High Rate Rechargeable Lithium Cells Employing Lithium Ion Conducting Solid Electrolytes

Edward J. Plichta and Wishvender K. Behl

ARL-TR-421

February 1995

19950503 053

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.
Results are presented on high temperature solid state cells employing 50:50 weight percent lithium germanium vanadium oxide-lithium iodide. The incorporation of lithium iodide in lithium germanium vanadium oxide resulted in higher pellet conductivities and improved the high rate performance of the solid state cells. The cells were comprised of a lithium-aluminum or lithium-silicon alloy as the anode and a CVD thin film of titanium disulfide as the cathode. The cells exhibited an open circuit potential of about 2.1 V at 300 deg C and could be discharged at current densities up to 0.5 ampere per square centimeter.
INTRODUCTION

Recently, we have described [1] a high temperature rechargeable lithium cell using a solid solution [2] of lithium germanium oxide (Li₄GeO₄) and lithium vanadium oxide (Li₃VO₄) as the lithium ion conducting solid electrolyte. The solid solution represented by the general formula, Li₃.₆Ge₀.₆V₀.₄O₄, has been reported [3] to have a conductivity of about 0.08 S/cm at 300°C and was found [1] to possess an electrochemical stability range of over 4 V. The solid state cell was comprised of a lithium-aluminum alloy anode and a chemically vapor deposited (CVD) thin film of titanium disulfide as the cathode, and exhibited good discharge rate capabilities up to 100 mA/cm² and cycle life of over 200 cycles. Further improvements in the rate capabilities of the solid state cells are needed however in order to develop these cells as viable power sources for high rate pulse power applications. We have found that the rate capabilities of these cells can be substantially improved by using pressed pellets made with 50:50 wt.% mixtures of lithium iodide and Li₃.₆Ge₀.₆V₀.₄O₄ as the solid electrolyte. We have also investigated these cells using lithium-silicon alloys as the anode. The results of these studies are presented in this report.

EXPERIMENTAL PROCEDURE

The solid electrolyte, Li₃.₆Ge₀.₆V₀.₄O₄, was prepared according to the procedure described [1] previously. Lithium iodide (Johnson Mathey - Alfa Chemicals) and lithium-aluminum (20 wt.% lithium) and lithium-silicon (48 wt.% lithium) alloys (Foote Mineral Company) were used as received.

The solid state cells were fabricated using unsintered pressed powder anode and solid electrolyte pellets. The anode pellet was prepared by pressing about 0.03 g sample of lithium-aluminum or lithium-silicon alloy powder in a 1.3 cm steel die at a pressure of 1800 kgs. A 0.05 g sample of the synthesized solid electrolyte powder, Li₃.₆Ge₀.₆V₀.₄O₄, or a 50:50 weight percent mixture of Li₃.₆Ge₀.₆V₀.₄O₄ and LiI was then evenly spread on top of the pressed anode pellet in the steel die and further pressed at a pressure of 4,500 kgs. The thicknesses of both the anode and the electrolyte layers in the resulting pellet were about 200 microns each.

Thin films of titanium disulfide (TiS₂) on an aluminum substrate were used as the cathode. The films were prepared by chemical vapor deposition as previously described [4] and were approximately 25 microns thick with a calculated porosity of about 20% and coulombic capacity of 5.8 C/cm². The surface area of the cathode disks was 0.3 cm² resulting in a theoretical cathode capacity of 0.48 mAh based on 1 F/mole of TiS₂.

The cells were assembled by stacking the titanium disulfide film on top of the anode-electrolyte pellet and placing the cell stack between two molybdenum disks which served as the current collectors. A description of the cell stack is shown in Fig. 1. The cell stack was held in compression through the use of a spring-loaded assembly and operated in a sealed Pyrex vessel under a flowing argon atmosphere as
Figure 1. Schematic diagram of the cell stack.
described previously [5]. The other experimental details were similar to those described earlier [1].

The bulk conductivities of Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$ and Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$-LiI pellets were measured using a Wayne-Kerr model 6425 Precision Component Analyzer at a frequency of 1 kHz.

RESULTS AND DISCUSSION

The solid solutions of lithium germanium oxide (Li$_4$GeO$_4$) and lithium vanadium oxide (Li$_3$VO$_4$) are known [2] to be excellent lithium ion conductors. The conductivity of the solid solution represented by the general formula, Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$, has been reported [3] to be about 0.08 S/cm at 300°C. We have previously investigated solid state cells of the type:

LiAl / Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$ / TiS$_2$

Cell I

employing unsintered pressed pellets of the solid solution, Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$, as the lithium ion conducting solid electrolyte. The conductivities of the unsintered pressed pellets of the solid electrolyte, Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$, were measured in the present studies and are plotted in Fig. 2 as a function of temperature up to 300°C. The conductivities of the solid electrolyte using sintered pellets were measured by Kuwano and West [2] and are included in Fig. 2. The conductivities of the pressed pellets obtained in the present studies were found to be significantly lower than the conductivities obtained with sintered pellets. However, due to the experimental difficulties involved in preparing thin (~ 200 um) sintered electrolyte pellets for high rate cells, we have attempted to improve the conductivities of the pressed pellets by the use of additives such as lithium iodide. The conductivities of pressed pellets of Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$-LiI (50:50 wt.%) mixtures are plotted in Fig. 2 along with the conductivities of lithium iodide reported in the literature[6, 7]. It is seen that the conductivities of Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$-LiI pellets are substantially higher than the conductivities of the pure Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$ or LiI pellets and approach the conductivities obtained with sintered Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$ pellets. The Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$-LiI pressed pellets were found to be dense and compact which contributed to the enhancement in conductivity of the resulting pellets.

In order to improve the performance of cell I at high discharge rates, we have used the highly conducting Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$-LiI pellets as the lithium ion conducting electrolyte in cells of the type:

Li Alloy / Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$ - LiI / TiS$_2$

Cell II

using either lithium-aluminum or lithium-silicon alloy as the anode. The solid state cell exhibited an open circuit potential of about 2.1 V at 300°C. A typical discharge curve at a discharge current density of 30 mA/cm2 is presented in Fig. 3. The cell
Figure 2. Arrhenius Plots of conductivity for unsintered pressed pellets of Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$ (a), 50:50 wt% Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$-LiI (b), LiI (c) and sintered pellets of Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$ (d).
Figure 3. Discharge curve for the cell Li-Si/ Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$-LiI/TiS$_2$ at a current density of 30 mA/cm2 at 300$^\circ$C.
showed sloping discharge curves typical of the curves obtained with intercalating cathodes. The electrode reactions at the negative and positive electrodes on discharge may be represented as, respectively:

\[
\text{LiAl} \rightleftharpoons x \text{Li}^+ + \text{Li}_{1-x} \text{Al} + x \text{e} \quad (1)
\]

\[
x \text{Li}^+ + \text{TiS}_2 + x \text{e} \rightleftharpoons \text{Li}_x \text{TiS}_2 \quad (2)
\]

where 0 < x < 1 and lithium ions are transported from left to right through the solid electrolyte and are intercalated into titanium disulfide according to the reaction given by Eq. 2. The reactions represented by equations 1 and 2 are reversed on charge and lithium is deintercalated from the titanium disulfide electrode and inserted into the lithium-aluminum or lithium-silicon alloy electrode. The cells were charged at a current density of 0.5 mA/cm² to a voltage of 2.3 V only in order to avoid any oxidation of the lithium iodide electrolyte which would occur at potentials above ~2.4 V.

The average cell voltages, cell discharge times and cathode capacities obtained in Cells I and II at a current density of 30 mA/cm² using either lithium-aluminum or lithium-silicon alloy as the anode are summarized in Table 1. It is seen that the use of the highly conducting \(\text{Li}_{3.6}\text{Ge}_{0.6}\text{V}_{0.4}\text{O}_4\)-LiI pellets as the electrolyte in Cell II results in a threefold improvement in cathode utilizations and cell discharge times over those cells employing pure \(\text{Li}_{3.6}\text{Ge}_{0.6}\text{V}_{0.4}\text{O}_4 \) pellets as the electrolyte. The cell performance was found to be comparable at discharge rates up to about 0.1 A/cm² using either lithium-aluminum or lithium-silicon anode but the cells using lithium-silicon anodes exhibited lower polarization at higher discharge rates. Typical discharge curves obtained with the cell Li-Si/Li\(_{3.6}\text{Ge}_{0.6}\text{V}_{0.4}\text{O}_4\)-LiI/TiS\(_2\) at current densities of 0.1 to 0.5 A/cm\(^2\) are presented in Fig. 4. and the average cell voltages and cell capacities at various discharge rates are summarized in Table 2. The cells delivered cathode capacities of about 0.4 F/mole of TiS\(_2\) at current densities of 0.1 and 0.2 A/cm\(^2\) but showed increased polarization at higher current densities and delivered cathode capacities of only about 0.2 F/mole of TiS\(_2\).

CONCLUSIONS

The incorporation of 50 weight percent lithium iodide in Li\(_{3.6}\text{Ge}_{0.6}\text{V}_{0.4}\text{O}_4\) resulted in a 100-fold increase in conductivities of unsintered pressed pellets. The solid state cells employing highly conducting Li\(_{3.6}\text{Ge}_{0.6}\text{V}_{0.4}\text{O}_4\)-LiI mixtures as the electrolyte, lithium-aluminum or lithium-silicon alloy as anodes and titanium disulfide as the cathode exhibited an open circuit potential of about 2.1 V at 300°C and showed excellent high rate capabilities with discharge rates approaching current densities of 0.5 mA/cm\(^2\).
Table 1. Discharge Characteristics of Li-Alloy/Solid Electrolyte/TiS$_2$ Solid State Cells at a Current Density of 30 mA/cm2 at 300°C.

<table>
<thead>
<tr>
<th>ANODE</th>
<th>ELECTROLYTE</th>
<th>DISCHARGE TIME (Sec)</th>
<th>AVERAGE VOLTAGE, V</th>
<th>CATHODE CAPACITY (F/mole TiS$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiAl</td>
<td>Li${3.6}$Ge${0.6}$V$_{0.4}$O$_4$</td>
<td>27</td>
<td>1.02</td>
<td>0.14</td>
</tr>
<tr>
<td>LiSi</td>
<td>Li${3.6}$Ge${0.6}$V$_{0.4}$O$_4$</td>
<td>25</td>
<td>0.88</td>
<td>0.13</td>
</tr>
<tr>
<td>LiAl</td>
<td>50wt% Lil in Li${3.6}$Ge${0.6}$V$_{0.4}$O$_4$</td>
<td>81</td>
<td>1.38</td>
<td>0.42</td>
</tr>
<tr>
<td>LiSi</td>
<td>50wt% Lil in Li${3.6}$Ge${0.6}$V$_{0.4}$O$_4$</td>
<td>90</td>
<td>1.72</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table 2. Cathode Capacities and Average Cell Voltages of the Cell Li-Si/ Li$_{3.6}$Ge$_{0.6}$V$_{0.4}$O$_4$-Li/TiS$_2$ at Current Densities of 0.1 to 0.5 A/cm2 at 300°C.

<table>
<thead>
<tr>
<th>CURRENT DENSITY (A/cm2)</th>
<th>CATHODE CAPACITY (F/mole TiS$_2$)</th>
<th>AVERAGE VOLTAGE, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.41</td>
<td>1.35</td>
</tr>
<tr>
<td>0.2</td>
<td>0.40</td>
<td>1.03</td>
</tr>
<tr>
<td>0.3</td>
<td>0.23</td>
<td>0.97</td>
</tr>
<tr>
<td>0.5</td>
<td>0.19</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Figure 4. Discharge curves for the cell Li-Si/ $\text{Li}_{3.6}\text{Ge}_{0.6}\text{V}_{0.4}\text{O}_{4}$-Lil/TiS$_2$ at current densities of 0.1 to 0.5 mA/cm2 at 300°C.
REFERENCES

Defense Technical Information Center
ATTN: DTIC-OCC
Cameron Station (Bldg 5)
Alexandria, VA 22304-6145
(*Note: Two copies will be sent from STINFO office, Fort Monmouth, NJ)

Director
US Army Material Systems Analysis Actv
ATTN: DRXSY-MP
(1) Aberdeen Proving Ground, MD 21005

Commander, AMC
ATTN: AMCDE-SC
5001 Eisenhower Ave.
(1) Alexandria, VA 22333-0001

Director
Army Research Laboratory
ATTN: AMSRL-D (John W. Lyons)
2800 Powder Mill Road
(1) Adelphi, MD 20783-1145

Director
Army Research Laboratory
ATTN: AMSRL-DD (COL Thomas A. Dunn)
2800 Powder Mill Road
(1) Adelphi, MD 20783-1145

Director
Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1145
(1) AMSRL-OP-SD-TA (ARL-ALC Records Mgt)
(1) AMSRL-OP-SD-TL (ARL-ALC Tech Libr)
(1) AMSRL-OP-SD-TP (ARL-ALC Tech Publ Br)

Directorate Executive
Army Research Laboratory
Electronics and Power Sources Directorate
Fort Monmouth, NJ 07703-5601
(1) AMSRL-EP
(1) AMSRL-EP-T (M. Hayes)
(1) AMSRL-OP-RM-FM
(22) Originating Office

Advisory Group on Electron Devices
ATTN: Documents
2011 Crystal Drive, Suite 307
(2) Arlington, VA 22202
Deputy for Science & Technology Office, Asst Sec Army (R&D)
Washington, DC 20310
(1)

HQDA (DAMA-ARZ-D/Dr. F.D. Verderame)
Washington, DC 20310
(1)

Director
Naval Research Laboratory
ATTN: Code 2627
Washington, DC 20375-5000
(1)

USAF Rome Laboratory
Technical Library, FL2810
ATTN: Documents Library
Corridor W, STE 262, RL/SUL
26 Electronics Parkway, Bldg 106
Griffiss Air Force Base
NY 13441-4514
(1)

Dir, ARL Battlefield Environment Directorate
ATTN: AMSRL-BE
White Sands Missile Range
NM 88002-5501
(1)

Dir, ARL Sensors, Signatures, Signal & Information Processing Directorate (SS1)
ATTN: AMSRL-SS
2800 Powder Mill Road
Adelphi, MD 20783-1145
(1)

Dir, CECOM Night Vision/Electronic Sensors Directorate
ATTN: AMSEL-RD-NV-D
Fort Belvoir, VA 22060-5677
(1)

Dir, CECOM Intelligence and Electronic Warfare Directorate
ATTN: AMSEL-RD-IEW-D
Vint Hill Farms Station
Warrenton, VA 22186-5100
(1)

Cdr, Marine Corps Liaison Office
ATTN: AMSEL-LN-MC
Fort Monmouth, NJ 07703-5033
(1)

Naval Surface Weapons Center
Code R-23
ATTN: Patricia Smith
Silver Spring, MD 20903-5000
(1)

DARPA/TTO
ATTN: Dr. Peter Kemmey
1400 Wilson Blvd
Arlington, VA 22209
(1)

US Army Armament Research, Development & Engineering Ctr
ATTN: SMCAR-FSE
(1) Dr. A. Graf
(1) Dr. K.C. Pan
(1) Ms. Laura Krzastek
(1) Ms. Pam Stevens
Picasinny Arsenal, NJ 07806-5000
(1)

US Army Armament Research, Development & Engineering Ctr
ATTN: SMCAR-FSC
(1) Mr. G. Ferdinand
(1) Ms. H. Naber-Libby
Picasinny Arsenal, NJ 07806-5000
(1)

US Army Armament Research, Development & Engineering Ctr
ATTN: SMCAR-TD
(1) Dr. T. Davidson
Picasinny Arsenal, NJ 07806-5000
(1)

US Army Armament Research, Development & Engineering Ctr
ATTN: SMCAR-CCL-FA
(1) Mr. H. Moore
Picasinny Arsenal, NJ 07806-5000
(1)

US Army Armament Research, Development & Engineering Ctr
ATTN: SMCAR-AEE-B
(1) Dr. D. Downs
Picasinny Arsenal, NJ 07806-5000
(1)
US Army Ballistic Research Lab
ATTN: SLCBR-IB-B
(1) Mr. W. Oberle
(1) Dr. K. White
Aberdeen Proving Ground, MD
21005-0566

US Army Ballistic Research Lab
ATTN: SLCBR-TB-EP
(1) Mr. A. Zielinski
Aberdeen Proving Ground, MD
21005-0566

Dr. John Transue
1901 North Beauregard St
Suite 380
(1) Alexandria, VA 22311

Westinghouse
Naval Systems Division
ATTN: Mr. Steven Specht
476 Center Street
(1) Chardon, OH 44024

University of Texas at Austin
ATTN: Mr. John H. Gully
10100 Burnet Road
EME, Bldg 133
(1) Austin, TX 70758-4497

University of Texas at Austin
Institute for Advanced Technology
ATTN: Dr. Harry D. Fair, Jr.
10100 Burnet Road
(1) Austin, TX 70758-4497

FMC Corporation
Advanced Systems Center
ATTN: Mr. Michael Seale
4800 E. River Road
(1) Minneapolis, MN 55459-0043

General Dynamics Land Systems Div
ATTN: Dr. Bruce VanDeusen
P.O. Box 2074
(1) Warren, MI 48090-2074

State University of NY at Buffalo
Electrical and Computer Engrg Dept
ATTN: Dr. Walter J. Sarjeant
Bonner Hall, Room 312
(1) Buffalo, NY 14260