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to describe the behavior of software components, and hence, to determine whether two components match. 
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post-condition predicates. Thus, we rely on theorem proving to determine match and mismatch. We give 
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1.     Motivation and Introduction 

Specification matching is a process of determining if two software components are related. It underlies 
understanding this seemingly diverse set of questions: 

• Retrieval. How can I retrieve a component from a software library based on its semantics, rather than 

syntactic structure? 

• Reuse. How might I adapt a component from a software library to fit the needs of a given subsystem? 

• Substitution. When can I replace one software component with another without affecting the observable 

behavior of the entire system? 

• Subtype. When is an object of one type a subtype of another? 

• Interoperation. Why is it so difficult to make two independently developed components work together? 

In retrieval, we search for all library components that satisfy a given query. In reuse, we adapt a 
component to fit its environmental constraints, based on how well the component meets our requirements. 
In substitution, we expect the behavior of one component to be observably equivalent to the other's; a 
special case of substitution is when a subtype object is the component substituting for the supertype object. 
In interoperation, we want one component to interact properly with the other. Common to answering 
these questions is deciding when one component matches another, where "matches" generically stands for 
"satisfies," "meets," "is equivalent to," or "interacts properly with." Common to these kinds of matches is 
the need to characterize the dynamic behavior, i.e., semantics, of each software component. 

It is rarely the case that we would want one component to match the other "exactly." In retrieval, 
we want a close match; as in any information retrieval context [Cor, ML94, SM83], we might be willing to 
sacrifice precision for recall. That is, we would be willing to get some false positives as long as we do not miss 
any (or too many) true positives. In determining substitutability, we do not need the substituting component 
to have the exact same behavior as the substituted, only the same behavior relative to the environment that 

contains it. 

In this paper we lay down a foundation for different kinds of semantic matches. We explore not just exact 
match between components, but many flavors of relaxed match. To be concrete and to narrow the focus of 
what match could mean, we make the following assumptions: 

• The software components in which we are interested are functions (e.g., C routines, Ada procedures, ML 
functions) and modules (roughly speaking, sets of functions) written in some programming language. 
These components might typically be stored in a program library, shared directory of files, or software 

repository. 

• Associated with each component, C, is a signature, Cs%g, and a specification of its behavior, Cspec. 

Whereas signatures describe a component's type information (which is usually statically-checkable), specifi- 
cations describe the component's dynamic behavior. Specifications more precisely characterize the semantics 
of a component than just its signature. In this paper, our specifications are formal, i.e., written in a formally 
defined assertion language. 



Given two components, C = {Csig,Cspec) and C" = {C'sig,C'spec}, we define a generic component match 

predicate, Match: 

Definition: (Component Match) 

Match: Component, Component —*■ Bool (1) 
Match(C,C) = matchsig(Csig,C'sig) A matchspec(Cspec,C'spec) 

Two components C and C" maicA if 1) their signatures match, given some definition of signature matching 
(matchsig), and 2) their specifications match, given some definition of specification match (matchspec). 
Although we define match as a conjunction, we can think of signature match as a "filter" that eliminates 
the obvious non-matches before trying the more expensive specification match. 

There are many possible definitions for the signature match predicate, matchsig, which we thoroughly 
analyzed in a previous paper [ZW95]. In the remainder of this paper, for matchsig, we use for functions 
type equivalence modulo variable renaming ("exact match" in [ZW95]), and for modules, a partial mapping 
of functions in the modules with exact signature match on the functions ("generalized module match" 

in [ZW95]). 

In this paper, we focus on the specification match predicate, matchspec. We write pre-/post-condition 
specifications for each function, where assertions are expressed in a first-order predicate logic. Match between 
two functions is then determined by some logical relationship, e.g., implication, between the two pre-/post- 
conditions specifications. We can then modularly1 define match between two modules in terms of some kind 
of match between corresponding functions in the modules. Given our choice of formal specifications, we can 
exploit state-of-the-art theorem proving technology as a way to implement a specification match engine. 

Specification match goes a step beyond signature match. For functions, signature match is based entirely 
on the functions' types, e.g., int * int —► int, and not at all on their behavior. For example, integer addition 
and subtraction both have the same signature, but completely opposite behavior; the C library routines 
strcpy and strcat have the same signature but users would be unhappy if one were substituted for the other. 
Given a large software library or a large software system, many functions will have identical signatures but 
very different behavior. For example, in the C math library nearly two-thirds of the functions (31 out of 47) 
have signature double —* double. Based on signature match alone, we cannot know if we are interoperating 
with a function properly or know which of a large number of retrieved functions does what we want. Since 
specification match takes into consideration more knowledge about the components it allows us to increase 
the precision with which we determine when two components match. 

In what follows, we first briefly describe the language with which we write our formal specifications. 
We define exact and relaxed match for functions (Section 3) and then for modules (Section 4). We discuss 
in more detail applications of specification match in the software engineering context in Section 5 and our 
implementation of a specification matcher using the Larch Prover in Section 6. We close with related work 

and a summary. 

2.     Larch/ML Specifications 

We use Larch/ML [WRZ93], a Larch interface language for the ML programming language, to specify ML 
functions and ML modules. Larch provides a "two-tiered" approach to specification [GH93]. In one tier, 
the specifier writes traits in the Larch Shared Language (LSL) to assert state-independent properties of 
a program.   Each trait introduces sorts and operators and defines equality between terms composed of 

1 Pun intended. 



the operators (and variables of the appropriate sorts). Appendix A shows the Sequence trait, which defines 
operators to generate sequences (empty and insert), to return the element or sequence resulting from deleting 
an element from the beginning (or end) (first (last) and butFirst (butLast)), and to return the length of a 
sequence (length) or whether a sequence is empty (isEmpty). 

In the second tier, the specifier writes interfaces in a Larch interface language to describe state-dependent 
effects of a program (see Figure 1). The Larch/ML interface language extends ML by adding specification 
information in special comments delimited by (* + ... + *). The using and based on clauses link interfaces 
to LSL traits by specifying a correspondence between (programming-language specific) types and LSL sorts. 
The specification for each function begins with a call pattern consisting of the function name followed by a 
pattern for each parameter, optionally followed by an equal sign (=) and a pattern for the result. In ML, 
patterns are used in binding constructs to associate names to parts of values (e.g., (x, y) names x as the first 
of a pair and y as the second). The requires clause specifies the function's pre-condition as a predicate in 
terms of trait operators and names introduced by the call pattern. Similarly, the ensures clause specifies the 
function's post-condition. If a function does not have an explicit requires clause, the default is requires 
true. 

signature Stack = sig 
(*+ using Sequence  +*) 
type a t 

(*+ based on Sequence.E Sequence.S  +*) 

val create : unit —> a t 
(*+ create ( ) = s 

ensures s = empty +*) 

val push : a t * a —> a t 
(*+ push (s, e) = s2 

ensures s2 = insert(e,s)  +*) 

val pop : a t —* a t 
(*+ pop s = s2 

requires not(isEmpty(s)) 
ensures s2 = butFirst (s)  +*) 

val top : a t —+ a 
(*+ top s = e 

requires not (isEmpty (s)) 
ensures e = first (s)  +*) 

end 

signature Queue = sig 
(*+ using Sequence  +*) 
type a t 

(*+ based on Sequence.E Sequence.S  +*) 

val create : unit —+ a t 
(*+ create ( ) = q 

ensures q = empty  +*) 

val enq : a t * a —* a t 
(*+ enq(q,e) = q2 

ensures g2 = insert (e, q)  +*) 

val rest : al-»«f 
(*+ rest q = q2 

requires not(isEmpty(q)) 
ensures §2 = butLast (q) +*) 

val deq : a t —► a 
(*+ deq q = e 

requires not(isEmpty(q)) 
ensures e = last(q) +*) 

end 

Figure 1: Two Larch/ML Specifications 

We will use the Larch/ML interface specifications of Figure 1 as the "library" for our examples of 
specification matching. It contains module specifications for Stack and Queue, specifying the functions 
create, push, pop, and top on stacks, and create, enq, deq, and rest on queues. We specify each function's 
pre-/post-conditions in terms of operators from the Sequence trait. 



3.     Function Matching 

For a function specification, S, we denote the pre- and post-condition as Spre and Spost, respectively. Spred 
defines the interpretation of the function's specification as an implication between the two: Spred = Spre =>■ 
SPost- Intuitively, this interpretation means that if Spre holds when the function specified by S is called, 
SPost will hold after the function has executed (assuming the function terminates). If Spre does not hold, 
there are no guarantees about the behavior of the function. This interpretation of a pre- and post-condition 
specification is the most common and natural for functions in the standard programming model. 

For example, for the Stack top function in Figure 1, the pre-condition, toppre, is not(isEmpty(s))\ the 
post-condition, toppost, is e = first(s); and the specification predicate, toppred, is (not(isEmpty(s))) =>■ (e = 
first(s)). 

To be consistent in terminology with our signature matching work, we present function specification 
matching in the context of a retrieval application. Example matches are between a library specification S 
and a query specification Q. We assume that variables in S and Q have been renamed consistently2. For 
example, if we compare the Stack pop function with the Queue rest function, we must rename q to s and ql 
to si. In this section we examine several definitions of the specification match predicate (matchspec(S,Q)). 
We characterize definitions as either grouping pre-conditions Spre and Qpre together and post-conditions 
SPost and Qpost together, or relating predicates Spred and Qpred- Both of these kinds of matches have a 
general form. 

Definition: (Generic Pre/Post Match) 

matchpre/post(S,Q) = (Qpre Hi  Spre) H2  (Spost H3 Qpost) (2) 

Pre/post matches relate the pre-conditions of each component and the post-conditions of each component. 
The relations Hi and H3 are either equivalence (<S>) or implication (=>), but need not be the same. H2 is 
usually conjunction (A) but may also be implication (=>). The matches may vary from this form by dropping 
some of the terms. 

Definition: (Generic Predicate Match) 

matchpred(S, Q) — Spred H Qpred («V 

Predicate matches relate the entire specification predicates of the two components, Spred and Qpred- The 
relation H is either equivalence (<=>), implication (=>), or reverse implication («=). 

It is important to look at both kinds of match. Which kind of match is appropriate may depend on the 
context in which the match is being used or on the specifications being compared. We present the pre/post 
matches in Section 3.1 and the predicate matches in Section 3.2. For each, we present a notion of exact 
match as well as relaxed matches. 

3.1.     Pre/Post Matches 

Pre/post matches on specifications S and Q relate Spre to Qpre and Spost to Qpost- We consider four kinds 
of pre/post matches, beginning with the strongest match and progressively weakening the match by either 
relaxing the relations Hi and H3 from <S> to =>, relaxing H2 from A to =>•, or dropping one or more terms. 

2 This renaming is easily provided by the signature matcher, and we are assuming that the signatures of S and Q match. 
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Exact Pre/Post Match 

We begin by instantiating both %i and Tl3 to O and H2 to A in the generic pre/post match of Definition 
2. Two function specifications satisfy the exact pre/post match if their pre-conditions are equivalent and 

their post-conditions are equivalent. 

Definition: (Exact Pre/Post Match) 

matchß^pre/p0St(S, Q) = (Qpre <^ Spre) A (Spost <$ Qpost) 

Exact pre/post match is a strict relation, yet two different-looking specifications can still satisfy the match. 
Consider for example the following query Ql, based on the Sequence trait. Ql specifies a function that 
returns a sequence whose size is 0, one way of specifying a function to create a new sequence. 

signature Ql = sig (Ql) 
(*+ using Sequence  +*) 
type a t (*+ based on Sequence.E Sequence.S  +*) 
val qCreate : unit —>■ at 
(*+ qCreate ( ) = s 

ensures length (s) = 0  +*) 
end 

Exact pre/post match holds for Ql with both the Stack and Queue create functions of Figure 1. (The 
specifications of Stack and Queue create are identical except for the name of the return value.) 

Let us look in more detail at how Ql would match the Stack create specification. Let S be the specification 
for Stack create and Ql be the query specification. Spre = true, Spost = (s = empty). Qlpre - true, 
Qlpost = (length(s) = 0). Since both Spre and Qlpre are true, showing matchE_pre/post(S,Ql) reduces to 
proving Spost & Qlpost, or (s = empty) O (length(s) = 0). The "if case ((s = empty) => (length(s) = 
0)) follows immediately from the axioms in the Sequence trait about length. Proving the "only-if" case 
((length(s) = 0) =$■ (s = empty)) requires only basic knowledge about integers and the fact that for any 
sequence, s, length(s) > 0, which is provable from the Sequence trait. 

Plug-in Match 

Equivalence is a strong requirement. For plug-in match, we relax both Tli and 11$ to =>■ and keep 72-2 as 
A in the generic pre/post match. Under plug-in match, Q matches any specification 5 whose pre-condition 
is weaker (to allow at least all the conditions that Q allows) and whose post-condition is stronger (to provide 

a guarantee at least as strong as Q). 

Definition: (Plug-in Match) 

matchplug-in(S, Q) = (Qpre =>■ Spre) A (Spost => Qpost) 

Plug-in match captures the notion of being able to "plug-in" S for Q, as illustrated in Figure 2. A specifier 

writes a query Q saying essentially: 

I need a function such that if Qpre holds before the function executes, then Qpost holds after 

it executes (assuming the function terminates). 

With plug-in match, if Qpre holds (the assumption made by the specifier) then Spre holds (because of the 
first conjunct of plug-in match). Since we interpret S to guarantee that Spre => Spost, we can assume that 



Figure 2: Idea Behind Plug-in Match 

Sp0st will hold after executing the plugged-in S. Finally, since Spost => Qpost from the second conjunct of 
plug-in match, we are assured of the guarantee the specifier desired. 

For example, consider the following query for an insert function: 

signature Q2 = sig (Q2) 
(*+ using Sequence  -f *) 
type a t (*+ based on Sequence.E Sequence.S  +*) 
val qEnq : a t * a —> a t 
(*+ qEnq (ql,e) = g2 

requires length(ql) < 50 
ensures length (q2) = (length(ql) +1)  +*) 

end 

This query specification requires that an input sequence has fewer than 50 elements, and guarantees that 
the resulting sequence is one element longer than the input sequence. This is a fairly weak specification. Q2 
does not satisfy exact pre/post match with any function in the library, but plug-in match holds for Q2 with 
both the Stack push and the Queue enq functions. Since push and enq are identical except for their names 
and the names of the variables, the proof of the match is the same for both. 

The pre-condition requirement, Qpre => Spre, holds, since Spre = true. To show that Spost => Qpost, we 
assume Spost (q2 = insert(e, q)), and try to show Qpost (length(q2) = length(q) + 1). Substituting for 32 in 
Qpost, we have length(insert(e, q)) = length(q) + 1, which follows immediately from the equations for length. 

Plug-in Post Match 

Often we are concerned with only the effects of functions, thus a useful relaxation of the plug-in match is 
to consider only the post-condition part of the conjunction. Most pre-conditions could be satisfied by adding 
an additional check before calling the function. Plug-in post match is also an instance of generic pre/post 
match, with 7l3 instantiated to =>- but dropping Qpre and Spre. 



Definition: (Plug-in Post Match ) 

matchpiUg-in-post(S, Q) = (Spost =>• Qpost) 

Consider the following query. <Q3 is identical to Stack top except that Q3 has no requires clause. 

signature Q3 = sig (Q3) 
(*+ using Sequence +*) 
type a t (*+ based on Sequence.E Sequence.S  +*) 
val qTop : af-»a 
(*+ qTop s = e 

ensures e = first (s)  +*) 
end 

Q3 does not satisfy exact pre/post or plug-in match with Stack top since Q3's pre-condition is weaker 
than Stack top's. Since the post-conditions are equivalent, QZ does satisfy plug-in post match with Stack 

top. 

Weak Post Match 

Finally, consider this even weaker match, weak post match. We instantiate Tl3 to =>, as with the plug-in 

matches, but relax Tl2 to => and drop Qpre- 

Definition: ( Weak Post Match ) 

matchweak-p0st\S,Q) = Opre => (op0st =^ Qpost) 

A more intuitive, equivalent, predicate is (Spre A Spost) => Qpost- Sometimes assuming the pre-condition of 
S helps in proving the relationship between Spost and Qpost- We use Spre and not Qpre since Spre is likely to 
be necessary to limit the conditions under which we try to prove Spost => Qpost- The additional assumption 
also means that we will have to provide an additional "wrapper" in our code to guarantee Spre before we 

call the function specified by S. 

For example, suppose we wish to find a function to delete from a sequence using the following query Q4: 

signature Q4 = sig (Q4) 
(*+ using Sequence  +*) 
type a t (*+ based on Sequence.E Sequence.S  +*) 
val qRest : a t —+ a t 
(*+ qRest s = s2 

ensures length(s2) - (length(s) -1)  +*) 
end 

Q4 describes a function that returns a sequence whose size is one less than the size of the input sequence. 
This is a fairly weak way of describing deletion, since it does not specify which element is removed.3 While 
intuitively, it would seem related to Stack pop, neither plug-in nor plug-in post match holds, because we 
cannot prove Spost => Qpost (i.e., (s2 =  butFirst(s)) => (length(s2) = length(s) - 1)) for the case where 

3 But it still gives us a big gain in precision over signature matching; QA would not match other functions with the signature 
a t -► a t, for example, a function that reverses or sorts the elements in the sequence, or removes duplicates. 



s = empty. By adding the assumption Spr, 
in the following proof sketch. 

Assume not(isEmpty(s)) 
Assume s2 = butFirst(s) 

length(s2) = length(s) — 1 
length(butFirst(s)) = length(s) - 1 

Let s = insert(ec,sc) 

length(butFirst(insert(ec, sc))) = length(insert(ec, sc)) — 1 
length(sc) = length(insert(ec, sc)) — 1 
length(sc) = (length(sc) + 1) — 1 
length(sc) = length(sc) 

(not(isEmpty(s))), we are able to complete the proof, as we see 

Assume S: 

Assume S, 
pre 

post 
(1) 
(2) 
(3) 
(4) 

Attempt to prove Qvost 
Apply (2) to (3) 
Since s is not empty (1), and 
s generated by empty and insert     (5) 
Substitute (5) for s in (4) (6) 
Axioms for butFirst (7) 
Axioms for length (8) 
Axioms for +, — (9) 

3.2.     Predicate Matches 

Recall the generic predicate match (Definition 3): 

matchpred(S,Q) = Spred TZ Qpred 

where the relation H is either equivalence (o-), implication (=>•), or reverse implication (<=). 

Note that this general form allows alternative definitions of the specification predicates. One alternative 
is Spred = SpreASpost, which is stronger than Spred = Spre => Spost- This interpretation is reasonable in the 
context of state machines, where the pre-condition serves as a guard so that a state transition occurs only 

if the pre-condition holds. 

As we did with the generic pre/post match, we consider instantiations of the generic predicate match 

beginning with the strictest. 

Exact Predicate Match 

We begin with exact predicate match. Two function specifications match exactly if their predicates are 
logically equivalent (i.e., V, is instantiated to <£>). This is less strict than exact pre/post match (Section 3.1), 
since there can be some interaction between the pre- and post-conditions. 

Definition: (Exact Predicate Match) 

matchE-Pred{S,Q) = Spred •O- Qpred 

Our example Ql still matches with Stack and Queue create. In fact, in cases where Spre = Qpre = true, the 
exact pre/post and exact predicate matches are equivalent. 

Generalized Match 

For generalized match, we relax U in the generic predicate match to =>•. Generalized match is an intuitive 
match in the context of queries and libraries: specifications of library functions will be detailed, describing 
the behavior of the functions completely, but we would like to be able to write simple queries that focus only 
on the aspect of the behavior that we are most interested in or that we think is most likely to differentiate 
among functions in the library. Generalized match allows the library specification to be stronger (more 
general) than the query. Note that generalized match is a weaker match than plug-in match. Also, if we 
drop the pre-conditions in generalized match, we get plug-in post match. 



Definition: (Generalized Match) 

matchgen(S, Q) = Spred => Qpred 

For example, consider the following query, which is the same as QA but with a requires clause. 

signature Q5 = sig (Q5) 
(*+ using Sequence  +*) 
type a t (*+ based on Sequence.E Sequence.S  +*) 
val qRest : a t —> a t 
(*+ qRest s = s2 

requires not (isEmpty (s)) 
ensures length (s2) = (length(s) -1)  +*) 

end 

Using the exact predicate match, neither the Stack pop nor the Queue rest specifications satisfy this 
query. Plug-in match does not work either because we need to assume Qpre (not(isEmpty(s))) to show 
Spost =► Qpost- However, the generalized match with Qh does hold for both of these. The proof is very 

similar to that for QA in the weak post match. 

Consider another example specifying a function that removes the most recently inserted element of a 
sequence. This query does not require that the specifier knows the axiomatization of sequences, since the 
query uses only the sequence constructor, insert. The post-condition specifies that the input sequence, s, is 
the result of inserting an element ee into another sequence ss, and that the element returned, e, is the most 
recently inserted element (ee). The existential quantifier (there exists) is a way of being able to name ee 

and ss. 

signature Q6 = sig (Q6) 
(*+ using Sequence  +*) 
type a t (*+ based on Sequence.E Sequence.S  +*) 
val qTop :ai->a 
(*+ qTop s = e 

requires not (isEmpty (s)) 
ensures there exists ee:Sequence.E, ss:Sequence.S 

((s = insert(ee,ss)) and (e = ee))  +*) 
end 

Again, neither the exact nor plug-in matches holds. Generalized match holds for the query with the 
Stack top function, but not Queue deq, since the query specifies that the most recently inserted element is 
returned. To show the generalized match, we consider two cases: s -empty, and s =insert(ec,sc). In the 
first case, the pre-condition for both top and qTop are false, and thus the match predicate is vacuously true. 
In the second case, the pre-conditions are both true, and so we need to prove that Spost => Qpost- If we 
instantiate ee to ec and ss to sc, the proof goes through. 

Specialized Match 

For specialized match, we instantiate 11 in the generic predicate match to <=. Specialized match is the 
converse of generalized match: matchspci(S,Q) = matchgen(Q,S). A function whose specification is weaker 
than the query might still be of interest as a base from which to implement the desired function. Specialized 
match allows the library specification to be weaker than the query. 



Definition: (Specialized Match) 

matchspci(S, Q) — Qpred =>• Spred 

Consider again the query <Q3, which is the same as Stack top but without the pre-condition.   Stack top is 
thus weaker than Q3, but we can show that Q3 implies Stack top and hence specialized match holds. 

3.3.     Relating the Function Matches 

Exact Pre/Post 

Specialized Generalized Plug-in Post 

Name of match predicate symbol kind of match 

Exact Pre/Post matchß-pre/post pre/post 

Plug-in Match 7natcihpiUg—iTi pre/post 

Plug-in Post Match TnatCfipiug—jfi—post pre/post 

Weak Post Match TfiaiCilujQak—post pre/post 
Exact Predicate Match matchE-pred predicate 

Generalized matchgen predicate 

Specialized matchSpCi predicate 

Figure 3: Lattice of Main Function Specification Matches 

We relate all our function specification match definitions in a lattice (Figure 3). An arrow from a match 
Ml to another match M2 indicates that Ml is stronger than M2 (Ml => M2). We also say that M2 is 
more relaxed than Ml. The rightmost path in the lattice shows the pre/post matches; the remainder of the 

matches are predicate matches. 
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The chart in Figure 3 summarizes the matches we have presented in this section, along with their predicate 
symbols and whether the match is an instance of the generic pre/post match or the generic predicate match. 

Query match E-pre/post TRaiCllpiiig — in matchgen müTCflyjeak—.poSt 

Ql Queue create 
Stack create 

Queue create 
Stack create 

Queue create 
Stack create 

Queue create 
Stack create 

Q2 
— 

Queue enq 
Stack push 

Queue enq 
Stack push 

Queue enq 
Stack push 

Q3 — — — Stack pop 

Q4 — — — Stack top 

Q5 I — 
Queue rest 
Stack pop 

Queue rest 
Stack pop 

Q6 — — Stack top Stack top 

Table 1: Which Ones Match What 

Table 1 summarizes which of the library functions match each of the example queries for four of the 
matches we have defined (Exact Pre/Post, Plug-in, Generalized, Weak Post). 

4.     Module Matching 

Function matching addresses the problem of matching particular functions. However, a programmer may 
need to compare collections of functions, e.g,. ones that provide a set of operations on an abstract data 
type. Most modern programming language explicitly support the definition of abstract data types through a 
separate modules facility, e.g., Ada packages, or C++ classes. Modules are also often used just to group a set 
of related functions, like I/O routines. This section addresses the problem of matching module specifications. 

A specification of a module is an interface, I = (1T,1F), where 1T is a multiset of user-defined types 
and 2> is a multiset of function specifications. For a library interface, It = (1LT,ZLF), to match a query 
interface, 1Q = (IQT,1QF), there must be correspondences both between ILT and XQT and between XLF 

and XQF- These correspondences vary for exact and relaxed module match. 

4.1.     Exact Match 

Definition: (Exact Module Match) 

M-matchE(ZL,ZQ, match/„) 3 a total function UF '■ IQF ~* %LF 
sucn that 

UF is one-to-one and onto, and 

V Q e IQF, matchf„(UF(Q), Q) 

UF maps each query function specification Q to a corresponding library function specification, UF(Q)- 
Since UF is one-to-one and onto, the number of functions in the two interfaces must be the same (i.e., 
\ILF\ = \ZQF\)- The correspondence between each Q and UF(Q) is that they satisfy the function match, 
matchfn. The match parameter (matchfn) gives us a great deal of flexibility, allowing any of the function 
matches defined in Section 3 to be used in matching the individual function specifications in a module 

interface. 
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4.2.     Generalized Match 

Should a querier really have to specify all the functions provided in a module in order to find the module? 
A more reasonable alternative is to allow the querier to specify a set of exactly the functions of interest and 
match a module that is more general in the sense that its set of functions may properly contain the query's 

set. 

Definition: (Generalized Module Match) 

M-matchgen(lL,lQ, maichfn) is the same as M-matchE(lL,lQ, matchfn) except JJF need not be 

onto. 

Thus whereas with M-matchE(lL,^Q, match}n), \1LF\ = \ZQF\, with M-matchgen(lL,lQ, matchfn), \1LF\ > 
\TQF\, and ILF 3 IQF under the appropriate renamings. 

What these definitions make clear in a concise and precise manner is the orthogonality between function 
match and module match. In fact, the module match definitions are completely independent of the fact that 
we are matching specifications at the function level. If we use the same definitions of module matching, but 
instantiate matchfn with a function signature match, we have module signature matching [ZW95]. 

5.     Applications 

As mentioned in Section 1, any problem that involves comparing the behavior of two software components 
is a potential candidate for specification matching. We examine three such problems: retrieval for reuse, 
substitution for subtyping, and determining interoperability. 

5.1.     Retrieval for Reuse 

If we have a library of components with specifications, we can use specification matching to retrieve compo- 
nents from the library. Formally, we define the retrieval problem as follows: 

Definition: (Retrieval) 

Retrieve: Query Specification, Match Predicate, Component Library —► Set of Components 
Retrieve(Q, matchSpec,L) = {C G L : matchspec(C,Q)} 

Given a query specification Q, a specification match predicate matchspec, and a library of component spec- 
ifications L, Retrieve returns the set of components in L that match with Q under the match predicate 
matchspec. Note that the components can be either functions or modules, provided that matchspec is in- 
stantiated with the appropriate match. Parameterizing the definition by matchspec also gives the user the 
flexibility to choose the degree of relaxation in the specification match. 

Using specification match as part of the retrieval process (or separately on a given pair of components) 
gives us assurances about how appropriate a component is for reuse. At the function level especially, the 
various specification matches give us various assurances about the behavior of a component we would like 
to use. We treat Q as the "standard" we expect a component to meet, and S as the library component we 
would like to reuse. If exact pre/post match holds on S and Q, we know that S and Q are behaviorally 
equivalent under all conditions; using S for Q should be transparent. If the exact predicate or plug-in match 
holds, we know that S can be substituted for Q and the behavior specified by Q will still hold, although we 
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are not guaranteed the same behavior when Qpre is false. If the weak post match holds, we know that the 
specified behavior holds when Spre is satisfied, which we may be able to guarantee given the specific context 

in which we use that component. 

5.2.     Subtyping 

Liskov remarked in her OOPSLA '87 keynote address: 

The intuitive idea of a subtype is one whose objects provide all the behavior of objects of 
another type (the supertype) plus something extra. What is wanted here is something like the 
following substitution property [Lea89]: If for each object o\ of type S there is an object o2 of 
type T such that for all programs P defined in terms of T, the behavior of P is unchanged when 
£>i is substituted for o2, then 5 is a subtype of T. [Lis87]. 

Behavioral notions of subtyping that attempt to capture this substitutability property have since been de- 
fined by many, including America [Ame91], Leavens and his colleagues [Lea89, LW90, DL92], Meyer [Mey88], 
and Liskov and Wing [LW94]. There are subtle differences between all these subtype definitions, but com- 
mon to all is the use of pre-/post-condition specifications (1) to describe the behavior of types and (2) to 
determine whether one type is a subtype of another. Let my be a method of supertype T, and ms be the 
corresponding method of subtype S. Then America, for example, defines subtype in terms of the following 
pre-/post-condition rules4 for each method of the supertype: 

• Pre-condition rule, mx-pre =>• ms-pre. 

• Post-condition rule, ms-post => TUT .post 

which is just our plug-in match. Further, subtyping requires that each method in the supertype T have 
a corresponding method in the subtype S, but there may be additional methods in S. This corresponds 
exactly to our generalized module match. More formally, 

Definition: (America) Subtype 

Subtype: Type, Type —> Bool 
Subtype(S,T) = M-matchgen(SSpec, Tspec, matchpiug-in) 

The definitions of subtype suggested by the other researchers can also be cast in terms of specification match 
in a straightforward way where either or both of M-matchgen and matchpiug-in is appropriately changed. 
In short, the behavioral notion of subtyping is just an instance of our more general notion of specification 

match. 

4 We omit the abstraction function for simplicity. 
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5.3.     Interoperability 

A report on the National Information Infrastructure (Nil) states: 

Interoperability is the ability to combine two or more systems into a single acceptably seamless 
and acceptably efficient system [VLP94]. 

and argues that demand for interoperability of independently developed systems will grow on an unprece- 
dented scale, in terms of sheer volume, heterogeneity, and complexity of individual systems. 

The heart of an interoperability problem is that the interfaces of the two or more systems do not match. 
Specification match is a way of determining whether two system interfaces match and hence whether the 
systems can interoperate. We can also learn something about components and their relationships when a 
match does not occur, i.e., when there is a mismatch. It might be possible to resolve mismatches between 
two components if we know why they do not match, the more typical scenario when trying to interoperate 
heterogeneous components. 

Suppose we have two components, C and S, that agree to communicate using a remote procedure call 
protocol. The client C wants to use a service, op, provided by S. To interoperate with S, C must at least 
match the signature of op (passing in the right number and types of arguments) and its specification (e.g., 

establish op's pre-condition). 

Even if their signatures and pre-/post-condition specifications match, however, components may still 
not interoperate. For example, suppose we do not assume that C and S agree on which protocol to use 
to communicate with each other. If C wants to communicate using non-blocking send, but S wants to 
communicate through remote procedure call (alternating blocking receives and sends), then a "protocol 
mismatch" can occur. For a protocol match, we might require that each one of C's sends "lines up" with 
each one of S's receives and vice versa. However, using CSP-like notation to specify C's and S's protocols, 

we have: 

C = send —► {receive —* C\send —> C) 
S = receive —► send —*■ S 

C might do four sends in a row and then do a receive; meanwhile, S deadlocks after doing its first receive 
since it wants to do a send next, corresponding to a receive by C, but conflicting with C's second send. That 
is, the following message sequences do not match: 

(C) send     send     send     send     receive 
(S) receive send     receive send     receive 

If a protocol specification is included in a component's interface specification (i.e., not just signature 
information and pre-/post-conditions), then we can use a richer notion of specification match to detect 
this kind of protocol mismatch. We simply extend our notion of match to include additional sub-match 

predicates, e.g., matchprotOCoV- 

Definition: {Interoperates) 

Interoperates: Component, Component —► Bool 
Interoperates{C, C) = Match(C, C") A m,atchprotocoi{CprotocohC'protocol) 

where Match is from Definition 1 of Section 1. 
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6.     Implementation 

Each of the examples given in this paper have been specified in Larch/ML, translated automatically to LP 
input, and proven using LP. 

For each specification file (e.g., Stack, sig), we check the syntax of the specification and then translate 
it into a form acceptable to LP. Namely, we generate a corresponding .lp file (e.g., Stack.lp), which 
contains the appropriate declarations of variables and operators and assertions (axioms) for the pre- and 
post-conditions of each function specified. Each function foo generates two operators, fooPre and fooPost; 
the axioms for fooPre and fooPost are the body of the requires and ensures clauses of foo. Appendix B 
shows Stack. lp and Q2. lp, the result of translating the Stack specification from our sample library and the 
query Q2 into LP format. 

%% Plugln-Q2-Stack.lp 
thaw Stack 
thaw Q2 
prove (qEnqPre(s, e, s2) => pushPre) /\ (pushPost(s, e, s2) => qEnqPost(s, e, s2)) 

Figure 4: LP input for plug-in match of Stack push with Q2 

We also generate the appropriate LP input to show a given match between two functions. For example, 
Figure 4 shows the LP input to prove the plug-in match between the Stack push function and query Q1. 
The thaw Stack command loads the state resulting from executing the commands in Stack.lp. 

%% Gen-Q6-Stack.lp 
thaw Stack 
thaw Q6 
prove (topPre(s, e) => topPost(s, e)) => (qTopPre(s, e) => qTopPost(s, e)) 
%% additional user input 

resume by induction 
resume by specializing ss to sc 

Figure 5: LP input for generalized match of Stack pop with Q6 

Since LP is designed as a proof assistant, rather than an automatic theorem prover, some of the proofs 
require user assistance. The example shown in Figure 4 does not require any assistance from the user. 
Executing the statements in Figure 4 results ultimately in the response from LP: [] conjecture, indicating 
that LP successfully proved the match conjecture. Generalized match of Stack pop with Q6 requires some 
assistance to tell the prover to use induction in the proof, and then how to instantiate the existential variables 
(Figure 5). Figure 6 shows LP's output script of this proof execution. 

7.     Related Work 

Other work on specification matching has focused on using a particular match definition for retrieval of 
software components (usually functions). Rollins and Wing proposed the idea of function specification 
matching and implemented a prototype system in AProlog using plug-in match [RW91]. AProlog does not 
use equational reasoning, and so the search may miss some functions that match a query but require the use 
of equational reasoning to determine that they match. The VCR retrieval system [FKS94] uses plug-in match 
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'/,•/. exec M-Gen-Q6-Stack 
thaw Stack 
thaw Q6 
prove  (topPre(s,  e)   => topPost(s,  e))  =>   (qTopPre(s,  e)  => qTopPost(s,  e)) 

resume by induction 
<> basis subgoal 
[]  basis subgoal 
<> induction subgoal 
resume by specializing ss to sc 

<> specialization subgoal 
[]   specialization subgoal 

[]   induction subgoal 
[]   conjecture 

•/,'/, End of  input from file   '/usr/amy/examples/Gen-Q6-Stack.lp'. 

'/.'/. quit 

Figure 6: LP output for generalized match of Stack pop with Qd> 

with VDM as the specification language. The focus of this work is on efficiency of proving match; the tool 
performs a series of filtering steps before doing all-out match (e.g., a very relaxed signature matching and 
model checking). Perry's Inscape system [Per89] is a specification-based software development environment. 
Its Inquire tool provides predicate-based retrieval in Inscape. Match is either exact pre/post or a form of 
generalized match. The prototype system has a simplified and hence fairly limited inference mechanism. 
Also, since specifications must already be provided for software development in Inscape, the user need not 
write a separate query specification. Jeng and Cheng [JC92] use order-sorted predicate logic specifications. 
Their match is similar to our generalized function match, but has the additional property that it generates 
a series of substitutions to apply to the library component to reuse in the desired context. Mili, Mili and 
Mittermeir [MMM94] define a specification as a binary relation. Specification match is based on the refines 
ordering on relations, somewhat like our generalized match. The PARIS system [KRT87] maintains a library 
of partially interpreted Schemas. Each schema includes a specification of restrictions on input to the schema, 
assertions about how the abstract parts of the schema can be instantiated, and assertions about the results 
of the schema. Matching corresponds to determining whether a partial library schema could be instantiated 
to satisfy a query. The system does some reasoning about the Schemas but with a limited logic. Katoh, 
Yoshida and Sugimoto [KYS85] use English-like specifications and queries that are translated into first- 
order predicate logic formulas. They use "ordered linear resolution" to determine matching between a query 
and specification, and include relaxations for changing the order of parameters, making some parameters 
constants, or renaming subroutines. However, the match does not verify that the subroutines match and 
checks only for equivalence, not permitting any inference. 

To summarize, our work on specification matching is more general than the above in three ways: We 
handle not just function match, but module match; we have a framework, which is extremely modular (e.g., 
function match is a parameter to module match; specification match is one conjunct of component match), 
within which we can express each of the specific matches "hardwired" in the definitions used by others; and 
(3) we have flexible prototype tool that lets us easily experiment with all the different matches. Finally, 
we are not wedded to just the application of software retrieval; we see the need to understand specification 
match as it relates to other application areas. 

Signature matching can be viewed as a very restricted form of specification matching. Work in this area 
has focused on taking advantage of the expressiveness and theoretical properties of type systems to define 
various forms of relaxed matches [ZW95, DC92, Rit92, RT89, SC94]. 

Less closely related work, but relevant to our context of software library retrieval, divides into two 
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categories: text-based information retrieval [AS86, PD89, MBK91] and AI-based semantic net classifica- 
tions [OHPDB92, FHR91]. The advantage to these approaches is that many efficient tools are available to 
do the search and match in these structures. The disadvantage is that the characterization of the component's 
behavior is completely informal. 

8.     Summary 

This paper makes three specific contributions with respect to specification matching: foundational defini- 
tions, descriptions of applications, and a report on a prototype tool. 

By providing precise definitions, this paper lays the groundwork for understanding when two different 
software components are related, in particular when their specifications match. Though we consider in 
detail functions and modules, exact and relaxed match, and formal pre-/post-condition specifications, the 
general idea behind specification matching is to exploit as much information associated with the description 
of software components as possible. 

Though our notion of specification match was originally motivated by the software library retrieval ap- 
plication, it is more generally applicable to other areas of software engineering, for example, determining 
subtyping in designing class hierarchies, or detecting an interoperability problem in a heterogeneous dis- 
tributed system. 

Finally, by building a working specification match engine, we demonstrated the feasibility of our ideas. 
By providing the community with a tool, we are now in the position to explore their pragmatic implications. 
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A     The Sequence Trait 

The Sequence trait defines operators to generate sequences (empty and insert), to return the element or 
sequence resulting from deleting an element from the beginning (or end) (first (last) and butFirst (butLast)), 
and to return the length of a sequence (length) or whether a sequence is empty (isEmpty). 

Sequence(E, S) : trait 
includes Integer 
introduces 

empty :—> S 
insert : E,S —-> S 
first :S-+E 
last : S —► E 
butFirst :S-^S 
butLast : S —»• S 
isEmpty : S —»• Uoo? 
length : S —► 7w^ 

asserts 
5 generated by empty, insert 
S partitioned by isEmpty, length 
V e:E,s:S 

first(insert(e,s)) == e 
butFirst(insert(e,s)) == s 
last(insert(e,s)) == if s = empty then e else last(s) 
butLast(insert(e, s)) == if s = empty then empty 
else insert(e, but Last (s)) 
isEmpty (empty) 
->isEmpty(insert(e, s)) 
length(empty) == 0 
length(insert(e, s)) == length(s) + 1 
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B    LP Input 

Stack.lp and Q2.1p contain the result of translating Stack and Q2 into LP input. 

%% Stack.lp 
execute Sequence-Axioms 
set name Stack 
declare var 

e: E 
s: C 
s2: C 

%% Q2.1p 
execute Sequence axioms 
set name Q2 
declare var 

e: E 
ql: C 
q2: C 

declare op 
createPre: —>Bool 
createPost: C —>Bool 
pushPre: —>Bool 
pushPost: C, E, C ->Bool 
popPre: C, C ->Bool 
popPost: C, C ->Bool 
topPre: C, E ->Bool 
topPost: C, E ->Bool 

declare op 
qEnqPre: C, E, C ->Bool 
qEnqPost: C, E, C ->Bool 

assert 
qEnqPre(ql, e, q2) = (length(ql) < 50); 
qEnqPost(ql, e, q2) = (length(q2) = length(ql) + 1) 

assert 
createPre = true; 
createPost(s) = (s = empty); 
pushPre = true; 
pushPost(s, e, s2) = (s2 = insert(e,s)); 
popPre(s, s2) = (~(isEmpty(s))); 
popPost(s, s2) = (s2 = butFirst(s)); 
topPre(s, e) = (~(isEmpty(s))); 
topPost(s, e) = (e = first(s)) 
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