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1. Introduction

The propagation of sound waves close to the ground is a complex problem
involving many interesting mechanisms. In addition to geometrical spreading
and molecular absorption, which are reasonably well understood, the three
main mechanisms that influence the acoustic field are reflection with phase
change due to the finite impedance of the ground, refraction by wind and
temperature gradients, and scattering by atmospheric turbulence. Outdoor
sound propagation in a turbulent medium is not a well-understood process and
has only recently begun to receive serious attention.

The effects of turbulent scatter of the acoustic wave in the atmosphere will
impact the detectability range and the accuracy of the tracking of tactical
targets as passive acoustic sensor arrays are integrated into the battlefield. The
effects of turbulent scatter are not new in the tactical sensor arena. The
infrared, laser, radar, and millimeter wave sensors also suffer from scattering
by atmospheric turbulence. Scattering of the acoustic wave by atmospheric
turbulence can assist in the detection of tactical targets by scattering sound into
refractive shadow zones. Acoustic sensors allow passive and nonline-of-sight
detection of targets. Early warnings of the presence of tactically important
targets in the battlefield can be made, so actions can be carried out to destroy
the targets before they can destroy your assets.

The negative effect of the scattering by atmospheric turbulence is the impact
on the bearing accuracy of passive acoustic sensor arrays. In the presence of
large-scale turbulence, the signal at the sensor will fade in and out, making it
difficult to keep track of a target. In the presence of the small-scale
turbulence, the scattering of the acoustic signal will cause a reduction in the
coherence between any two spatial points. The loss in coherence reduces the
bearing accuracy of the sensor array causing an increase in the angular region
of the location of the target. The need for computer models to predict these
effects of atmospheric turbulence, both large and small scale, on propagation
of acoustic waves in the atmosphere over long ranges (R > 5 km) is very
important.




The aim of this report is to describe some of the effects of large- and small-
scale turbulence on sound propagation over ranges less than 1 km. The report
will discuss some of the predictive models for the effect of turbulence on sound
propagation.

First, the actual sizes for the large- and small-scale of turbulence, which are
important to atmospheric acoustics, must be defined. Turbulence arises from
instabilities at large Reynolds numbers in flows that are originally laminar.
Laminar flow becomes turbulent at a Reynolds number of approximately
2000. [1] Reynolds numbers are estimated by

r=—= (1)
v
where
u = wind speed
L = the length scale of the motion
v = . the kinematic viscosity of the medium, which is given by the

absolute viscosity divided by the density (5/p).

The absolute viscosity is 1.84 x 10° kg m™ s and the density is 1.21 kg m?
for dry air at standard temperature and pressure, giving a kinematic viscosity
of 1.5 x 10° m? s*. Turbulent flow would begin at wind speeds as little as
0.03 m s for a scale length of 1 m, meaning that turbulence is always present
in the atmosphere.

A set of eddies is created as soon as a disturbance occurs. These eddies have
characteristic lengths and velocities of a lower order than the corresponding
geometrical and Kinematical quantities of the mean flow. The energy for the
entire motion lies in the mean flow, which is distributed over the largest
eddies. Turbulence cannot maintain itself because of viscous losses and
depends on its environment to obtain energy. A common source of energy for
turbulent velocity fluctuations is shear in the mean flow.

Meteorologists divide the motions of the atmosphere into three regimes:
macroscale, mesoscale, and microscale. [2] The macroscale motions are those
resolved by the synoptic observing network and seen on weather maps. The




mesoscale motions occur in horizontal sizes of 10 to 500 km, including such
phenomena as sea breezes, mountain-valley wind systems, squall lines, cloud
clusters, and many orographic features including standing waves. The
microscale motions are all those that are smaller still, and usually the term
microscale refers to small-scale waves or to the turbulent part of the flow.

The distribution of the energy of the motion or the variance of other
meteorological variables in these regimes is best revealed by spectra. Figure 1
shows a typical energy spectrum for the atmosphere. [3] The region of the
energy spectrum most important for outdoor sound propagation is for time
scales of turbulence, which occur on the order of 1 hr and less. This time span
is associated with microscale and part of the mesoscale regimes.

TE(f) (m2<?)

0 T | T 1 1
1000 100 10 1 0.1 0.01 0.001

Time (Hr)

Figure 1. Typical energy spectrum for the atmosphere.

The microscale region of the spectra is typically divided into three portions:
energy-containing subrange, inertial subrange, and dissipation subrange, as
originally proposed by Kolmogorov. Most of the energy and energy input is
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in the energy-containing subrange. Length scales of turbulence in this region
are typically tens of meters to several kilometers; local time scales vary
between tens of seconds and tens of minutes. The characteristics of spectral
densities in this range depend on many variables; wind, roughness, depth of
boundary layer, and so on. Wavelengths less than tens of meters, but larger
than the Kolmogorov microscale define the inertial subrange. Here no energy
enters the system from outside, nor is any energy dissipated. Energy arrives
from small wave numbers (larger turbules) and is transmitted toward larger
wave numbers (smaller turbules). In the case of the velocity components, the
energy leaves the inertial subrange at a rate e. Wavelengths less than the
Kolmogorov microscale comprise the dissipation subrange.

Generally, the definition of large-scale turbulence is the turbulence found in the
energy-containing subrange, also known as the source subrange. Turbulence
in this region is on the order of tens of meters to kilometers. Small-scale
turbulence refers to the turbulence found in the inertial subrange. For the
purpose of acoustics, small-scale turbulence refers to scale sizes on the order
of tens of centimeters to a few meters. This is the definition being used
whenever small- or large-scale turbulence is referred to in this report.




2. Small-Scale Turbulencé

2.1

Much of the statistical work on turbulence effects in acoustics has been done
by Chernov, [4] Tatarski, [5] and Karavainikov. [6] Daigle et al. [7] extracted
the small-scale turbulence calculations for a spherical wave from Karavainikov
to compare to their experimental results. Much of the analyses of turbulent
effects has concentrated primarily on the effects of small-scale turbulence on
sound propagation through the atmosphere.

Acoustic Refractive Index Structure Function

The index of refraction n at a point in space can be writtenasn = 1 + p =
¢, / ¢ where c, is the sound speed at reference temperature T, in the absence
of turbulence and p is the fluctuating part of the acoustic index of refraction for
the medium. The sound speed will generally depend on the local

temperature T
T
M =c |— . )
M =c, ITo

The effects of the local mean wind speed u can be incorporated by
c=cT) +@-F 3)
where the second term is the dot product between the wind velocity and the

unit vector in the direction of sound propagation. Substituting the definition
of a dot product yields

¢ = c(T) + u cos® 4)

where @ is the angle between the direction of propagation and the direction
toward which the wind blows. Assuming that the variables (T, u) in
equation (4) can be written as the sum of the mean value (<T>, <u>) and
the fluctuation about the mean (8T, du), equation (4) can be rewritten using the
binomial expansion as




¢ = c(T) (1 + 2?%) + (u)cos0 (1 + —(%) ©)

Squaring both sides and performing a time average yields, using the concept
of the mean for the sound speed (<c>) and the fluctuation about the mean

(6¢c):

2
Co

KTy

(8c?) = (8T% + cos®0 (du?) ©)

where the time average of the fluctuations are assumed to be zero, or
{8T) = {bu) = 0 has been used, and the cross terms between u and T are
assumed to be negligible. The variance of the index of refraction fluctuations
{u» is easily calculated. Using the fact that p = (c, - ¢) / ¢ = &c/c, then
squaring and taking a timed average results in

2
(w?) = ﬁﬁ%z )
Co

where <c?> has been approximated by c3. Therefore, equation (6) becomes,
after dividing by c? and writing <éu’>> = ¢, <6T?>> = o

(W2 = 0% cos? 6 . o> .
c; «T)?

t))
This is the equation for the acoustic refractive index structure function.
Equation (8) can be rewritten in the form:

2 2
C;:&’ -+ CT

cc  KT)?

®

where C? is the mechanical turbulence structure function defined by




2.2

C2= a%cos? 6 = @r;_ﬁ - 267 (10)

and C2 is the thermal structure function defined by

2=t ={8T1) (35, ws )
r# .
where
Au = the difference in wind speed
AT = the difference in the temperatures at two points separated by
a distance r
€ = the dissipation rate of mechanical energy
X1 = the dissipation rate of thermal turbulent energy

Wind-driven turbulence is when C2> C2 and temperature-driven turbulence is
when C2> C2.

Development of Early Models

Chernov [4] and Tatarski [5] developed the basic model for acoustic single
scattering from turbulent eddies in free space. Both assumed the spatial
correlation function for the acoustic index of refraction to be a Gaussian
function. The theory assumes forward scattering in a homogeneous atmosphere
with isotropic turbulence. Both Chernov and Tatarski start with the acoustic
wave equation.

2 _ (1+pf 3 _ 12)

vp - A—

c: o

o

where p is the fluctuating part of the acoustic index of refraction of the
medium with |pu| <1. The solution for a single frequency plane wave can be
written in the form




10

p =A(r) e‘i[mt_s(r)] (13)

where
S@ = the phase of the perturbed wave
w = the angular frequency
t = time
Al = the amplitude at distance r.

The Rytov method is used to solve the wave equation. A procedure must be
developed to solve for S(r) and A(r) because they are unknown functions.
Rytov’s method consists of substituting another function:

p =A0e°i[“"'¢(’)] (14)

into equation (13) and solving for ¢. The resulting relationship for function ¥
is

¥ = S¢) + iln(‘;(r)). (15)

o

In order to simplify the derivation, x is typically used to represent the
In(A(r)/A,). Substituting  for p in equation (12), Chernov and Tatarski arrive
at the phase and log-amplitude variances, {S*» and <{x®, respectively,
assuming a Gaussian correlation function:

(x? = —2‘@ (BDKRL (1 - -;—tan“(D)) (16)
and
(8?) = @ ()P RL (1 + %tan'l(D)) 17)




D =  the wave parameter = 4R/(kL?)
L = the scale of turbulence
R = the propagation distance
k = the acoustic wavenumber
<> = the variance of the index of refraction fluctuations

The only restriction for this solution is that the phase change and relative
change of amplitude must be small between points separated by a wavelength.
This condition does not impose any limitations upon the total variation in these

quantities.

Chernov and Tatarski examine the two limiting cases. The first limiting case
isD < 1orR < 0.25kL? = R,,. At62.5 Hz and greater, turbules with sizes
on the order of two times the square root of the range or larger would obey
this condition. Applying the limiting condition to equations (16) and (17),
yields

*?) = %@ (03 (%) (18)
and
(51 =R () P RL. a9

For turbules the size of the propagation path (R=L), the log-amplitude
variance <x*> is on the order of {u?>, which is about 10° for the
atmosphere (equations (18) and (19)).

In the opposite case, where D > 1 or R > R, the quantity (1/D)tan’ (D) <1
and

(%) =8 = @ (n2) k2 jeL. (20)
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The condition would apply for turbules sizes on the order of one-fourth times
the square root of the range or less at frequencies less than 4000 Hz. The
solution would be applicable for turbules smaller than 2.5 m at a range of
100 m.

Chernov calculates the transverse autocorrelation function for the phase and
amplitude fluctuations. Suppose two receivers lie in a plane located a distance

R from a source and are separated by a distance p (figure 2). For small values
of D (D < 1), the amplitude R, and phase Ry autocorrelation coefficients

are [8]
1 (_P_ﬂ e 1)
2\ L

Ry = e P, (22)

and

The phase autocorrelation coefficient Rg has a Gaussian shape, which is the
same form as the correlation coefficient for the refractive index fluctuations.
The amplitude autocorrelation R, is not Gaussian.

Receiver #1

®.

Wave Front >
Source
® p
< R —>

oV

Receiver #2

Figure 2. Chernov’s geometry.
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The corresponding structure functions can be derived once the forms for the
phase and log-amplitude variances are known. The structure functions for the

log-amplitude x = In(p/p,) and phase S = ¢ - ¢, in a plane perpendicular to
the direction of propagation are defined as:

D, (r,p)= {[x(F+ )~ x(DF) (23)

and

Dy(r,p)= {[S(F+B)- SPIP) 24)

where r is the distance from the source to the plane and p is the transverse
separation.

The following relationships hold for the log-amplitude and phase structure
functions:

D, (r,p)=2[(x*) - B,(p)] (25)

and

Dy(r,p)=2[(5") - B(p)] (26)

because the difference in phase S has a zero mean and the mean of x is very
close to zero for small fluctuations. B, (o) and By(p) in equations (25) and (26)
are the transverse correlation function of the log-amplitude and phase
fluctuations, respectively.

Starting with the plane wave model used by Tatarski and Chernov,
Karavainikov [6] developed a spherical wave model for calculating the log-

amplitude and phase variances. When R/KL? & 1, the variance equations have
the form

o= LR @)

and

13
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(s?)= %E(pz)m R. 28)

Karavainikov also succeeded in deriving an expression for the phase and log-
amplitude transverse correlation functions for the above conditions:

_ (v 2(p/L) 29
B,(p) (x)—p/L (29)
and
B.(o)= (s2).2(p/L) (30)
(p)= (5% o/
where
®(p/L)= fo P -y . (31)

Substituting equations (29) and (30) into equations (25) and (26), respectively,
gives the log-amplitude and phase structure functions

D, =Dg= /(WK RL[I - %} (32)
P

The log-amplitude and phase variance equations, equations (27) and (28),
provide an estimate of the variance of the acoustic signal caused by small-scale
turbulence. These equations have been compared to experimental data over
short ranges (R < 500 m). Comparisons [9,10] using equation (32) for L =
1 m showed good results for frequencies of 125 Hz and above. However, the
theory severely underpredicts the data at frequencies below 125 Hz. It is not
exactly known why the theory underpredicts the effects at low frequencies.

A possible explanation for the model underpredicting the data at frequencies
below 125 Hz is contamination of the data by wind noise. [9] Figure 3 shows
a comparison between data and predictions of the phase and log-amplitude
structure functions for a given signal-to-noise ratio. It happens when the




signal-to-noise ratio drops too low, then the background and wind noise are the
main sources of acoustic energy causing an overestimate in the data. Wind
noise occurs as small-scale turbules, tens of centimeters to tens of meters,
move across the microphones resulting in variations in the pressure exerted
against the microphone diaphragm. This is a very probable explanation for
equation (32) underpredicting the levels below 125 Hz because wind noise is
a low-frequency phenomena with its greatest effect below 125 Hz.

- . N 10 .
63 Hz 125Hz
- 1
LA D 3 £ 10
: w9 E L
‘g é 10 - -@- -------- w - -Q- -
@
£ £ w0’
& 2 10*
10°
v v v y 10° 4 y y v v r
10 15 20 25 30 0 5 10 15 20 25 30
Transverse Separation {(m) Transverse Separation (m)
g g
o
ks ® |
g 2 g
.................... < &
o
g : E
;E: S g 10* 4
5
[ 10 4
<4 - v v v v 10* v v
0 5 10 15 20 25 30 : 0 5 10 15 20 25 30
Transverse Separation (m) Transverse Separation (m)

Figure 3. Comparison of data (o, phase, and x, log amplitude) structure functions
with numerical predictions (-, phase and -—, log amplitude) for a source 0.30 m off
the ground. The dashed horizontal line represents the particular background noise
structure function for each frequency.
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2.3

2.3.1

16

The log-amplitude and phase structure functions are related to the coherence
function. If the variance in the acoustic signal results mainly from wind noise,
then a loss of coherence would be expected. The loss of coherence between
two microphones means that the variations occurring at one microphone are not
related to the variations occurring at the other microphone. This causes total
loss in phase relation between the two microphones resulting in not being able
to track an acoustic source.

Development of New Models

The early turbulence models provided an easy way of estimating the variance
of an acoustic signal. However, the early models were, for the most part, a
very simplified view of the environment. The environment that sound
propagates through includes refraction, diffraction, and complex ground
impedance. None of these effects are included in the early models. A
researcher must first try to understand what type of small-scale turbulence is
present in the atmosphere, including the dynamics of the small-scale
turbulence, when developing new models. Current research has focused on the
incorporation of scattering models into an acoustic propagation code to gain a
better understanding of the physical reality of acoustic scattering by small-scale
turbulence. Some of these models will be discussed. The name of the models
are not found listed as such in literature. The naming convention of the models
in this report is done mainly to associate the model with the person who
developed it because names have never really been assigned to the models in
the literature.

Daigle Model

The Daigle model could have been named the Karavainikov model because the
work and formulas used by Daigle et al. is based on the work done by
Karavainikov, [6] Chernov, [4] and Tatarski. [5] The main reason for placing
the Daigle model in the new model section is that Daigle et al. took this early
work and applied it to a series of experiments conducted during a variety of
conditions over relatively short paths (horizontal ranges < 200 m).




Daigle et al. used two Wallac thermoanemometers to measure the temperature
and wind velocity as well as the fluctuations. This instrument provided them
with a response time of 0.03 s for measuring the fluctuations. Figures 4 and
5 show sample time series of the temperature and wind speed. To obtain
turbulence parameters, the autocorrelation of each of the time series were
calculated. To maintain a parallel with Karavainikov’s work, a Gaussian form
was chosen for the spatial correlation function

(i) = e @)

where L is a measure of the scale of the turbulence. Using this result,
equation (7) can be substituted into this equation resulting in

o,cosO _p2 or 2 g2
S oo (34)

) - 2

4

where
L, = the correlation length of the wind
L, = the correlation length of the temperature

It can be seen from equation (34) that the spatial correlation function is
weighted according to the values of L, and L;. The correlation lengths of the
wind and temperature were calculated from the autocorrelation of the wind and
temperature time series by taking the e'* point on the curve, giving the
correlation time for the data. The correlation lengths were calculated using
Taylor’s Frozen Turbulence hypothesis. [11]

From these measurements, Daigle et al. [10] used the results of Karavainikov
(equations (27) and (28)) to calculate the log-amplitude and phase variances
based on measurement of the turbulence parameters <u®>> and L. They also
performed experiments to study the transverse and longitudinal relationship of
the log-amplitude and phase structure parameter (equation (32)). The results
obtained by Daigle et al. were quite good. Most of the turbulence experiments
were conducted over regions with relatively low wind speeds and good fetch.
This restricted the turbulence effects to mainly thermally driven turbulence.

17
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Figure 4. Typical temperature time series showing fluctuations.
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Figure 5. Typical wind speed time series showing fluctuations.

2.3.2 McBride Model

McBride [12,13] developed a computer simulation to model the effect of
scattering of acoustic waves by small-scale turbulence in the presence of
refraction and complex ground impedance. He developed a scattering equation
based on a turbule with a Gaussian index of refraction profile inside it. A first
order Born approximation was used to solve the scattering equation. The
scattering equation for a given turbule is given by

| thirg +1) [ -CEsY4

| . 23 € e

| T? =T g,k*s’® : (33)
| 2 r,rT, 1-ia
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where

.2

C = (1 - cos@)? + SO

1-ia
_ks*(1 1
a=—|—+—
2 \r, 1,

The terms are given by

k = the acoustic wavenumber

I = the distance from source to turbule center
I, = the distance from turbule center to receiver
o = the scattering angle

s = the size of a turbule

qi = the value of u at the center of a turbule

The value used for q; was derived by work originated by De Wolf. [8]
McBride derived a value for g; using De Wolf’s work

g -+ | 3V (36)
‘ ny® NL?

where N is the total number of turbules in the volume V and L is the
correlation length. The size of the turbule is given by

s = —. 37)

McBride’s model is one of the first models to include the ground effect and the
effect of atmospheric refraction on the sound wave. A model run consists of
creating a turbulence field and propagating sound waves through it. After the
sound has been propagated through the turbulence field, each turbule position
is perturbed a small amount and then sound is propagated through the new
configuration of turbules. This process is continued until a statistically
significant number of iterations are completed. At the completion of each

19




iteration, the complex amplitude of the sound is stored. After all of the
iterations have been completed, the variance of the phase and amplitude is
calculated along with average phase and amplitude of the received sound field.

McBride’s model was compared against the model results and data collected by
Daigle et al. (figure 6). Daigle’s model consisted of a simple diffraction theory
that allowed sound to be diffracted into the refractive shadow zone. The
refractive shadow zone is a region where no direct or reflected sound waves
can reach the receiver. Diffraction theory works best at the lower frequencies.
This can be observed in Daigle’s results (figure 6b). The best comparison
occurred at 250 Hz. Diffraction theory did not work at all at the higher
frequencies. McBride’s model compares much better to Daigle’s data than the
diffraction model did. This seems to indicate that much of the sound at the
higher frequencies are due to scattering of turbulence into the shadow zone than
by diffraction.
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Figure 6. Comparison of measured sound levels (symbols) with predictions based on
(a) McBride’s turbulence model and (b) diffraction into a refractive shadow zone.
Solid circles are 1000 Hz, triangles are 500 Hz, and diamonds are 250 Hz.



2.3.3

Gilbert-Raspet Model

Gilbert et al. [14] integrated a small-scale turbulence model into the Crank-
Nicolson Parabolic Equation (PE) to investigate turbulent scattering of sound
into a refractive shadow zone. The PE is a good model for the incorporation
of turbulence because of the range stepping method of performing calculations,
which allows for a two-dimensional cross section of the acoustic field.

To incorporate a turbulence model into the PE, Gilbert et al. had to integrate
the turbulence field into the theoretical derivation of the PE. The turbule was
incorporated in the acoustic wave equation by rewriting the acoustic index of
refraction into a mean value n; and a fluctuating term u:

nRp) = nB + pRY) (38)
where
ny = 1
I < 1
R = a position vector
t = time.

Although the fluctuating part is a function of both time and space, the actual
calculations adopt the Taylor’s frozen turbulence hypothesis [11] and consider
propagation of sound for a model with p evaluated at a particular instant of
time.

With this propagation model, Gilbert et al. could perform a two-dimensional
propagation of sound through a turbulent field. They concentrated their studies
on turbulent scattering into refractive shadow zones over a frequency range of
400 to 800 Hz. They showed a two-dimensional gray-scale plot of the relative
sound pressure level for a case of strong upward refraction, which creates a
shadow zone region. Next, they ran their turbulence model to create a new
gray-scale plot. The new plot showed acoustic energy being scattered into the

shadow zone.
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A comparison to data taken by Weiner and Keast [15] was made (figures 7
and 8). The result for weak upward refraction shows the model gave good
comparison to the data. In the strong upward refraction case, the model either
underpredicted or overpredicted the scattering levels.
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Figure 7. Comparison of Gilbert’s turbulent PE model to experimental data and
the standard nonturbulent PE for weak turbulence.
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Figure 8. Comparison of Gilbert’s turbulent PE model to experimental data and
the standard nonturbulent PE for strong turbulence.
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2.3.4

Auvermann Model

Auvermann [16,17] is developing a turbulence model to be used in atmospheric
acoustic scattering calculations that includes effects not addressed in the
statistical model of turbulence. The need for a new model arises from acoustic
propagation paths associated with Army operations that are usually dominated
by atmospheric conditions near the ground. Turbulence near the ground is not
homogeneous nor isotropic, whereas the statistical model assumes these
conditions. Additionally, near-ground turbulence inhomogeneity sizes are
limited by the upper scale length, whereas the statistical model uses the
Kolmogorov spectrum. The size range of the Kolmogorov spectrum is
unlimited. The new model pictures the turbulent region as consisting of a
collection, or ensemble, of turbules of different sizes with each turbule
described by an assumed morphology. A turbule is defined to be a localized
inhomogeneity, either temperature or velocity. Thus, this model has been
given the name of Turbule Ensemble Model (TEM). TEM has the flexibility
needed to show anisotropy using anisotropic turbules and the flexibility to show
inhomogeneity using variable concentrations of turbules of different sizes.
Finally, an upper-scale limit can be imposed on TEM by cutting off the
concentration distribution at the appropriate size. A description of the
scattering properties of a velocity turbule ensemble will follow. A similar
discussion can be made for temperature turbules.

The first step in determining the scattering properties of a velocity turbule
ensemble is to define mathematically the velocity distribution within a single
turbule. The velocity distribution function that has been used is the following:

9@ = 8, xte™™ (39)
where
fii = an angular velocity vector
T = the vector position of a field point within the turbule

a, = the characteristic size of the turbule
and the exponential localizes the velocity distribution to the turbule.
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The angular velocity vector within the turbule can be derived in terms of the
characteristic size of the turbule. The maximum velocity occurs at a radial
distance in the meridian plane of a, / 2'2. It can be shown [5] that turbule
velocity scales as turbule size is raised to the two-thirds power using
dimensional arguments. Specifying index one to be the largest turbule to be
considered and its velocity maximum to be v;, then the magnitude of the
angular velocity vector within the turbule can be written

Q = 2e (-%] " (40)

o

According to the relationship, the angular velocity of the smaller turbules is
larger than the larger turbules.

The acoustic scattering cross section of a turbule with the velocity distribution
of equation (39) has been derived using the Born approximation. The
derivation started with a wave equation deduced by linearizing the Navier-
Stokes equation in the acoustic variables, at the same time retaining the velocity
inhomogeneity to first and second order in the small quantity v, /c,, as a source
term. The incident wave was substituted for the internal wave in the turbule
to arrive at the following expression for the first order scattering efficiency Q.

Qi) = (Q;a/4c )(ka)®sin® cos?8 sin?8, sin*(¢ - §,)
exp[—(kai)z(l - cos0)] 41)
27 /A
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where

@, 6 = the polar and azimuthal angles of the unit vector £ directed

toward the observation point
@, ¢, = the polar and azimuthal angles of the angular velocity

-

vector Q.

1

o’ = the scattering cross section.’




It is necessary to add up the scattering caused by all turbules in the scattering
volume to calculate the scattering to be expected in an experiment or in some
battlefield scenario. A self-consistent field method [18] from solid state theory
is used to sum the scatter from a turbulent field. The notation used in the

summation is

|m40) = |p)+ X EPE) )
J

. . , (42)
%) = |p)+ Y T8, | )
m+j
where
T = the total field at the observation point
p; = the incident field
m(or ™) = the self-consistent field at the scatterer location
T = the integral operator representing the scattering properties of

-the scatterer located at position (5,b,,) .

The turbulent scattering model must be combined with an acoustic propagation
model in order to account for nonturbulent atmospheric conditions such as
refraction, diffraction, terrain, and molecular absorption. To include each of
these effects, the scattering model is being incorporated in the Fast Field
Program (FFP). The FFP is a one-way full wave acoustic propagation model
developed 10 years ago for atmospheric acoustics. [19,20] FFP admits only
one source, which is considered isotropic, (i.e., one that radiates equally in all
directions). As a first step in overcoming these limitations, a new model called
the Acoustic Multi-Stream Propagation Program (AMPP) is being developed
that uses FFP as a subroutine. There is the problem of scatterers not
producing isotropic scattering fields. It is contemplated that approximating
anisotropic  sources/scatterers as multipoles consisting of particular
arrangements of isotropic sources will constitute a solution to the problem.

A general idea of the scattering properties as predicted by the structural
approach to turbulence may be had by considering the angular pattern of a
single turbule as given in equation (41). This has rather striking dependence
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on the observation direction and on the turbule spin axis orientation. It goes
tozeroif 6, = Oorm; ¢ = ¢, 0r ¢, + =, 0r 6 =0, w/2, =. For example,
suppose that 8, = w/2, ¢, = 0. Then the scattering is zero at ¢ = (0,7) and
6 = (0, /2, 7), and has maxima at ¢ = (n/2, 3#/2) and 6 = (w/4, 37/4).
For ka > 1, the exponential becomes important, and strongly reduces
scattering in the backward hemisphere relative to the forward.

This differential efficiency also has an unusual dependence on ka and goes as
(ka)®. This is quite different from Rayleigh scattering, which goes as (ka)* with
a very different dependence on the scattering angle.

It is of great interest to consider the efficiency averaged over random
orientations of the spin axis. This gives

Q) = (1/3)(Q;a/4c ) (ka)® sin’® cos8) @3)
exp[-(ka)’(1 - cosO)] .

This averaged scattering efficiency is plotted versus 6 for two values of ka in
figure 9 for (23, /4c,,) = 0.1. The characteristic scattering peaks at 45° and
at 135° are readily apparent, creating the appearance of a multipole field. The
vanishing cross section results in the forward direction contrasts with the result
Tatarski’s formula, which grows without bound in the forward direction. This
disparity results from the use of the unlimited size spectrum of Kolmogorov in
the formula of Tatarski.

It is interesting to consider the Optical Theorem in connection with the cross
section formula of equation (41). The Optical Theorem states that the total
scattering cross section is equal to the imaginary part of the scattering
amplitude in the forward direction. The cross section is obtained by
multiplying the scattering amplitude by its complex conjugate. In the Born
approximation result above, the scattering cross section in the forward direction
is zero, so the imaginary (and the real) part of the scattering amplitude must
be zero. This is a contradiction because the total cross section is non-zero.
This contradiction is resolved in the second Born approximation. The second
Born forward imaginary scattering amplitude is identically equal to the first




Born total scattering cross section, indicating that the Optical Theorem is true
for these approximate formulas, but in a rather novel way.
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Figure 9. Turbule acoustic scattering efficiency.
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3. Large-Scale Turbulence

3.1

Some work through the years has dealt with the effect of large-scale turbulence
on propagation. Unfortunately, large-scale turbulence is difficult for
meteorologists to characterize. The net result is that there are no good ways
of modeling the large-scale turbulence. Measurements are also difficult
because of the dimensions of the turbulence being on the order of hundreds of
meters to kilometers in height and length. In recent years, some simple models
for large-scale turbulence have been derived. Measurements can now be made
of the large-scale turbulence with the new remote profilers. Better models can

be derived with these measurements.
Characteristics of the Planetary Boundary Layer

It is convenient to consider the atmosphere to be divided into a number of
horizontal layers when discussing the details of air flow (figure 10). The
region in which the atmosphere experiences surface effects through vertical
exchange of momentum, heat, and moisture is called the planetary boundary
layer (PBL) or sometimes referred to as the friction layer. The PBL is the
region where the atmosphere experiences surface effects through vertical
exchange of momentum, heat, and moisture. The vertical extent of the PBL
is quite variable. Panofsky and Dutton [2] define the depth of the PBL, h, as
the thickness of the turbulent region next to the ground, which is also called the
depth of the mixed layer or the mixing layer. Another height used to describe
the thickness of the PBL in the daytime is the height z; of the lowest inversion.
Actually, h tends to be 10 percent or so larger than z, because the lowest part
of the inversion is still turbulent, partly because of overshooting from below,
and partly because there is often strong wind shear in the inversion.
Therefore, the height of the lowest inversion is a good approximation of the
thickness of the PBL during the daytime.

The lowest part of the PBL is called the surface layer. The characteristics of
turbulence and the vertical distribution of mean variables are relatively simple
in the surface layer. There is no precise definition of the surface layer.
Qualitatively, the surface layer is that part of the PBL immediately above the
surface, where vertical variations of vertical fluxes can be ignored. Typically,
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the fluxes are large at the surface and decrease to zero near the top of the PBL.
If the decrease of flux with height is linear, then fluxes decrease by a factor of
10 percent in the lowest 10 percent of the PBL.

A rational method must be found to superimpose the effects of both mechanical
and thermal forcing. These two types of forcing influence the turbulence and
the variation of the mean variables even in the surface layer. The method to
combine the two types of forces was first accomplished by Monin and Obukhov
through their similarity theory. They introduced two scaling parameters,
essentially independent of height in the surface layer, for velocity and length.
These are the friction velocity u. and the Monin-Obukhov length L.

The question is how to determine the Monin-Obukhov length, the friction
velocity, and the inversion layer thickness. The quantity L, depends primarily
on vertical heat flux at the surface and the friction velocity. There are two
ways to obtain values for L. Pasquill [21] provides the following equation
to calculate the value of L, :




3
u*CPpT (44)

Lo = kgH
where
k = the von Karman constant = 0.4
g = gravitational acceleration
H = the vertical heat flux density
T = temperature
0 = the density of air
C = the specific heat at constant pressure

P

Typically, equation (44) is not easy to work with. Another way used by the
acoustic community for obtaining L, is to estimate it from the Turner classes,
which were developed for use in air pollution studies. The Turner classes
range from 1 to 7, with 1 for strong convection, light-wind conditions, 4 for
purely mechanical turbulence, and 7 for stable stratification. The Turner class
is determined from the wind velocity and an estimate of solar radiation using
table 1. Because L_, is also a function of surface roughness, this parameter
must also be included in estimating L, from the Turner class. Table 2 shows
the estimates of L_, given Turner classes for the case where the roughness

length is 0.05 m.

Table 1. Estimation of Turner classes (daytime only)

Surface Wind Speed Incoming Solar Radiation
at 10 m (m/s) Strong Moderate Light
<2 1 1 1
2-3 1-2 2 3
3-5 2 2-3 3
5-6 3 3-4 4
> 6 3 4 4
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Table 2. Estimation of L, for various Turner classes

Turner Class -Loo
1 8-12 m
2 12-20 m
3 20-60 m
4 >60 m

32

The friction velocity is defined as:

* (45)

where 7 is the Reynolds stress tensor and p is the density of air. The value of
the friction velocity depends on the wind speed and roughness length. It is
used to normalize various turbulence statistics. This allows comparison of
turbulence statistics between atmospheric conditions with differing wind
velocity. If variations in u are due to purely mechanical turbulence, an
alternate empirical formula for u. can be used for z > z:

u, = — % (46)
Indz,
where
k = the von Karman constant
z = the height
u = the wind speed at height z
zZ, = the roughness length

For the case of purely mechanical turbulence, the friction velocity can be
calculated given a wind speed at a height over an area with a particular
roughness length. Table 3 provides typical values for roughness lengths. [2]




Table 3. Typical roughness lengths

Ground Cover Roughness Length (m)
Water or Ice 10
Mown Grass 102
Long Grass, Rocky Ground 0.05
Pasture Land 0.2
Suburban Housing 0.6
Forests, Cities 1-5

The main problem is calculating the lowest inversion z,. This value is
important because it represents the largest size an inhomogeneity can be in the
atmosphere. According to Panofsky and Dutton, the horizonal wind speed
fluctuations are related to z; by

S\
% _ (1z-o.si) . @)
u L

* mo

Substituting equation (46) into equation (47) and solving for z; results in

z,=2L “8)

12 - (%]31113(2/% )}.

Equation (48) provides the height of the lowest inversion in terms of Monin-
Obukhov length, the fluctuation of the horizontal wind speed, and the
roughness length. This result will be useful in determining the upper limit to
the size of large-scale turbulence during the daytime.

3.2 Experimental Evidence of Large-Scale Turbulence
Some of the early experiments that indicate large-scale inhomogeneities were
conducted by Rudnick. [22] The experiment was conducted in an anechoic

chamber introducing temperature inhomogeneities by heating a 5-m-long
resistance wire stretched across the room to control the environmental
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parameters. Rudnick was only investigating the effects of temperature driven
turbulence on acoustic propagation. Rudnick scaled the frequencies from 4 to
6 kHz because the experiment was conducted in an anechoic chamber. The
scaling of frequencies must be done so the results of the experiment will scale
correctly when applied to the atmosphere. Rudnick’s results showed that two
temporal scales were present, a short- and long-term fluctuation.

Ingard, [23] in his review of meteorological effects on acoustics, presented
several graphs of sound pressure levels recorded on a windy day. The
variation in the sound pressure levels were about 15 to 20 dB at 2 kHz for
wind speed varying between 6 and 11 m/s. Ingard uses the term gusty to refer
to these variations in the wind speed. According to Ingard, the average
attenuation due to the gustiness of the wind is about 4 to 6 dB/100 m with
fluctuations sometimes going as high as 20 dB. He also states that anemometer
records show that the average size of the turbules often lie in a region of 2 to
8 m in diameter with much larger turbules also occurring, even up to 1000 m.

Wiener and Keast [15] performed several experiments of outdoor sound
propagation. They used bands of random noise for their experiments. The
wind speed and direction were measured at a height of 10 ft and the pressure,
wet- and dry-bulb temperatures at 6 ft. A typical sampling time for the
acoustical and meteorological data was 30 s. At the 200-ft range, the peak-to-
peak fluctuations were 12 dB for a band of noise centered at 425 Hz and 25 dB
for a band of noise centered at 850 Hz. These measurements were for a
receiver situated upwind of the source.

Chessell [24] used the theoretical relations of Chernov and his own
measurements to determine the scales of atmospheric turbulence that have the
greatest effect on acoustic signals. Chessell chose a different approach to
measure the fluctuations. The source for the experiment was a series of
surface firings of small charges of TNT located at two positions at ranges of
4.3 and 9.3 km and at angles of 90° and 70°, respectively, to a linear array of
five microphones with uniform spacing of 100 m. A sixth microphone was
located 600 m to the side and 300 m ahead of the uniform array.




Wind and temperature profiles were measured to a height of 3 km at the start
of each observational period using conventional radiosondes and theodolite
tracking. Continuous observations of surface temperature, wind speed, and
direction were also made at a position near the first microphone in the linear
array. Each observational series consisted of 30 firings spaced 1-min apart.

Chessell then calculated the ratio of the correlated to uncorrelated standard
deviations given by

—=y1-p (49)

where
i = the spatial correlation coefficient between adjacent paths
Op the standard deviation of the time difference fluctuations of
the amplitude
o, = the standard deviation of the random propagation time
fluctuations.

For both the large and the small wave parameter D from Chernov and
Tatarski, the ratio rises smoothly to be almost unity when the separation is
approximately twice the turbulence scale size. Using these techniques, Chessell
determined that turbulence scale sizes have a range of 200 to 500 m with a
mean size of 320 m.

A series of line-of-sight propagation measurements where made over a
relatively flat open farm land during a period from mid-June 1984 to mid-July
1985. [9] A run consisted of an 8-min record of signals received
simultaneously at five transverse microphones mounted 1 m above the ground
and one microphone mounted near the source for a reference. The sound
source was driven by a tape with a prerecorded signal consisting of a mixture
of eight tones centered at one octave spacing beginning at 62.5 Hz.

The Fast-Fourier Transform (FFT) of the measured amplitude and phase
contains the spectrum of the fluctuations of the sound field due to turbules
present in the atmosphere. The spectral peaks are related to the scale of
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turbuleﬁce L by Taylor’s hypothesis of frozen turbulence, which relates the
temporal and spatial turbulence scales by [7]

L=ut (50)
where U is the mean wind speed and 7 is the characteristic time associated with
the temporal measurements. This hypothesis assumes a slowly changing
invariant pattern of turbulence that is convected past the detector with the speed
of the mean wind speed.

Taylor’s equation can be rewritten as

L= (1)

<|=|

where v= 1/7. Calculations of L show the different scales of turbulence
present in the atmosphere during the experiment. Figures 11(a,b) and 12(a,b)
show two examples of the phase difference and their FFT. Figures 11a and
11b are for a run where the wind speed is low, a few meters per second. The
spectrum (figure 11b) shows several peaks, which represent the different scales
of turbulence present in the atmosphere for the run. Figures 12a and 12b are
for a run where there was a high wind speed. The only spectral peak present
is one at a low frequency. This implies that the only scale of turbulence that
is affecting the phase is on the order of a few hundred meters in size.

Some caution must be noted about this type of analysis. The location of the
low-frequency peak may be a result of insufficient frequency resolution because
of the length of the sample analyzed. A longer time sample might shift the
low-frequency peak to a lower frequency suggesting the presence of a larger
scale of turbulence.
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3.3

3.3.1
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Development of Large-Scale Models

The effects from large-scale turbulence through the years have been ignored
because of the short time intervals used to take measurements. The lack of
observations have lead to very few large-scale turbulence models being
developed. Another problem that has lead to a lack of experimental data for
large-scale turbulence is the short ranges of most propagation experiments.
Until recently, most propagation experiments were over ranges of a few
hundred meters. This restriction was mainly because of a lack of reliable
sound source capable of producing enough sound to propagate the distances
needed for large-scale turbulence studies. Despite these restrictions, a few
large-scale turbulence models have been developed. As in section 2, the name
of the models are not found listed as such in literature. The naming convention
of the models in this report is done mainly to associate the model with the
person who developed it because there has never been names assigned to the
models in literature.

Chernov/Tatarski Scatter Model

In the derivation of Chernov and Tatarski (section 2.2), the result for the phase
and log-amplitude variances equations (18) and (19) was only limited by
forward scattering in a homogeneous atmosphere with isotropic turbulence. In
the first limiting case where D < 1, the solution is valid for turbulence up to
a few hundreds of meters in size. Turbulence up to a few meters in size can
still be considered isotropic turbulence. The resulting equations for the log-
amplitude and phase variances in the limit where D < 1 or R < 0.25 kL? are

n_ 8/n, o(RY
() = 24 (X 52
and
(5% = /7 ()KL, e

The log-amplitude variance is frequency independent whereas the phase
variance is proportional to the square of the wave number (equations (52) and
(53)). The log-amplitude variance will remain constant for different




frequencies. An example of expected variances is shown in table 4. The
variance of the log-amplitude is very small at small ranges and increases as the
cube of the range. The magnitude of the phase variance is much larger than
the log-amplitude variance because the phase variance is proportional to the

outer scale L.

Table 4. Example of log-amplitude and phase variance of large-scale turbulence
(500 m) at 100 Hz with <p?>> = 10

Range (m) <x*> <S$*>
100 3.8 X 10% 0.35
1000 3.8 X10° 3.54

10000 3.8 X 107 354

However, this model has several limitations. First, this model is derived for
free space forward scattering in a hdmogeneous atmosphere with isotropic
turbulence. At large ranges, the scattering from reflected waves will add in as
well as scattering from multipath waves. The real atmosphere is not
homogeneous, which creates multipaths through refraction and increases the
travel distance from the source to receiver. Also, as the size of the turbulence
increases, the restriction of isotropic turbulence no longer holds. As the
turbulence becomes too large, the dominating effect is due to variations in
refraction of the atmospheric profile rather than to scatter.

3.3.2 Roth Thermal Model

Roth [25] developed a model for large-scale effects based on thermal plumes.
He used a multipath ray trace routine to calculate the received signal amplitude.
Roth concluded that the effects due to temperature fluctuation do not have as
great an effect on the fluctuations of the sound speed as wind speed
fluctuations. The local sound speed was written as

c=c(T)+ii- F. (54
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A change in temperature of 2° when the mean temperature is 300 K would
cause a change in the sound speed of about 1 m/s (equation (54)). Wind speed
fluctuations are greater than 1 m/s on a typical day. As a result, Roth assumes
an isothermal atmosphere for his model. Roth calculates the contribution of
humidity to the sound speed from

¢ = 20.05/T (1 + 0.14"—) (55)
P

where e is the water vapor partial pressure and p is the atmospheric pressure.
Roth concludes that the daily variation of sound speed due to changes in
humidity will be less than 1 m/s and short term variation even less. Therefore,
he also ignores any effects due to humidity in his model.

Thermals are a basic convectional process formed in the surface layer. The
scale of the thermal is known to be of the order of the height of the convective
boundary layer. This is equal to z;, which is the height of the capping
inversion. During midday summer conditions, z; is typically 1 to 1.5 km.
Roth assumes that for neutral to unstable conditions, z, varies from 100 to
2000 m. Assuming the wind speed varies from 2 to 6 m/s, the characteristic
time for thermals is 16 s < 7 < 17 min. Thermal plumes are apparent in a
temperature record as positive pulses. Typically, the pulses are ramp-shaped,
a slow rise in temperature followed by an abrupt drop. This can be seen in
figure 4 between 165 and 180 s. The important factor about a thermal plume
is a sharp rise in the wind speed after the temperature drops back to the
previous level (figure 5). It is this sharp rise in the wind speed after the
passage of the thermal plume that causes the significant fluctuation in the
received acoustic wave.

Roth measured the mean wind speed profile and the standard deviation of the
wind speed during an experiment. To create the wind speed profile for his
model, he used the measured mean wind speed profile. To simulate the
passage of the thermal, he varied the mean wind speed profile by increasing the
profile by one standard deviation and decreasing the mean wind speed profile
by two standard deviations. The ground impedance model used was not well
defined. In the two theoretical cases Roth examined, he predicted variations
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in the received relative sound pressure level of about 30 dB at a range of
100 m with source and receiver at a height of 3 m.

Noble Mechanical Model

Noble [26] developed a model for large-scale effects based on a vortex pair of
eddies. Noble made the same assumption as Roth, that the temperature and
humidity fluctuations have a minor effect on the speed of sound compared to
the wind fluctuations. This model is based on results obtained from a series
of short range field experiments. It was observed that the phase fluctuations
(figure 11a) appeared to have two different time scales from these results. To
try and determine which time scales where being observed, a FFT of the phase
fluctuations was calculated (figure 11b). A variation on Taylor’s hypothesis
of frozen turbulence was used to interpret the spectrum. If the assumption is
made that turbulence of a certain size causes a unique temporal variation in the
phase of the acoustic signal, then any peaks in the spectrum will be related to
the scale of turbulence which caused it (equation (51)).

An interesting note should be made here. The geometry of these experiments
were very similar to those of Daigle et al. [10] The experiments Noble based
his work on is over a larger variation of wind speeds and longer data collection
times. Figure 11a is under similar wind conditions as Daigle et al. Looking
at figure 11b, there is a spectral peak that appears at 2 Hz. That peak
corresponded to turbulence on the order of 1.8 m. This is the scale of
turbulence that Daigle observed in his results.

A model based on a vortex eddy pair was developed to model the wind flow
variations. The wind field of the vortex eddy pair was calculated using the
stream function:
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fixz) = A[cos(bc) ve “:J g T4 (56)

where )
A = a constant specifying the intensity of the eddy pair
o’ = o2x* + o2
1 = the characteristic wave number for the eddy pair
oy = the horizontal wave numbers for the eddy pair
o, = the vertical wave numbers for the eddy pair.

The coordinates (x,z) are relative to the center of the eddy pair. Townsend
uses a characteristic wave number for the eddy pair of wa,. [27]

The horizontal velocity distribution can be calculated from the stream function
using

9y (57)

u(x,z) = p.

Substituting equation (56) into equation (57) and carrying out the differentiation
results in

A 2
@, 2 [ws(lx) .\ e-ﬂ/ai] - (58)

u(xz) =

Equation (58) provides the variations in the horizontal wind speed contributed
by the presence of a large vortex pair. Where Roth’s model deals with the
fluctuations in the sound speed profile only with height, this model predicts the
fluctuations of the sound speed profile in height and range.

Viewing the movement of the eddy pair on the geometric scales less than a few
hundred meters in range, the variation of the speed of sound in the atmosphere
would appear to change slowly over the entire range of the experiment
uniformly. The expected phase change can be calculated using a simple model
of the wind speed in the atmosphere slowly varying from v, to v,:




Ao = 27R ¢ —v) (59)
CD
where
R = the propagation distance
C, = the sound speed at temperature T
f = the frequency of the signal.

A comparison between the magnitude of the phase change for the simple model
and experimental results are shown in table 5.

Table 5. Results from the simple model compared to measure data

Frequency (Hz) Ap,.(degrees) Ag,s(degrees)
62.5 40° 41°
125 72° 82°
250 155° 163°

For longer ranges, the simple phase model breaks down because the size of the
eddy pair causes more influence on varying the speed of sound with range. A
more complex model was developed to incorporate these range variations. The
more complex model uses a PE [26] combined with the vortex eddy pair
model. This model allows a refractive sound speed profile to be used with
variations of the sound speed profile with height and range according to
equation (58). The eddy pair is started out of the field of propagation and
slowly stepped through the propagation field at the mean wind speed. At each
step, the PE is run to calculate the phase and amplitude of the acoustic field at
the receiver location. The current version of the model only takes into account
the passage of one eddy pair. Unfortunately, there is no experimental data
available for long propagation ranges. A comparison was made with the
shorter range phase data. Tables 6 and 7 show the predicted phase output of
the model compared with experimental measurements. Table 6 shows the
comparison under low wind speed conditions, mean of approximately 3 m/s.
This condition was used in the comparison, table 5, with the simple phase
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model described earlier. Table 7 shows the comparison under high wind speed
conditions, mean of approximately 10 m/s. The model works very well for the
low and high wind speed conditions.

Table 6. Comparison between large-scale eddy PE and data under low-wind

conditions _
Frequency (Hz) Ap,.(degrees) Ap,s(degrees)

62.5 40° 42°

125 72° 83°

250 155° . 169°

Table 7. Comparison between large-scale eddy PE and data under high-wind

conditions
Frequency (Hz) Ap,..(degrees) | Ap,.4(degrees)
62.5 290° 289°
125 400° 400°
: 250 690° 704°




4. Conclusions and Futuré Models Work

This report has presented a brief overview of past and current turbulent
scattering models and the impact on acoustic propagation. Until recently, the
models available were crude and only valid for short ranges (R < 1 km).
More advanced turbulence models have recently been devised for examining
the effects of both large and small-scale turbulence on acoustic propagation in
the atmosphere. Although the new models are more advanced, they provide
only a partial answer to understanding the total effect of atmospheric turbulence
on long range (R > 10 km) acoustic propagation in the atmosphere.

Most of the turbulence work conducted in atmospheric acoustics have
concentrated on the small-scale turbulence or the turbulence in the Inertial
Subrange of the Kolmogorov energy spectrum of atmospheric turbulence. The
types of turbulence that primarily affect acoustic propagation in the atmosphere
are thermal and mechanical turbulence. For short ranges, Daigle et al. used
the work of Karavainikov, Chernov, and Tatarski to derive some relationships
between scale size and turbulence strength for predicting mean fluctuations of
the amplitude and phase of an acoustic signal for a given range. The more
sophisticated acoustic propagation models, which incorporate a turbulence
model, require large computers to perform the calculations for a scenario.

One of the latest advances in atmospheric acoustic propagation models is the
Green’s Function Parabolic Equation (GFPE). [28] The GFPE is a different
formulation from the Crank-Nicolson PE, which performs -calculations
considerably faster. Work is being conducted to modify the turbulence model
used in section 2.3.3 for the GFPE. This is not a straight forward derivation
because the GFPE uses an FFT, which does not allow for a direct conversion
of the turbulence model to the GFPE. Once the turbulence model is
incorporated into the GFPE, an atmospheric acoustic propagation model that
includes a turbulence model will be available, allowing calculations to be made
within a reasonable time-frame on workstation sized computers.
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The ultimate test of a computer model is to compare it to good quality field
data. Most of the data available are for ranges less than 1 km. Some
additional experiments need to be conducted with stable sources, not helicopters
or tanks, out to ranges of 5 or 10 km. This will help to confirm the
predictability of acoustic turbulence models at longer ranges.




References

10.

Berry, F. A., Jr., E. Bollay, and N. A. Beers, Handbook of Meteorology
McGraw-Hill Book Company, New York, 1945.

Panofsky, H. A., and J.A. Dutton, Atmospheric Turbulence: Models and
Methods For Engineering Applications, Wiley, New York, 1984.

Monin, A. S., and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of
Turbulence, MIT Press, Cambridge, 1975.

Chernov, L. A., Wave Propagation In a Random Medium, translated by R. A.
Silverman, McGraw-Hill Book Company, New York, 1960.

Tatarski, V. 1., The Effects of Turbulent Atmosphere on Wave Propagation,
translated and published by Israel Programs for Scientific Translations Ltd.,

Jerusalem, 1971.

Karavainikov, V. N., "Fluctuations of Amplitude and Phase in a Spherical
Wave," Akust. Zh. 3: 175-186, 1975.

Daigle, G. A., J. E. Piercy, and T. F. W. Embleton, "Effects of Atmospheric
Turbulence on the Interface of Sound Waves Near a Hard Boundary,"
J. Acoust. Soc. Am. 64: 622-630, 1978.

De Wolf, D. A., "A Random-Motion Model of Fluctuations in a Nearly
Transparent Medium," Radio Sci. 18: 138-142, 1975.

Bass, Henry E., Lee N. Bolen, Richard Raspet, Walton McBride, and John
Noble, "Acoustic Propagation Through a Turbulent Atmosphere: Experimental
Characterization," J. Acoust. Soc. Am. 90: 3307-3313, 1991.

Daigle, G. A., J. E. Piercy, and T. F. W. Embleton, "Line-of-Sight

Propagation Through Turbulence Near the Ground," J. Acoust. Soc. Am.
74: 1505-1513, 1983.

47




48

11.

12.

13.

14.

15.

16.

17.

18.

19.

Taylor, G. I. "The Spectrum of Turbulence," Proc. R. Soc. London A
164: 476-490, 1938.

McBride, Walton E., Henry E. Bass, Richard Raspet, and Kenneth E. Gilbert,
"Scattering of Sound By Atmospheric Turbulence: A Numerical Simulation
Above A Complex Impedance Boundary," J. Acoust. Soc. Am. 90: 3314-3325,

1991.

McBride, Walton E., Henry E. Bass, Richard Raspet, and Kenneth E. Gilbert,
"Scattering of Sound By Atmospheric Turbulence: Predictions in a Refractive
Shadow Zone," J. Acoust. Soc. Am. 91: 1336-1340, 1992.

Gilbert, Kenneth E., Richard Raspet, and Xiao Di, "Calculation of Turbulence
Effects in an Upward-Refracting Atmosphere," J. Acoust. Soc. Am.
87: 2428-2437, 1990.

Weiner, F. M., and D. N. Keast, "Experimental Study of the Propagation of
Sound Over Ground," J. Acoust. Soc. Am. 31: 724-733, 1959.

Auvermann, H. J., R. L. Reynolds, and D. M. Brown, "Development of a
Multi-Stream Acoustic Propagation Model Including Turbulence Scattering,"
(Technical report in preparation), U.S. Army Research Laboratory, White
Sands Missile Range, NM, 1993a.

Goedecke, G. H., and H. J. Auvermann, "Turbulence Acoustical Scattering
Theory From the Structural Approach," (Technical report in preparation), U.S.
Army Research Laboratory, White Sands Missile Range, NM, 1993c.

Rollins, C. J., D. G. Resendes, and M. R. Squillante, "Acoustic Scattering by
a Vortex Model of Turbulence," (Contractor report in preparation), U.S. Army
Research Laboratory, White Sands Missile Range, NM, 1993.

Raspet, R., S. W. Lee, E. Kuester, D. C. Chang, W. F. Richards, R. Gilbert,
and N. Bong, "Fast-Field Program for a Layered Medium Bounded by
Complex Impedance Surfaces," J. Acoust. Soc. Am. T7: 343-352, 1985.




20.

21.

22.

23.

24.

25.

26.

27.

28.

Lee, S. W., N. Bong, W. F. Richards, and R. Raspet, "Impedance
Formulation of the Fast Field Program for Acoustic Wave Propagation in the
Atmosphere," J. Acoust. Soc. Am. 79: 628-634, 1986.

Pasquill, F., Atmospheric Diffusion, John Wiley & Sons, New York, 1974.

Rudnick, I., "Fluctuations in Intensity of an Acoustic Wave Transmitted
Through a Turbulent Heated Lamina," J. Acoust. Soc. Am. 19: 202-205, 1947.

Ingard, U., "A Review of the Influence of Meteorological Condition on Sound
Propagation," J. Acoust. Soc. Am. 25: 405-411, 1953.

Chessell, C. 1., "Observations of the Effects of Atmospheric Turbulence on
Low-Frequency Sound Propagation,” J. Acoust. Soc. Am. 60: 29-33, 1976.

Roth, S. D., "Acoustic Propagation in the Surface Layer Under Convectively
Unstable Conditions, " Ph.D. Dissertation, Pennsylvania State University, 1983.

Noble, John M., Henry E. Bass, and Richard Raspet, "The Effect of Large-
Scale Atmospheric Inhomogeneities on Acoustic Propagation,” J. Acoust. Soc.
Am. 92: 1040-1046, 1992.

Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge U.P.,
New York, 1976.

Marlin, Dave, "Fast Parabolic Approximations for Acoustic Propagation in the
Atmosphere," (Technical report in preparation), U.S. Army Research
Laboratory, White Sands Missile Range, NM, 1993.




Acronyms and Abbreviations

AMPP

FFP

FFT

PBL

PE

TEM

Acoustic Multi-Stream Propagation Program
Fast Field Program

Fast-Fourier Transform

planetary boundary layer

Parabolic Equation

Turbule Ensemble Model
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