U.S. Army Aviation Epidemiology Data Register: Comparison of the Administrative Effect of Historical and Proposed Hearing Standards for Army Aviators

By

Kevin T. Mason

Aircrew Protection Division

March 1995

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

Kevin T. Mason
KEVIN T. MASON
LTC, MC, MFS
Director, Aircrew Protection
Division

 Released for publication:

R. W. W. WILKEY, O.D., Ph.D.
Chairman, Scientific
Review Committee

DENNIS F. SHANAHAN
Colonel, MC, MFS
Commanding
U.S. Army Aviation Epidemiology Data Register: Comparison of the administrative effect of historical and proposed hearing standards for Army aviators.

The U.S. Army Aeromedical Activity, U.S. Army Aeromedical Center, Fort Rucker, Alabama, requested a descriptive analysis of the current and proposed U.S. Army Class 2 aviator hearing standards to estimate the effect of changing to the proposed from the current standard in 1995. The background section compared one historical hearing standard from 1980 to the current (1983), and proposed (1995), hearing standards. The application of the aviator hearing standards in a hearing conservation, public health protocol was described.

A cohort of Army aviators, numbering 19,916, from calendar year 1993, were studied to determine the effect of changing the current aviator hearing standard to a standard proposed for the 1995 Army Regulation 40-501, Medical fitness standards. Six percent of the cohort (1242 of 19,916) failed the current hearing standard. An additional 5.5 percent of the cohort (1091 of 19,916) passed the current 1983 standard, but failed the proposed 1995 standard.

(Continued on next page)
19. Abstract (Continued):

The burden of managing the increased audiology consultation workload among the 1,091 new cases will be negligible among 201 of 212 aviation medicine clinics affected by the change in standards. However, the remaining clinics can expect more than one new audiology consultation requirement per month. Fort Rucker Aviation Medicine Clinic will carry the greatest burden with a predicted 187 additional consultations in the first 1 to 2 years of standard implementation. After initial screening, the number who will have progressive hearing loss requiring follow-up audiology consultations is unknown. Among the 1,091 aviators affected by the proposed standard, 12.5 percent already have completed the baseline audiology consultation prior to standard implementation.
Table of contents

List of tables ................................................................. 1
Military relevance ................................................... 3
Background ................................................................. 3
Method ................................................................. 5
Results ................................................................. 5
Discussion ............................................................... 6
Summary and conclusions ........................................... 8
References .............................................................. 9
Appendix A. Visual basic code for determining hearing fitness for Army aviator duties .... 10

List of tables

Table

1. Historical comparison of hearing standards for U.S. Army aviators ...................... 4
2. Demonstration of pass or fail the hearing standard at 1000 Hz for four example aviators .... 5
3. Number of aviators failing combinations of three hearing standards ........................ 7
4. Distribution of burden for audiology consultations directed by the new hearing standard ... 7

<table>
<thead>
<tr>
<th>Accession For</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIS CRA&amp;I</td>
<td>Y</td>
</tr>
<tr>
<td>DTIC TAB</td>
<td></td>
</tr>
<tr>
<td>Unannounced</td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Availability Codes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dist</th>
<th>Avail and/or Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td></td>
</tr>
</tbody>
</table>
Military relevance

Army aircraft, especially rotary-wing aircraft, produce high intensity noise that will injure unprotected human hearing. Hearing loss is a common cause of medical disqualification among Army aviators, despite the occupational loss of hearing being preventable in most cases. Most aviators with hearing loss continue to fly. Hearing standards for Army aircrew members are evaluated regularly and are modified as required. A change in Army aviator hearing standards was proposed to the Aeromedical Consultant Advisory Panel in 1989, and remains under consideration today.

The U.S. Army Aeromedical Activity, U.S. Army Aeromedical Center, Fort Rucker, Alabama, requested a descriptive analysis of the current and proposed U.S. Army Class 2 aviator hearing standards to estimate the effect of changing to the proposed hearing standard in 1995 from the current one. Study findings will be presented to the Aeromedical Consultant Advisory Panel as it makes final deliberations on the hearing standards proposed for the 1995 Army regulation 40-501, Medical fitness standards (Department of the Army, 1995).

Background

The Army conducts a hearing conservation program for Army aircrew members. Program objectives include conducting hearing conservation training, providing personal and helmet mounted hearing protection devices, and by annually screening the pure tone hearing of aircrew members at 500, 1000, 2000, 3000, 4000, and 6000 Hz (Department of the Army, 1980; U.S. Army Environmental Hygiene Agency, 1988; Department of the Army, 1991).

Those with hearing threshold levels in excess of screening standards are referred for a complete audiology evaluation to include air and bone conducted pure tone testing, binaural speech discrimination at the most comfortable listening level, bilateral speech reception threshold testing, and if indicated, tympanogram, retrocochlear testing, and ear, nose and throat consultation. Aviators are returned to flying duties following evaluation, unless their binaural speech discrimination score is less than 84 percent and/or the aviator subjectively feels unsafe while flying due to hearing loss. The complete audiology evaluation is repeated only if there is a 20 dB worsening of hearing threshold level in the frequencies of 1000, 2000, 3000, or 4000 Hz, compared to the last baseline audiology consultation (Department of the Army, 1986).

In 1989, 1600 aviators were medically disqualified for flying duties. Of these, 1280 were returned to flying duties. Among those returned to flying duties, 302 had hearing loss as the cause for medical disqualification. Of the 320 aviators medically terminated from aviation service, one was terminated due to hearing loss. This aviator requested termination from aviation service because he no longer felt safe handling instrument flying rules radio communications and could not be helped by a hearing aid (Mason, 1990).
Table 1 shows a historical comparison of hearing standards for Army aviators. The current hearing standard (1983) uses the concept of the better ear and poorer ear. The regulation does not state if the relationship between the better ear and the poorer ear is an “AND” logical relationship, or an “OR” logical relationship. In practice, the “OR” logical relationship has been used by the Aeromedical Activity since at least 1983 (personal communication with former directors, U.S. Army Aeromedical Activity). It is easy for flight surgeon offices and the Aeromedical Activity staff to make an administrative error while determining hearing fitness for flying duties using the better ear and poorer ear concept. Table 2 demonstrates this method of determining hearing fitness for flying duties using an “OR” logical relationship between the better ear and poorer ear.

The proposed 1995 standard removes the confusing concept of the better ear and poorer ear by application of a single hearing threshold level standard to either ear. The proposed standard also brings the hearing standards for Class 2 (aviators), and Classes 2S/2F/3 and 4 (other aircrew members and air traffic controllers), under one standard rather than three separate standards. These changes will reduce the confusion by the flight surgeon office and flying duty medical examination (FDME) reviewers in applying hearing standards.

In the range of 500 to 3000 Hz, the proposed standard is aligned with the current and 1980 better ear standard. In the range of 4000 to 6000 Hz, the proposed standard drops the hearing threshold level by 10 dB compared to the current standard, but is 10 to 20 dB above the previous standard of 1980.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Class 2 aviator hearing standard in decibels at a given frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ear 500 Hz</td>
</tr>
<tr>
<td></td>
<td>Poorer</td>
</tr>
<tr>
<td></td>
<td>Poorer</td>
</tr>
</tbody>
</table>

* Each decibel standard is stated as the failing standard; example, "the aviator fails with hearing threshold levels greater than 25 dB at 500 Hz."
Table 2.
Demonstration of pass or fail the hearing standard at 1000 Hz for four example aviators.

<table>
<thead>
<tr>
<th>Frequency 1000 Hz</th>
<th>Standard</th>
<th>Example aviator #1</th>
<th>Example aviator #2</th>
<th>Example aviator #3</th>
<th>Example aviator #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better ear</td>
<td>&gt;25 dB</td>
<td>20 dB</td>
<td>30 dB*</td>
<td>20 dB</td>
<td>30 dB</td>
</tr>
<tr>
<td>Poorer ear</td>
<td>&gt;35 dB</td>
<td>30 dB</td>
<td>35 dB</td>
<td>40 dB</td>
<td>40 dB</td>
</tr>
<tr>
<td>Pass or fail standard</td>
<td>Pass</td>
<td>Fail</td>
<td>Fail</td>
<td>Fail</td>
<td>Fail</td>
</tr>
</tbody>
</table>

* Bold face type indicates the ear(s) that fails the better ear/poorer ear hearing standard.

Method

The first occurrence of a FDME for each Army aviator was extracted from the Aviation Epidemiology Data Register for the period of 1 January 1993 to 31 December 1993 by date of examination. Data elements were extracted from these FDMEs included: cohort subject social security number, age, facility of examination, pure tone audiogram findings for the right and left ear.

The hearing standards from Table 1 were applied to the hearing findings of each aviator to determined if the aviator passed or failed the standard. Appendix A shows the Visual Basic™ code applied to determine the pass or fail status for each standard (Microsoft Corporation, 1993a). The waiver and suspense file was queried for those passing the current standard, but failing the proposed standard, to determine who had already undergone a complete audiology evaluation.

Analyses of the data were conducted using the pivot wizard function (crosstabs) of Excel 5.0™ to create a descriptive comparison of the standards (Microsoft Corporation, 1993b). The effects of the proposed standard on examination facilities were tabulated.

Results

This study reviewed the audiograms of 19,916 Army aviators for calendar year 1993. Among the 1993 aviator cohort, 3,799 (19.1 percent) failed at least one of the hearing standards as shown in Table 1. Among the 3,799 aviators who failed at least one of the hearing standards, 1,242 failed all three standards. Another 1,466 failed the most stringent 1980 standard, but passed the current 1983 standard and proposed 1995 standard. This left 1,091 aviators who passed the current standard, but failed the proposed standard. These 1,091 aviators would be required to undergo a complete audiology consultation in the first year they were discovered to meet the proposed standard. Only those with progressive hearing loss would be required to undergo further audiology consultation.
The work load of the excess, first-time, audiology consultations for the 1,091 aviators will be done by 212 military facilities. Of these, 201 facilities will have 1 or less excess audiology consultations per month. The U.S. Army Aeromedical Center, which has the greatest FDME burden of all military facilities, can expect 187 audiology consultations for aviators in the first 1 to 2 years of the proposed standard implementation. Table 4 shows the distribution of burden for excess audiology consultations directed by the new hearing standard. Of the 1,091 aviators, the waiver and suspense file query showed that 136 (12.5 percent) already have completed an audiology evaluation; lessening the burden for excess audiology consultations directed by the new hearing standard.

Discussion

Army aviator hearing standards are not clinical standards, but are public health screening standards for aviators used to determine who needs a comprehensive audiology evaluation. The evaluation rules out other serious causes of hearing loss. Among the many with noise induced, high frequency hearing loss, there will be aviators with undiagnosed central nervous system, inner ear, and middle ear disorders, such as acoustic neumomas and cholesteatomas, that require further treatment or restriction from flying duties. The evaluation establishes a baseline of hearing threshold levels for reference in future screening. And hopefully, the evaluation stimulates greater attention to the aviator's hearing protection strategies at work and home.

Hearing standards for aviators should as a minimum meet the national public health standard of care for hearing screening. Unfortunately, most hearing standards in this country are exposure oriented, and not hearing threshold level oriented, thwarting comparison of Army standards to public standards.

Hearing loss is a common finding among Army aviators as seen in this study with 19 percent failing at least 1 of the 3 study hearing standards and 6.2 percent failing the current hearing standard. What significance this burden of hearing loss has on Army aviation safety, aviator performance, and mission completion is unknown. The issue is likely to be helped somewhat by the introduction of the communication ear plug (Mason and Mozo, 1995; Mozo, Murphy, and Ribera, 1995). This prototype device improves speech intelligibility in the rotary-wing environment while providing additional hearing protection to the aviator helmet earcup. But, the issue is likely to become more complex with the introduction of three dimensional acoustic cue devices to the aviator helmet as proposed in future Air Warrior aircrew member ensembles. In addition, the hearing performance effects of the aviation operational environment are not well known, including the effects of night flying and medications, and use of equipment such as spectacles, chemical protective masks, and cold weather ensembles. What other auditory factors may be as important, or more important, for aviator performance than the pure tone hearing threshold is unknown. Therefore, given the lack of performance-based aviation audiology knowledge, the aviation medicine community will in the foreseeable future, have to continue to rely on other standards development methods, such as the establishment of a “best guess” public health screening protocol.
Table 3.
Number of aviators failing combinations of three hearing standards.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>16117</td>
</tr>
<tr>
<td>Fail</td>
<td>Fail</td>
<td>Pass</td>
<td>1242</td>
</tr>
<tr>
<td>Fail</td>
<td>Pass</td>
<td>Fail</td>
<td>1466</td>
</tr>
<tr>
<td>Fail</td>
<td>Fail</td>
<td>Pass</td>
<td>0</td>
</tr>
<tr>
<td>Fail</td>
<td>Pass</td>
<td>Fail</td>
<td>721</td>
</tr>
<tr>
<td>Pass</td>
<td>Pass</td>
<td>Fail</td>
<td>370</td>
</tr>
</tbody>
</table>

Table 4.
Distribution of burden for audiology consultations directed by the new hearing standard.

<table>
<thead>
<tr>
<th>Number of audiology consultations in excess of expected examinations</th>
<th>Number of flight surgeon offices carrying the burden of excess, new audiology consultations</th>
<th>Facility by name with &gt;1 excess new audiology consultation per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>OK ARNG, Lexington, OK</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>Fort Belvoir</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>Fort Hood</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>EAATS, Indiantown Gap, PA</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>Fort Campbell</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>Fort Bragg</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fort Rucker</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>OK ARNG, Lexington, OK</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Fort Belvoir</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Fort Hood</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>EAATS, Indiantown Gap, PA</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>Fort Campbell</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>Fort Bragg</td>
</tr>
<tr>
<td>187</td>
<td>1</td>
<td>Fort Rucker</td>
</tr>
<tr>
<td>Grand Total</td>
<td>212</td>
<td></td>
</tr>
</tbody>
</table>
Summary and conclusions

A cohort of Army aviators, numbering 19,916, from calendar year 1993, were studied to determine the effect of changing the current aviator hearing standard to a standard proposed for the 1995 Army regulation 40-501, Medical fitness standards. The paper compared one historical hearing standard from 1980 to the current (1983), and proposed (1995), hearing standards.

Six percent of the cohort (1,242 of 19,916) failed the current hearing standard. An additional 5.5 percent of the cohort (1,091 of 19,916) passed the current standard, but failed the proposed standard.

The burden of managing the increased audiology consultation workload among the 1,091 new cases will be negligible among 201 of 212 aviation medicine clinics affected by the change in standards. However, the remaining clinics can expect more than one new audiology consultation requirement per month. Fort Rucker Aviation Medicine Clinic will carry the greatest burden with a predicted 187 additional consultations in the first 1 to 2 years of standard implementation. After initial screening, the number who will have progressive hearing loss requiring follow up audiology consultations is unknown. Among the 1,091 aviators affected by the proposed standard, 12.5 percent have already completed the baseline audiology consultation prior to standard implementation.

For now, Army aviator hearing standards will have to be oriented to public health screening guidelines and the traditional, and perhaps arbitrary, deliberations by aviation medicine policy experts. In the future, when research projects on aviator hearing and flying performance are completed, perhaps hearing standards could be oriented to aviation performance and safety, in addition to public health screening guidelines and arbitrary deliberations. Fortunately, the Army has recently established a science and technology objective for aviator performance that includes objectives for studying aviator hearing performance.

Finally, this paper highlights the value of the Aviation Epidemiology Data Register in responding in less than 1 week to a critical question asked by aviation medicine policy makers. In this case, the issue was how would a new hearing standard affect aviation medicine clinic workload at the moment when the standard is going to press! With the study cohort established, other proposed standards could be tested and evaluated rapidly. Other questions could be addressed by the AEDR, such as what is the natural progression of hearing loss among aviators? Without the AEDR, these questions could not be answered at all, or would require an expensive, time-consuming review of records in a sampling of clinics.
References


Mason, K. T. 1990. Health problems of the aging Army aviator. Presentation at the 2nd Army Safety and Standardization Conference, Savannah, GA.


Appendix A.
Visual basic code for determining hearing fitness for Army aviator duties.

*** 18 February 1995, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL  ***
*** This code is written in Microsoft Visual Basic 3.0 for Windows by Kevin T. Mason ***
*** U.S. Army Aeromedical Research Laboratory places this code in the public domain ***

*** Determination of PASS X=0 or FAIL X=1 for 1980 hearing standards

Function FAIL1980(R500, L500, R1000, L1000, R2000, L2000, R3000, L3000, R4000, L4000, _
R6000, L6000) As Integer ‘ pass the hearing test findings to the function
Dim X As Integer
X = 0  ‘ initialize the variable X as PASS standard X=0, if X<>0 then X is FAIL standard
If R500 > 25 Or L500 > 25 Then
    X = 1
ElseIf MIN(R1000,L1000) > 25 Or MAX(R1000,L1000) > 35 Then
    X = 1
    X = 1
ElseIf MIN(R3000,L3000) > 35 Or MAX(R3000,L3000) > 45 Then
    X = 1
ElseIf MIN(R4000,L4000) > 35 Or MAX(R4000,L4000) > 45 Then
    X = 1
ElseIf MIN(R6000,L6000) > 35 Or MAX(R6000,L6000) > 45 Then
    X = 1
Else
    X = 0
End If
FAIL1980 = X  ‘ pass variable for PASS or FAIL back to calling procedure
End Function

*** Determination of PASS X=0 or FAIL X=1 for 1983-1994 hearing standards ***

R6000, L6000) As Integer ‘ pass the hearing test findings to the function
Dim X As Integer
X = 0  ‘ initialize the variable X as PASS standard X=0, if X<>0 then X is FAIL standard
If R500 > 25 Or L500 > 25 Then
    X = 1
ElseIf MIN(R1000,L1000) > 25 Or MAX(R1000,L1000) > 35 Then
    X = 1
    X = 1
Elseif MIN(R3000, L3000) > 35 Or MAX(R3000, L3000) > 45 Then
    X = 1
Elseif R4000 > 65 Or L4000 > 65 Then
    X = 1
Elseif R6000 > 75 Or L6000 > 75 Then
    X = 1
Else
    X = 0
End If
FAIL1983 = X ' pass variable for PASS or FAIL back to calling procedure
End Function

*** Determination of PASS X=0 or FAIL X=1 for proposed 1995 hearing standards ***

    R6000, L6000) As Integer ' pass the hearing test findings to the function
Dim X As Integer
X = 0 ' initialize the variable X as PASS standard X=0, if X<>0 then X is FAIL standard
If R500 > 25 Or L500 > 25 Then
    X = 1
Elseif R1000 > 25 Or L1000 > 25 Then
    X = 1
    X = 1
Elseif R3000 > 35 Or L3000 > 35 Then
    X = 1
Elseif R4000 > 65 Or L4000 > 65 Then
    X = 1
Elseif R6000 > 75 Or L6000 > 75 Then
    X = 1
Else
    X = 0
End If
FAIL1995 = X ' pass variable for PASS or FAIL back to calling procedure
End Function
IAF Liaison Officer for Safety  
USAF Safety Agency/SEFF  
9750 Avenue G, SE  
Kirtland Air Force Base  
NM 87117-5671  

Naval Aerospace Medical  
Institute Library  
Building 1953, Code 03L  
Pensacola, FL 32508-5600  

Command Surgeon  
HQ USCENTCOM (CCSG)  
U.S. Central Command  
MacDill Air Force Base, FL 33608  

Director  
Directorate of Combat Developments  
ATTN: ATZQ-CD  
Building 515  
Fort Rucker, AL 36362  

U.S. Air Force Institute  
of Technology (AFIT/LDEE)  
Building 640, Area B  
Wright-Patterson  
Air Force Base, OH 45433  

Henry L. Taylor  
Director, Institute of Aviation  
University of Illinois-Willard Airport  
Savoy, IL 61874  

Chief, National Guard Bureau  
ATTN: NGB-ARS  
Arlington Hall Station  
111 South George Mason Drive  
Arlington, VA 22204-1382  

AAMRL/HEX  
Wright-Patterson  
Air Force Base, OH 45433  

Commander  
U.S. Army Aviation and Troop Command  
ATTN: AMSAT-R-ES  
4300 Goodfellow Boulevard  
St. Louis, MO 63120-1798  

Commander  
U.S. Army Aviation and Troop Command  
Library and Information Center Branch  
ATTN: AMSAV-DIL  
4300 Goodfellow Boulevard  
St. Louis, MO 63120  

Federal Aviation Administration  
Civil Aeromedical Institute  
Library AAM-400A  
P.O. Box 25082  
Oklahoma City, OK 73125  

Commander  
U.S. Army Medical Department  
and School  
ATTN: Library  
Fort Sam Houston, TX 78234  

Commander  
U.S. Army Institute of Surgical Research  
ATTN: SGRD-USM  
Fort Sam Houston, TX 78234-6200  

Air University Library  
(AUL/LSE)  
Maxwell Air Force Base, AL 36112  

Product Manager  
Aviation Life Support Equipment  
ATTN: SFAE-AV-LSE  
4300 Goodfellow Boulevard  
St. Louis, MO 63120-1798
Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

U. S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander
USAMRMC
ATTN: SGRD-PLC (COL R. Gifford)
Fort Detrick, Frederick, MD 21702

TRADOC Aviation LO
Unit 21551, Box A-209-A
APO AE 09777

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Italian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362-5349

Commander, U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Dr. Sehchang Hah
Dept. of Behavior Sciences and
Leadership, Building 601, Room 281
U. S. Military Academy
West Point, NY 10996-1784

Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

French Army Liaison Office
USAAVNC (Building 602)
Fort Rucker, AL 36362-5021

Australian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Dr. Garrison Rapmund
6 Burning Tree Court
Bethesda, MD 20817

Commandant, Royal Air Force
Institute of Aviation Medicine
Farnborough, Hampshire GU14 6SZ UK
Defense Technical Information
Cameron Station, Building 5
Alexandra, VA 22304-6145

Commander, U.S. Army Foreign Science and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Commander
Applied Technology Laboratory
USARTL-ATCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604

Commander, U.S. Air Force Development Test Center
101 West D Avenue, Suite 117
Eglin Air Force Base, FL 32542-5495

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

Commander, U.S. Army Missile Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R /ILL Documents
Redstone Arsenal, AL 35898

Aerospace Medicine Team
HQ ACC/SGST3
162 Dodd Boulevard, Suite 100
Langley Air Force Base, VA 23665-1995

U.S. Army Research and Technology Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

Commander
USAMRCMC
ATTN: SGRD-ZC (COL John F. Glenn)
Fort Detrick, Frederick, MD 21702-5012

Dr. Eugene S. Channing
166 Baughman's Lane
Frederick, MD 21702-4083

U.S. Army Medical Department and School
USAMRDALC Liaison
ATTN: HSMC-FR
Fort Sam Houston, TX 78234

NVESD
AMSEL-RD-NV-ASID-PST
(Attn: Trang Bui)
10221 Burbeck Road
Fort Belvoir, VA 22060-5806

CA Av Med
HQ DAAC
Middle Wallop
Stockbridge, Hants S020 8DY UK

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NLOM
Groton, CT 06349-5900

Commander
Aviation Applied Technology Directorate
ATTN: AMSAT-R-TV
Fort Eustis, VA 23604-5577
The Honorable Gilbert F. Decker  
Assistant Secretary of the Army  
for Research, Development,  
and Acquisition  
ATTN: Room 2E672  
103 Army Pentagon  
Washington, DC 20310-0103

HQ, AFOMA  
ATTN; SGPA (Aerospace Medicine)  
Bolling Air Force Base;  
Washington, DC 20332-6188

Cdr, PERSCOM  
ATTN: TAPC-PLA  
200 Stovall Street, Rm 3N25  
Alexandria, VA 22332-0413

Dr. Craig Dorman  
Office of the Deputy Director,  
Defense Research and Engineering  
ATTN: Room 3D129LM  
103 Army Pentagon  
Washington, DC 20310-0103