Fatigue Reliability Method
With In-Service Inspections

May 1995
Final Report

This document is available to the public
through the National Technical Information
Service, Springfield, Virginia 22161.

U.S. Department of Transportation
Federal Aviation Administration

19950629 047
NOTICE

This document is disseminated under the sponsorship of the U. S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.
Fatigue Reliability Method with In-Service Inspectors

M. Fleming, H. Harkness, B. Moran, and T. Belytschko

Robert McCormick School of Engineering
Northwestern University Evanston, IL 60208-3109

U.S. Department of Transportation, FAA Technical Center
Atlantic City International Airport, NJ 08405

FAA Technical Center Project Manager: Catherine Bigelow

The first order reliability method (FORM) has traditionally been applied to probabilistic fatigue analyses for single inspection intervals. Accounting for inspections then requires several sequential FORM analyses and that the random distribution of crack lengths be recharacterized following each inspection. The augmented FORM presented here allows the reliability analyses to span several inspection periods without explicit characterization of the crack length distribution subsequent to each inspection. The method thereby preserves the attractive feature of FORM in that relatively few realizations in the random variable space need to be considered. Examples are given which show that the present methodology gives estimates which are in good agreement with the Monte Carlo simulations and is efficient even for complex components.
ACKNOWLEDGMENTS

This work was supported by the Federal Aviation Administration and by the National Institute for Standards and Technology through a subcontract with Iowa State University. Helpful discussions with Dr. Al Berens, University of Dayton Research Institute, are gratefully acknowledged.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>vii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 FIRST ORDER RELIABILITY METHOD</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Standard Reliability Statement</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Fatigue Reliability</td>
<td>4</td>
</tr>
<tr>
<td>3 FATIGUE RELIABILITY AND IN-SERVICE NDE INSPECTIONS</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Statement of Reliability Problem With NDE Inspections</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Evaluation of the Integral for Failure Probability</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Location of Design Points</td>
<td>8</td>
</tr>
<tr>
<td>4 NUMERICAL EXAMPLES</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Edge Crack</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Semi-Elliptical Surface-Breaking Crack</td>
<td>11</td>
</tr>
<tr>
<td>5 CONCLUSIONS</td>
<td>13</td>
</tr>
<tr>
<td>6 REFERENCES</td>
<td>14</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A - Algorithm to Locate Design Points</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Failure Surface in Original Space</td>
<td>15</td>
</tr>
<tr>
<td>1b</td>
<td>Failure Surface in Standardized Space</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Modified FORM Integration Scheme</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Probability of Failure for Test Case With and Without Inspections</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Probability of Detection Curves</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Results for Edge Crack Using Augmented FORM and Uneven Inspection Intervals</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Rectangular Plate with Surface-Breaking Semi-Elliptical Crack</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Probability of Failure for Surface-Breaking Crack in a Plate with Inspections</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Probability of Failure Since the Last Inspection for Surface-Breaking Crack in a Plate</td>
<td>19</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

The first order reliability method (FORM) has traditionally been applied to probabilistic fatigue analyses for single inspection intervals. Accounting for inspections then requires several sequential FORM analyses and that the random distribution of crack lengths be recharacterized following each inspection. The augmented FORM presented here allows the reliability analysis to span several inspection periods without explicit characterization of the crack length distribution subsequent to each inspection. The method thereby preserves the attractive feature of FORM in that relatively few realizations in the random variable space need to be considered. Examples are given which show that the present methodology gives estimates which are in good agreement with Monte Carlo simulations and is efficient even for complex components.
1. INTRODUCTION.

Probabilistic fatigue methods are often applied in a setting where critical structural components are subjected to inspections by non-destructive evaluation (NDE) techniques so that crack can be identified and the component can be repaired or replaced. Inspections can significantly reduce the probability of fatigue failure of structures, as well as increase the useful service lives. Quantified measures of reliability (provided by probabilistic methods) can optimize the inspection schedule and allow comparison of effectiveness for various inspection methods.

A risk analysis methodology for the assessment of structural integrity of aircraft structures has been outlined by Berens, et al. (1991). This methodology, which is based on the direct integration of the probability of failure, works well when the number of random variables is relatively small and a single parameter characterization of crack size is adequate. However, when it is useful to characterize crack growth in detail, other modeling techniques such as Monte Carlo simulations (MCS) and the first order reliability method (FORM) are needed for calculating probabilities of failure (see Harkness, et al. (1992) and references therein). Traditionally, these latter techniques have been applied to one inspection interval at a time. However, that approach requires characterization of the crack size distribution (i.e., crack size probability density function) following each inspection, which is difficult. Techniques for recharacterizing crack size distributions after each inspection with FORM are discussed in Rahman and Rice (1992).

An alternative approach is given here which does not require recharacterization of the crack size distribution. The first order reliability method is augmented to account for the effects of the inspections so that the crack size distribution need only be characterized at an initial state. This is of considerable advantage since recharacterizations of the crack length distribution are often tedious or impractical. In the present work, it is assumed that components with detected cracks are repaired such that their subsequent likelihood of failure is negligible.

In Section 2, the standard FORM and its application to fatigue reliability are reviewed. The introduction of non-destructive evaluation (NDE) into the fatigue reliability problem is discussed in Section 3 along with a description of the augmentation of
FORM to efficiently treat multiple inspections. The first part of section 3 is devoted to identifying the quantities of interest in a fatigue reliability analysis with in-service inspections; techniques to evaluate these quantities are given in the remainder of the section. An important aspect of FORM is finding the so-called design points. An algorithm for this task which is applicable to both the standard FORM and the augmented FORM is provided in the Appendix A.

Two numerical examples are presented in Section 4. The first example investigates the accuracy of augmented FORM by comparison to MCS results. A more complex fatigue problem is studied in the second example where the MCS approach is not computationally feasible; here the augmented FORM requires only minutes of CPU time on a workstation. In these examples, the inspection schedule is adjusted so that inspections occur when the probability of failure reaches a specified value. Further discussion and concluding remarks are given in Section 5.

2. FIRST ORDER RELIABILITY METHOD.

2.1 STANDARD RELIABILITY STATEMENT.

We begin by defining a performance function, $G(x)$, which distinguishes between safe and unsafe realizations of the random variables x (see figure 1a). Performance functions are typically defined so that positive outcomes indicate safe realizations and negative outcomes indicate unsafe realizations (the limit case of $G(x)=0$ is often included in the failure domain). The objective of a reliability analysis is to determine the probability of failure

$$P_f = P[G(x) \leq 0],$$

(2.1)

which is given by

$$P_f = \int_{\alpha_f} f_x(x)dx,$$

(2.2)

2
where \(\Omega_f^x \) is the failure space \((G(x) \leq 0)\), and \(f_X(x) \) is the joint probability density function for realizations in the space of random variables \(x \).

The random variables \(x \) are often non-normally distributed, rendering the integral in equation (2.2) difficult to evaluate. To circumvent this difficulty, random variables \(x \) are mapped to standardized equivalent normal random variables \(r \), where each component \(r_i \) is an independent Gaussian variable with zero mean and unit variance. This mapping can be achieved via the Rosenblatt transformation (see Rosenblatt 1952; Ang and Tang 1984)

\[
 r_i = \Phi^{-1}
 \left[
 F_i
 \left(x_i \mid x_1, x_2, \ldots, x_{i-1} \right)\right],
\]

(2.3)

where \(F_i \) is the conditional cumulative probability at \(x_i \) given \(x_1, x_2, \ldots, x_{i-1} \). In standardized space, the performance function is transformed to \(g(r) = G(x(r)) \) and equation (2.2) becomes

\[
 P_f = \int_{\Omega_f^r} f_R(r) \, dr,
\]

(2.4)

where \(\Omega_f^r \) is the failure space \((g(r) \leq 0)\) as in figure 1b, and \(f_R(r) \) is the joint probability density function for realizations of random variables \(r \). The joint probability density function, \(f_R(r) \), is simply the product of the probability density functions for all random variables \(r_i \) and is given by

\[
 f_R(r) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{r_i^2}{2} \right),
\]

(2.5)

The essence of FORM is to approximate the limit surface \(g(r) = 0 \) by a tangent hyperplane at the most likely point of failure, \(r_d \). In standard FORM the most likely failure point is the point which minimizes the distance \(|r|\) to the failure surface. The resulting “first order” estimate of the probability of failure is then given by

\[
 P_f^l = \Phi(-\beta),
\]

(2.6)
where $\beta = |r_d|$ and Φ is the standard normal cumulative distribution function. Because the random variables r are Gaussian and normal, the decay of $f_r(r)$ is exponential and identical for all random variables. Therefore, the closest point is the point at which failure is most probable and it provides a good point for approximating the failure surface to calculate the probability of failure using standard FORM. It will be shown in Section 3.3 that the closest point may not be the most likely failure point when in-service inspections are accounted for.

2.2 FATIGUE RELIABILITY.

In a fatigue setting, the failure set contains all realizations that result in fatigue lives less than a desired service life, so an appropriate performance function is

$$G(x) = N_f(x) - N,$$ \hspace{1cm} (2.7)

or in standard Gaussian space

$$g(r) = N_f(x(r)) - N,$$ \hspace{1cm} (2.8)

where N_f is the fatigue life (which is influenced by several random variables) and N is the desired service life. Note that the fatigue life may be defined as the number of cycles for a crack to reach a specified critical size, which may not necessarily correspond to catastrophic failure of the component. Failure is deemed to occur when the fatigue life is shorter than the desired service life ($g < 0$). Standard FORM described above is often effective for estimating failure probability versus service life in the absence of inspections or for estimating the probability of failure with inspections when the crack length distribution following an inspection is known. In the latter, a standard FORM analysis is performed for each inspection interval, and the probability of failure is determined in each analysis. This approach requires knowledge of the crack size distribution following each inspection. A more efficient method for treating inspections is introduced in the following Section.
3. FATIGUE RELIABILITY AND IN-SERVICE NDE INSPECTIONS.

Consider a fatigue reliability setting where the component is subjected to in-service NDE inspections according to some schedule. The inspection schedule may be prescribed and the failure probabilities sought or conversely, the aim of the analysis may be to determine an inspection schedule which will keep failure probabilities below a specified level. Let \(N \) denote the service life (in cycles) and \(N_f \) denote the number of cycles to the inspection prior to \(N \). We seek a method to determine the fatigue reliability (or alternatively failure probability) over the service life, \(N \). As mentioned previously, standard FORM techniques require a complete characterization of the probability density function for the crack size following each inspection. However, an exact determination of the crack size probability density function may be extremely tedious or impractical to obtain especially for cracks in complicated geometries. Rahman and Rice (1992) discuss a method based on the standard FORM to recharacterize the crack size distribution at each inspection, but this method may require extensive computations. In the following subsection, we introduce a straightforward and efficient method based on the initial crack size distribution for determining fatigue reliability with NDE inspections; explicit knowledge of the crack size distribution at each inspection is not required.

3.1 STATEMENT OF RELIABILITY PROBLEM WITH NDE INSPECTIONS.

The probability of failure is defined here as the probability that the service life of the component exceeds the fatigue life, where the fatigue life is determined strictly by undetected cracks. Thus the probability of failure, \(P_f \), after \(N \) fatigue cycles, can be written as

\[
P_f(N) = P\left[(N_f \leq N) \cap (O_i = 0, i = 1,2,\ldots,I) \right].
\]

(3.1)

where \(I \) is the number of previous inspections at \(N \) cycles \((N>N_f)\), \(O_i \) indicates the outcome of the \(i\text{-th} \) inspection which is given by:

\[
O_i = \begin{cases}
0 & \text{no crack detected in } i\text{-th} \text{ inspection} \\
1 & \text{crack detected in } i\text{-th} \text{ inspection}
\end{cases}
\]

(3.2)
and \(N_f \) is the fatigue life. The outcome of each inspection is random due to uncertainties in the inspection technique and the crack length at the time of the inspection. Other functions which may be of particular interest can be derived from \(P_f \).

The hazard function (or failure rate) \(h(N) \) is given by

\[
h(N) = \frac{1}{[1-P_f(N)]} \frac{\partial P_f(N)}{\partial N},
\]

(3.3)

The factor \([1-P_f]\) in equation 3.3 is typically very close to unity in a reliability analysis, so the hazard function is effectively equal to the derivative of the probability of failure. Another useful failure probability is the probability of failure since the last inspection (due to an undetected crack), i.e.,

\[
P_a(N) = P\left((N_i \leq N_f \leq N) \cap (O_i = 0, i = 1, 2, \ldots, I) \right).
\]

(3.4)

where \(I \) is the number of previous inspections at \(N \) cycles, and \(N_f \) and \(O_i \) are as previously defined.

As in the standard FORM the random variable space can be transformed to standardized Gaussian variable space. The probability density function for realizations of \(r \) in this space is \(f_R(r) \) (see equation 2.5). To derive an expression for the probability of failure, \(P_f \), at cycle \(N \) which accounts for inspections, we require the probability density function associated with realizations, \(r \), for which the associated cracks are undetected. The probability density function for realizations with undetected cracks after the first \(I \) inspections, is given by

\[
f_u(r) = f_R(r)P_{nd}(r, N).
\]

(3.5)

Here, \(P_{nd}(r, N) \) is the probability that cracks associated with the realization \(r \) are not detected in all of the inspections prior to the current cycle, \(N \), i.e., \(P_{nd}(r, N) = P[O_i = 0 \text{ for } i = 1, 2, \ldots, I \mid r] \), and is given by

\[
P_{nd}(r, N) = \prod_{i=1}^{I} \left[1 - POD[a(r, N_i)] \right],
\]

(3.6)
where $POD[a(r,N_i)]$ is the probability of detection for the inspection method and $a(r,N_i)$ is the crack length upon the ith inspection for the realization r.

The probability of failure is therefore given by

$$P_f (N) = \int_{\Omega_f} f_R (r)P_{nd}(r,N) \, dr ,$$

(3.7)

where Ω_f includes all r such that $g \leq 0$ (i.e. $N_f \leq N$). The probability of failure since the last inspection is given by

$$P_{fl} (N) = \int_{\Omega_{fl}} f_R (r)P_{nd}(r,N) \, dr ,$$

(3.8)

where Ω_{fl} includes all r such that $N_l < N_f \leq N$. Note that the computation of N_f is not influenced by the inspections, i.e., the failure surface $g(r) = 0$ is not influenced by in-service inspections. Rather, it is the integrands in equations (3.7) and (3.8) which incorporate the effect of inspections on failure probability.

3.2 EVALUATION OF THE INTEGRAL FOR FAILURE PROBABILITY.

The integrals in Eqs. (3.7) and (3.8) differ from that which arises in standard FORM in that the integrands have been multiplied by the non-Gaussian function $P_{nd}(r,N)$ and, therefore, the integration technique must be modified to accurately integrate the functions. A simple modification of the standard FORM integration procedure is introduced here for the evaluation of the integral in equation (3.7). As in standard FORM, the failure surface is approximated by a tangent hyperplane at the most likely failure point, r_d (the so-called design point). The sharp variation of $P_{nd}(r,N)$ in the direction of the gradient of g prevents the direct evaluation of the integral via the standard normal cumulative distribution function, as in equation (2.6). Nevertheless, we wish to maintain the essential structure of the FORM integration procedure and, thus, it is convenient to discretize the domain Ω_f into subdomains as shown in figure 2. By approximating $P_{nd}(r,N)$ as constant over each subdomain we obtain
\[P_f(N) \approx \sum_{j=1}^{n_s} \left[\overline{P}_{nd}^j \int_{\Omega_j} f_R(r)d\Omega \right] , \quad (3.9) \]

where \(n_s \) is the number of subdomains and \(\overline{P}_{nd}^j \) is the approximation of \(P_{nd}(r,N) \) in the subdomain \(\Omega_j \). The remaining integrands are the Gaussian distributed \(f_R(r) \), so the standard cumulative normal function \(\Phi \) is useful for "first order" approximations of these integrals. Thus, equation (3.9) leads to approximations of the form

\[P_f^j(N) = \sum_{j=1}^{n_s} \left\{ \overline{P}_{nd}^j \left[\Phi(-|r^j|) - \Phi(-|r^{j+1}|) \right] \right\} + \overline{P}_{nd}^n \Phi(-|r^\ast|) , \quad (3.10) \]

where \(r^j \) is the integration point on the surface of the subdomain \(\Omega_j \) as shown in figure 2. In this numerical integration scheme, the design point is taken as the first integration point, i.e., \(r^1 = r^d \) Subsequent integration points are found by

\[r^j = \left[1 + (j-1)\delta \right] r^d , \quad (3.11) \]

where \(r^1 \) is the position of the \(j^{th} \) integration point and \(\delta \) is the desired step size for the integration. The number of subdomains, the magnitude of \(\delta \), and the location, \(r^{ts} \) of the last integration point depend on the accuracy desired and can be deduced through numerical experimentation and comparison with known solutions. A non-uniform subdomain discretization can be used in place of equation (3.11) if desired.

3.3 LOCATION OF DESIGN POINTS.

In standard applications of FORM, the most likely failure point can be shown to be the point closest to the origin on the surface \(g=0 \) (Ang and Tang, 1984). The approximation of the failure surface as a tangent hyperplane at the design point leads to the first order approximation in equation (2.6). In the present application of FORM with in-service inspections, the integrand in equation (3.7) contains the non-Gaussian variable \(P_{nd}(r,N) \) and the most likely failure point is not, in general, the closest point to the origin on \(g=0 \). The question then arises as to which point provides the most appropriate first order approximation to the failure surface, i.e., where to locate the design point. One possibility is to take the closest point to the origin on \(g=0 \) as in standard FORM. However, due to variations in \(P_{nd}(r,N) \) along the surface \(g=0 \), an alternative point is suggested which will maximize the integrand in equation (3.7).
A procedure for locating the design point at the most likely failure point on $g=0$ is introduced here. By suitable choice of parameters, the algorithm can also be used to locate the design point at the closest point to the origin. Consider β such that

$$\Phi(-\beta) = P_{nd}(r,N)\Phi(-|r|).$$

(3.12)

The design point is then taken to be the point on the surface $g=0$ which minimizes β (or maximizes the product $P_{nd}(r,N)\Phi(-|r|)$). Typically, the variation in $P_{nd}(r,N)$ is small in the direction of constant g and the design point and the closest point are nearly coincidental. However, in some problems, a significant difference in the location of these points is found. The Rackwitz algorithm (Rackwitz and Fiessler, 1978) can be used to find the design point for standard FORM, but this algorithm may fail to converge for high values of β if the failure surface is not relatively flat. A variation of the Rackwitz algorithm which corrects for this problem and has been generalized for use with both standard and augmented FORM is presented in the Appendix A.

4. NUMERICAL EXAMPLES.

4.1 EDGE CRACK.

We first consider the fatigue of an edge crack in a semi-infinite plate to investigate the accuracy of the augmented FORM based on comparisons with Monte Carlo simulations (MCS). It is assumed that the cracks propagate according to the Paris model (Paris and Erdogan, 1963)

$$\frac{da}{dN} = D(\Delta K)^m,$$

(4.1)

where da/dN is the rate of crack growth, D and m are material parameters, and ΔK is the range of the stress-intensity factor. The stress-intensity factor range for an edge crack of length a is given by $\Delta K = 1.12\sigma(\pi a)^{1/2}$ where σ is the amplitude of the applied stress. Using this relation, equation 4.1 can integrated to obtain the number of cycles for a crack of initial length a_i to grow to a crack of length a_f

$$N_f = \frac{a_f^2 - a_i^2}{D\kappa(1.12\sigma\sqrt{\pi})^m} \quad \text{for } m \neq 2$$

(4.2)
\[N_f = \frac{\ln(a_f/a_i)}{\pi D(1.12\sigma)^\frac{m}{k}} \quad \text{for } m=2. \]

where \(k = (2-m)/2 \)

The material is taken to be ingot 304 stainless steel with fracture toughness \(K_{ic} = 48 \) MPa \(\sqrt{m} \). The crack is cyclically loaded in tension-tension fatigue with an \(R \)-ratio of 0 and remote applied stress amplitude of \(\sigma = 250 \) MPa. Motivated by the experimental findings of McGuire (1993)*, the initial crack size distribution is taken to be lognormal with mean 0.1 mm and standard deviation 0.033 mm. The quantity \(m-1 \) is also taken to be lognormal with mean 2.67 and standard deviation 0.75. The coefficient \(D \) and the exponent \(m \) are also found to be functionally related as \(\log D = -1.50m - 7.29 \), the units of \(D \) are \((\text{m/cycle})/(\text{MPa}\sqrt{\text{m}})^m \).

It is assumed that the probability of detecting an existing crack of length \(a \) upon inspection is (Palmberg, et al., 1987)

\[POD(a) = \frac{\alpha a^\beta}{1+\alpha a^\beta}, \]

where the parameters \(\alpha \) and \(\beta \) depend on the inspection technique.

Figure 3 shows a comparison of augmented FORM and MCS results with evenly-spaced inspections modeled at 2.25x10^5, 2.75x10^5, 3.25x10^5, and 3.75x10^5 cycles. Monte Carlo results obtained using 10 million realizations are not very dependable for \(P_f(N) \) below about 2x10^{-6}. To obtain dependable MCS results, the POD curve A in figure 4 is used (\(\alpha = 0.0032 \text{ mm}^{-\beta}, \beta = 3.5 \)) to yield probabilities of failure greater than 2x10^6. The integration over the failure space is performed using the integration technique presented in Section 3.2 with \(n_s = 100 \) and \(\delta = 0.01 \). As can be seen from the figure, excellent agreement is obtained between the two methods.

In a fatigue reliability setting, it is generally desirable to have failure probabilities much lower than those in figure 3. The probability of failure can be kept below a desired level by scheduling inspections at uneven intervals as well as improving the

*The experimental data collected by McGuire (1993) are for fatigue crack growth from a hole in a tension-loaded bar. The statistical data obtained for this configuration are not directly transferrable to the edge crack configuration, but do provide a reasonable representation of fatigue crack growth in this material.
probability of detection through better NDE inspection techniques. Figure 5 shows results for inspections modeled at 2.25x10^5, 2.55x10^5, 3.15x10^5, and 2.75x10^5 cycles and using the POD curve B in figure 4 (α=1.0 mm^{-p}, β=3.0) and using the same integration parameters for equation (3.11) as before (n_s=100, δ=0.01). Using this inspection schedule and POD relation, the peak probability of failure is kept below 10^{-5}. The augmented FORM and MCS estimates are in close agreement; however, as previously stated, MCS results are not very dependable for P_f(N) below about 2x10^{-6}.

4.2 SEMI-ELLPTICAL SURFACE-BREAKING CRACK.

For complicated component geometries and crack shapes, a closed form expression for fatigue life is generally not available. This requires that the fatigue life for each realization of random variables r be determined by numerical integration of the Paris law or finite element simulations in which the stress-intensity factors are treated as a function of crack size. This makes MCS infeasible for studies of extremely high reliabilities. The augmented FORM requires the consideration of relatively few realizations, so these analyses are feasible when parameterizations or interpolation schemes for the stress-intensity factors are available (see Newman and Raju, 1986, for example).

A semi-elliptical, surface-breaking crack in a plate as shown in figure 6 is considered, with the dimensions (in mm) h=b=5.0, t=2.5. It is assumed that there are no initial cracks in the component. Instead, a random distribution of the cycles to initiation, N_{init}, of a crack of depth 80 μm is considered. It is assumed the crack remains planar and semi-elliptical as it propagates. Post-initiation crack growth is modeled by applying the Paris law to the crack depth, a, and half crack width, c.

\[
\frac{da}{dN} = D(\Delta K_a)^m \quad (4.5a)
\]

\[
\frac{dc}{dN} = D(\Delta K_c)^m \quad (4.5b)
\]

Failure is assumed to correspond to the crack reaching a critical depth, a_f.

The stress-intensity factors at points A and C, parameterized according to Newman and Raju (1986), are given by

\[
K_A = S_i\left(\frac{\pi a}{Q}\right)^{1/2} F_s^A \quad (4.6a)
\]

11
\[K_C = S_t (\pi a / Q)^{1/2} F_s^C, \]
\hspace{1cm} (4.6b)

where \(S_t \) is the applied tensile stress, \(Q \) is the shape factor for an ellipse, and \(F_s \) is a boundary correction factor.

For this example, the initial crack length \((a_i) \) is taken to be a deterministic variable at \(a_i = 80 \, \mu m \) and the initial half crack width \((c_i) \) is taken as \(c_i = 1.1 a_i \). The maximum allowable crack length, \(a_f \), is taken as \(a_f = 1.25 \, mm \), which is 50% of the plate thickness.

The time required for a crack to reach the initiation depth, \(N_{init} \), is taken to be a random variable with a lognormal distribution with mean \(10^6 \) and standard deviation \(0.5 \times 10^6 \). The stress amplitude \((S_t) \) is taken to be a normally distributed random variable with mean 250 MPa and standard deviation 7.5 MPa. The distributions for \(m \) and \(D \) are the same as in the previous example. The POD for the inspection technique considered in this example is shown in curve C in figure 4 (\(\alpha = 100 \, \text{mm}^{-1} \) and \(\beta = 5 \)).

Augmented FORM results are shown in Figs. 7 and 8 for probability of failure and probability of failure since the last inspection, respectively. Inspections occur at \(4.2 \times 10^5 \), \(5.1 \times 10^5 \), \(5.8 \times 10^5 \), and \(6.5 \times 10^5 \). As in the previous example, the inspection times have been adjusted so the probability of failure does not exceed \(10^{-5} \) before an inspection is performed. The entire set of data points shown was obtained with less than two minutes of CPU on an HP 9000 series 750 computer.

Note that the reliability results are given over a range of fatigue lives considerably below the mean value of \(N_{init} \). This shows that even though the initiation times are usually long, it is the few relatively short initiation times which are important to the reliability and to the scheduling of inspections.
5. CONCLUSIONS.

A technique to incorporate periodic in-service inspections in a FORM analysis of fatigue life has been presented. The attractive feature of FORM is preserved in that relatively few realizations in the random variable space need to be considered. This is especially important when fatigue reliability of complex components is studied, since closed form expressions for the fatigue life are not available and numerical integration is required to determine the fatigue life corresponding to a combination of random variables.

Previous applications of FORM to multiple inspection intervals have required that the probability density function for the crack length be determined at an initial state as well as after each inspection. The augmented FORM only requires knowledge of the initial distribution of crack lengths (or the distribution of cycles to crack initiation), which is a significant advantage. Recharacterizing the crack length distribution after each inspection requires the consideration of a large number of realizations. Therefore, the advantage of FORM is greatly diminished, if not lost, if the crack length distribution must be recharacterized at various stages of the fatigue life.

Demonstrations of the augmented FORM were given for an edge crack problem (2D) and a surface breaking crack problem (3D). The first of these permitted comparison with Monte Carlo simulations and excellent agreement was observed. In the second problem, the augmented FORM was shown to be computationally efficient, even for complex components for which MCS and standard FORM were computationally infeasible.

The method has also been shown to be an effective tool for scheduling inspection times based on a maximum probability of failure. The probability of failure was kept below a specified level by performing non-uniform inspections, rather than evenly spaced inspections.
6. REFERENCES

Figure 1a. Failure surface in original space

Figure 1b. Failure surface in standardized space
Figure 2. Modified FORM integration scheme

Figure 3. Probability of Failure for test case with and without inspections.
Figure 4. Probability of detection curves (A: $\alpha=0.0032 \text{ mm}^{-\beta}$, $\beta=3.5$; B: $\alpha=1 \text{ mm}^{-\beta}$, $\beta=3$; C: $\alpha=100 \text{ mm}^{-\beta}$, $\beta=5$)

Figure 5. Results for edge crack using augmented FORM and uneven inspection intervals.
Figure 6. Rectangular plate with surface-breaking semi-elliptical crack.

Figure 7. Probability of failure for surface-breaking crack in a plate with inspections.
Figure 8. Probability of failure since the last inspection for surface-breaking crack in a plate
APPENDIX A: ALGORITHM TO LOCATE DESIGN POINTS.

A variation on the Rackwitz algorithm (Rackwitz and Fiessler, 1978) is presented in the following four steps (Harkness, 1993):

1) define failure function $G(x)$; initialize iteration count: $v=0$; estimate design point coordinates r_i^0; transform r_i^0 to x_i^0.

2) evaluate g, $\frac{\partial G}{\partial r_i}$, and $\frac{\partial G}{\partial r_i}$ at x_i^v, r_i^v and compute:

$$I_i = -\lambda \frac{\partial G}{\partial r_i} / \left(\frac{\partial G}{\partial r_i} \right)$$

where $\lambda = |\nabla_s, G| / |\nabla_s, g|$

3) increment iteration count: $v=v+1$; update r_i values in two steps:
 a) $r_i^{\text{temp}} = r_i^{v-1} - (G-G^*) \frac{\partial G}{\partial r_i} / (\nabla_s, G)^2$; adjusts magnitude of r
 b) $r_i^v = r_i^{\text{temp}} \left(\xi + (1-\xi)l_i \right)$, $0 < \xi < 1$; adjusts direction of r

4) transform r_i^v to x_i^v; check for convergence:
 If not converged, go to step 2.
 If converged, design point found; reliability index $\beta_v = |r^v|$.

This algorithm minimizes β on any surface of constant g (equal to g^*). Other distinctions between this algorithm and the Rackwitz algorithm are:

1) $G=G^*$ is not enforced on each iteration. Instead, step 3a just brings r^v toward the limit surface. In practice, $G \approx G^*$ after several iterations (i.e., after $v > 4$) with the algorithm presented above.

2) The iteration parameter ξ is introduced to avoid the large angular corrections in r^v which lead to non-convergence.

An intermediate value of the iteration parameter, such as $\xi = 0.7$, is recommended. For practical purposes, convergence can be assumed to have occurred when each of the standardized variables changes by less than 0.01 in an iteration. Convergence is typically achieved within ten to twenty iterations with this algorithm, and lack of convergence is uncommon.

The algorithm can be used to find design points for standard or augmented FORM. The algorithm calls for partial derivatives of $\beta = |r|$ and G with respect to r_i. For standard FORM, these derivatives are given by

A-1
\[
\frac{\partial \beta}{\partial r_i} = \frac{r_i}{\beta} \quad \text{(A.1)}
\]

\[
\frac{\partial G}{\partial r_i} = \frac{\partial G}{\partial x_i} \frac{\partial x_i}{\partial r_i} \quad \text{(A.2)}
\]

If \(G = N_f - N \) and the desired service life is deterministic, then

\[
\frac{\partial G}{\partial x_i} = \frac{\partial N_f}{\partial x_i} \quad \text{(A.3)}
\]

and

\[
\frac{\partial x_i}{\partial r_i} = \sigma_i^N, \quad \text{(A.4)}
\]

where \(\sigma_i^N \) are the equivalent normal standard deviations in the Rosenblatt transformation (see Ang and Tang, 1984). With these substitutions,

\[
\frac{\partial G}{\partial r_i} = \frac{\partial N_f}{\partial x_i} \sigma_i^N. \quad \text{(A.5)}
\]

For augmented FORM, the derivatives of \(\beta \) with respect to \(r_i \) are modified to account for the affect of the \(P_{nd}(r,N) \) function on the design points (see Section 3.3). The derivatives can now be calculated as

\[
\frac{\partial \beta}{\partial r_i} = \frac{r_i}{\beta} + \frac{R \partial R}{\beta \partial r_i} \quad \text{(A.6)}
\]

where \(R = \sqrt{\beta^2 - |r|^2} \). The derivatives of the “augmented component” \(R \) can be calculated using finite differences.

For both standard and augmented FORM, \(|\nabla \beta| = 1\).