
Specification Matching of Software Components

Amy Moormann Zaremski and Jeannette M. Wing

March 1995
CMU-CS-95-127

This document has been approved
for public release and sale; its
distribution is unlimited

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted to SIGSOFT '95 Foundations of Software Engineering Symposium

DTIC QUALITY ÜJSPEÜTEB 3
Abstract

Specification matching is a way to compare two software components. In the context of software reuse and
library retrieval, it can help determine whether one component can be substituted for another or how one
can be modified to fit the requirements of the other. In the context of object-oriented programming, it can
help determine when one type is a behavioral subtype of another. In the context of system interoperability,
it can help determine whether the interfaces of two components mismatch. We use formal specifications
to describe the behavior of software components, and hence, to determine whether two components match.
We give precise definitions of not just exact match, but more relevantly, various flavors of relaxed match.
These definitions capture the notions of generalization, specialization, substitutability, subtyping, and inter-
operability of software components. We write our formal specifications of components in terms of pre- and
post-condition predicates. Thus, we rely on theorem proving to determine match and mismatch. We give
examples from our implementation of specification matching using the Larch Prover.

This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command,
USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330. The views
and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Wright Laboratory or the U. S.
Government. This manuscript is submitted for publication with the understanding that the U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright notation
thereon.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

to

By
Distribution /

Availability Codes

Dist
Avail and | or

Special

Keywords: software libraries, component retrieval, specification matching, subtyping, interoperability,
theorem proving

1. Motivation and Introduction

Specification matching is a process of determining if two software components are related. It underlies
understanding this seemingly diverse set of questions:

• Retrieval. How can I retrieve a component from a software library based on its semantics, rather than

syntactic structure?

• Reuse. How might I adapt a component from a software library to fit the needs of a given subsystem?

• Substitution. When can I replace one software component with another without affecting the observable

behavior of the entire system?

• Subtype. When is an object of one type a subtype of another?

• Interoperation. Why is it so difficult to make two independently developed components work together?

In retrieval, we search for all library components that satisfy a given query. In reuse, we adapt a
component to fit its environmental constraints, based on how well the component meets our requirements.
In substitution, we expect the behavior of one component to be observably equivalent to the other's; a
special case of substitution is when a subtype object is the component substituting for the supertype object.
In interoperation, we want one component to interact properly with the other. Common to answering
these questions is deciding when one component matches another, where "matches" generically stands for
"satisfies," "meets," "is equivalent to," or "interacts properly with." Common to these kinds of matches is
the need to characterize the dynamic behavior, i.e., semantics, of each software component.

It is rarely the case that we would want one component to match the other "exactly." In retrieval,
we want a close match; as in any information retrieval context [Cor, ML94, SM83], we might be willing to
sacrifice precision for recall. That is, we would be willing to get some false positives as long as we do not miss
any (or too many) true positives. In determining substitutability, we do not need the substituting component
to have the exact same behavior as the substituted, only the same behavior relative to the environment that

contains it.

In this paper we lay down a foundation for different kinds of semantic matches. We explore not just exact
match between components, but many flavors of relaxed match. To be concrete and to narrow the focus of
what match could mean, we make the following assumptions:

• The software components in which we are interested are functions (e.g., C routines, Ada procedures, ML
functions) and modules (roughly speaking, sets of functions) written in some programming language.
These components might typically be stored in a program library, shared directory of files, or software

repository.

• Associated with each component, C, is a signature, Cs%g, and a specification of its behavior, Cspec.

Whereas signatures describe a component's type information (which is usually statically-checkable), specifi-
cations describe the component's dynamic behavior. Specifications more precisely characterize the semantics
of a component than just its signature. In this paper, our specifications are formal, i.e., written in a formally
defined assertion language.

Given two components, C = {Csig,Cspec) and C" = {C'sig,C'spec}, we define a generic component match

predicate, Match:

Definition: (Component Match)

Match: Component, Component —*■ Bool (1)
Match(C,C) = matchsig(Csig,C'sig) A matchspec(Cspec,C'spec)

Two components C and C" maicA if 1) their signatures match, given some definition of signature matching
(matchsig), and 2) their specifications match, given some definition of specification match (matchspec).
Although we define match as a conjunction, we can think of signature match as a "filter" that eliminates
the obvious non-matches before trying the more expensive specification match.

There are many possible definitions for the signature match predicate, matchsig, which we thoroughly
analyzed in a previous paper [ZW95]. In the remainder of this paper, for matchsig, we use for functions
type equivalence modulo variable renaming ("exact match" in [ZW95]), and for modules, a partial mapping
of functions in the modules with exact signature match on the functions ("generalized module match"

in [ZW95]).

In this paper, we focus on the specification match predicate, matchspec. We write pre-/post-condition
specifications for each function, where assertions are expressed in a first-order predicate logic. Match between
two functions is then determined by some logical relationship, e.g., implication, between the two pre-/post-
conditions specifications. We can then modularly1 define match between two modules in terms of some kind
of match between corresponding functions in the modules. Given our choice of formal specifications, we can
exploit state-of-the-art theorem proving technology as a way to implement a specification match engine.

Specification match goes a step beyond signature match. For functions, signature match is based entirely
on the functions' types, e.g., int * int —► int, and not at all on their behavior. For example, integer addition
and subtraction both have the same signature, but completely opposite behavior; the C library routines
strcpy and strcat have the same signature but users would be unhappy if one were substituted for the other.
Given a large software library or a large software system, many functions will have identical signatures but
very different behavior. For example, in the C math library nearly two-thirds of the functions (31 out of 47)
have signature double —* double. Based on signature match alone, we cannot know if we are interoperating
with a function properly or know which of a large number of retrieved functions does what we want. Since
specification match takes into consideration more knowledge about the components it allows us to increase
the precision with which we determine when two components match.

In what follows, we first briefly describe the language with which we write our formal specifications.
We define exact and relaxed match for functions (Section 3) and then for modules (Section 4). We discuss
in more detail applications of specification match in the software engineering context in Section 5 and our
implementation of a specification matcher using the Larch Prover in Section 6. We close with related work

and a summary.

2. Larch/ML Specifications

We use Larch/ML [WRZ93], a Larch interface language for the ML programming language, to specify ML
functions and ML modules. Larch provides a "two-tiered" approach to specification [GH93]. In one tier,
the specifier writes traits in the Larch Shared Language (LSL) to assert state-independent properties of
a program. Each trait introduces sorts and operators and defines equality between terms composed of

1 Pun intended.

the operators (and variables of the appropriate sorts). Appendix A shows the Sequence trait, which defines
operators to generate sequences (empty and insert), to return the element or sequence resulting from deleting
an element from the beginning (or end) (first (last) and butFirst (butLast)), and to return the length of a
sequence (length) or whether a sequence is empty (isEmpty).

In the second tier, the specifier writes interfaces in a Larch interface language to describe state-dependent
effects of a program (see Figure 1). The Larch/ML interface language extends ML by adding specification
information in special comments delimited by (* + ... + *). The using and based on clauses link interfaces
to LSL traits by specifying a correspondence between (programming-language specific) types and LSL sorts.
The specification for each function begins with a call pattern consisting of the function name followed by a
pattern for each parameter, optionally followed by an equal sign (=) and a pattern for the result. In ML,
patterns are used in binding constructs to associate names to parts of values (e.g., (x, y) names x as the first
of a pair and y as the second). The requires clause specifies the function's pre-condition as a predicate in
terms of trait operators and names introduced by the call pattern. Similarly, the ensures clause specifies the
function's post-condition. If a function does not have an explicit requires clause, the default is requires
true.

signature Stack = sig
(*+ using Sequence +*)
type a t

(*+ based on Sequence.E Sequence.S +*)

val create : unit —> a t
(*+ create () = s

ensures s = empty +*)

val push : a t * a —> a t
(*+ push (s, e) = s2

ensures s2 = insert(e,s) +*)

val pop : a t —* a t
(*+ pop s = s2

requires not(isEmpty(s))
ensures s2 = butFirst (s) +*)

val top : a t —+ a
(*+ top s = e

requires not (isEmpty (s))
ensures e = first (s) +*)

end

signature Queue = sig
(*+ using Sequence +*)
type a t

(*+ based on Sequence.E Sequence.S +*)

val create : unit —+ a t
(*+ create () = q

ensures q = empty +*)

val enq : a t * a —* a t
(*+ enq(q,e) = q2

ensures g2 = insert (e, q) +*)

val rest : al-»«f
(*+ rest q = q2

requires not(isEmpty(q))
ensures §2 = butLast (q) +*)

val deq : a t —► a
(*+ deq q = e

requires not(isEmpty(q))
ensures e = last(q) +*)

end

Figure 1: Two Larch/ML Specifications

We will use the Larch/ML interface specifications of Figure 1 as the "library" for our examples of
specification matching. It contains module specifications for Stack and Queue, specifying the functions
create, push, pop, and top on stacks, and create, enq, deq, and rest on queues. We specify each function's
pre-/post-conditions in terms of operators from the Sequence trait.

3. Function Matching

For a function specification, S, we denote the pre- and post-condition as Spre and Spost, respectively. Spred
defines the interpretation of the function's specification as an implication between the two: Spred = Spre =>■
SPost- Intuitively, this interpretation means that if Spre holds when the function specified by S is called,
SPost will hold after the function has executed (assuming the function terminates). If Spre does not hold,
there are no guarantees about the behavior of the function. This interpretation of a pre- and post-condition
specification is the most common and natural for functions in the standard programming model.

For example, for the Stack top function in Figure 1, the pre-condition, toppre, is not(isEmpty(s))\ the
post-condition, toppost, is e = first(s); and the specification predicate, toppred, is (not(isEmpty(s))) =>■ (e =
first(s)).

To be consistent in terminology with our signature matching work, we present function specification
matching in the context of a retrieval application. Example matches are between a library specification S
and a query specification Q. We assume that variables in S and Q have been renamed consistently2. For
example, if we compare the Stack pop function with the Queue rest function, we must rename q to s and ql
to si. In this section we examine several definitions of the specification match predicate (matchspec(S,Q)).
We characterize definitions as either grouping pre-conditions Spre and Qpre together and post-conditions
SPost and Qpost together, or relating predicates Spred and Qpred- Both of these kinds of matches have a
general form.

Definition: (Generic Pre/Post Match)

matchpre/post(S,Q) = (Qpre Hi Spre) H2 (Spost H3 Qpost) (2)

Pre/post matches relate the pre-conditions of each component and the post-conditions of each component.
The relations Hi and H3 are either equivalence (<S>) or implication (=>), but need not be the same. H2 is
usually conjunction (A) but may also be implication (=>). The matches may vary from this form by dropping
some of the terms.

Definition: (Generic Predicate Match)

matchpred(S, Q) — Spred H Qpred («V

Predicate matches relate the entire specification predicates of the two components, Spred and Qpred- The
relation H is either equivalence (<=>), implication (=>), or reverse implication («=).

It is important to look at both kinds of match. Which kind of match is appropriate may depend on the
context in which the match is being used or on the specifications being compared. We present the pre/post
matches in Section 3.1 and the predicate matches in Section 3.2. For each, we present a notion of exact
match as well as relaxed matches.

3.1. Pre/Post Matches

Pre/post matches on specifications S and Q relate Spre to Qpre and Spost to Qpost- We consider four kinds
of pre/post matches, beginning with the strongest match and progressively weakening the match by either
relaxing the relations Hi and H3 from <S> to =>, relaxing H2 from A to =>•, or dropping one or more terms.

2 This renaming is easily provided by the signature matcher, and we are assuming that the signatures of S and Q match.

4

Exact Pre/Post Match

We begin by instantiating both %i and Tl3 to O and H2 to A in the generic pre/post match of Definition
2. Two function specifications satisfy the exact pre/post match if their pre-conditions are equivalent and

their post-conditions are equivalent.

Definition: (Exact Pre/Post Match)

matchß^pre/p0St(S, Q) = (Qpre <^ Spre) A (Spost <$ Qpost)

Exact pre/post match is a strict relation, yet two different-looking specifications can still satisfy the match.
Consider for example the following query Ql, based on the Sequence trait. Ql specifies a function that
returns a sequence whose size is 0, one way of specifying a function to create a new sequence.

signature Ql = sig (Ql)
(*+ using Sequence +*)
type a t (*+ based on Sequence.E Sequence.S +*)
val qCreate : unit —>■ at
(*+ qCreate () = s

ensures length (s) = 0 +*)
end

Exact pre/post match holds for Ql with both the Stack and Queue create functions of Figure 1. (The
specifications of Stack and Queue create are identical except for the name of the return value.)

Let us look in more detail at how Ql would match the Stack create specification. Let S be the specification
for Stack create and Ql be the query specification. Spre = true, Spost = (s = empty). Qlpre - true,
Qlpost = (length(s) = 0). Since both Spre and Qlpre are true, showing matchE_pre/post(S,Ql) reduces to
proving Spost & Qlpost, or (s = empty) O (length(s) = 0). The "if case ((s = empty) => (length(s) =
0)) follows immediately from the axioms in the Sequence trait about length. Proving the "only-if" case
((length(s) = 0) =$■ (s = empty)) requires only basic knowledge about integers and the fact that for any
sequence, s, length(s) > 0, which is provable from the Sequence trait.

Plug-in Match

Equivalence is a strong requirement. For plug-in match, we relax both Tli and 11$ to =>■ and keep 72-2 as
A in the generic pre/post match. Under plug-in match, Q matches any specification 5 whose pre-condition
is weaker (to allow at least all the conditions that Q allows) and whose post-condition is stronger (to provide

a guarantee at least as strong as Q).

Definition: (Plug-in Match)

matchplug-in(S, Q) = (Qpre =>■ Spre) A (Spost => Qpost)

Plug-in match captures the notion of being able to "plug-in" S for Q, as illustrated in Figure 2. A specifier

writes a query Q saying essentially:

I need a function such that if Qpre holds before the function executes, then Qpost holds after

it executes (assuming the function terminates).

With plug-in match, if Qpre holds (the assumption made by the specifier) then Spre holds (because of the
first conjunct of plug-in match). Since we interpret S to guarantee that Spre => Spost, we can assume that

Figure 2: Idea Behind Plug-in Match

Sp0st will hold after executing the plugged-in S. Finally, since Spost => Qpost from the second conjunct of
plug-in match, we are assured of the guarantee the specifier desired.

For example, consider the following query for an insert function:

signature Q2 = sig (Q2)
(*+ using Sequence -f *)
type a t (*+ based on Sequence.E Sequence.S +*)
val qEnq : a t * a —> a t
(*+ qEnq (ql,e) = g2

requires length(ql) < 50
ensures length (q2) = (length(ql) +1) +*)

end

This query specification requires that an input sequence has fewer than 50 elements, and guarantees that
the resulting sequence is one element longer than the input sequence. This is a fairly weak specification. Q2
does not satisfy exact pre/post match with any function in the library, but plug-in match holds for Q2 with
both the Stack push and the Queue enq functions. Since push and enq are identical except for their names
and the names of the variables, the proof of the match is the same for both.

The pre-condition requirement, Qpre => Spre, holds, since Spre = true. To show that Spost => Qpost, we
assume Spost (q2 = insert(e, q)), and try to show Qpost (length(q2) = length(q) + 1). Substituting for 32 in
Qpost, we have length(insert(e, q)) = length(q) + 1, which follows immediately from the equations for length.

Plug-in Post Match

Often we are concerned with only the effects of functions, thus a useful relaxation of the plug-in match is
to consider only the post-condition part of the conjunction. Most pre-conditions could be satisfied by adding
an additional check before calling the function. Plug-in post match is also an instance of generic pre/post
match, with 7l3 instantiated to =>- but dropping Qpre and Spre.

Definition: (Plug-in Post Match)

matchpiUg-in-post(S, Q) = (Spost =>• Qpost)

Consider the following query. <Q3 is identical to Stack top except that Q3 has no requires clause.

signature Q3 = sig (Q3)
(*+ using Sequence +*)
type a t (*+ based on Sequence.E Sequence.S +*)
val qTop : af-»a
(*+ qTop s = e

ensures e = first (s) +*)
end

Q3 does not satisfy exact pre/post or plug-in match with Stack top since Q3's pre-condition is weaker
than Stack top's. Since the post-conditions are equivalent, QZ does satisfy plug-in post match with Stack

top.

Weak Post Match

Finally, consider this even weaker match, weak post match. We instantiate Tl3 to =>, as with the plug-in

matches, but relax Tl2 to => and drop Qpre-

Definition: (Weak Post Match)

matchweak-p0st\S,Q) = Opre => (op0st =^ Qpost)

A more intuitive, equivalent, predicate is (Spre A Spost) => Qpost- Sometimes assuming the pre-condition of
S helps in proving the relationship between Spost and Qpost- We use Spre and not Qpre since Spre is likely to
be necessary to limit the conditions under which we try to prove Spost => Qpost- The additional assumption
also means that we will have to provide an additional "wrapper" in our code to guarantee Spre before we

call the function specified by S.

For example, suppose we wish to find a function to delete from a sequence using the following query Q4:

signature Q4 = sig (Q4)
(*+ using Sequence +*)
type a t (*+ based on Sequence.E Sequence.S +*)
val qRest : a t —+ a t
(*+ qRest s = s2

ensures length(s2) - (length(s) -1) +*)
end

Q4 describes a function that returns a sequence whose size is one less than the size of the input sequence.
This is a fairly weak way of describing deletion, since it does not specify which element is removed.3 While
intuitively, it would seem related to Stack pop, neither plug-in nor plug-in post match holds, because we
cannot prove Spost => Qpost (i.e., (s2 = butFirst(s)) => (length(s2) = length(s) - 1)) for the case where

3 But it still gives us a big gain in precision over signature matching; QA would not match other functions with the signature
a t -► a t, for example, a function that reverses or sorts the elements in the sequence, or removes duplicates.

s = empty. By adding the assumption Spr,
in the following proof sketch.

Assume not(isEmpty(s))
Assume s2 = butFirst(s)

length(s2) = length(s) — 1
length(butFirst(s)) = length(s) - 1

Let s = insert(ec,sc)

length(butFirst(insert(ec, sc))) = length(insert(ec, sc)) — 1
length(sc) = length(insert(ec, sc)) — 1
length(sc) = (length(sc) + 1) — 1
length(sc) = length(sc)

(not(isEmpty(s))), we are able to complete the proof, as we see

Assume S:

Assume S,
pre

post
(1)
(2)
(3)
(4)

Attempt to prove Qvost
Apply (2) to (3)
Since s is not empty (1), and
s generated by empty and insert (5)
Substitute (5) for s in (4) (6)
Axioms for butFirst (7)
Axioms for length (8)
Axioms for +, — (9)

3.2. Predicate Matches

Recall the generic predicate match (Definition 3):

matchpred(S,Q) = Spred TZ Qpred

where the relation H is either equivalence (o-), implication (=>•), or reverse implication (<=).

Note that this general form allows alternative definitions of the specification predicates. One alternative
is Spred = SpreASpost, which is stronger than Spred = Spre => Spost- This interpretation is reasonable in the
context of state machines, where the pre-condition serves as a guard so that a state transition occurs only

if the pre-condition holds.

As we did with the generic pre/post match, we consider instantiations of the generic predicate match

beginning with the strictest.

Exact Predicate Match

We begin with exact predicate match. Two function specifications match exactly if their predicates are
logically equivalent (i.e., V, is instantiated to <£>). This is less strict than exact pre/post match (Section 3.1),
since there can be some interaction between the pre- and post-conditions.

Definition: (Exact Predicate Match)

matchE-Pred{S,Q) = Spred •O- Qpred

Our example Ql still matches with Stack and Queue create. In fact, in cases where Spre = Qpre = true, the
exact pre/post and exact predicate matches are equivalent.

Generalized Match

For generalized match, we relax U in the generic predicate match to =>•. Generalized match is an intuitive
match in the context of queries and libraries: specifications of library functions will be detailed, describing
the behavior of the functions completely, but we would like to be able to write simple queries that focus only
on the aspect of the behavior that we are most interested in or that we think is most likely to differentiate
among functions in the library. Generalized match allows the library specification to be stronger (more
general) than the query. Note that generalized match is a weaker match than plug-in match. Also, if we
drop the pre-conditions in generalized match, we get plug-in post match.

Definition: (Generalized Match)

matchgen(S, Q) = Spred => Qpred

For example, consider the following query, which is the same as QA but with a requires clause.

signature Q5 = sig (Q5)
(*+ using Sequence +*)
type a t (*+ based on Sequence.E Sequence.S +*)
val qRest : a t —> a t
(*+ qRest s = s2

requires not (isEmpty (s))
ensures length (s2) = (length(s) -1) +*)

end

Using the exact predicate match, neither the Stack pop nor the Queue rest specifications satisfy this
query. Plug-in match does not work either because we need to assume Qpre (not(isEmpty(s))) to show
Spost =► Qpost- However, the generalized match with Qh does hold for both of these. The proof is very

similar to that for QA in the weak post match.

Consider another example specifying a function that removes the most recently inserted element of a
sequence. This query does not require that the specifier knows the axiomatization of sequences, since the
query uses only the sequence constructor, insert. The post-condition specifies that the input sequence, s, is
the result of inserting an element ee into another sequence ss, and that the element returned, e, is the most
recently inserted element (ee). The existential quantifier (there exists) is a way of being able to name ee

and ss.

signature Q6 = sig (Q6)
(*+ using Sequence +*)
type a t (*+ based on Sequence.E Sequence.S +*)
val qTop :ai->a
(*+ qTop s = e

requires not (isEmpty (s))
ensures there exists ee:Sequence.E, ss:Sequence.S

((s = insert(ee,ss)) and (e = ee)) +*)
end

Again, neither the exact nor plug-in matches holds. Generalized match holds for the query with the
Stack top function, but not Queue deq, since the query specifies that the most recently inserted element is
returned. To show the generalized match, we consider two cases: s -empty, and s =insert(ec,sc). In the
first case, the pre-condition for both top and qTop are false, and thus the match predicate is vacuously true.
In the second case, the pre-conditions are both true, and so we need to prove that Spost => Qpost- If we
instantiate ee to ec and ss to sc, the proof goes through.

Specialized Match

For specialized match, we instantiate 11 in the generic predicate match to <=. Specialized match is the
converse of generalized match: matchspci(S,Q) = matchgen(Q,S). A function whose specification is weaker
than the query might still be of interest as a base from which to implement the desired function. Specialized
match allows the library specification to be weaker than the query.

Definition: (Specialized Match)

matchspci(S, Q) — Qpred =>• Spred

Consider again the query <Q3, which is the same as Stack top but without the pre-condition. Stack top is
thus weaker than Q3, but we can show that Q3 implies Stack top and hence specialized match holds.

3.3. Relating the Function Matches

Exact Pre/Post

Specialized Generalized Plug-in Post

Name of match predicate symbol kind of match

Exact Pre/Post matchß-pre/post pre/post

Plug-in Match 7natcihpiUg—iTi pre/post

Plug-in Post Match TnatCfipiug—jfi—post pre/post

Weak Post Match TfiaiCilujQak—post pre/post
Exact Predicate Match matchE-pred predicate

Generalized matchgen predicate

Specialized matchSpCi predicate

Figure 3: Lattice of Main Function Specification Matches

We relate all our function specification match definitions in a lattice (Figure 3). An arrow from a match
Ml to another match M2 indicates that Ml is stronger than M2 (Ml => M2). We also say that M2 is
more relaxed than Ml. The rightmost path in the lattice shows the pre/post matches; the remainder of the

matches are predicate matches.

10

The chart in Figure 3 summarizes the matches we have presented in this section, along with their predicate
symbols and whether the match is an instance of the generic pre/post match or the generic predicate match.

Query match E-pre/post TRaiCllpiiig — in matchgen müTCflyjeak—.poSt

Ql Queue create
Stack create

Queue create
Stack create

Queue create
Stack create

Queue create
Stack create

Q2
—

Queue enq
Stack push

Queue enq
Stack push

Queue enq
Stack push

Q3 — — — Stack pop

Q4 — — — Stack top

Q5 I —
Queue rest
Stack pop

Queue rest
Stack pop

Q6 — — Stack top Stack top

Table 1: Which Ones Match What

Table 1 summarizes which of the library functions match each of the example queries for four of the
matches we have defined (Exact Pre/Post, Plug-in, Generalized, Weak Post).

4. Module Matching

Function matching addresses the problem of matching particular functions. However, a programmer may
need to compare collections of functions, e.g,. ones that provide a set of operations on an abstract data
type. Most modern programming language explicitly support the definition of abstract data types through a
separate modules facility, e.g., Ada packages, or C++ classes. Modules are also often used just to group a set
of related functions, like I/O routines. This section addresses the problem of matching module specifications.

A specification of a module is an interface, I = (1T,1F), where 1T is a multiset of user-defined types
and 2> is a multiset of function specifications. For a library interface, It = (1LT,ZLF), to match a query
interface, 1Q = (IQT,1QF), there must be correspondences both between ILT and XQT and between XLF

and XQF- These correspondences vary for exact and relaxed module match.

4.1. Exact Match

Definition: (Exact Module Match)

M-matchE(ZL,ZQ, match/„) 3 a total function UF '■ IQF ~* %LF
sucn that

UF is one-to-one and onto, and

V Q e IQF, matchf„(UF(Q), Q)

UF maps each query function specification Q to a corresponding library function specification, UF(Q)-
Since UF is one-to-one and onto, the number of functions in the two interfaces must be the same (i.e.,
\ILF\ = \ZQF\)- The correspondence between each Q and UF(Q) is that they satisfy the function match,
matchfn. The match parameter (matchfn) gives us a great deal of flexibility, allowing any of the function
matches defined in Section 3 to be used in matching the individual function specifications in a module

interface.

11

4.2. Generalized Match

Should a querier really have to specify all the functions provided in a module in order to find the module?
A more reasonable alternative is to allow the querier to specify a set of exactly the functions of interest and
match a module that is more general in the sense that its set of functions may properly contain the query's

set.

Definition: (Generalized Module Match)

M-matchgen(lL,lQ, maichfn) is the same as M-matchE(lL,lQ, matchfn) except JJF need not be

onto.

Thus whereas with M-matchE(lL,^Q, match}n), \1LF\ = \ZQF\, with M-matchgen(lL,lQ, matchfn), \1LF\ >
\TQF\, and ILF 3 IQF under the appropriate renamings.

What these definitions make clear in a concise and precise manner is the orthogonality between function
match and module match. In fact, the module match definitions are completely independent of the fact that
we are matching specifications at the function level. If we use the same definitions of module matching, but
instantiate matchfn with a function signature match, we have module signature matching [ZW95].

5. Applications

As mentioned in Section 1, any problem that involves comparing the behavior of two software components
is a potential candidate for specification matching. We examine three such problems: retrieval for reuse,
substitution for subtyping, and determining interoperability.

5.1. Retrieval for Reuse

If we have a library of components with specifications, we can use specification matching to retrieve compo-
nents from the library. Formally, we define the retrieval problem as follows:

Definition: (Retrieval)

Retrieve: Query Specification, Match Predicate, Component Library —► Set of Components
Retrieve(Q, matchSpec,L) = {C G L : matchspec(C,Q)}

Given a query specification Q, a specification match predicate matchspec, and a library of component spec-
ifications L, Retrieve returns the set of components in L that match with Q under the match predicate
matchspec. Note that the components can be either functions or modules, provided that matchspec is in-
stantiated with the appropriate match. Parameterizing the definition by matchspec also gives the user the
flexibility to choose the degree of relaxation in the specification match.

Using specification match as part of the retrieval process (or separately on a given pair of components)
gives us assurances about how appropriate a component is for reuse. At the function level especially, the
various specification matches give us various assurances about the behavior of a component we would like
to use. We treat Q as the "standard" we expect a component to meet, and S as the library component we
would like to reuse. If exact pre/post match holds on S and Q, we know that S and Q are behaviorally
equivalent under all conditions; using S for Q should be transparent. If the exact predicate or plug-in match
holds, we know that S can be substituted for Q and the behavior specified by Q will still hold, although we

12

are not guaranteed the same behavior when Qpre is false. If the weak post match holds, we know that the
specified behavior holds when Spre is satisfied, which we may be able to guarantee given the specific context

in which we use that component.

5.2. Subtyping

Liskov remarked in her OOPSLA '87 keynote address:

The intuitive idea of a subtype is one whose objects provide all the behavior of objects of
another type (the supertype) plus something extra. What is wanted here is something like the
following substitution property [Lea89]: If for each object o\ of type S there is an object o2 of
type T such that for all programs P defined in terms of T, the behavior of P is unchanged when
£>i is substituted for o2, then 5 is a subtype of T. [Lis87].

Behavioral notions of subtyping that attempt to capture this substitutability property have since been de-
fined by many, including America [Ame91], Leavens and his colleagues [Lea89, LW90, DL92], Meyer [Mey88],
and Liskov and Wing [LW94]. There are subtle differences between all these subtype definitions, but com-
mon to all is the use of pre-/post-condition specifications (1) to describe the behavior of types and (2) to
determine whether one type is a subtype of another. Let my be a method of supertype T, and ms be the
corresponding method of subtype S. Then America, for example, defines subtype in terms of the following
pre-/post-condition rules4 for each method of the supertype:

• Pre-condition rule, mx-pre =>• ms-pre.

• Post-condition rule, ms-post => TUT .post

which is just our plug-in match. Further, subtyping requires that each method in the supertype T have
a corresponding method in the subtype S, but there may be additional methods in S. This corresponds
exactly to our generalized module match. More formally,

Definition: (America) Subtype

Subtype: Type, Type —> Bool
Subtype(S,T) = M-matchgen(SSpec, Tspec, matchpiug-in)

The definitions of subtype suggested by the other researchers can also be cast in terms of specification match
in a straightforward way where either or both of M-matchgen and matchpiug-in is appropriately changed.
In short, the behavioral notion of subtyping is just an instance of our more general notion of specification

match.

4 We omit the abstraction function for simplicity.

13

5.3. Interoperability

A report on the National Information Infrastructure (Nil) states:

Interoperability is the ability to combine two or more systems into a single acceptably seamless
and acceptably efficient system [VLP94].

and argues that demand for interoperability of independently developed systems will grow on an unprece-
dented scale, in terms of sheer volume, heterogeneity, and complexity of individual systems.

The heart of an interoperability problem is that the interfaces of the two or more systems do not match.
Specification match is a way of determining whether two system interfaces match and hence whether the
systems can interoperate. We can also learn something about components and their relationships when a
match does not occur, i.e., when there is a mismatch. It might be possible to resolve mismatches between
two components if we know why they do not match, the more typical scenario when trying to interoperate
heterogeneous components.

Suppose we have two components, C and S, that agree to communicate using a remote procedure call
protocol. The client C wants to use a service, op, provided by S. To interoperate with S, C must at least
match the signature of op (passing in the right number and types of arguments) and its specification (e.g.,

establish op's pre-condition).

Even if their signatures and pre-/post-condition specifications match, however, components may still
not interoperate. For example, suppose we do not assume that C and S agree on which protocol to use
to communicate with each other. If C wants to communicate using non-blocking send, but S wants to
communicate through remote procedure call (alternating blocking receives and sends), then a "protocol
mismatch" can occur. For a protocol match, we might require that each one of C's sends "lines up" with
each one of S's receives and vice versa. However, using CSP-like notation to specify C's and S's protocols,

we have:

C = send —► {receive —* C\send —> C)
S = receive —► send —*■ S

C might do four sends in a row and then do a receive; meanwhile, S deadlocks after doing its first receive
since it wants to do a send next, corresponding to a receive by C, but conflicting with C's second send. That
is, the following message sequences do not match:

(C) send send send send receive
(S) receive send receive send receive

If a protocol specification is included in a component's interface specification (i.e., not just signature
information and pre-/post-conditions), then we can use a richer notion of specification match to detect
this kind of protocol mismatch. We simply extend our notion of match to include additional sub-match

predicates, e.g., matchprotOCoV-

Definition: {Interoperates)

Interoperates: Component, Component —► Bool
Interoperates{C, C) = Match(C, C") A m,atchprotocoi{CprotocohC'protocol)

where Match is from Definition 1 of Section 1.

14

6. Implementation

Each of the examples given in this paper have been specified in Larch/ML, translated automatically to LP
input, and proven using LP.

For each specification file (e.g., Stack, sig), we check the syntax of the specification and then translate
it into a form acceptable to LP. Namely, we generate a corresponding .lp file (e.g., Stack.lp), which
contains the appropriate declarations of variables and operators and assertions (axioms) for the pre- and
post-conditions of each function specified. Each function foo generates two operators, fooPre and fooPost;
the axioms for fooPre and fooPost are the body of the requires and ensures clauses of foo. Appendix B
shows Stack. lp and Q2. lp, the result of translating the Stack specification from our sample library and the
query Q2 into LP format.

%% Plugln-Q2-Stack.lp
thaw Stack
thaw Q2
prove (qEnqPre(s, e, s2) => pushPre) /\ (pushPost(s, e, s2) => qEnqPost(s, e, s2))

Figure 4: LP input for plug-in match of Stack push with Q2

We also generate the appropriate LP input to show a given match between two functions. For example,
Figure 4 shows the LP input to prove the plug-in match between the Stack push function and query Q1.
The thaw Stack command loads the state resulting from executing the commands in Stack.lp.

%% Gen-Q6-Stack.lp
thaw Stack
thaw Q6
prove (topPre(s, e) => topPost(s, e)) => (qTopPre(s, e) => qTopPost(s, e))
%% additional user input

resume by induction
resume by specializing ss to sc

Figure 5: LP input for generalized match of Stack pop with Q6

Since LP is designed as a proof assistant, rather than an automatic theorem prover, some of the proofs
require user assistance. The example shown in Figure 4 does not require any assistance from the user.
Executing the statements in Figure 4 results ultimately in the response from LP: [] conjecture, indicating
that LP successfully proved the match conjecture. Generalized match of Stack pop with Q6 requires some
assistance to tell the prover to use induction in the proof, and then how to instantiate the existential variables
(Figure 5). Figure 6 shows LP's output script of this proof execution.

7. Related Work

Other work on specification matching has focused on using a particular match definition for retrieval of
software components (usually functions). Rollins and Wing proposed the idea of function specification
matching and implemented a prototype system in AProlog using plug-in match [RW91]. AProlog does not
use equational reasoning, and so the search may miss some functions that match a query but require the use
of equational reasoning to determine that they match. The VCR retrieval system [FKS94] uses plug-in match

15

'/,•/. exec M-Gen-Q6-Stack
thaw Stack
thaw Q6
prove (topPre(s, e) => topPost(s, e)) => (qTopPre(s, e) => qTopPost(s, e))

resume by induction
<> basis subgoal
[] basis subgoal
<> induction subgoal
resume by specializing ss to sc

<> specialization subgoal
[] specialization subgoal

[] induction subgoal
[] conjecture

•/,'/, End of input from file '/usr/amy/examples/Gen-Q6-Stack.lp'.

'/.'/. quit

Figure 6: LP output for generalized match of Stack pop with Qd>

with VDM as the specification language. The focus of this work is on efficiency of proving match; the tool
performs a series of filtering steps before doing all-out match (e.g., a very relaxed signature matching and
model checking). Perry's Inscape system [Per89] is a specification-based software development environment.
Its Inquire tool provides predicate-based retrieval in Inscape. Match is either exact pre/post or a form of
generalized match. The prototype system has a simplified and hence fairly limited inference mechanism.
Also, since specifications must already be provided for software development in Inscape, the user need not
write a separate query specification. Jeng and Cheng [JC92] use order-sorted predicate logic specifications.
Their match is similar to our generalized function match, but has the additional property that it generates
a series of substitutions to apply to the library component to reuse in the desired context. Mili, Mili and
Mittermeir [MMM94] define a specification as a binary relation. Specification match is based on the refines
ordering on relations, somewhat like our generalized match. The PARIS system [KRT87] maintains a library
of partially interpreted Schemas. Each schema includes a specification of restrictions on input to the schema,
assertions about how the abstract parts of the schema can be instantiated, and assertions about the results
of the schema. Matching corresponds to determining whether a partial library schema could be instantiated
to satisfy a query. The system does some reasoning about the Schemas but with a limited logic. Katoh,
Yoshida and Sugimoto [KYS85] use English-like specifications and queries that are translated into first-
order predicate logic formulas. They use "ordered linear resolution" to determine matching between a query
and specification, and include relaxations for changing the order of parameters, making some parameters
constants, or renaming subroutines. However, the match does not verify that the subroutines match and
checks only for equivalence, not permitting any inference.

To summarize, our work on specification matching is more general than the above in three ways: We
handle not just function match, but module match; we have a framework, which is extremely modular (e.g.,
function match is a parameter to module match; specification match is one conjunct of component match),
within which we can express each of the specific matches "hardwired" in the definitions used by others; and
(3) we have flexible prototype tool that lets us easily experiment with all the different matches. Finally,
we are not wedded to just the application of software retrieval; we see the need to understand specification
match as it relates to other application areas.

Signature matching can be viewed as a very restricted form of specification matching. Work in this area
has focused on taking advantage of the expressiveness and theoretical properties of type systems to define
various forms of relaxed matches [ZW95, DC92, Rit92, RT89, SC94].

Less closely related work, but relevant to our context of software library retrieval, divides into two

16

categories: text-based information retrieval [AS86, PD89, MBK91] and AI-based semantic net classifica-
tions [OHPDB92, FHR91]. The advantage to these approaches is that many efficient tools are available to
do the search and match in these structures. The disadvantage is that the characterization of the component's
behavior is completely informal.

8. Summary

This paper makes three specific contributions with respect to specification matching: foundational defini-
tions, descriptions of applications, and a report on a prototype tool.

By providing precise definitions, this paper lays the groundwork for understanding when two different
software components are related, in particular when their specifications match. Though we consider in
detail functions and modules, exact and relaxed match, and formal pre-/post-condition specifications, the
general idea behind specification matching is to exploit as much information associated with the description
of software components as possible.

Though our notion of specification match was originally motivated by the software library retrieval ap-
plication, it is more generally applicable to other areas of software engineering, for example, determining
subtyping in designing class hierarchies, or detecting an interoperability problem in a heterogeneous dis-
tributed system.

Finally, by building a working specification match engine, we demonstrated the feasibility of our ideas.
By providing the community with a tool, we are now in the position to explore their pragmatic implications.

References

[Ame91] Pierre America. Designing an object-oriented programming language with behavioural subtyp-
ing. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, volume 489 of LNCS, pages 60-90. Springer-Verlag, NY, 1991.

[AS86] Susan P. Arnold and Stephen L. Stepoway. The REUSE system: Cataloging and retrieval of
reusable software. Technical Report 86-CSE-22, Southern Methodist University, October 1986.

[Cor] InfoSeek Corporation. Infoseek home page. Santa Clara, California, http://www.infoseek.com.

[DC92] Roberto Di Cosmo. Type isomorphisms in a type-assignment framework. In Proceedings of
the 19t/l Annual Symposium on Principles of Programming Languages, pages 200-210, January
1992.

[DL92] Krishna Kishore Dhara and Gary T. Leavens. Subtyping for mutable types in object-oriented
programming languages. Technical Report 92-36, Department of Computer Science, Iowa State
University, Ames, Iowa, November 1992.

[FHR91] Gerhard Fischer, Scott Henninger, and David Redmiles. Cognitive tools for locating and com-
prehending software objects for reuse. In Proceedings of the 13th International Conference on
Soßware Engineering, May 1991.

[FKS94] B. Fischer, M. Kievernagel, and W. Struckmann. VCR: A VDM-based software component re-
trieval tool. Technical Report 94-08, Technical University of Braunschweig, Germany, Novem-
ber 1994.

17

[GH93] John V. Guttag and James J. Horning, editors. Larch: Languages and Tools for Formal Speci-
fication. Texts and Monographs in Computer Science. Springer-Verlag, 1993. With Stephen J.
Garland, Kevin D. Jones, Andres Modet, and Jeannette M. Wing.

[JC92] J.-J. Jeng and B. H. C. Cheng. Formal methods applied to reuse. In Proceedings of the 5th

Workshop in Software Reuse, 1992.

[KRT87] Shmuel Katz, Charles A. Richter, and Khe-Sing The. PARIS: A system for reusing partially in-
terpreted Schemas. In Proceedings of the 9th International Conference on Software Engineering,
pages 377-385, March 1987.

[KYS85] Hideki Katoh, Hiroyuki Yoshida, and Masakatsu Sugimoto. Logic-based retrieval and reuse
of software. Technical Report TR-153, Institute for New Generation Computer Technology,
October 1985.

[Lea89] Gary Leavens. Verifying object-oriented prograsm that use subtypes. Technical Report 439,
MIT Laboratory for Computer Science, February 1989. Ph.D. thesis.

[Lis87] Barbara Liskov. Data abstraction and hierarchy. In OOPSLA '87: Addendum to the Proceed-
ings, pages 17-34, 1987.

[LW90] Gary T. Leavens and William E. Weihl. Reasoning about object-oriented programs that use
subtypes. In ECOOP/OOPSLA '90 Proceedings, 1990.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. A CM Transac-
tions on Programming Languages and Systems, November 1994.

[MBK91] Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information retrieval approach
for automatically constructing software libraries. IEEE Transactions on Software Engineering,
8(17):800-813, August 1991.

[Mey88] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, 1988.

[ML94] M. Mauldin and J. Leavitt. Web-agent related research at the CMT. In ACM Special Interest
Group on Networked Information Discovery and Retrieval (SIGNIDR-94), August 1994.

[MMM94] A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software components: A refinement-
based approach. In Proceedings of the 16th International Conference on Software Engineering,
May 1994.

[OHPDB92] Eduardo Ostertag, James Hendler, Ruben Prieto-Diaz, and Christine Braun. Computing sim-
ilarity in a reuse library system: An Al-based approach. ACM Transactions on Software
Engineering and Methodology, l(3):205-228, July 1992.

[PD89] Ruben Prieto-Diaz. Classification of reusable modules. In Ted J. Biggerstaff and Alan J. Perlis,
editors, Software Reusability Vol. 1: Concepts and Models, pages 99-123. ACM Press, NY.,
1989.

[Per89] Dewayne E. Perry. The Inscape environment. In Proceedings of the ll*'1 International Confer-
ence on Software Engineering, pages 2-12, 1989.

[Rit92] Mikael Rittri. Retrieving library identifiers via equational matching of types. Technical Report
65, Programming Methodology Group, Department of Computer Sciences, Chalmers University
of Technology and University of Göteborg, January 1990 (reprinted with corrections May 1992).

[RT89] Colin Runciman and Ian Toyn. Retrieving re-usable software components by polymorphic
type. Conference on Functional Programming Languages and Computer Architectures, pages
166-173, September 1989.

18

[RW91] Eugene J. Rollins and Jeannette M. Wing. Specifications as search keys for software libraries.
In Proceedings of the Eighth International Conference on Logic Programming, June 1991.

[SC94] David W.J. Stringer-Calvert. Signature matching for Ada software reuse. Master's thesis,
University of York, 1994.

[SM83] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
1983.

[VLP94] Mary Vernon, Edward Lazowsk, and Stewart Personick, editors. R&D for the Nil: Technical
Challenges. Interuniversity Communications Council, Inc. (EDUCOM), 1994.

[WRZ93] J.M. Wing, E. Rollins, and A. Moormann Zaremski. Thoughts on a Larch/ML and a new
application for LP. In Ursula Martin and Jeannette M. Wing, editors, First International
Workshop on Larch. Springer Verlag, 1993.

[ZW95] Amy Moormann Zaremski and Jeannette M. Wing. Signature Matching, a Tool for Using
Software Libraries. To appear, ACM Transactions on Software Engineering and Methodology,
1995. An earlier version appeared in Proceedings of the ACM SIGSOFT '93 Symposium on the
Foundations of Software Engineering, December 1993.

19

A The Sequence Trait

The Sequence trait defines operators to generate sequences (empty and insert), to return the element or
sequence resulting from deleting an element from the beginning (or end) (first (last) and butFirst (butLast)),
and to return the length of a sequence (length) or whether a sequence is empty (isEmpty).

Sequence(E, S) : trait
includes Integer
introduces

empty :—> S
insert : E,S —-> S
first :S-+E
last : S —► E
butFirst :S-^S
butLast : S —»• S
isEmpty : S —»• Uoo?
length : S —► 7w^

asserts
5 generated by empty, insert
S partitioned by isEmpty, length
V e:E,s:S

first(insert(e,s)) == e
butFirst(insert(e,s)) == s
last(insert(e,s)) == if s = empty then e else last(s)
butLast(insert(e, s)) == if s = empty then empty
else insert(e, but Last (s))
isEmpty (empty)
->isEmpty(insert(e, s))
length(empty) == 0
length(insert(e, s)) == length(s) + 1

20

B LP Input

Stack.lp and Q2.1p contain the result of translating Stack and Q2 into LP input.

%% Stack.lp
execute Sequence-Axioms
set name Stack
declare var

e: E
s: C
s2: C

%% Q2.1p
execute Sequence axioms
set name Q2
declare var

e: E
ql: C
q2: C

declare op
createPre: —>Bool
createPost: C —>Bool
pushPre: —>Bool
pushPost: C, E, C ->Bool
popPre: C, C ->Bool
popPost: C, C ->Bool
topPre: C, E ->Bool
topPost: C, E ->Bool

declare op
qEnqPre: C, E, C ->Bool
qEnqPost: C, E, C ->Bool

assert
qEnqPre(ql, e, q2) = (length(ql) < 50);
qEnqPost(ql, e, q2) = (length(q2) = length(ql) + 1)

assert
createPre = true;
createPost(s) = (s = empty);
pushPre = true;
pushPost(s, e, s2) = (s2 = insert(e,s));
popPre(s, s2) = (~(isEmpty(s)));
popPost(s, s2) = (s2 = butFirst(s));
topPre(s, e) = (~(isEmpty(s)));
topPost(s, e) = (e = first(s))

21

