3.0, 0.25 

Min, Max 5.0, 7.0 2.0, 6.0 2.0, 4.0 

main tasks. Using some of the representational power in the 
hidden units for prediction (as with "Both Tasks" & "Predic- 
tion Task Only") hurts performance when measured on the 
task error. When the hidden units are trained to only do the 
prediction task, the results are significantly worse, measured 
by both error metrics, than when the main task is used. This 
indicates that in this task, the errors from the main task must 
be used to improve performance on the main task and on the 
prediction task. 

5. Conclusions 
In this paper, a method for focusing attention on the por- 

tions of the input which are important for completing a par- 
ticular task was presented. This method of using attention 
has been demonstrated in both visual and non-visual 
domains with promising results. The artificial neural net- 
work used in this study was able to avoid distractions by 
focusing attention on only the relevant portions of a scene. 
The feedback mechanism which is presented in this algo- 
rithm is more restricted in comparison to other recurrent neu- 
ral network architectures. Nonetheless, it is enough to focus 
processing to relevant portions of the input. The resulting 
network can be trained by using the standard backpropaga- 
tion learning algorithm. Extensions to the presented architec- 
ture can use methods of encoding task context (such as 
[Jordan, 1989]) in addition to the attention mechanisms. 

Unlike many of the previous studies which use neural net- 
works to predict future states, this work has presented an 
algorithm which relies on the limited accuracy of the neural 
network's future state prediction. The premise of this algo- 
rithm is that future event prediction cannot be perfect. In par- 
ticular, the network cannot accurately predict the future 
states when the future states contain noise or spurious fea- 
tures. By analyzing the difference between what is expected 
in the next time step and what is actually present in the next 

time step, it is possible to determine which of the features in 
the input retina are noise, and which are important to com- 
pleting the particular task. 

In this paper, we have demonstrated the applicability of 
this algorithm on a real-world application, that of autono- 
mous road following. The algorithm is able to avoid being 
misled by extra lane markings, and other features which 
have very similar appearances, which could cause the algo- 
rithm to steer the vehicle incorrectly. One of the future direc- 
tions is to use this network in a driver run off-road warning 
and control system. Other future directions for study are pre- 
sented below. 

6. Future Directions 
Relations to Kaiman filtering and PCA analysis are cur- 

rently being analyzed. In addition, alternative implementa- 
tions of the saliency map are also being investigated. These 
include alternative methods to apply the information in the 
saliency map, and the use of additional previous inputs for 
more time-context. 

An open question is from which hidden layer(s) should 
the expectation be constructed? Different hidden layers will 
contain information at different levels of transformation 
from the original inputs. Another direction for future 
research is using the saliency map as a tool for interacting 
with other knowledge-sources. The information in the 
saliency map can be useful for high-level attribute selection 
and weighting in other algorithms. Another form of interac- 
tion between the saliency map and external knowledge 
sources is using the knowledge sources to create or augment 
the saliency map directly. This interaction can provide "sug- 
gestions" to where the network needs to devote attention. 
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