Recruitment, Retention, Wastage, and Retirement: Career Patterns in the Officer Corps of the British Armed Services 1970–82

Ian Bellany
University of Lancaster, England

for
Contracting Officer’s Representative
Michael Kaplan

ARI Scientific Coordination Office, London
Michael H. Strub, Chief
Research and Advanced Concepts Office
Michael Drillings, Acting Director

February 1995

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.
U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Director

Research accomplished under contract
for the Department of the Army

University of Lancaster, England

Technical review by

Michael Kaplan

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution other than to DTIC and will be available only through DTIC or the National Technical Information Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other authorized documents.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave Blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1995, February</td>
<td>Final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5. FUNDING NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recruitment, Retention, Wastage, and Retirement: Career Patterns in the Officer Corps of the British Armed Services 1970-82</td>
<td>R&D4625-RB-09 0601102A B74F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellany, Ian</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Politics</td>
<td>U.S. Army Research Institute for the Behavioral and</td>
<td>ARI Research Note 95-22</td>
</tr>
<tr>
<td>Centre for the Study of Army Control and International Security</td>
<td>Social Sciences</td>
<td></td>
</tr>
<tr>
<td>University of Lancaster, England LAL 4YF</td>
<td>ATTN: PERI-BE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5001 Eisenhower Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22333-5600</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SUPPLEMENTARY NOTES</th>
<th>12a. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>12b. DISTRIBUTION CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contracting Officer's Representative, Michael Kaplan.</td>
<td>Approved for public release; distribution is unlimited.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. ABSTRACT (Maximum 200 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A policymaking tool has been fashioned for those concerned with officer recruitment and promotion policy. The tool is basically a transition matrix with elements that consist of the probabilities in any one year that, (a) a civilian will join the officer corps, or (b) a captain will be promoted to major, or (c) a major will exit the service for civilian life, and so forth. The size of the matrix at its fullest is determined by the number of discrete ranks plus the civilian status—say eleven. The number of elements within it would be 121 (11 x 11), although the value of many of these will be zero, corresponding to the near impossibility in normal times of promotion through more than one rank at a time.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
<th>15. NUMBER OF PAGES</th>
<th>16. PRICE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recruitment</td>
<td>Officers corps</td>
<td></td>
</tr>
<tr>
<td>Retention</td>
<td>Promotion policy</td>
<td></td>
</tr>
<tr>
<td>Wastage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. SECURITY CLASSIFICATION OF REPORT</th>
<th>18. SECURITY CLASSIFICATION OF THIS PAGE</th>
<th>19. SECURITY CLASSIFICATION OF ABSTRACT</th>
<th>20. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>
Final Report

Recruitment, Retention, Wastage and Retirement: Career Patterns in the Officer Corps of the British Armed Services 1970-82

Previous reports outlined a new methodology whereby the snapshot probabilities of a person occupying a particular rank in the armed services making a transition to another rank or to civilian life could be related to the steady state distribution of ranks that should eventuate if these 'transition' probabilities remained unchanged.

This report is a first attempt at fashioning the concept into a tool for policy makers.

The Model

For reasons of simplicity the officer corps is divided into three rank groupings or bands (army equivalents) civilian status making up a fourth category.

We can write down the probabilities that in any given time period - say one year - an officer or intending officer will change or retain his rank band or category, in the form of a matrix.

<table>
<thead>
<tr>
<th></th>
<th>Civilian</th>
<th>2nd Lt.-Major</th>
<th>Lt.Col.-Brigadier</th>
<th>Major Gen. and above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civilian</td>
<td>.99</td>
<td>.01</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>2nd Lt.-Major</td>
<td>.1</td>
<td>.84</td>
<td>.06</td>
<td>0</td>
</tr>
<tr>
<td>Lt. Col.-Brigadier</td>
<td>.3</td>
<td>0.00</td>
<td>.68</td>
<td>.02</td>
</tr>
<tr>
<td>Maj.Gen. and above</td>
<td>.6</td>
<td>0.00</td>
<td>0.00</td>
<td>.4</td>
</tr>
</tbody>
</table>

The 'transition probabilities' have been carefully chosen to produce an overall rank structure close to that obtaining in the combined British armed services. In other words when multiplied by itself an infinite number of times the matrix transforms to one of four identical rows: .9306, .058, .011, .0004. The last three figures in the row corresponding to the relative tri-service populations

* The Research reported in this document has been made possible by Contract number R & D 4625-RB-09 from the US Army Research Institute for the Behavioral and Social Sciences through its European Science Coordination Office at the European Research Office of the US Army, London, England. The opinions expressed are those of the author and do not necessarily represent those of the US Army.
of the rank banding in question. The 'transition probability' chosen for civilian to 2nd Lt-Major category is computationally convenient but, is of course much higher than is actually the case. However this does not affect the relative size of the three transformed matrix elements referring to population of the rank bandings.

The above transition matrix implies for instance that in any one year an officer with a rank in the 2nd Lt.-to-Major band has a six percent chance of promotion to the Lt.Col-to-Brigadier rank band, a ten percent chance of leaving the services, and an 84 percent chance of remaining within his existing rank band. A more detailed analysis would split the rank bands into the individual traditional rankings, producing an eleven by eleven matrix rather than the four by four given. However the added complexity of this procedure would for present purposes give comparatively meagre returns, and is not therefore proposed.

The operational usefulness of the transition matrix even standing alone is not to be despised. For one thing in a 'steady state' condition of a fixed size corps of officers the total number of civilians entering the corps must balance the total number of officer departures, and the extreme left hand column of transition probabilities must reflect this fact. The 'zeros' in the matrix reflect the vanishingly small probabilities of demotion but they also reflect the absence of entry from outside except at the lowest rank band. Even so it is possible to imagine, for instance, outside (if not civilian) entry at higher rank bands as a theoretical option if one branch of the armed services had a shrinking officer requirement whilst others had an increasing requirement.

Economic Man

The elements of the transition matrix are constrained in other ways besides. For instance each row must add up to unity. In addition, if an officer is assumed to make choices about leaving or staying with the services according to the relative economic attractiveness of the two options, then row elements must be interconnected in other ways. The probability of an officer leaving, Po, from within the 2nd Lt-Major rank band can be written as:

$$\text{Po} = K \times \frac{S.P. + (1-u) \times C.S.}{Pm \times S.M. + Pb \times S.B.}$$

1. This broad assumption by itself is not too unreasonable. What is not always true in practice is the implicit assumption that an officer always has a free choice unhampered by any contractual arrangement. In practice between \(\frac{1}{2}\) and \(\frac{3}{4}\) of exits are 'premature' at the officer's own request.
Where \(P_m \) and \(S.M. \) are the probability of remaining in the 2nd Lt-Major band and the average salary of that rank band, respectively, and \(P_b \) and \(S.B. \) are the probability of being promoted to the Lt.Col-Brigadier rank band and the average salary of that band, respectively. And \(S.P. \) is the service pension (for the average retiree at 2nd Lt-Major rank), \(u \) the relevant civilian unemployment rate, and \(C.S. \) the relevant average civilian salary level.

If we now suppose that for exogenous reasons (a fall in civilian unemployment or an increase in civilian salaries) the value of \(P_o \) were to rise, and if we further suppose that military salaries were not adjusted to compensate, we now have the tools to allow us to predict the effect on rank structure.

To use the original transition matrix, if \(P_o \) went from .1 to .125 then either \(P_m \) would have to fall to .815 or \(P_b \) to .035 (or some combination of the two). Leaving to one side the last possibility, a fall in \(P_m \) to .815 would produce a long run rank distribution of \(.051 : .010 : .0003 \). A fall in \(P_b \) to .035 produces a distribution of \(.058 : .006 : .0002 \). The latter would mean one general for every 320 other officers, for former one general for every 200.

This line of reasoning can be taken a little further. If we supposed that \(P_o \) historically has a tendency to rise (because, say, of a failure to match civilian salaries and a reluctance to trim service pensions) the consequence will be upward drift in rank distribution, since a fall in \(P_b \) is unlikely to be engineered because of its effect on morale. Nothing is for nothing, however, and a top heavy officer corps will have a larger overall salary bill than a corps of the same size containing a smaller proportion of general officers. Savings might then be looked for through shaving the salary differentials between ranks, which in turn will actually act to increase \(P_o \) (slightly), completing the circle.

Conclusion

A policy making tool has been fashioned around the concept of the 'transition' matrix which can be applied to a range of questions concerning the structure and remuneration of the officer corps of a modern defence establishment.

A semi-qualitative demonstration of the tool in use was performed to illustrate the conditions under which rank structures can grow top heavy as an indirect result of 'premature' retirements from middle ranks.

September 1985

Ian Bellany

Lancaster.
5 REM PROGRAM PRODUCING N’TH POWER OF TRANSITION MATRIX AS N TENDS TO INFINITY
6 REM MAX SIZE OF MATRIX 15x15 CAN BE ALTERED AT LINE 30
7 REM PROGRAM LANGUAGE CBM BASIC

READY.

5 REM PROGRAM PRODUCING N’TH POWER OF TRANSITION MATRIX AS N TENDS TO INFINITY
6 REM MAX SIZE OF MATRIX 15x15 CAN BE ALTERED AT LINE 30
7 REM PROGRAM LANGUAGE CBM BASIC
20 PRINT"J" REM CLEAR SCREEN
30 DIM A(15,15),B(15,15)
40 PRINT"DIMENSION OF MATRIX";
50 INPUT R
60 PRINT"MATRIX ELEMENTS "
70 FOR I=1 TO R
80 PRINT"ROW";I
90 FOR J=1 TO R
100 PRINT"VALUE COLUMN";J
110 INPUT A(I,J)
120 NEXT J
130 B(I,J)=1
140 NEXT I
150 FOR J=1 TO R
160 FOR K=1 TO R
170 IF A(I,J)<>B(I,K) THEN 210
180 NEXT K
190 PRINT"SINGULAR MATRIX"
200 GOTO 500
210 NEXT J
220 FOR I=1 TO R
230 S(I,K)=A(I,K)
240 NEXT K
250 S(I,K)=B(I,K)
260 NEXT I
270 FOR L=1 TO R
280 T(L,I)=S(I,L)
290 FOR K=1 TO R
300 IF A(K,L)<>B(K,L) THEN 400
310 NEXT K
320 B(L,K)=T(L,K)
330 NEXT L
340 FOR L=1 TO R
350 IF A(L,L)<>B(L,L) THEN 500
360 T(L,L)=B(L,L)
370 FOR K=1 TO R
380 B(L,K)=B(L,K)+T(L,K) * T(K,L)
390 NEXT K
400 NEXT L
410 NEXT I
420 NEXT J
430 PRINT
440 FOR I=1 TO R
450 PRINT"ROW";I
460 FOR J=1 TO R
470 IF A(I,J)<>B(I,J) THEN 490
480 PRINT I16(A(I,J)) * 10000 + 3) / 1000;
490 NEXT J
500 NEXT I
510 END
520 REM RAPPIEU FROM LON POOLE & MARY BURCHEP: "SOMM COMMON BASIC PROGRAMS"
530 REM OSBORN/MCGRAW-HILL,1979,PP114-115

READY.