Performance Prediction and Tuning
of Parallel Programs

Mark Edward Crovella

Technical Report 573
August 1994

UNIVERSITY OF
ROCHESTER

COMPUTER SCIENCE

Performance Prediction and Tuning
of Parallel Programs

by

Mark Edward Crovella,

Submitted in Partial Fulfillment
of the
Requirements for the Degree

Doctor of Philosophy

Supervised by
Professor Thomas J. LeBlanc

Department of Computer Science
College of Arts and Science

University of Rochester
Rochester, New York

1994

REPORT DOCUMENTA."ON PAGE Form Approved

OMB No. 0704-0188
Publlc reporting burden for this collection of information Is estimatad to average 1 hour per responss, lnoludlng the time for reviewing Instructions, searching existing data

sources, gathering and Ing the data ded, and pleting end reviewing the oolleotl: of Send regarding this burden estimate or any other
aspect of this jon of Infor ding suggesti for reduoing this burden 10 Washington Headquarters Servioes, Directorate for Information Operations and
Fneports 1215 Jefferson Davis Highway, Sulte 1204, Arlington, VA 22202-4:!02, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188),
Washington, DC 20503,
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1994 technical report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Performance Prediction and Tuning of Parallel Programs ONR N00014-92-1-1801 / ARPA 8930

6. AUTHOR(S)

Mark E. Crovella

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION
Computer Science Dept.
734 Computer Studies Bldg.
University of Rochester
Rochester NY 14627-0226

S, SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES) 10, SPONSORING / MONITORING
Office of Naval Research ARPA AGENCY REPORT NUMBER
Information Systems 3701 N. Fairfax Drive TR 573
Arlington VA 22217 Aslington VA 22203

11. SUPPLEMENTARY NOTES

12a, DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited.

13. ABSTRACT (Maximum 200 words)

(see title page)
14. SUBJECT TERMS 15. NUMBER OF PAGES

parallel performance measurement; analysis; prediction; lost cycles 115 pages

16. PRICE CODE
free to sponsors; else $5.00
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

unclassified unclassified unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS! Std, 239-18

.

i

Curriculum Vitae

Mark Edward Crovella was born in Buffalo, New York on October 28, 1959. He
grew up in Ambherst, New York, attending Nardin Academy and Amherst Central
High School. He entered Cornell University in 1978, studying in the Department
of Natural Resources. In 1982 he built a computer simulation of Red-Winged
Blackbird damage to corn crops, and earned a Bachelor of Science degree from
the College of Agriculture and Life Sciences. Computing soon became his main
interest, and from 1982 to 1984 he worked as a Programmer for the Manage-
ment Information Systems Branch of the Colorado Department of Highways, in
Denver. Returning to Buffalo in 1984, he was employed at Calspan Corporation,
eventually as a Senior Computer Scientist. After receiving an M.S. in Computer
Science from the State University of New York at Buffalo, he entered the graduate
program in Computer Science at the University of Rochester in the fall of 1989.
During his first two years at Rochester, he participated in the design and im-
plementation of the Psyche operating system, and served as a teaching assistant
for courses in Parallel Programming and Introductory Computing. In 1992 he
was awarded a DARPA Fellowship in Parallel Processing, followed in 1993 by an
ARPA Fellowship in High Performance Computing. During his last three years at
Rochester he served as a research assistant for Professor Thomas LeBlanc working
on performance measurement and prediction of parallel programs.

Aonessicn Por

NTIS GRAZL
DTIC TAS
Unannounced

Justification

111

Acknowledgments

Research in Rochester’s Computer Science Department has been a wonderful ex-
perience, and the lion’s share of the credit goes to Tom LeBlanc, my advisor. I
want to thank him both for his work in guiding this thesis, and in shaping my
graduate career. He has consistently kept his eye on the big picture and has always
been ready to talk about this work. I particularly want to thank him for iden-
tifying the importance of performance measurement and prediction as a research
topic, and seeing the resulting research through its various ups and downs.

Systems research at Rochester was especially enjoyable for me because of the
department’s atmosphere of collaboration. I want to thank Michael Scott for many
helpful discussions and comments, and for the support and encouragement he’s
provided during my time at Rochester. T also want to thank the other members
of my committee, Wei Li and William Richmond, for their time and for their
comments on this work.

Much of the fun in doing research at Rochester has come from the infor-
mal groups that have formed around common interests, from operating systems,
through scheduling and performance prediction, to architecture. I've learned a lot
from my fellow students as we’ve worked together, and I want to thank them for
providing demanding standards combined with constructive attitudes. In partic-
ular, T want to thank Evangelos Markatos, Cezary Dubnickj, Ricardo Bianchini,
Leonidas Kontothassis, and Bob Wisniewski for the many enjoyable hours of dis-
cussion, and for the considerable joint work to which they contributed. In addition
I wish to thank Lawrence Crowl for his work in our study of subgraph isomor-
phism; he wrote the program we used and performed many of the experiments.

Bart Miller has provided many helpful comments on this research, and served
as an informal member of my committee, for which I am grateful. I want to thank
Donna Bergmark for providing an excellent research environment at the Cornell
Theory Center, for her helpful comments throughout this research, and for being
the first user of the performance tools developed in this work. I also wish to thank
Wagner Meira for being an early and patient user of tools under development.

I've had the benefit of many great colleagues at Calspan Corporation before
and during my graduate studies, and I want to thank them for a stimulating and

v

lively work environment. In particular I want to thank Tom Jasinski and Ed Ca-
mardo for providing me with challenging opportunities, for creating a supportive
atmosphere, and above all, for their friendship.

A number of friends made the bumpy road of graduate life more bearable.
George Ferguson and Marc Light have kept my head above water in Rochester.
Mark and Debbie Chadsey always had their door open for Linda and I. Thanks
for helping us to stay sane! Mary and Bob Oberther have provided friendship and
support without limit; thank you Mary for your loving care of Emily these five
years.

My brothers, Paul and Robert, have been a constant inspiration to me spiritu-
ally and intellectually. They’ve reminded me by example of what can be accom-
plished, and been good friends along the way. My parents, Edward and Margaret
Crovella, instilled in me their strong faith in God, and taught me the jov of learn-
ing. Coupled with my Dad’s advice to “find work you enjoy doing,” their actions
set me on the path that led to this point. Paul and Robert, Mom and Dad, thank
you.

My children Benjamin and Emily have reminded me in a million ways what
matters in life. I'll always be grateful for their help in remembering that soccer
and dance, alphabets and arithmetic, and walks in the park are just as important
as experiments and lectures and papers.

Finally, no part of this work, nor any part of my graduate career, would have
been possible without the loving support of my wife Linda. For all your patience
and effort in keeping our household and lives intact, and for all the times I got
home long after the kids were asleep, Linda, thank you.

This research was supported under NSI CISE Institutional Infrastructure Pro-
gram Grant No. CDA-8822724, ONR Contract No. N00014-92-J-1801 (in con-
junction with the DARPA HPCC program, ARPA Order No. 8930), and by a
ARPA Research Assistantship in High Performance Computing administered by
the Institute for Advanced Computer Studies, University of Maryland.

Abstract

Parallel programs often behave in unexpected ways due to the complex relation-
ship between the structure of a parallel program, the machine on which it is run,
the number of processors used, the program’s input, and the measured running
time of the program. As a result, performance tuning of parallel programs is an
error-prone, time-consuming process.

This dissertation describes a set of tools and methods for assisting the pro-
grammer in finding the best-performing implementation for a parallel program,
and in answering common questions that arise during the performance tuning
process. Our approach is based on three contributions: 1) new metrics for the
measurement of parallel applications; 2) a new approach to the analysis of parallel
program performance; and 3) a new modelling method that allows the programmer
to predict the performance of a program in advance of a complete implementation.
The metrics, which we call performance predicates, provide measurements that are
amenable to analysis, and yet completely capture parallel overheads. The analy-
sis method, lost cycles analysis, applies algorithmic analysis to parallel overheads,
assisted by an on-line tool. The modelling method allows lost cycles analysis to be
applied to program fragments, and provides rules for aggregating analytic results
into a model for the execution time of a (possibly not-yet-implemented) parallel
application. We use implementations of subgraph isomorphism and 2D FFT on
the SGI Challenge Series and KXSR1 multiprocessors to illustrate our methods and
tools, and show how our approach can be used to explain surprising performance
results and predict the performance of alternative implementations of an applica-
tion in advance of implementation, while avoiding large numbers of measurements
for performance tuning.

vi

Table of Contents

Curriculum Vitae
Acknowledgments
Abstract

List of Tables
List of Figures

1 Introduction
1.1 The Serial Performance Tuning Model
1.2 A Parallel Performance Tuning Model
1.3 Statement of Thesis« .. . oo
1.4 Outline of Dissertation oo

2 Related Work
91 Performance Measurement Tools
2.2 Parallel Performance Analysis

Parallel Performance Prediction oo o

3
2.4 Relationship to Other Work

3 Difficulties in Performance Prediction
3.1 Subgraph Isomorphism
3.2 2D FFET . . . e e e

il

i1l

viil

1X

o

v =

~1

4 Measuring Parallel Programs

4.1 Decomposing Parallel Overhead

4.2 Predicate Profiling
4.3 Predicate Profiling in Practice
4.4 Summary ...

5 Predicting The Effects of Varying the Execution Environment

5.1 Modeling Parallel Overhead
9.2 Lost Cycles Analysis
5.3 Using Lost Cycles Analysis
5.4 Summary

6 Predicting The Effects of Varying Program Structure

6.1 Constructing Performance Models
6.2 Lost Cycles Modeling
6.3 Lost Cycles Modeling in Practice
6.4 Summary
1 7 Conclusions
7.1 Contributions
7.2 Future Directions
| ~ Bibliography
\
|
| A Manual Pages
i A.l Manual Pageforpp
‘ A.2 Manual Page for pplib,
| A.3 Manual Page for 1ca,

vil

37
37
41
45
54

55
56
60
63

72
73
79
83
90

92
93
94

97

viii

3.1

4.1

oo

[
W N

(@}

Ut
N1

List of Tables

Comparison of Loop and Tree Parallelism in Varying Environment

Running Time of Loop and Tree (in seconds); Multiple Solutions,
Sparse Input

Per-processor Load Imbalance; Multiple Solutions, Sparse Input,

KSRI . . .

Typical Functional Forms for Overhead Categories.
Models of Overhead for 2D FFT as Functions of nandp
Performance Models for Data Parallel and Task Parallel 2D FFT .

Seconds of Pure Computation and Wasted Speculation in Subgraph
Isomorphism L

Lost Cycles Models for Two Implementations of Subgraph Isomor-
phism

32

51

53

57
64
68

69

3.1
3.2
3.3
3.4

1X
List of Figures

Comparison of Four Parallelizations, Varying Processors 33
Data Parallel 2D FFT on 6 Processors 34
Task Parallel 2D FFT on 6 Processors 35
Comparison of Task and Data Parallel 2D FFT on the iWarp (left)
and KSRI1 (right).. o oo 36
Candidate Set of Performance Predicates 40
Measurement Error and Running Time Increase For a Range of
Sampling Intervals oo oo o 43
Example Outputof pp oo 46
Running Time of Three Parallelizations on SGI; One Solution,
Sparse Input L e 47
Predicate Profiles of Three Parallelizations on SGI; One Solution,
Sparse Input L 49
Running Time of Two Parallelizations on SGI; Many Solutions,
Dense Inputo 49
Predicate Profiles of Two Parallelizations on SGI; Many Solutions,
Dense Input oo e 50
Increasing Load Imbalance in Loop Parallelism 51
Decreasing Wasted Computation in Tree Parallelism 52
Example Output From pp Using The -1 Flag 58
Example Output of 1ca 59
Example Graphical Qutput fromlca 60
Overview of Lost Cycles Analysis Steps 61
Predicted (top) and Actual (bottom) Performance of 2D FFT . . 66
Edited Source for the Main Routine of Task Parallel 2D FFT . . . 75

6.2 Edited Source for Subroutines of Task Parallel 2D FFT 76
6.3 Parallel Structure for Task Parallel 2D FFT 7
6.4 Main Routine of Task Parallel 2D FFT With Data Trace Annotations 82
6.5 Predicted and Actual Performance of TP 2D FFT for n > 256 . . 85
6.6 Predicted and Actual Performance of TP 2D FFT forn =64 . . . 86
6.7 Edited Source for the Main Routine of Data Parallel 2D FFT .. 87
6.8 Parallel Structure for Data Parallel 2D FFT 88

6.9 Predicted and Actual Execution Time for DP 2D FFT, n > 512 . 89
6.10 Lost Cycles Model Predictions for Two Implementations of 2D FFT 90

1 Introduction

Computer designs involving multiple processors — parallel computers — have
been developed in response to the steadily increasing demand for computational
speed. While processor technology continues to advance rapidly, the price to
performance ratio of the fastest processors is also increasing. In recent years
parallel computers have become more cost-effective for many problems than are
uniprocessors of comparable performance [Bailey et al., 1994].

The favorable price-performance value of parallel computers arises from their
use of hundreds or even thousands of commodity processors. As a result, the
degree to which such highly parallel computers achieve their potential for high
performance computing at relatively low cost is determined by the efficiency with
which their thousands of components are used. The intellectual challenge posed by
the attempt to use thousands of processors efficiently is a significant barrier to the
adoption of parallel processing as the undisputed paradigm for high performance
computing in the future. The difficulty of achieving efficiency is indicated by the
large software development costs involved in porting and tuning an application for
highly parallel machines (for some typical examples, see [Gustafson et al., 1988;
Cheriton et al.. 1991; Rothberg and Gupta, 1990]).

This dissertation addresses this barrier to the wider adoption of parallel com-
puting. Our goal is to enable users of parallel computers to more quickly find
efficient implementations of their applications. Reaching this goal will allow more
efficient implementations to exist (when available development time is limited) and
will allow more cost-effective implementations to exist (by achieving a required
level of efficiency in less development time).

Although correctness debugging is an essential part of the development process
for parallel programs, we do not address debugging in our work. The principles
required for efficient debugging of parallel programs are better understood than
are those for efficient performance tuning of parallel programs. This seems to be
because correct execution is a necessary precondition to efficient execution, and
hence initial research efforts naturally focused more heavily on debugging. In
addition, research in debugging for parallel programs has developed techniques

such as deterministic replay [LeBlanc and Mellor-Crummey, 1987] that enable
programmers to debug parallel programs using methods similar to those used
on serial programs. In contrast, techniques for performance tuning of parallel
programs have not been able to make significant use of methods developed for
uniprocessing, for reasons we discuss in the next section.

1.1 The Serial Performance Tuning Model

The basis for performance tuning on uniprocessors is rooted in the von Neu-
mann machine model. The von Neumann architecture has at least two benefits
for performance tuning:

I. The von Neumann machine model suggests how to abstract the execution
time of an implementation in simple terms, namely, as the number of in-
structions executed. The simple relationship between instructions executed
and elapsed time encourages algorithms to be analyzed mathematically in
advance of implementation. This means that mathematically analyzed algo-
rithms will have some relevance to real implementations, since application
performance will differ from the results of analysis by only constant factors.

1o

The von Neumann machine model guarantees a simple relationship between
the execution time of program components and overall execution time; the
execution time of a program is the sum of the execution times of its parts.

These two characteristics of the uniprocessor environment suggest a straightfor-
ward approach to performance tuning on serial machines: programmers start
from algorithms which can be analyzed for efficiency; proceed to implementations
which are known to be big-O optimal (optimal to within constant factors [IKnuth,
1976]); and attemipt to reduce the values of the constants by measuring programs
in execution, identifying which code segments are most cost-effective locations for
improvement (e.g., via code profiling [Graham et «l., 1982]).

Unfortunately neither of these characteristics holds true in a parallel comput-
ing environment. There are two reasons why the serial model of performance-
efficient programming breaks down when using a parallel machine:

I. The addition of multiple processors to a computer allows for an immense
range of architectural diversity. Parallel computers are distinguished along
many dimensions, such as whether processors share memory, how processors
communicate, how processors synchronize, and how memory is organized.
The wide diversity of machine architectures has made it difficult to deter-
mine how to abstract parallel machines for analysis. The main analytic
platform, the PRAM [Karp and Ramachandran, 1990}, is too far removed

from real machines to provide analyses useful to the implementer. Recent
attempts have been made to develop more useful machine abstractions [Sny-
der, 1986; Valiant, 1990; Culler et al., 1993], but little experience has ac-
cumulated as to their relevance. As a result, successful analysis of parallel
applications is highly machine specific (e.g., [Kumar and Gupta, 1991]).

2. The simple relationship between the execution time of program components
and the program’s overall execution time no longer holds. On a parallel
machine, the execution time of an application is no longer the sum of its
parts, but instead is determined by the application’s eritical path [Lockyer,
1964]. The critical path is the longest sequence of instructions executed by
the machine, respecting synchronization constraints across processors and
sequential precedence on each processor. As a result there is no guarantee
that reducing the execution time of a code fragment will affect the running
time of the application.

There are a number of implications arising from the breakdown of the unipro-
cessor model of application development. First of all, parallel programmers cannot
in general start from a theoretical analysis of their application, or from an algo-
rithm known to be optimal. As a result, the most common approach to developing
a parallel program is to look for opportunities for parallelism in existing code or
algorithms. Unfortunately many algorithms and codes allow for parallelism at
multiple levels (such as at the procedure, loop, and instruction levels) [Cybenko
et al., 1991; Crowl et al., 1994] and at multiple locations within the program. In
addition, there can be a wide range of synchronization methods, scheduling strate-
gies, and task implementations appropriate for each source of parallelism. The
result is that when comparing the programming process for a parallel machine to
that of a serial machine, the guidance available from theory is diminished, yet the
number and range of implementation decisions is increased.

A second result of the lack of theoretical basis for parallel program design is
that the most common approach to performance tuning is the measure-modify
paradigm [Lehr et al., 1989]. In the measure-modify paradigm, programmers first
implement a parallel program, aiming for correctness, then measure its execution
time to decide whether it performs acceptably. If changes are necessary, the
program is modified and the process iterates. There are a number of reasons why
measure-modify is an inefficient approach to finding the best implementation of a
parallel program. First of all, simply measuring an application’s performance gives
little insight into the reasons behind any performance problems found. Second,
even given an understanding of the reasons behind performance problems, it can be
difficult to connect problems with the design decisions leading to them. Finally,
and most important. after a new implementation is created, the program may
exhibit new performance problems, perhaps even worse than the previous version.

The final implication arising from the breakdown of the uniprocessor model of
application development is that the notion of a “best” implementation of any par-
ticular program is no longer valid. Variations in machine characteristics, the num-
ber of processors used, and even the amount and internal structure of data used
by the program can affect an implementation’s performance drastically enough
that changing any one of these can require modifying the implementation to ob-
tain optimal performance. Thus, unlike the serial case, the process of tuning an
application using a fixed number of processors and machine is insufficient, for most
parallel applications.

1.2 A Parallel Performance Tuning Model

The previous section discussed the gap that exists between analytic and exper-
imental approaches to parallel program development. Analytic approaches are not
well enough developed to encompass the wide range of performance effects caused
by variation in architecture and application structure. Experimental approaches
lack the predictive power to quickly find optimal program designs.

This dissertation describes an attempt to incorporate the strengths of both
analysis and experimentation into a set of techniques to speed the development of
efficient parallel programs. Our approach is to employ performance measurement
to capture all relevant performance effects. and to use performance analysis to
generalize those effects into models suitable for performance prediction.

In this dissertation we consider the performance of a parallel application as a
function of 1) external factors, such as the size of the input data set, the structure
of the input data set, the number of processors used, and the type of parallel
computer used; and 2) internal factors, such as the parallel structure used in
the application. the kind of synchronization used. and the compilation techniques
and runtime libraries used. The execution time of a parallel application bears a
complex and often unexpected relation to all of these factors.

Abstractly, we can consider the programming process as a minimization prob-
lem. The objective function is the performance function Tp(I. E) which is a
function of the internal factors I and the external factors E. Using the measure-
modify paradigm on parallel programs is essentially a way of sampling the value
of a program’s performance function for particular values of I and E.

Developing efficient programs is currently a much more experimental process
on parallel machines than it is on serial machines. The lack of predictive ability
available to the programmer in a parallel environment means that a potentiallv
explosive number of combinations of I and F must be examined to tune a parallel
application. The search process used by most parallel programmers is expensive
and inefficient.

Attempts have been made to solve some of these problems in isolation. For
example, work on performance measurement tools for parallel programs (e.g.,
[Miller et al., 1990; LeBlanc et al., 1990]) has facilitated and improved the process
of experimentation used in tuning applications. Likewise, machine-dependent an-
alvtic techniques such as scalability analysis [Kumar and Gupta, 1991] have been
developed which provide predictive ability for a class of machines and applica-
tions. However, a complete solution to these problems requires both the ability to
measure a parallel application, and the ability to predict the performance of the
application, as we change external and internal factors. Using a combination of
performance measurement and performance prediction, a programmer can both
understand the reasons why an application may be performing poorly and under-
stand the potential effects of a change in the program’s execution environment or
structure.

1.3 Statement of Thesis

The thesis of this dissertation is that a combination of performance measure-
ment and performance prediction can be exploited to converge on an efficient
implementation of a parallel program while minimizing the number of alternative
implementations considered.

The central feature of our approach is the decomposition of the problem into
two problems, which we treat using a unified framework: 1) predicting the effects
of external factors and 2) predicting the effects of internal factors.

Our approach is in three parts: 1) we describe how to measure parallel pro-
grams in a way that leads to understanding for problem diagnosis and also is useful
for performance prediction; 2) we describe an approach to developing performance
models of implementations as functions of external factors; and 3) we describe a
method for generating performance models of new implementations (that is, new
values of internal factors) without requiring that the new applications be exe-
cuted. or even fully coded. Each of these parts is supported by a tool or tools
which automate all or most of each step.

The first part of our work is called predicate profiling. Predicate profiling is a
method of measuring the parallel overhead present in the execution of a parallel
program. Overhead refers to processor time spent performing functions that do
not directly contribute to the problem’s solution; they are additional operations
that are required because the problem is being solved on a parallel machine. Pred-
icate profiling works by assigning the measured overhead to categories (defined by
performance predicates), which together meet three criteria: completeness, orthog-
onality, and meaningfulness. Completeness ensures that all the parallel overhead
in an execution is captured; orthogonality ensures that no overhead is counted

twice (thus overheads can be summed in a straightforward way); and meaningful-
ness ensures that overhead categories correspond to states of the execution that
have significance in performance tuning. Predicate profiling was implemented
initially using a sampling-based mechanism on an SGI Challenge Series multi-
processor, and in its current form is implemented as the tool pp, which uses an
event-logging mechanism and runs on the KSR1 multiprocessor.

The second part is called lost cycles analysis. Lost cycles analysis is the
process of assigning a performance model (typically a simple formula) to each
of the overhead categories measured by pp. The result of lost cycles analysis
is an overall performance model for the application as a function of its runtime
environment, such as the input data size, the number of processors used, the
input data structure, and machine characteristics. Lost cycles analysis is made
feasible for programmers by basing the analysis on overhead categories, and by
the tool 1ca. The category-based approach means that rather than producing a
performance model for the application in total, the programmer only need produce
models for the various overhead categories. Category models are typically fairly
simple. while the overall application model can be much more complex.

The tool 1ca assists the user in developing category models. The tool: 1)
inputs performance data as output by pp; 2) selects performance models that are
appropriate for the overhead category chosen by the user (along with user-supplied
models, if any); 3) fits each performance model to the data in a least-square
sense: and 4) outputs the resulting models along with their R? values, in text and
graphical form. The models selected by 1ca for a particular category are based
on the fact that each overhead category has certain frequently-occuring behavior
when varying common environmental variables — for example, load imbalance
typically follows one of a small set of behaviors as the number of processors is
varied. The output of 1ca allows the user to quickly assess and select one from
among the likely models for each category. By summing the category models
chosen with the help of lca, the programmer can quickly construct an overall
performance model of the application as a function of the runtime environment.

The third part, lost cycles modeling, addresses the final problem of predicting
the performance of alternative parallel implementations. We start with the ob-
servation that parallel program restructuring usually involves the reorganization
of existing code into a new parallel structure — as when serial loops are converted
to data parallelism, or multiple subroutines are run in parallel using tasking. We
then observe that the performance of code fragments being reorganized can be
modeled using lost cycles analysis. Lost cycles analysis is useful because when
code is reorganized into a new parallel structure, as a result it is typically run
on a different number of processors. or with different input data, etc. That is.
different parallel implementations place code fragments in different runtime envi-
ronments. These observations allow us to decompose the problem of performance
prediction of alternative parallel implementations into two subproblems: 1) how

-3

does each code fragment perform? and 2) what is the relationship between the
performance of the overall application and the performance of each fragment? An-
swering these two questions for a (possibly incomplete) parallel implementation
we call lost cycles modeling.

The first question we can answer directly using lost cycles analysis. To do this
we use the tool pp to obtain performance measurements of arbitrary code frag-
ments. The output of pp is then directly usable by 1ca. The resulting performance
model of the code fragment is then stored with that fragment, as a comment in
the source.

To answer the second question, we demonstrate a tool-based technique for
composing performance models of fragments into a performance model of the en-
tire application. The method is implemented in the tool 1cm. The tool proceeds
as follows: it parses the program source of an application that has been restruc-
tured, looking for three things: 1) explicit parallel constructs; 2) explicit data
movement; and 3) lost cycles models embedded in comments. lcm then composes
the lost cycles models for each of the program fragments using an understanding
of the parallel constructs and data movement operations. For example, in an
application where a tasking directive has been added, it will compose the perfor-
mance models of each task into an overall model, taking into account the load
imbalance induced by unequal task execution time, and properly accounting for
the amount of data and number of processors used by each task. In some cases,
lcm requires additional execution data; for example, to properly predict the effect
of task synchronization lecm probably needs to trace synchronization operations.

1.4 Outline of Dissertation

The purpose of this dissertation is to show how the three techniques we present
can be used to answer a common question asked by a parallel programmer: “What
is the best structure for my parallel application?” To do so, we will first review
related work, showing how our work builds on and is distinguished from other
research (Chapter 2). Chapter 3 will then describe the problems associated with
parallel programming and explain why writing efficient parallel programs is dif-
ficult. The contributions made by this work are then described, beginning in
Chapter 4, which presents predicate profiling. Chapter 5 presents lost cycles anal-
ysis, and Chapter 6 describes lost cycles modeling. Finally, we summarize our
contributions in Chapter 7.

2

Related Work

Since our work is best described as an attempt to use both performance measure-
ment and analytic modeling to provide performance prediction tools to parallel
programmers, we can characterize related work in terms of three areas:

1.

S

2.1

Performance measurement tools and techniques for parallel pro-
grams. Performance tools typically provide a description of an execution
in a form likely to explain reasons for poor performance and intended to
suggest ways to improve the application. Most such tools don’t provide
performance prediction features.

Performance analysis techniques for parallel programs. Parallel pro-
gram analyses typically study the sensitivity of application performance as
a function of the number of processors and problem size. Such analysis is
often asymptotic and thus not oriented to predicting the performance of
specific applications on specific machines, and usually requires significant
programmer effort.

Performance prediction techniques for parallel programs. Perfor-
mance prediction attempts to provide predictions of running time, for spe-
cific applications on specific machines, usually assisted to some degree by
automated tools. Techniques vary depending on the type of input data used.
Static techniques use source code (or pseudo-code) as their main input. Dy-
namic techniques rely mainly on performance measurements, using them to
predict other performance measurements.

Performance Measurement Tools

The majority of the tools and metrics devised for performance evaluation and
tuning reflect their orientation towards the measure-modify paradigm. That is,
tools rarely provide predictions of performance for executions that have not been

10

measured. As a result, performance measurement tools typically provide large
amounts of information to the user so that the user can understand the application
well enough to form informal mental models of the application.

Performance measurement tools, since they are so information-rich, have the
difficult task of organizing data collection and presentation in a way that assists,
rather than overwhelms, the user. Three basic approaches have been taken.

The toolkit approach brings a collection of measurement and presentation
methods into a common framework, and allows the user to explore performance
data from multiple viewpoints. In the toolkit approach, there is little prior notion
of the likely causes of performance degradation; it is typically up to the user to
form a conclusion as to which overhead category dominates performance (e.g.,
data transfer, serial code, synchronization).

The specialized approach focuses on one particular overhead category and orga-
nizes data collection and presentation in a manner natural for the specific category.
In the specialized approach, there is an implicit assumption that the particular
overhead category examined by the tool is dominant in explaining performance.

The characterization approach focuses on all categories of overhead, and simul-
taneously evaluates them all for every execution. The characterization approach
describes performance problems in terms of categories of overhead, and reports
them as such to the user; differences among characterization approaches occur in
how categories are defined, and what the categoryv-based information is used for
after it is reported to the user. Our work in predicate profiling is an example of
the characterization approach.

2.1.1 The Toolkit Approach

Performance analysis toolkits are typically general in scope. and do not present
data specifically in terms of pre-defined categories of poor performance.

The PPUTTS toolkit [LeBlanc et al., 1990] is intended to support the entire
parallel program development process. As a result, it provides both debugging and
performance analysis tools, which are based on instrumented versions of shared-
memory synchronization primitives. Data collected is stored in a user-accessible
database. Users can use pre-constructed visualization tools on the debugging and
performance data, and can write custom queries to examine data in application-
specific ways.

The IPS-2 system [Miller ef al., 1990] provides additional structure to the per-
formance analysis process by organizing both performance measurement and data
presentation in a hierarchical manner. Users can start from statistics gathered at
the system level, descend to the application level, and within the application to
procedures and individual lines of code. At each level the user can invoke visu-
alizations of performance data. Another information-managing feature of IPS-2

11

is its ability to draw the user’s attention to the critical path (at any level), in
schematic form and by profiling the code segments lying along the critical path.

The ChaosMON system [Kilpatrick and Schwan, 1991] is designed to allow
the user to specify performance metrics (and derived functions), and presentation
of them in graphical form. This is done on an application-specific basis, relying
principally on the value of specific global variables in the application program.
These variables can be sampled intrusively (synchronously) or non-intrusively
(asynchronously). To organize the data collection and presentation, all objects in
the system (processes, data sets, graphs) are described used an extended Entity-
Relationship (E-R) model. The E-R model applied to an application is sufficiently
high-level, vet detailed enough to describe that application for performance mea-
surement. In addition, the E-R description of data sets allows for well-organized
data analysis.

Two toolkits that primarily focus on providing multiple presentation meth-
ods for performance data are PIE [Lehr et al., 1989] and ParaGraph [Heath and
Etheridge, 1991]. In these systems, data collection is handled transparently to the
user, and the user’s role is to explore various visualizations to discover the most
meaningful data presentation method.

2.1.2 The Specialized Approach

In contrast to the general-purpose toolkit approach, the specialized approach
looks for performance bottlenecks in a single overhead category. These tools
focus the programmer’s attention on the code or data that is most to blame
for poor performance in a given category. Most of these tools correlate a metric
with an application’s source lines or procedures, which is called profiling. Tools
have been built that focus on each of the overhead categories that we consider
in our work: memory system effects, insufficient parallelism and load imbalance.
synchronization costs, and resource contention.

Memory System Effects

A wide variety of specialized tools have been built that focus on memory system
effects, spanning a tradeoff between minimizing tool execution costs and obtaining
detailed output. The utility of memory-system tools arises from the increasing
sensitivity of modern high-performance processors to the costs of accessing mem-
ory. Because it is so important to use the memory hierarchy efficiently in order to
achieve good processor utilization, the profiles provide by memory-system tools
can frequently help a programmer to increase application performance consider-
ably.

12

Mtool [Goldberg and Hennessy, 1993] is a profiler for the metric stall time.
That is, the primary function of Mtool is to measure the time spent by the pro-
cessor waiting for memory requests to be satisfied. Mtool works by comparing
a measured execution of the application with the same execution in a unit-cost-
memory simulation. The difference between the two yields the cost of memory
access during the execution.

The SHMAP tool [Dongarra et al., 1990] employs a data-centered view by
providing a visual representation of memory use. SHMAP presents memory on the
screen as a two-dimensional array, and highlights regions of heavily used memory
with color coding. The intent is to help the user rapidly find data structures that
have high cache miss ratios, by using memory locations as the common frame of
reference used by both the application and the measurement tool.

MemSpy [Martonosi et al., 1992] unifies the functions of Mtool and SHMAP,
and provides greater detail than either. Since cache misses may occur for a variety
of reasons, and because cache misses are often more usefully correlated with data
structures than with code sections, MemSpy provides profiles on a code-oriented
or a data-structure-oriented basis. It also uses more detailed metrics, such as
first reference misses, invalidation misses, and replacement misses. For example.,
separately reporting on invalidation misses allows the user to determine how much
data communication is occurring in a parallel application. The price of this extra
detail is much more overhead spent in measurement: while Mtool only requires
two executions of the application at full speed, MemSpy simulates the execution
in much more detail, and has been reported by the authors to take from 22 to 58
times longer than a full-speed execution.

Finally. PFC-Sim [Callahan et al., 1990] provides detailed information similar
to that of MemSpy, but it takes a different approach to obtaining the data. Rather
than running the application in detailed simulation, it uses the PFC Fortran
source-to-source compiler to instrument reads and writes at the source level. The
instrumentation calls execute a memory system simulator. The result is both
data- and code-centered output of memory system behavior.

Insufficient Parallelismh and Load Imbalance

A number of tools have been developed to profile the parallelism present in
an application and focus the user’s attention on code segments that contribute to
the application’s serial fraction [Karp and Flatt, 1990]. Increased serial fraction
can occur due to insufficient parallelism. in which the number of parallel tasks
created in a code section is smaller than the available number of processors, or
due to load imbalance, in which a sufficient number of tasks are created but they
execute for unequal lengths of time.

MaxPar [Cybenko et al., 1991] is a tool that computes the dataflow graph
for any segment of code and uses its width to determine the average parallelism

13

available in the code segment, which determines the maximum speedup possible.
With each variable, it associates the times it was last written and read. Then,
each operation’s earliest possible execution time (respecting data dependencies) is
computed at run time. The result is a display that shows both execution time and
maximum parallelism for code blocks, thereby focusing attention on which code
to parallelize. While MaxPar does not directly diagnose parallel code, it assists
the user in applying parallelism to the most fruitful portions of the application.

SPAN [So et al., 1987] is a tool that measures effective parallelism for an
entire application. The program is instrumented to record the points where there
is synchronization between threads. Then the program is run on a uniprocessor,
and a task trace is produced. The task trace saves data including the execution
time of each task:; the tasks in the trace are then scheduled based on the real
scheduling policy of the multiprocessor of interest, producing a measure of the
average parallelism in the execution of the application.

In contrast to MaxPar and SPAN, Quartz [Anderson and Lazowska, 1990]
operates on parallel applications and provides detailed measurements of actual
parallelism. Instead of processing time per procedure, Quartz measures normal-
ized processor time (NPT), which is defined by:

processing time with ¢ processors concurrently busy

P
NPT =Y
=1

4

where P is the number of processors. The NPT metric shows the concurrent effec-
tive parallelism while a routine executes. This metric is based on the observation
that serial code that always executes concurrently with other computation will
Lave little effect on performance compared to a serial routine that always exe-
cutes by itself. The benefit that Quartz provides as a profiling tool is to provide
a measure of the performance gain to be expected from optimizing a particular
section of serial code — similar to the benefit provided in a serial environment by
the execution-time profiler Gprof [Graham et al., 1982].

Synchronization Costs

A tool for profiling synchronization costs is described in [Davis and Hennessy,
1988]. By instrumenting the primitives used to incorporate parallelism into the
application, synchronization events are traced at runtime with low overhead. The
profiles are presented based on synchronization objects such as locks and mutexes.
The metrics profiled include synchronization operation frequency, execution delay,
number of processes concurrently attempting access to a lock, amount of time
between synchronization operations, and time spent holding a lock. Runtime
measurement increases application runtime by only a few percent, although lock
acquire time can increase by a factor of ten. The result is an assessment of the

14

performance impact of synchronization operations on the application, and data
indicating which synchronization objects are most responsible for the performance
impact.

Resource Contention

Resource contention occurs when high demand is placed on a system compo-
nent with limited service capacity, such as a memory module, an interconnection
network, or a communication channel. Although the pp tool we present in this
dissertation is the only one we know that directly measures resource contention,
previous work has shown how contention effects can be measured. In [Tsuei and
Vernon, 1990], the authors describe measurement methods for resource contention,
which are based on measuring mean inter-reference time and mean memory cycle
time, and comparing to known ideal times for both. The method used can pro-
vide a summary of the total time spent waiting for resources (bus and memory)
by the application. Unfortunately, the approach described requires the use of ad-
ditional hardware to monitor the system’s bus. The approach we use does not rely
on additional hardware, but makes use of the dedicated performance monitoring
hardware on the KSR series multiprocessors.

2.1.3 The Characterization Approach

Specialized tools are very useful in application fine-tuning, but usually do
not provide completeness (i.e., they don't measure all sources of overhead in the
execution). As a result, they are limited to cases in which the principal overheads
are known in advance.

A number of researchers in the parallel performance evaluation and tuning
community have focused on measurement of multiple parallel overheads. In par-
ticular the PEM system has developed a taxonomy of parallel overheads similar
to ours [Burkhart and Millen, 1989]. Their measurements, while providing sim-
ilar overall data to the user, are not oriented toward performance prediction of
alternative implementations, so the specific overhead categories they use are not
always amenable to easy analysis. In addition, they have not emphasized the
completeness criterion, which is necessary to use measured data as a basis for
performance prediction.

In [Meller-Nielsen and Staunstrup, 1987], the authors define the problem-heap
model, in which a number of tasks (“problems”) are created and placed in a heap.
Tasks are then individually removed from the heap and executed by processors as
they become available. The authors characterize sources of performance loss due
to this particular software organization:

15

1. Starvation loss, which occurs when there are not enough problems in the
heap. This can happen especially at startup time, and corresponds to our
“insufficient parallelism” category.

N

Braking loss, which occurs when tasks are still running after an answer is
found. This is a category we used in our first implementation of pp, and
measured for the subgraph isomorphism problem described in Section 3.1.

3. Separation Loss, which occurs when then splitting of a task into two may
make more work. For example, in parallel string search, the beginning of
the string being searched may be searched twice, once before and once after
the split. This category is represented in our work as wasted computation,
another overhead used in our study of subgraph isomorphism.

4. Saturation loss, which occurs due to the mutual exclusion necessary on the
heap. This category is included in our synchronization loss category.

The overhead categories presented here are restricted to software effects only, and
hence do not provide completeness.

Two tools that define sources of poor performance in advance of execution are
the W3 system and ATExpert. The W3 system [Hollingsworth and Miller, 1993]
defines sources of poor performance in advance of execution, but the categories
they use are focused on automated diagnosis and do not have a role in perfor-
mance prediction. The tool ATExpert [Kohn and Williams, 1993] provides both
multi-category performance measurement, and some simple performance predic-
tion in the form of expected speedups for parallel loops. However it does not
address performance prediction in a general way. It cannot handle arbitrary pro-
gram structures, and relies heavily on specific knowledge of the Cray performance
measurement hardware and automatic loop parallelization software; hence it is
difficult to generalize from the ATExpert tool to other platforms.

2.2 Parallel Performance Analysis

As discussed in Section 1.1 efficient development of parallel programs must
be based on some predictive component, since the measure-modify approach is
efficient only for a small number of implementations, inputs, or execution envi-
ronments.

Any ability to predict the performance of an application in advance of execu-
tion requires a model of the application’s performance. Models can be developed
in two ways: they can result from an analysis of the algorithm or program — static
analysis; or they can result from inference based on known values of the applica-
tion’s performance function — dynamic analysis. Static analysis is a systematic

16

approach that relies on complete understanding of the machine, application, and
input; dynamic analysis is an empirical approach, using the machine, application,
and input to demonstrate directly the performance effects that are important.

Although analysis provides the conceptual tools to predict parallel program
performance, most previous work in analysis has not been directly used by pro-
grammers to predict performance of real applications for two reasons:

1. Analysis techniques have primarily focused on the study of asymptotic ap-
plication performance. The results typically describe upper bounds on the
application’s efficiency to within a constant factor. However, alternative
implementations of a program may often have the same asymptotic perfor-
mance function, yet differ in important ways in the values of the associated
constants.

2. Analysis techniques are typically the products of careful study and signifi-
cant effort. The work required in developing an analytic model can greatly
outweigh the effort in simply implementing and measuring a proposed alter-
native program structure. In addition, the difficulty involved in developing
analytic models of overheads means that often, some overhead categories
are not considered. The overlooked categories may be insignificant for the
applications studied, but it can be difficult to generalize the results to other
applications for which the overlooked categories may be significant.

Overcoming these two problems is the difference between parallel performance
analysis and parallel performance prediction. We refer to work that does not
attempt to model actual values of running time (instead focusing on “operation
counts” such as data items transferred through a network, comparison operations,
or floating point operations), and is performed primarily by the user, as parallel
performance analysis. Work that models actual running time of applications, and
attempts to automate the process of developing such models, we will refer to as
parallel performance prediction. The remainder of this section reviews the work
in parallel performance analysis; the next section reviews prior work in parallel
performance prediction and contrasts it with our approach.

While serial analysis concentrates on how performance changes as a function
of input data size n, parallel performance analysis generally develops functions of
both n and of the number of processors used, p. In addition, parallel performance
prediction must take into account many more independent variables, since they
can affect performance. We show in Chapter 3 that an application run for fixed
values of p and n can still have significant performance variations as one varies
the structure of the input, the problem definition, or the machine type.

A very large body of work has analyzed algorithms in idealized machine frame-
works, such as the PRAM [Karp and Ramachandran, 1990], that are essentially

17

unrealizable because they ignore important sources of overhead in real machines.
In order to model applications running on real machines, parallel performance
analysis techniques must do more than model the productive operations in a
computation; they must also model the non-productive, or overhead operations.
As mentioned in Section 1.1, attempts have been made to develop more useful
abstract machine models, in which realistic overheads are incorporated [Snyder,
1986; Valiant, 1990; Culler et al., 1993]. However, little experience has accumu-
lated to date as to the ability of abstract machine models to accurately model
real machines; hence the parallel performance analysis techniques we review here
are all performed, in practice, in the context of specific overheads and specific
machine architectures.

Within the wide spectrum of parallel performance analysis, relevant work in-
cludes the body of literature that has studied how parallel overheads behave —
that is. what typical functions can be used to describe parallel overheads. The
large body of performance analysis that applies queueing networks and timed
Petri nets to the modeling of parallel systems has not generally focused on under-
standing overhead categories’ and so falls outside the scope of this dissertation.
However, a number of papers have studied parallel overheads in general, while
many papers have studied specific parallel overheads.

2.2.1 General Studies of Parallel Overhead

Papers that have studied parallel overhead in the abstract have tried to identify
techniques that can assist programmers or system designers in predicting optimum
values for n or p. The total overhead in an execution is commonly denoted T, (7. p),
while the non-overhead or “pure” computation is denoted T.(n). We denote the
execution time of the parallel application as Tp. Using these terms, the observed
execution time of the parallel application is:

To(n,p) + To(n)

Tp(n,p) = :
p
Two metrics commonly studied in these terms are speedup:
T.(n)
S(n,p) = =5
(x 2. Tp(n,p)

(in which we assume that we are parallelizing the best known serial algorithm)
and efficiency:

S(n, 1 T.(n T.(n
E(n,p) — (?p) — C() — C() .
P pTp(n,p) To(n,p) + Te(n)
1With some exceptions — ¢.g. work that attempts to extend queueing analysis to include

software structure along with contention effects is described in [van Gemund, 1993].

18

In [Eager et al., 1989], the authors are concerned with the relationship between
speedup and efficiency, and in particular how to predict the point at which the
greatest ratio is obtained of efficiency over execution time. The point at which
this ratio is obtained represents an optimal operating point for the application,
since the application is utilizing processors efficiently (using system resources well)
while achieving low execution time (using the user’s time well). They show that,
considering parallel overhead to consist only of load imbalance, the average par-
allelism of the application — the number of processors usable by the application
at each instant, averaged over its execution time — is the point at which the
efficiency / execution time ratio is maximized.

A similar goal is pursued in [Flatt and Kennedy, 1989], but additionally the
analysis includes communication and synchronization components of T,(p). The
authors present a number of general assumptions about parallel overhead, which
1) ensure that the derivative of running time has at most one zero — thus, if
running time hits a minimum, it never subsequently decreases; and 2) ensure
that eventually the running time will begin to increase (hit a minimum). They
show that overhead functions that are logarithmic (the best possible) or linear
in p, among others, fit these conditions. They also develop, in their framework,
expressions for the same operating point used by [Eager et al., 1989]. They de-
velop T, functions for some common software structures (schedulers that incorpo-
rate critical regions; barrier synchronization time in hypercubes and MINs) and
then develop optimal operating points for these structures. Finally, they consider
scaled speedup [Gustafson, 1988] and show (assuming 7, is independent of n) that
“Iuck’s conjecture” holds, namely that if one multiplies both n and p by k, scaled
speedup can increase at most by a factor proportional to k/log(k).

Even more overhead types are considered in {Carmona and Rice, 1991], which
refers to parallel overhead as wasted work. Included in wasted work is load imbal-
ance, communication, contention. task activation/termination, and synchroniza-
tion. The authors generalize the notion of serial fraction [Karp and Flatt. 1990]
by making it dependent on both n and p, and show that besides just serial code,
an application’s serial fraction could also be wasted work that increases linearly
with p.

The limitation of studies that do not consider specific applications and ma-
chines is that they can only provide general techniques for determining optimal
operating points of an application; there is still significant effort required for any
particular application in applying those techniques. A number of studies there-
fore have analyzed particular applications as an aid to programmers who may be
interested in creating similar implementations. For example, Nicol and Willard
[1988] study the solution of elliptic PDE’s using iterative methods on hvpercubes.
grids, and bus architectures. They derive expressions for running time and explic-
itly model communication costs. The resulting expressions are used to determine
optimal problem size or machine size, and to show how optimal speedup increases

i n T ==

e

19

as a function of problem size on different machine types.

Scalability analysis [Kumar and Gupta, 1991] develops analytic, asymptotic
models of computation and selected overhead categories as a function of the size
of the problem n and the number of processors p. Many studies of the over-
heads in specific applications have been performed within the framework of scal-
ability analysis; examples include [Grama and Kumar, 1992; Singh et al., 1991;
Kumar et al., 1994]. These studies provide insight into the inherent scalability of
a particular application and machine combination. The distinguishing feature of
scalability analysis is in its comparison of an application’s efficiency as a function
of p with its efficiency as a function of n. The ratio of E(n) to E(p) provides
an understanding of how an application’s problem size must be scaled up as the
number of processors used is increased, and is called the application’s isoefficiency
function [Grama et al., 1993].

Scalability analysis and related techniques provide useful insight into the
strengths and weaknesses of applications on specific parallel machines. However,
when using scalability analysis it is necessary to anticipate the overhead category
or categories that will dominate in actual practice. The notion of completeness in
our work attempts to address this weakness of scalability analysis by consistently
measuring and modeling all categories of parallel overhead.

Finally, an approach that combines measurement of overheads broken down
into categories with modeling is presented in [Sivasubramaniam et al., 1994]. The
authors use simulation to study three kinds of parallel overhead: application-level.
communication, and contention, and generalize the observed data using mathe-
matical models. The use of simulation allows the authors to study alternative
architectures, and to use real aplications, but limits their conclusions to scalabil-
ity observations rather than performance predictions.

2.2.2 Specific Studies of Parallel Overheads

Scalability analysis can provide understanding of the general kinds of functions
that parallel overheads might follow, which provides boundaries for the model-
selection process used in the tool lca. However, the specific functional forms that
each category of parallel overhead is likely to follow form the basis for the default
functions used by lca; work that has studied those specific forms is reviewed in
this section.

Many studies have developed analytic models of the cost of communication
and resource contention for particular application / machine combinations. Typ-
ical examples are: [Brochard and Freau, 1990], which models communication
costs in the IBM RP3; [LeBlanc, 1988], which models data movement costs both
due to locality and due to algorithmic communication requirements, for Gaus-
sian elimination on the BBN Butterfly; and [Crovella et al., 1992] which models

20

communication costs and resource contention for Gaussian elimination and par-
allel Quicksort on two models of the BBN Butterfly and the Silicon Graphics
4D /480 multiprocessor. Each of these papers starts from a careful study of the
application’s communication pattern, and identifies the types of communication
that occurs. Fach also measures directly the costs of each type of communication
present.

A somewhat more automated approach is the use of load/store kernels.
Load/store kernels are small code segments that repeatedly perform common
memory operations, allowing accurate measurements to be made of the costs of
communication, local memory operations, and interconnect performance. Load /
store kernels are particularly useful on shared memory machines used for data-
parallel applications. In this environment, load imbalance, insufficient parallelism,
and synchronization loss often are all minimal, so that memory and interconnect
characteristics dominate performance. Unfortunately, as with many performance
analysis techniques, the load/store kernel approach seems to require significant
user effort in practice.

For example, in [Gallivan et al., 1991] the authors describe a method for pre-
dicting the effects of memory access on the performance of data parallel Fortran
codes on the Alliant FX/8. Load/store kernels are used to characterize the ma-
chine in detail, including the length of vectors processed, the load/store pattern,
and memory request density. Performance of the machine over the parameter
space, using an adaptive sampling resolution, is stored in a database. Code sam-
ples are matched to the closest (interpolated) measurement in the database as
follows: First, code is converted to a pattern of NOPs, LOADs, and STOREs.
Next, the Load/Store pattern is matched to one in the database. Finally, the
memory reference density and miss ratio are estimated. Much of the process
seems to be performed by the user, but it leads to performance predictions of loop
timings which are quite accurate — agreeing to within about 10 percent.

A related approach was taken in [Bodin et al., 1990], which models communica-
tion costs on the BBN GP1000 using load/store kernels [Gallivan et al., 1991]. In-
stead of storing the results of the load/store measurementsin a database, the mea-
surements were used to parameterize an analytical model of network-connected
memory system performance which includes memory contention. The model pre-
dicts the performance of a simple application with reasonable accuracy (within
25%); the remaining differences are assumed to be due to network contention.

Work that includes models of synchronization costs includes [Nanda et al.,
1991] and [Tsuei and Vernon, 1990]. These studies include models of contention
for software structures, which appears as waiting time to acquire locks. In [Nanda
et al., 1991}, the authors parameterize the application space into six dimensions:
1) the number of concurrent processes, 2) the number of shared-data objects, 3)
the number of local computational operations between critical sections, 4) the

L]

number of shared data references between critical sections, 5) the amount of time
spent inside each critical section, and 6) whether the workload generated from
these parameters is fixed or probabilistically generated. Using workloads span-
ning this space, the paper takes measurements of overhead due to: 1) network
Jatency, 2) hardware contention, 3) software (lock) contention, and 4) time spent
in lock /unlock routines on on a Butterfly Plus (GP1000), a Bfly-II (TC2000), and
a Sequent Balance 21000. Analytic forms of these overheads are then developed.
The result is a prediction of the communication, resource contention, and synchro-
nization overhead to be expected for an application whose characteristics along
the 6 dimensions are known, running on one of the three machines used. Thus,
this approach is based on a parameterization of applications along a number of
dimensions sufficient to characterize the application’s overheads. Open questions
remain as to whether real applications are sufficiently uniform in general to be
characterized by a small set of measurements, and how to extend the measurement
dimensions to include remaining overhead categories, such as load imbalance and
insufficient parallelism.

Another approach at modeling synchronization, communication, and resource
contention is taken in [Tsuei and Vernon, 1990]. The authors break speedup
limitations into 3 kinds: software structure, lock contention, and hardware con-
tention. They argue that for common kinds of programs (SPMD) that these 3
limitations are not circularly dependent; thus efficiency ratios due to each can be
simply calculated and are multiplicative. The software structure factor is obtained
by measuring the application’s execution profile (efficiency for various values of
input size and number of processors). Models of lock contention are based on
queueing network mean value analysis [Lazowska et al., 1984] using the mean lock
inter-request time, the number of locks, and the time spent holding each lock.
These inputs depend on the execution profile. Hardware contention is modeled
by actually measuring mean inter-reference time and mean memory cycle time,
and comparing it to ideal values for memory cycle time; this step requires a bus
monitor. The resulting models provide accurate performance estimates for various
versions of Gaussian elimination. While the models for synchronization costs used
in this work are not applicable to arbitrary parallel programs, the use of simple
cyclic queueing models to approximate contention effects is widely applicable.

Load imbalance and insufficient parallelism have also been modeled for specific
applications. In [Zhang and Srinivasan, 1990], the variation among task running
time is measured, and used to select a scheduling strategy. The paper points
out that when variation in task running time is identically distributed, then load
imbalance should increase with the square root of the number of processors (a
result from order statistics).2 When the standard deviation of task running times
is large, then tasks should be self-scheduled — otherwise, tasks should be pre-

2A Pth order statistic is the maximum of P identically-distributed random variables. A
distribution-free bound on the expected value of a Pth order statistic (the Pth-smallest value)

scheduled. Two applications are shown: the first has high variation in task running
time, and the load imbalance predicted indicates that the application favors self-
scheduling. The second has nearly constant task running time, and hence favors
pre-scheduling due to its smaller synchronization costs. Another study that uses
similar order statistics to model load imbalance is [Hummel et al., 1992].

2.3 Parallel Performance Prediction

While the performance analysis techniques reviewed in the previous section
are useful for specific applications on specific machines, they do not represent a
general approach to performance prediction. To be useful to parallel programmers,
performance prediction must result in predictions of actual running time, must be
as automatic as possible, and must be applicable to most or all parallel programs
and machines (and hence cannot overlook any categories of parallel overhead).

Any performance prediction technique must include a static analysis compo-
nent and a dynamic analysis component. Static analysis is the foundation of
prediction: the programmer considers a program structure and desires to know
what its performance might be. Dynamic analysis captures the costs specific to
the particular runtime environment and machine used (since source code is ideally
useful on multiple machines).

Static analysis techniques operate on a wide range of source code formats.
Some techniques assume a particular parallel programming language or program-
ming model. Other static analysis techniques require that the programmer specify
a template for the application. In a template approach, the programmer identifies
a commonly-used parallel structure, such as producer/consumer or central task
queue, and associates program components with the logical components of the
template.

Dynamic analysis techniques rely on performance measurements to charac-
terize the runtime behavior of applications, but must attempt to minimize the
number of measurements taken. To avoid completely measuring the application’s
performance function (and thus defeating the purpose of performance prediction)
dynamic techniques must infer the application’s performance function from a re-
stricted set of measurements. Usually static analysis provides some basis for the
inferences made. Dynamic techniques vary widely in the amount of data they
collect; from measuring multiple executions per application, to measuring a single
execution per application. to taking a set of measurements only once per machine.

Performance prediction techniques all incorporate static and dynamic compo-
nents, and form a spectrum from highly static with little dynamic measurement, to

of 1dentically-distributed random variables with mean g and variance o is g+ o+/P/2 [Gumbel,
1954; Hartley and David, 1954].

23

highly dynamic with a small static component. The central issue for a performance
prediction technique anywhere on this spectrum is the method of automating the
static and dynamic components. The main difficulty experienced by highly static
approaches is the inability to predict the behavior of the application at runtime,
based on its source code. These problems are similar to those that are presented
to compiler writers seeking opportunities to apply optimizations or data depen-
dency analysis. The main difficulty experienced by highly dynamic approaches is
efficiently and reliably forming inferences from performance measurements. This
problem is similar to the “function discovery” problem: data points may suggest
a certain function, but incorrectly so due to aliasing arising from subsampling.
Gathering enough data to conclusively verify a performance function in the pres-
ence of noise and measurement error can be too expensive to provide a viable
basis for performance prediction.

2.3.1 Static Approaches

Research that relies almost exclusively on static analysis is presented in
[Clement and Quinn, 1993]. Using the Dataparallel C source-to-source compiler,
estimates are made directly from the source of the number of serial instructions,
parallel instructions, uncached memory accesses, runtime-parallelization overhead,
and number (both not size) of messages sent. Under the assumptions that pro-
grams are being run on multicomputers with wormhole routing, high message
startup costs. and similar instruction times for floating-point and integer instruc-
tions, only a few machine-specific measurements are required to parameterize the
resulting models. While good predictions can be made for some codes, other codes
(with more dynamic runtime behavior) are harder to predict accurately.

Other approaches that emphasize static analysis simplify the problem by not
providing a complete performance prediction capability. For example, in [Hickey
et al., 1992] the authors use dynamically-captured synchronization information
along with statically-analyzed program structure to predict the performance of
Ada applications on varying numbers of processors. However, this work does not
assess the effects of varying problem size, which are more difficult to predict stat-
ically than are the effects of varying the number of processors used. Another
technique is described in [Fahringer and Zima, 1993], which uses the source anal-
ysis capabilities of the Vienna Fortran Compilation system along with a single
instrumented run to predict statistics such as amount of data transferred and net-
work contention time. However these statistics are not directly translatable into
predictions of execution time, so they are used to infer the relative performance
of alternate versions of an application.

24

2.3.2 Training Set Approaches

A larger collection of machine-specific information is used by techniques em-
ploying training sets. Training sets are collections of operation sequences that
capture all the relevant performance characteristics of a parallel machine: these
sequences are measured and values are stored in a database for use by the predic-
tion tool. For example, a training set for a multicomputer may include gather and
scatter operations, global synchronization operations, and point-to-point commu-
nication. Training sets represent the extension of the load/store kernel concept
to include all machine operation sequences that can incur parallel overhead. The
benefit of the training set approach is that complex machine characteristics re-
sulting from parallel execution can be captured by the dynamic component of the
technique (training set measurement) allowing the remaining static analysis to be
much simpler, and based more fully on principles of serial code analysis.

The training set approach is taken in [Balasundaram et al., 1991], which com-
bines the cost of typical message-passing patterns (such as broadcast and message-
shift-left) with the known costs of serial code. This approach is restricted to SPMD
programs and requires the user to supply values that are difficult to statically in-
fer, such as the values of loop bounds. The system achieves good accuracy for
programs run on an NCUBE.

A tool that also employs extensive machine-specific data is the PAWS system
[Pease et al, 1991]. PAWS statically analyzes Ada code, converting it to an
intermediate, dataflow representation. It then maps the dataflow graph onto a
specific machine and uses detailed characterization of the hardware to calculate
speedup. A large number of architectural parameters are needed to support this
method. and the method’s accuracy isn’t presented.

Extensive machine data is collected in [Fahringer, 1994}, and many difficulties
of the training-set approach are discussed there. The paper points out that train-
ing sets are not portable in general, and not only need to be machine specific, but
also compiler specific. The performance of kernels when occurring in actual appli-
cations was often different from their performance measured in isolation, due to
register allocation, cache, and CPU pipeline status. The need for a large number
of fairly large kernels was identified, which makes the pattern matching problem
difficult. Finally, the paper concludes that a large effort is required in collecting,
verifving. and maintaining a training set.

2.3.3 Template Based Approaches
The template approach is popular because it simplifies both the static analy-

sis and the dyvnamic analysis components of performance prediction. Templates
subsume most of the static analysis task in the selection of a template — complex

I EE = s o R A =y am =

25

performance models are constructed in advance and implicitly selected when a
template is chosen. Likewise, a reduced number of dynamic measurements need
be taken to parameterize the template’s model. Unfortunately, the template ap-
proach restricts the range of implementation options available to the programmer,
and requires the programmer to express the application in terms of a template.
In addition, significant effort is required in developing the models for a template
on a particular machine, but minor variations in the structure of a template can
invalidate the models derived from them.

The work that first applied the template approach is the PERMOD system
[Zimran et al., 1990; Vrsalovic et al., 1984; Vrsalovic et al., 1988]. In the PERMOD
approach, templates are referred to as Implementation Machines (IMs). The goal
of the PERMOD approach is to select the proper IM based on comparing analytic
expressions of the application’s performance function for each IM. The methods
are applied to a PDE solver using Jacobi’s method on a Sequent and on simulated
distributed systems. On the Sequent, the results differ somewhat from prediction
because some the IMs are fairly sensitive to scheduling irregularities and load
imbalance.

In [Sreekantaswamy et al., 1991], the template approach is applied to appli-
cations running on T800 transputer-based multicomputers. The templates used
are a “processor farm” (a central work queue with no hierarchy of tasks) and the
“divide and conquer” style (in which tasks can be created hierarchically). The
machine parameters used are the communication cost of creating a task, and the
communication cost of starting a task, which are measured in advance of model
construction (task scheduling is supported in hardware on the T800). The model
outputs throughput measured in tasks executed per second. Using this output
metric, actual task execution time need not be measured (all tasks are assumed
to require equal execution time, and have equal communication requirements).
Models are built up from the leaves of the computation as recurrence relations.
Under these assumptions, the error in prediction is on the order of 5 percent. Uses
of the models are: 1) predicting maximum speedup and 2) predicting change in
speedup with change in granularity (by grouping tasks).

The template approach is used in [Nudd et al., 1993] to overcome difficul-
ties in applying Software Performance Engineeing (SPE) [Smith, 1990] to parallel
program development. SPE is a method of specifying applications in advance of
implementation that allows the derivation of performance estimates. The authors
point out that applying SPE to parallel systems has significant difficulties that
can be addressed by using templates to capture application-dependent portions of
the SPE specification. They show how an image processing program can be spec-
ified using templates as input to SPE, and demonstrate good agreement between
prediction and actual performance for their example application.

2.3.4 Dynamic Approaches

As mentioned above, dynamic approaches have the advantage that the ap-
plication’s runtime behavior (loop bounds, communication patterns, etc.) are
directly observable, but they have the difficult task of generalizing performance
functions from the observed data. Thus, dynamic approaches are distinguished
by the methods they use to construct performance functions.

A number of approaches use data clustering to reduce performance data to a
compact representation. In [Abrams et al., 1992], the authors describe a system
that helps the user develop a semi-Markov model of program state evolution. The
tool starts with a raw state trace, and allows the user to aggregate and eliminate
events until a small set of events remains, from which an empirical semi-Markov
model is formed. The tool provides visualizations of state traces, in both time and
frequency domains, to aid in trace reduction. For example, the frequency domain
is useful because patterns exposed there are subject to aggregation transforms.

Another clustering approach is described in [Dimpsey and Iyer, 1991]. The
state of the hardware and operating system is characterized by a number of pa-
rameters (€.g., run queue length). The application is run repeatedly over a long
time frame, and system states are statistically clustered to become states in a
Markov model. The state transition probabilities are established empirically. The
resulting Markov model can be solved via Monte Carlo simulation to obtain a
predicted probability distribution of the running time of the application. The
results agree well with the measured distribution for the application presented.

Highly empirical clustering techniques such as those described in [Abrams
et al., 1992] and [Dimpsey and Iyer. 1991] are characterized by many design de-
cisions (initial selection of system state parameters, the appropriate number of
clusters) whose proper solution is not generally obvious. These methods require
substantial effort for a single instance of a program on a specific input set. In
addition, it’s not clear how to use the resulting model in performance prediction
since it may not be understood what aspects of the model remain valid when any
part of the system is changed.

A performance prediction approach applying moderate static analysis along
with moderate dynamic analysis to SPMD programs is presented in [Mehra ¢t al.,
1994]. The tools described parse the node program’s source to determine syn-
tactic structure. The structure is then matched using regular-expression pattern-
matching to values obtained from trace files to get constants and formulas asso-
ciated with each parse node. A model of the node program is then built which
can be replicated and used in simulation, to predict the communication costs and
synchronization effects of message passing.

One difficulty in applying static analysis is that large, complex expressions
result from the analysis of real applications. Work described in [Clement and

R WS NS R Gk B W = am W

Quinn, 1994] outputs symbolic expressions for operation counts (such as commu-
nication operations and loop iterations) in a form suitable for use by the Maple
mathematical manipulation system [Char et al., 1991]. A single instrumenta-
tion run of the application captures much of the needed dynamic information
(e.g.. hard-to-predict loop iteration counts) and remaining dynamic information
is estimated. By using the Maple system, performance predictions can be easily
simplified, and then cast into a wide variety of forms, such as predictions of ex-
ecution time, speedup, sensitivity to system parameters (such as communication
cost), and optimal operating points for the application.

2.4 Relationship to Other Work

The work described in this dissertation builds on and can be contrasted with
prior work in performance measurement tools, performance analysis, and perfor-
mance prediction.

The predicate profiling technique we describe in Chapter 4 stands out from
most prior work in performance measurement in attempting a high-level, but
complete characterization of application performance. In addition, the notion of
specifying the causes of poor performance in advance of execution is present in
few other tools — notably, the W3 system [Hollingsworth and Miller, 1993]. We
differ from that approach in focusing on a dual role for our measurements —
performance evaluation and performance prediction.

The performance prediction work described in Chapter 5 (lost cycles analysis)
draws heavily on work done in performance analysis. Lost cycles analysis is almost
entirely dynamic; we show in that chapter that prediction of the performance
function for a single application can be based on very simple programmer analysis.
The leverage we use to achieve simplicity for the programmer is the knowledge
of tvpical behaviors of parallel overheads, as reported in the literature. Lost
cycles analysis starts from the observations of Flatt and Kennedy [1989] that
overhead has certain typical characteristics. We additionally use the even more
specific existing knowledge about typical overhead behaviors described by the
papers reviewed in Section 2.2.2. Breaking overhead into categories, and using
specific knowledge of how different categories of overhead behave allows us to
avoid statically developing performance models for parallel overhead from scratch.

The work on performance prediction described in Chapter 6 is a static ap-
proach that is similar in some ways to [Clement and Quinn, 1994] in its symbolic
manipulation of performance models. However the basis of our approach is the
observation that models can be associated with code fragments, and manipulated
simultaneously with their associated source code, a feature which is absent from
prior symbolic manipulation work. In addition, the simplification of the static
analysis task resulting from the addition of embedded performance models in the

28

application is a significant departure from prior work in static performance anal-
ysis.

In summary, our performance prediction approach starts from the use of mainly

dynamic data (lost cycles analysis) and incorporates simple static analysis (lost
cycles modeling). Our approach differs from other approaches in separating the
performance problem into two parts: prediction of external effects, and prediction
of internal effects. We gain useful leverage on the problem in this way, since
the prediction of internal effects can make use of external effect prediction in its
solution.

After separating the performance prediction problem into parts, we show that
each part is most appropriately solved by a different approach. Predicting the
performance of an application as a function of varying external factors is solved
by a mainly-dynamic approach, since it is particularly difficult to apply static
analysis to this part of the problem. Predicting the performance of an application
as it is restructured is then solved by a fully static approach, which allows us to
develop predictions without the need for new dynamic data measurement.

29

3 Difficulties in Performance
Prediction

Writing efficient parallel programs is difficult because the running time of a parallel
program is dependent on many factors, in complex ways. In order to enable
parallel programmers to quickly find the best structure for a parallel program. 1t
is important to understand the range of factors that can affect performance. This
chapter enumerates and classifies those factors. The analysis presented in this
chapter serves to clarify the problems associated with parallel programming for
efficiency, and lays the groundwork for the solution we present in later chapters.

We divide the factors affecting performance into two groups: external factors,
and internal factors. External factors are aspects of the program’s run-time envi-
ronment not specified in the program’s source. In our work we consider 5 external
factors:

1. the number of processors used to run the program;

o

. the size of the input data set;
3. the structure of the input data set;
4. the problem definition; and

5. the machine used to run the program.

The structure of the input data set refers to the contents of the input data, e.g.,
the sparseness of an input matrix. The problem definition refers to programs
that can solve multiple variations of a problem, e.g., a program that runs until
convergence to a user-specified value.

Internal factors are the methods used to parallelize the application. These
correspond to changes in the program’s structure. Typical examples of internal
factors are:

1. the type of parallelism used: e.g., task parallelism, data parallelism, or
vector parallelism;

30

2. the choice of which code to parallelize: e.g., how many of the program’s
loops to parallelize; and

3. the choice of synchronization methods: spinning vs. blocking, or locks vs.
barriers.

Many more internal factors could be listed here.

The remainder of this chapter will show that each of the external factors listed
here can affect the choice of how best to parallelize an application. That is, the
specific values of external factors determine the best choice of internal factors.
This means that the programmer cannot expect in general to find the one “best”
structure for a parallel program: the proper structure must be chosen as a function
of the run time environment. Our work is motivated by the observation that
the measure-modify approach to program tuning cannot cope reasonably with
programs whose performance is a complex function of its run time environment.
A goal of our work is to show that performance prediction can be used effectively
to tune parallel programs for which measure-modify is impractical.

To illustrate the dependence of program performance on the combination of
internal and external factors, we will present two cases studies. The first, parallel
subgraph isomorphism, is a symbolic application that shows the wide range of
external factors that can affect the choice of best program structure. The second.
parallel 2D FIFT. is a more regular. numerical application that shows the need
for performance prediction as a function for machine, number of processors, and
input data size.

3.1 Subgraph Isomorphism

An example that demonstrates the difficulties posed by multiple implementa-
tions is parallelizing an algorithm for the subgraph isomorphism problem. Given
two graphs, one small and one large. the subgraph isomorphism problem is to find
one or more isomorphisms from the small graph to arbitrary subgraphs of the large
graph. An isomorphism is a mapping from each vertex in the small graph to a
unique vertex in the large graph, such that if two vertices are connected by an edge
in the small graph, then their corresponding vertices in the large graph are also
connected. The basic algorithm we use organizes possible solutions into a tree,
and searches the tree for actual solutions. Subgraph isomorphism is NP-complete,
but by applying filters at each node of the search tree, large portions of the search
space can often be pruned, allowing solutions to be found in a reasonable amount
of time.

’ = - - N . . ' > N i

b
M

31

This algorithm has a number of potential parallelizations' including:

Tree parallelism searches subtrees of the root node in parallel;

Loop parallelism parallelizes the loops within each filter (since all the filters work
by iterating over the nodes in each graph);

Instruction parallelism packs graph connectivity data as bitmaps into words,
allowing set intersection operations to be implemented as Boolean operations
within the filter loops.

We created a program to solve subgraph isomorphism that can implement tree,
loop. and instruction parallelism, in any combination. Thus our program incor-
porates 8 different implementations.

Our program runs on 7 shared-memory multiprocessors: the Sequent Balance,
the Sequent Symmetry, the Silicon Graphics Challenge Series, the BBN Butterfly,
the BBN T(C2000. the IBM 8CE, and the KSR1. All of these machines have at

least 8 processors; on some machines we used as many as 32 processors.

Input to the program consists of two graphs, generated randomly. Based on the
random process used to construct the two graphs, we can estimate the probability
that any given leaf node in the search tree represents a valid isomorphism, which
we call the density of the solution space. When the small graph has few edges
and the large graph has many edges, the solution space is dense; when the small
graph has many edges and the large graph has few edges, the solution space is

sparse.

The program can search for any number of isomorphisms; in our experiments
we vary the number of solutions requested from 1 to 256. We refer to this as
varying the problem, since the implementation and input are fixed.

Different parallelizations have widely differing performance as a function of
machine. number of processors, input, and problem. The performance of each
parallelization is a function whose domain is this 4-dimensional space. Problems
requiring selecting among the various parallelizations can come in many forms:

e for a fixed machine, number of processors, and problem, we may need the
best parallelization as we vary the input density;

e for a fixed machine, number of processors, and input density, we may need
the best parallelization as we vary the problem;

10ther parallelizations are also possible, including vector parallelism (vectorizing the itera-
tions within filter loops) and filter parallelism (applying filters at each node in parallel); however
our experiments do not include them.

Table 3.1: Comparison of Loop and Tree Parallelism in Varying Environment

Density 8CE Butterfly Balance SGI Symmetry TC2000 KSRI
10° Loop | 24.7 75.7 91.7 2.06 29.7 11.0 10.7
Tree | 36.1 12.6 86.7 2.59 15.9 3.79 2.24
107%% Loop | 1.06 4.04 4.21 0.0933 1.31 0.552 0.460
Tree | 1.52 2.98 6.52 0.109 1.67 0.518 0.260
Varying: Density Problem
Fixed: Butterfly, 1 soln Symmetry, dense

107° 1072 107*° empty | 1soln 128 solns 256 solns

Loop | 0.73 33.7 541.5 1.77 | 032 1.31 2.32

Tree | 233 3.76 8.00 1.49 1.32 1.67 1.80

e for a fixed machine, input density, and problem, we may need the best
parallelization as we vary the number of processors; and

e we may need the best parallelization for a fixed input density and problem
as we port the program across machines.

One might assume that for some of these cases, the best parallelization does
not vary, making the decision easy. In fact, we show in a detailed study of this
application [Crowl et al., 1994] that in none of these cases is the best paralleliza-
tion fixed; the choice of which parallelization of subgraph isomorphism performs
best varies in all cases by significant margins. Other researchers have also noted
that the best parallelization for a given problem can vary depending on the in-
put, machine, or problem [Eager and Zahorjan, 1993; Rao and Kumar, 1989;
Subhlok et al., 1993].

Examples of these effects are shown in Table 3.1. This table shows the best
running time in seconds for loop- and tree-parallel implementations, while varying
one component of the environment. The underlined entries in the table are the
better-performing executions. The table shows that: 1) when we seek 128 solutions
in a sparse solution space, some machines prefer loop parallelism, while others
prefer tree parallelism: 2) when we seek 1 solution on the Butterfly, as the density
of the solution space varies from 107> (dense) to 107 (sparse) and finally to an
empty solution space. the best parallelization varies; and 3) in searching a dense
solution space on the Symmetry, loop parallelism is preferable when seeking 1 or
128 solutions, but tree parallelism is preferable when seeking 256 solutions.

An example of how the best parallelization varies as we vary the number of
processors used is shown in Figure 3.1. This figure shows the running time of four

e N ' . ’ . . 3 ; : 4
) : . .

M, | ‘

i « -

i b

33

70 T ¥ T T T T
p Tree —-—
Tree and Instruction -+---
Loop & 4
Loop and Instruction -

8 50 ~
c
<]
S
&
< 40 -
@
'E --------------------
I:n wl e T S 4
£
=5
c
S
T 20 _
S
10 _
O "
1 : . 4 5 6 7 8

Number of Processors

Figure 3.1: Comparison of Four Parallelizations, Varying Processors
; ¥

parallelizations (tree, tree combined with instruction, loop, and loop combined
with instruction) on the SGI. It shows that for some numbers of processors (1,
and 4-8), tree parallelism outperforms the others; for other ranges of processors
(2-3) loop and instruction parallelism outperforms the others; and neither loop
parallelism nor tree combined with instruction parallelism ever perform better
than all the others. It also shows that adding instruction-level parallelism to loop
parallelism improves it significantly, while adding instruction-level parallelism to
tree parallelism has a slightly negative effect on performance.

These effects can be explained in terms of load imbalance, communication
costs. processor speed, pure computation costs, and speculative computation (par-
allelism used to discover alternative, cheaper solutions rather than speeding the
discovery of a particular solution). Detailed explanations are presented in [Crowl
et al., 1994]; here we note only that the insight necessary to explain the rela-
tive performance of these implementations can be derived almost exclusively from
high-level notions such as load imbalance and communication costs, without mak-
ing detailed measurements of each execution.

We will use subgraph isomorphism as an example application in the following
chapters because it demonstrates performance sensitivity to such a large number
of external factors:

1. the number of processors used to run the program;

2. the structure of the input data set;

(&)

. the problem definition; and

e

the machine used to run the program.

- 34

FFT

Transpose

FFT

Figure 3.2: Data Parallel 2D FFT on 6 Processors

The wide performance sensitivity of subgraph isomorphism, combined with the
large number of possible parallelizations of the application, make it an important
test case for the utility of our performance measurement and prediction tools.

3.2 2D FFT

Our second example application is the two-dimensional discrete Fourier trans-
form program (2D FFT). The serial implementation of the program consists of a
number of iterations of 1D FFTs on columns of the input matrix, followed by 1D
FFTs on the rows of the matrix.

We consider two parallel implementations of the program. The first paral-
lelization is purely data parallel (DP). In the DP version, each iteration of the
program consists of 5 parallel loops: one to initialize the matrix, one to perform
the column-wise FFTs, two to transpose the matrix (using an intermediate ma-
trix), and one to perform the row-wise FFTs. A schematic diagram of the DP
version running on 6 processors is shown in Figure 3.2. The figure shows that all
processors participate in each of the parallel loops in succession.

The second parallel implementation uses task parallelism as well as data par-
allelism. In this implementation (TP), processors are segregated into two groups
using tasking directives. One group initializes the matrix and performs data-
parallel row-wise 1D FFTs, while the other group transposes the matrix and

R - e

i : B . N . Iy .

il e W ‘N

P

35

Input Transpose

FFT FFT

Figure 3.3: Task Parallel 2D FFT on 6 Processors

performs data-parallel column-wise 1D FFTs. The two tasks are pipelined so that
each one is kept busy working on separate matrices. The TP version running
on 6 processors is shown in Figure 3.3, in which 3 processors are assigned to the
input-FFT task, and 3 processors are assigned to the transpose-FFT task.

A comparison of the task parallel and data parallel implementations of 2D FFT
on the iWarp was presented in [Subhlok e/ al., 1993]. On that machine, the authors
discovered that as the data set size is varied past a certain threshold, the choice of
which implementation is best changes. For small data sets (n < 128) the parallel
tasking implementation outperformed the pure data parallel implementation. For
large data sets (n > 256), the purely data parallel implementation outperformed
the parallel tasking implementation. The principal reason for this effect is that
in the parallel task version. communication between tasks must pass through a
single channel of the iWarp network, while purely data paralle] communication
can take place along multiple channels. For small data sets, the larger problem
granularity of parallel tasking leads to better performance, but as the problem
size increases, intertask communication becomes a bottleneck.

It is interesting to ask whether a similar effect would be observed when this ap-
plication is run on the KSR1, a machine with a significantly different architecture.
Unfortunately., the data from the iWarp cannot help us decide which executions
to measure, since the machines are so different. Thus we immediately run into a
problem: perhaps there is a crossover between implementations for some external
factors (here, n and p), but finding the crossover would require measurements over

MFLOPS

120

80

40

20

36

25 -

20

MFLOPS
=
T

32 64 128 258 512 32 64 128 256
N . N

Figure 3.4: Comparison of Task and Data Parallel 2D FFT on the iWarp (left)
and KSR1 (right).

the entire space.

In fact, we find that while the crossover exists on the 1Warp, it does not occur
on the KSR1, as is shown in Figure 3.4. This figure shows the performance in
megaflops of the data parallel and task parallel implementations on the iWarp and
on the KSRI. It shows the crossover that occurs on the iWarp, and data showing
no crossover on the KSR1. We analyze this application in Chapter 5 to show why
no crossover should be expected in general on the KSR1; the data shown here is
intended merely to illustrate that performance tradeoffs between implementations
that exist on one parallel machine mayv not exist on another machine.

The alternative implementations of 2D FFT provide a performance tradeoff
worthy of study, since the choice of best implementation depends on the ma-
chine used, the number of processors used, and the size of the input dataset. In
subsequent chapters we use 2D FEFT as a primary test case for our performance
prediction methods, because of the performance tradeoff it presents, and because
1ts regular structure allows for analysis that is simple enough for use in examples.

512

- ’ /_
.

w i "-

37

4 Measuring Parallel Programs

The example problems discussed in the last chapter present difficulties to parallel
programmers in two ways: first, in understanding the performance of a given
execution; and second, in predicting the performance of a potential execution. In
this chapter, we describe how to measure parallel programs in a way that leads to
understanding for problem diagnosis and simultaneously is useful for performance
prediction, using a method we call predicate profiling.

Predicate profiling is useful both for understanding and for prediction because
it is based on decomposition of overheads, which helps in achieving both goals.
Decomposition of overheads starts from the observation that the standard formula
for parallel running time (discussed in Section 2.2.1)

Tp(n,p) = To(n,p) + Tc(n),
P
although most commonly used in scalability analysis, also has value from the
standpoint of performance debugging. That is, perhaps the first question asked
in performance tuning an application might be, “How much parallel overhead
is present when executing this application?” The scalability analysis formula
answers this by relating observed running time to parallel overhead.

Predicate profiling takes the decomposition process a step further and breaks
T, down into component parts, which we call overhead categories. We show in
this chapter that the decomposition process can be done in such a way that the
overhead categories offer significant utility to parallel programmers in attempting
to understand an application. We will then show in the following two chapters
how the same overhead categories can be used to provide the basis for performance
prediction of parallel programs.

4.1 Decomposing Parallel Overhead

The use of parallelism in a program presents many new opportunities for per-
formance degradation. Most parallel programmers are aware of these new sources

of poor performance, and group them into general classes, such as load imbalance,
communication overhead, and synchronization loss. The use of these classes allows
programmers to reason about and discuss the performance of specific programs.
Unfortunately, as discussed in Section 2.1.3, few performance measurement tools
directly support programmers in assessing the amount of performance degradation
attributable to each of these classes.

Our decomposition-based approach to overhead measurement is based on a
number of observations regarding the performance tuning process: programmers
can identify categories of poor performance; poor performance is the result of the
program or machine spending time in particular, inefficient, states; those states
can be recognized, and time spent in them can be measured; and those states can
be associated with categories of poor performance. Based on these observations,
predicate profiling uses pre-defined expressions that recognize categories of poor
performance and report specifically on what is wrong with a parallel program.

Predicate profiling attempts to provide a rapid, complete, assessment of a
parallel program’s performance in terms of categories that are semantically sig-
nificant to programmers. This assessment either directly identifies opportunities
for performance tuning, or serves as a focusing mechanism prior to the use of
more detailed performance tuning tools. In order to accomplish this assessment,
we suggest a candidate set of categories, and provide precise definitions for each
category. We show that these definitions can be expressed in terms of functions
that identify instantaneous program states; we call these functions performance
predicates. An important feature of performance predicates is that, since they are
formally defined, they allow precise measurements of program states that are often
only informally defined, such as load imbalance. In this role, performance pred-
icates form an unambiguous language for discussing the performance of parallel
programs.

A performance predicate is a recognizer; it recognizes a state of the program
that the programmer wishes to measure. In general, it can be very expensive
to identify the instant when an arbitrary predicate changes value, especially in
a parallel or distributed system [Kaelbling and Ogle, 1990]. Therefore, exact
measurement of program states based on measuring each duration during which
a predicate has a certain value is unattractive. Luckily, however, highly precise
measurements are not required for performance debugging; we only need to know
about any state that, in the aggregate, consumes more than some small fraction
of running time. As a result, we can use a simple, sampling-based method that
periodically evaluates each predicate, which we call predicate profiling.

We use the term performance predicate to distinguish performance predicates
from correctness predicates. A correctness predicate must be evaluated atomically,
which presents problems in parallel and distributed systems. A performance pred-
icate on the other hand, need not always have a consistent interpretation when it

44 .(i . _

\-/

39

is evaluated. Simple performance predicates will be inconsistent only very rarely;
with sufficiently frequent sampling, any errors introduced during evaluation will
have negligible effect on the end results.

4.1.1 Properties of Performance Predicates

The proper choice of a set of performance predicates (and the states they
recognize) is constrained in three ways:

Meaning. The states should represent categories of poor performance that are in-
tuitively meaningful. There are three advantages in using meaningful states.
The first advantage is that the resulting performance measurements are eas-
ily related to design decisions at the application level. For example, a pred-
icate that measured “idle time” without distinguishing between that caused
by load imbalance and that caused by serial code would aggregate mea-
surements for different effects in a confusing way. The second advantage
to meaningful states is that language independence is increased. Basing
state definition on concepts that have significance to a programmer eases
the implementation process for a new programming language. The third
advantage is that states defined in a meaningful way tend to be easier to
analyze mathematically, which will be discussed in more detail in the next
chapter.

Completeness. The states should be complete. That is, they should include
every source of performance loss. Completeness can be verified empirically:
if, after measuring all overhead in a multiprocessor execution, the remaining
computation equals that of the uniprocessor case, then the set is complete
for that execution.

Mutual Exclusion. The states should be mutually exclusive. Mutual exclu-
sion of states makes their measurements orthogonal — no wasted time is
ever charged to two categories. This ensures that we can add and sub-
tract overheads accurately, and makes it possible to reason about overheads
independently.

Predicates chosen according to these constraints have the property that they
express overheads in common units. That is, we can directly compare the over-
head measured using one predicate to that measured using another, since they
both recognize states in which no useful work is done. We will call time spent in
these states in general lost cycles (LC). We usually express LC as its sum over
all processors in an execution; this sum is equivalent to the value T,. Although
overheads are not independent (so we cannot in general vary one without chang-
ing another) the effect of changing LC in an execution is the same no matter

40

Load Imbalance(z) = Work Exists A Processors_Idle(x)
Insufficient Parallelism(z) = - WorkExists A Processors Idle(z)
Synchronizationloss(x) = Work Exists A Processors Spinning(z)
Braking Loss(z) = SolutionFound A ProcessorsBusy(z)
Memory Loss(z) = Processors._Stalled(x)

Wasted Computation(z) = f(Events, States)

Figure 4.1: Candidate Set of Performance Predicates

what specific kind of overhead is actually changing. Thus, LC forms a single uni-
form metric for comparing different overheads that are defined by performance
predicates.

In summanry, the set of performance predicates should form a meaningful, or-
thogonal basis set for the space of performance overheads: the norm we use in this
space 1s the metric LC. Although it may not be obvious that such a set exists, the
next section presents a set that meets these criteria; the remainder of the paper
discusses the use of this set and demonstrates its utility.

4.1.2 Defining a Set of Performance Predicates

The set of performance predicates we use in our initial examples are defined
in Figure 4.1.7 Most predicates are defined based on global or per-processor
states, which are the interpretations of the expressions on the right hand side of
the equations in the figure. For example, the first predicate is read as “A load
imbalance on @ processors exists if Work Existsis true and Idleis true for exactly
2 processors.”

If processors are idle, their processing power is being wasted: the first two
predicates express this, and distinguish between load imbalance and insufficient
parallelism as causes of idling. If processors are spinning (defined to be true while
waiting for synchronization}), then their processing power is being wasted only if
work exists to be done: the third predicate captures this case. If processors are
busy, their work is being wasted only if the solution has already been found; the
fourth predicate expresses this case. The fifth predicate (Memory Loss) recognizes
inaction while waiting for service from memory. This predicate thus includes
communication costs in a shared-memory multiprocessor as well as startup and
replacement misses.

The last predicate (Wasted_Computation) is defined by the user; it expresses
algorithmically wasted computation. Wasted computation occurs in some pro-

' The names of some of these predicates are taken from [Moller-Nielsen and Staunstrup, 1987].

(_\
B

/iy T .

‘- SN Ny N A g N N A s

i
.

41

grams because adding processors changes the actual work done by the algorithm
[Lai and Sahni, 1984]. The work added may not contribute to solving the problem;
providing this category allows the programmer to interpret and treat this wasted
work as a form of overhead.

The following section demonstrates how the use of performance predicates im-
poses an easily-understood and easily-implemented structure on the performance
debugging and tuning process. In addition, our examples show that performance
predicates provide a common basis for the comparison of different kinds of over-
head in a parallel program. This common basis is especially useful in program
design and application-level tuning, and can be used to decide when a program 1s
performing well when other metrics (e.g., speedup) are ineffective.

4.2 Predicate Profiling

The precise definitions of the performance predicates in the last section pro-
vide a basis for quantitative evaluation via predicate profiling. In this section we
describe two implementations of predicate profiling. The first version is imple-
mented for the Silicon Graphics Challenge Series multiprocessor (SGI) and uses
a sampling-based approach. We describe this implementation in detail to explain
predicate profiling. The second version is implemented for the Kendall Square
Research KSR1 multiprocessor, and is based on event-logging. We describe the
KSR version only in terms of its differences from the SGI implementation.

4.2.1 SGI Implementation

Sampling-based predicate profiling could be done by system software on each
processor, but for the SGI implementation we allocated one of the system’s pro-
cessors to the sampling task, as in Parasight [Aral and Gertner, 1988].

An advantage of using predicate definitions that are primarily posed in terms
of global and per-processor states is that they can be implemented by setting
flag-variables in a shared-memory environment. This allows profiling to be imple-
mented by a process that periodically inspects shared memory.

Our global states are Work Exists and Solution Found. Work Exists is true
whenever parallel work has been created, but not yet completed; for example,
between a fork and its corresponding join. Solution Found is true when the
program has completed its necessary computation; unnecessary computation may
still be occurring. That is, Solution Found is true as soon as the program could
print out the answer it is intended to compute.

Our per-processor states are Busy, Spinning, and Idle. Busy is true for a
processor when it is executing code that is logically a part of the program. For

example, Busy is true when a processor begins executing its iterations of a parallel
loop, and if the processor does not execute the subsequent serial code, Busy is false
when its loop iterations complete. Spinning is true for a processor after it has
requested a lock, but before it has acquired the lock (Spinning overrides Busy).
Idle is true for a processor whenever it is not Busy or Spinning.

These flag definitions are intuitive, which is an essential feature. Because of
their unambiguous definitions, decisions on where to set and clear such flags in
the source are very straightforward, which allows accurate implementation in a
wide variety of applications. In fact, we believe that these flag manipulations can
be incorporated in self-instrumenting macros, such as the Argonne P4 macros,
allowing predicate profiling to be totally hidden from the programmer.

Profiling the Memory Loss predicate is more difficult. On most machines, pro-
cessors stall while waiting for memory, so this predicate cannot be defined based
on an observable processor state, since the processor cannot itself determine when
it is stalled. The most common way this state is measured is via simulation, as in
[Goldberg and Hennessy, 1993]; we use that method in the SGI implementation.?

Measuring the Wasted Computation category is naturally application-depen-
dent, and so it requires programmer definition; however, in our application it is
easily identified. We define a state corresponding to each independently-sched-
ulable piece of work (task), and if the processor, after executing the task, has
not contributed to the solution it signals so via an event. The event causes the
time measured for that task to be charged to Wasted Computation. Since wasted
computation may occur in many forms, this approach is not completely general,
but the underlying mechanisms are sufficient for a wide variety of cases.

The cost of sampling-based predicate profiling in a shared-memory multipro-
cessor amounts to the additional communication generated by the sampling pro-
cess (along with the use of the dedicated processor). This cost can be reduced by
sampling at less than the maximum possible rate; however, lowering the sampling
granularity increases the possibility of error in the results. Luckily, neither of
these effects is very severe. Figure 4.2 shows both the percent error introduced
in a profile and the percent increase in running time for a tvpical run of our ex-
ample application. The figure shows that for a wide range of sampling intervals
(between about 50 and 250 ps), both running time overhead and measurement
error are close to about 5%.

?Although our final KSR implementation uses event logging, we have been able to profile
the Memory Loss predicate at run-time using the on-line instruction counting implemented by
compilers on the KSR1 [Kendall Square Research, 1991]. KSR compilers update a dedicated
register with the current instruction count for each basic block (at minimum). Usually this can
be done by replacing no-ops in the instruction pipeline, so the cost is minimal. Measuring this
predicate requires that we (automatically) modify a program’s assembly code so that each basic
block stores the current instruction count to local memory this makes the stall behavior of
each processor visible at run time.

N) - am

B —’ ™ -‘< . -) :l- - ’-

‘R N A .

R 4 AN W= Am s S W .

40N ME TR ‘WE g TE O

N .

43

12 T T T T T T T

11 Percent Error in Profiling — .
Percent Increase in Running Time -

10 +

Percent

1 L ! 1 1 1 1 Il

0 50 100 150 200 250 300 350 400
Sampling Interval in Microseconds

Figure 4.2: Measurement Error and Running Time Increase For a Range of Sam-
pling Intervals

The effort involved in predicate profiling is relatively small. The sampling task
is structured as 50 to 100 lines of code (depending on the number of predicates)
which periodically evaluate each predicate. The flag-setting code amounted to
adding only 18 lines of code to our application. The code for the sampling task is
reusable across implementations, and the flag setting code can be made invisible
by embedding it in the runtime system.

The results of applying predicate profiling to an application can be presented
in a number of wayvs. We have found that the simplest presentation is often the
most useful: a summary table for each execution of the program. The table
shows the total time, summed over all processors, that the program spent in each
category. It provides an immediate assessment for the programmer of how the
program performed, and what sort of tuning would be profitable. It allows the
programmer to make an informed tradeoff between different kinds of tuning (e.g.,
memory system tuning vs. load balance tuning) and the relative effort that each
kind of tuning requires.

Other useful presentations expand the profiling data along one of a number
of dimensions: processors, time, or code. In Section 4.3 we show an example
where per-processor profiles give insight to performance problems. We have also
expanded the profiling data in the time dimension, and can present the results
using the display tool Upshot, available from Argonne National Labs. Finally. we
believe that by combining predicate profiling with traditional program-counter
profiling. overhead values could be associated with procedures or loops, allowing
more detailed exploration of code segments during performance tuning.

44

4.2.2 KSR Implementation

The KSR implementation of the predicate profiler, measures Fortran programs
running on the Kendall Square KSR1, and consists of 1) a library linked into the
executable code (pplib) and 2) a post-processor of event logs that outputs the
profile (pp). The KSR Fortran runtime system can log events such as the start
and end of individual loop iterations, which we use for calculating load imbalance.
Additional calls to our library routines are inserted at the start and end of parallel
loops, parallel tasks, and synchronization operations. The inserted library calls
are quite simple and could easily be added by a source-to-source preprocessor.
Manual pages describing the user interface to pp and pplib are presented in
Appendix A.

The category set we use in the KSR implementation is:

Load Imbalance: processor cycles spent idling, while unfinished parallel work
exists.

Insufficient Parallelism: processor cycles spent idling, while no unfinished par-
allel work exists.

Synchronization Loss: processor cycles spent acquiring a lock, or waiting in a
barrier.

Communication Loss: processor cycles spent waiting while data moves through
the system.

Resource Contention: processor cycles spent waiting for access to a shared
hardware resource.

We revised our category set for the second implementation for a number of reasons.
First, the categories of Braking Loss and Wasted Computation were less relevant to
the regular, scientific computations which are our primary target applications on
the KSR. Second. the distinction between Memory Loss and Resource Contention
1s important for performance modeling; these overhead categories tend to exhibit
significantly different behavior.

This category set has satisfied the three criteria (completeness, mutual exclu-
sion, and meaning) for the applications we have studied, which are numerically-
oriented, scientific computations. Of course, it will need to be expanded to handle
a wider range of overheads as it is used in more varied situations. In particular,
it does not currently distinguish between svnchronization types. measure con-
tention for software resources, or measure operating system and runtime library
effects. Each of these extensions appears to be straightforward within the existing
framework however.

[I . .

- -

L Ty E N & I

;| En EE A W e

45

The KSR1 [Kendall Square Research, 1991] is a two-level ring architecture
in which all memory is managed as a cache, which is organized in two levels on
each node. Thus, inter-node communication occurs only as the result of misses
in the secondary cache. Dedicated hardware monitors the state of buses between
the processor and the second-level cache. This performance monitor counts the
number of secondary cache misses, the time taken to service secondary cache

misses, and the number of cache lines that pass through the higher-level ring

before arrival. Based on this data, we can calculate the amount of communication
performed in an execution and the amount of resource contention that occurred.

Load Imbalance, Insufficient Parallelism, and Synchronization Loss are defined
and measured as in the SGI implementation. Communication loss is measured as
a simple product of the number of cache misses and the ideal time to perform
the cache line transfers. Resource contention (contention for the ring interconnect
and for remote memories) is measured as in [Tsuei and Vernon, 1990] — that is,
the ideal time to perform the communication operations is compared to the ac-
tual elapsed time. Since the KSR1 hardware monitors both the number of cache
lines transferred and the elapsed time waiting for cache lines, this calculation is
straightforward. Although the performance monitoring hardware on the KSR is
rather unique, something comparable may be required for other cache-coherent
architectures. On simpler architectures, such as a message-passing system, the
performance monitoring capabilities of the DEC Alpha [Digital Equipment Cor-
poration, 1992] should be sufficient to gather the same information.

pp is currently installed for use by the user community at the Cornell Theory
Center on their 128-node KSR1. Example output from the current version of pp
is shown in Figure 4.3. Lost cycles for each category are presented in seconds,
aggregated over all processors. Actual execution time of the application was 9.86
seconds. which is equal to total time (49.29 seconds) divided by the number of
processors (5). In this execution, pp has identified that the primary bottleneck is
a serial section of code.

4.3 Predicate Profiling in Practice

We have found predicate profiling to be useful in application-level performance
tuning (e.g., selecting the best parallelization of an algorithm) and in program-
level tuning (e.g., improving one particular parallelization of a program). The
next two sections use as their example problem parallel subgraph isomorphism
(described in Section 3.1). Section 4.3.1 gives three examples of application-level
tuning, and section 4.3.2 gives an example of program-level performance tuning.

As discussed in Section 3.1, there are many opportunities for parallelism avail-

able in subgraph isomorphism, including tree parallelism, loop parallelism, in-
struction parallelism, vector operations and functional parallelism. Additionally,

46

% £77 -o runfast -r8 -para myprog.f -lctc -lpmon
% runfast
h pp

PP version 4.0

¥ processors: 5

Load Imbalance 0.180677
Insuff Parallelism 16.813304
Synchronization Loss 0.003779
Communication Loss 2.274899
Resource Contention 1.351362
Total Time 49.293890
Remaining Time 28.669868

Figure 4.3: Example Output of pp

we might choose to parallelize only certain loops, or certain subtrees. As a result,
there is a very large number of possible parallelizations of this problem. Without
an understanding of the reasons why one parallelization outperforms another for
a particular machine, choosing the best parallelization for this algorithm would
be very difficult. Most performance evaluation tools provide too much low-level
detail to quickly assess each of these parallelizations; in contrast, we show in the
next section how predicate profiling can quickly and simply explain the important
factors determining the best parallelization for subgraph isomorphism on a given
machine.

4.3.1 Choosing the Best Parallelization

Predicate profiling seems especially well suited to the design and application-
level tuning of parallel programs. In this section we present examples that show
how predicate profiling can explain why:

1. different parallelizations of a program may exhibit widely differing perfor-
mance;

2. different parallelizations of a program may exhibit similar performance for
different reasons: and

3. the effect on performance of porting to a new machine could be very different
for different parallelizations.

-y s s

<

- 2 BE e Ak

&5 =B

>

-

47

70 T T T T T T

Tree ——
Loop -----
Loop and Instruction ------ d

Running Time in Seconds

1 2 3 4 5 6 7 8
Number of Processors

Figure 4.4: Running Time of Three Parallelizations on SGI: One Solution, Sparse
Input

Our first example examines the reasons for the widely differing performance
of three parallelizations of subgraph isomorphism. We are concerned with the
best parallelization when searching for a single isomorphism, given a sparse input
space. The running times of three parallelizations: tree, loop, and loop plus in-
struction. are shown in Figure 4.4 for the SGI. This figure shows that there are a
number of issues involved in understanding the performance of these paralleliza-
tions: why is tree parallelism the worst performer on 2 and 3 processors, but the
best performer on 4 or more processors? Why is loop plus instruction parallelism
better than loop alone? What is preventing loop parallelism from performing
well? Will tree parallelism always outperform loop plus instruction on more than
seven processors?

Figure 4.5 shows predicate profiles for the three executions shown in Figure 4.4.
In these charts, each bar shows the total processing time, summed over all proces-
sors. Each bar is further broken down to show computation time (lowest segment)
and the three kinds of LC that are significant in this case: Load Imbalance, Wasted
Speculation, and Memory Loss.

The leftmost profile shows the overheads in tree parallelism. On 1 through
3 processors. we see that LC due to wasted speculation entirely accounts for the
lack of any speedup. The increases in wasted speculation imply that, in this
sparse solution space. the branches searched by processors 2 and 3 do not yield a
solution before the branch searched by processor 1. However, the fourth processor,
exploring its own branch, finds a solution much sooner than does processor 1;
likewise, processor 6 also improves on processor 4’s solution time. Thus this

figure gives us good insight into the distribution and relative cost of solutions in
the search tree, and explains why tree parallelism outperforms loop and loop plus
instruction for processors greater than 3.

Next, we examine the other two profiles. The loop profile (in the center) shows
that the LC constraining this parallelization is both communication and load im-
balance. Comparing the loop profile to the loop plus instruction profile, we see
that computation cost is actually higher when using instruction parallelism — in-
struction parallelism itself is not outweighing the costs of packing and unpacking
data, which must occasionally take place under instruction parallelism. However,
the profiles show a less-expected benefit of this parallelization: the smaller dataset
size created by packing data leads to lower communication costs when using in-
struction parallelism. The advantage of the common use of LC for comparing
overheads in this example is that we can directly observe how instruction paral-
lelism improves execution time: the increase in computation costs caused by data
manipulations are more than offset by the decrease in LC attributable to com-
munication. Since therve is little communication-caused LC in the tree parallel
execution, we expect instruction parallelism to have little benefit in combination
with tree parallelism. Our data confirm this conclusion: instruction parallelism
for this problem increases the running time of tree parallelism anywhere from 5
to 25%.

The effects of speculative parallelism seen in the tree parallel version demon-
strate that for some programs. it can be difficult to determine when they are
performing well. Speedup is not an effective metric for this program because the
multiprocessor execution does not compute the same result as the uniprocessor
execution. However, LC can be used to assess whether the program is perform-
ing well, since the absence of LC. along with an efficient uniprocessor algorithm.
indicates an efficient program.

Our second example shows two parallelizations that exhibit different reasons
for good performance. Figure 4.6 shows the running time of instruction plus loop.
and instruction plus tree parallelism when searching for many solutions in a dense
solution space.

The similar performance of these two versions occurs for different reasons. as
the profiles in Figure 4.7 show. Both parallelizations start out finding the same set
of solutions, as can be seen by their comparable profiles in the one processor case.
However, as we add processors, tree parallelism (on the left) benefits from finding
some solutions faster in each additional subtree. This benefit is shown by the fact
that each additional processor adds some pure computation. but not as much as
the 1 processor case. On the other hand, loop parallelism (on the right) still finds
the same solutions. only faster. It is in contrast being limited by load imbalance
and memory loss (communication) as the number of processors increases.

1

3 .

Time in Sacands

Tree

Computation
Load imbaiance
Wasted Specutation

Memory Lass

Number cf Processors.

49

Loop Loop and Instruction

i 2 3 2 3

Number of Processors Numbar of Procassors.

Figure 4.5: Predicate Profiles of Three Parallelizations on SGI; One Solution,
Sparse Input

Figure 4.6:
Input

0.3

0.25 F ™\

0.15 |

Running Time in Seconds

T T T T T

Loop and Instruction —
Tree and Instruction ------

1 L L L 1

0.05

3 4 5 6 7 8
Number of Processors

Running Time of Two Parallelizations on SGI; Many Solutions, Dense

50

Tree and Instruction Loop and tnstruction

- © |
=3
o
c 7 -
o | o |
° °
1 2 4 E 6 7

Number of Processors Number of Processars

08

Computation
toad Imbalance

ST Wasted Speculation

" Memory Loss

06

Time in Seconds

o4
04

02

Figure 4.7: Predicate Profiles of Two Parallelizations on SGI; Many Solutions,
Dense Input

By using LC as a common metric, these data show that the two parallelizations
are exploiting entirely different sources of performance improvement on the same
problem. The predicate profiles indicate that if we are interested in porting this
application to a machine with a higher communication-to-computation ratio, we
would then prefer tree parallelism for this case; conversely, on a machine with a
lower communication-to-computation ratio we should use the loop parallel versior.
Finally. predicate profiling in this case suggests that there might be an opportunity
for a hybrid algorithm that exploits both tree and loop parallelism. a fact which
is confirmed in [Crowl et al.. 1994].

In our third example, we show how predicate profiling can be used to under-
stand a case in which loop parallelism outperforms tree parallelism on the SGI,
while tree parallelism outperforms loop parallelism on the KSR1. When searching
for multiple solutions in a sparse input space, we find that the two paralleliza-
tions perform as shown in Table 4.1. This table shows that the proper choice of
parallelization depends on the underlying machine.

To understand why the SGI outperforms the KSR under loop parallelism, we
first note that the uniprocessor (sequential) running time of the program is 21.88
seconds on the KSR, while it is 8.66 seconds on the SGI. Although the SGI is
faster at solving this problem on a single processor, the SGI only has 8 proces-
sors, while our KSR configuration has 32 processors (much larger machines are
available). Our measurements of load imbalance show that for this problem, on
these machines, the degree of load imbalance under loop parallelism grows quite
large with an increase in the number of processors. Figure 4.8 shows the fraction

HE N 4N D =N

HE N I B A R Ay EE BN En O 2 .

51

Table 4.1: Running Time of Loop and Tree (in seconds); Multiple Solutions,
Sparse Input

‘ SGI KSR1
loop | 2.05 10.68
tree | 2.59 2.24

0.8 T T T T T T
3
= 07 | KSRl — :
© Iris -~
0
£ 06 | i
T
3
- 05} E
£
5
g 0.4 | .
1)
B)
2 0.3 | .
>
3 .
° 02 r -
o
S
8 01 .
I
o | 1 ! [l 1 1
0 2 4 6 8 10 12 14

Processors

Figure 4.8: Increasing Load Imbalance in Loop Parallelism

of total processor cycles lost due to load imbalance for loop parallelism on this
problem on both machines. The figure indicates that beyond about 8 processors,
the fraction of cycles lost due to load imbalance grows very large. In fact, the
benefit of adding additional processors beyond this point is completely counter-
acted by the increase in load imbalance, precluding the KSR from benefiting from
its larger supply of processors.

On the other hand, the KSR outperforms the SGI under tree parallelism. As
before, the single processor case favors the SGI (7.03 seconds on the SGI, 18.86
on the KSR1). However, there is no load imbalance under tree parallelism on this
problem; the dominant source of LC is wasted computation due to speculation.
Figure 4.9 shows the total time spent on wasted computation for this problem
on both machines, in seconds. As the number of processors increases, each time
the line does not rise, the program has benefited from an increase in processing
power. When the line stays flat, a constant amount of work has been divided
among a larger number of processors, and when the line drops, the program has

35
5
g 30 -
3
o
g 25 b
O
©
QL
2 20 +
=
£
= 15 F
Q@
Q.
@ 10
S L
E
'_
o
S 5r 4
=
O 1 1 1 L 1 1
0 2 4 6 8 10 12 14

Processors
Figure 4.9: Decreasing Wasted Computation in Tree Parallelism

found a cheaper set of solutions via speculative parallelism. The figure shows
that increasing processors for this problem continues to yield significant benefits
beyond 8 processors. As a result, the KSR is able to exploit its larger number of
processors to advantage and outperform the SGI. Using the common metric of LC
in both cases allows us to confirm that the KSR should outperform the SGI for
tree parallelism after about 11 processors, since at that point the KSR execution
contains the same or less LC than does the 8-processor SGI execution.

In this case we have seen that the LC due to speculation decreases with an
increase in processors, while the LC due to load imbalance increases with an
increase in processors. The tradeoff between these two sources of LC indicates
that tree parallelism is favored on machines such as the KSR which can provide
many processors, while loop parallelism is favored on machines such as the SGI
which have a smaller number of faster processors.

4.3.2 Tuning A Parallelization

While the previous section concentrated on the use of predicate profiling in
the design or application-level tuning of a program. in this section we show an
example of how predicate profiling can help in tuning an application whose parallel
structure has been determined.

We have seen that load imbalance is one of the principal contributors to poor
performance in subgraph isomorphism. We will now study the last example in the
previous section in more detail, to see if predicate profiling can offer insight that

53

Table 4.2: Per-processor Load Imbalance; Multiple Solutions, Sparse Input, KSR1

Processor 1D | 0 1 2 3 4 5 6 7
Load Imbalance‘4.54 513 5.05 496 4.32 4.03 4.09 3.54

could lead to removing some load imbalance. To do so, we separate out the load
imbalance measurements on a per-processor basis. The resulting measurements
for 8 processors on the KSR1 (the program showed minimum running time in this
case) are given in Table 4.2.

Table 4.2 indicates that there is a systematic source of load imbalance present
in the parallel loops, which is indicated by the steadily decreasing values for load
imbalance with processor number (after excluding processor 0, which is a special
case). In this program, loop iterations are statically scheduled in a blocked fashion,
with processor 1 getting the first /N iterations, processor 2 getting the next I /N,
and so on (where I is the total number of iterations in the loop, and N is the
number of processors participating). The load imbalance values indicate that loop
iterations with lower-numbered indices tend to have less work to do. The reason
this occurs is that each iteration of a filter loop corresponds to eliminating search
nodes at one particular tree level. Later iterations correspond to search nodes
closer to the leaf level. When the program searches downward to some level n, all
levels closer to the root than n contain only one search node, representing the path
taken to the current node. Tree levels closer to the leaves than n will in general
contain many search nodes. Since the filters operate by trying to eliminate search
nodes one by one, the filters do more processing in later loop iterations (in the
average case).

The presence of systematic load imbalance suggests that a simple modification
of the program, to a round-robin scheduling of loop iterations, might alleviate some
load imbalance. In such a schedule, processor 1 is assigned iterations numbered
1.1+ N. etc. In fact, this simple modification, suggested by the predicate profile,
results in a performance improvement of 12%, decreasing running time from 10.22
seconds down to 9.04 seconds on 8 processors.

This sort of extension of predicate profiling can be thought of as an instance
of the general notion of predicate refinement. Predicate refinement is the way in
which predicates are made to apply to a more restricted domain, so as to narrow
the scope of investigation and pinpoint performance problems.

For example, as written, the Load_Imbalance predicate does not distinguish
between the two common kinds of load imbalance: unequal task sizes, and un-
equal numbers of tasks on per-processor work queues. It would be a simple and
consistent extension of these predicates to make that distinction, by adding a per-

54

processor state that indicates an empty work queue. We would then refine the
Load_Imbalance predicate into two disjoint predicates, based on the state of the
per-processor work queue, providing better insight into the kinds of overhead being
measured. Other predicate refinements include restricting predicate evaluation to
certain segments of code, or differentiating among many code segments. Highly
detailed predicate refinement would consist of sampling the program counter as
well as the performance predicates, and relating overheads to code segments at
the source line level.

4.4 Summary

In this chapter we have presented a performance measurement approach based
on the notion of decomposing parallel overheads. We have argued that the impor-
tant conditions for a useful decomposition of overheads are completeness, mutual
exclusion, and meaningfulness. Two implementations of a tool the embodies our
approach, called predicate profiling, were described and shown to be helpful in
interpreting anomalies and tuning the performance of parallel programs.

Predicate profiles serve a number of roles. First, they provide insight into the
root causes of performance degradation; they show quantitatively and meaning-
fully why an application is not achieving good speedup. Second, they serve as a
precursor to more detailed analysis. Detailed performance analysis tools usually
focus on a single type of overhead, so predicate profiles compare quantitatively
the performance gain possible by tuning with different tools. Finally, predicate
profiles can serve as a basis for performance prediction, as we will show in the
next chapter.

35

5 Predicting The Effects of
Varying the Execution
Environment

The examples in the previous chapter focused on the use of predicate profiling as
an aid to understanding the performance of parallel programs. In this chapter we
describe the further use of predicate profiles as a basis for performance predic-
tion. In this chapter, our goal shifts from understanding program performance,
to predicting the performance of parallel programs.

Section 2.3 pointed out that techniques for performance prediction of paral-
lel applications include static and dynamic components. Our approach to per-
formance prediction is distinguished by the distinction it contains between its
dynamic and static components. The dynamic component of our performance
prediction approach, lost cycles analysis, is concerned exclusively with factors
external to the application. The static component of our approach, lost cycles
modeling. is likewise restricted to factors internal to the application; lost cycles
modeling will be discussed in the next chapter.

As discussed in Chapter 3, external factors are the number of processors used
to run the program, the size of the input data set, the structure of the input
data set, the problem definition, and the machine used to run the program. Lost
cycles analysis takes a dynamic approach to discovering performance models of the
application as a function of each of these external factors. The ability of lost cycles
analyvsis to address external factors using only runtime measurements is based on
the leverage obtained from overhead decomposition. Decomposing overheads not
only leads to greater value as a tool for understanding, but exposes many typical
behaviors that can be exploited to quickly develop performance models.

This chapter describes how lost cycles analysis uses overhead decomposition to
assist the user in developing a performance model of an application. The follow-
ing three sections 1) present overhead decomposition and show why it simplifies
the program modeling process; 2) describe how lost cycles analysis is performed
in practice; and 3) present case studies showing the effectiveness of lost cycles

analysis.

50

5.1 Modeling Parallel Overhead

In this section we describe the methods we use to model parallel overhead and
the tools we have developed to support the modeling process.

5.1.1 Methods of Modeling Parallel Overhead

To perform lost cycles analysis, we again start from the scalability analysis
equation

Tp(n,p) = To(n,p)p+ T(n).

This equation shows that we can predict the performance of a parallel application
based on the external factors n and p if we know how T, and T. vary as functions
of n and p. Lost cycles analysis extends the domain of T, 7., and T, to include all
external factors, whose state we will denote by E. We assume that each external

factor can be expressed as a real number; for example, the input data structure
in subgraph isomorphism can be expressed in terms of the density of the solution
space. Thus lost cycles analysis uses as its fundamental equation

P

Tp(E) =

where E' — p denotes the state of all external variables except p.

Lost cycles analysis is the rapid formulation of empirical models for T,(E) and
T.(E — p). The function T.(E — p), which represents the pure computation in
the application. can be obtained using only uniprocessor executions. The process
of finding T.(E — p), while not concerned with issues of parallelism, is supported
well by the approach we take to find T,(E). For this reason most of the following
discussion will focus on how we find T,(F). with the understanding that similar
(though simpler) methods can be used to find T,(E — p).

In the same way that we gained understanding of program behavior by decom-
posing parallel overhead measurements, we gain leverage in predicting program
behavior by decomposing parallel overhead models. We will denote the overhead
categories defined in the KSR implementation of predicate profiling as follows:
Insufficient Parallelism — /P; Load Imbalance - LI; Synchronization Loss — SL;
Communication Loss — C'L; and Resource Contention — RC. Using these terms,
we can express total parallel overhead as

T(E) = IP(E)+ LI(E) + SL(E) + CL(E) + RC(E).

The advantage gained by this decomposition arises because, while the overall ex-
pression for T,(E) may be quite complex, each of the component expressions (e.g.,

Table 5.1: Typical Functional Forms for Overhead Categories

Category | Variable Typical Form Citation
LI n kyn 4 ky [Hummel et al., 1992)
LI P kip/p + ko [Zhang and Srinivasan, 1990]
IP n ky
IP p kip [Amdahl, 1967]
SL p kilogp + ko [Markatos et al., 1991]
CL n kn
CL p kip + k2 [LeBlanc, 1988]
RC P max(kip + ko, ks) | [Lazowska et al., 1984]

IP(E)) can be much simpler. Discovering these simpler expressions {rom a direct
examination of performance data is a feasible task for parallel programmers, espe-
cially when the process is highly automated by a tool like 1ca, which incorporates
a priori knowledge of many typical behaviors of the component expressions.

The typical behaviors of the various overhead categories are a small set of
functional forms (formulae with unspecified constants), specific to each category.
Examples of typical overhead behaviors as functions of n and p are shown in
Table 5.1: for most behaviors the table also gives an example from the literature
in which the behavior is documented. The table is representative and does not
include all typical behaviors; the complete list is embodied in 1ca, currently with
at least three typical behaviors per category.

As can be seen from Table 5.1, typical behaviors are expressed as functions of a
single variable. Each typical behavior is therefore the projection of an overhead’s
performance function along a single axis. For example, the first entry in Table 5.1
states that a typical projection of LI(F) along the n axis is kyn+k,. Since £ may
have more than one element of interest (we may be interested in more than one
external factor) a number of measurements must be made for each such element
of E. However, the number of external factors of interest is typically small; for
many applications we are only concerned with the external factors n and p.

5.1.2 Tools For Modeling Parallel Overhead

In order to perform lost cycles analysis, we must 1) measure actual executions
to gather the necessary dynamic performance data; and 2) select the proper models
for each overhead category. The next two sections describe our tool support for
those tasks.

(]
an

% pp -1 "d=32"
d=32 v=4.5 p=2 1i=0.018748 ip=0.002202 s1=0.276536
cl=0.077673 rc=0.037759 tt=1.313014 rt=0.900096

Figure 5.1: Example Output From pp Using The -1 Flag

Using the Predicate Profiler in Lost Cycles Analysis

We use the KSR implementation of the predicate profiler, pp (described in
Section 4.2.2) to gather performance data from the application. We have extended
pp to provide support for this process by creating a new, concise output format
better suited to the collection of data over multiple executions.

By specifying the -1 flag. data is formatted in a manner for use by lca.
In addition, any text placed after this flag is put into the execution log. The
additional text can be used as an identification tag on the data from this execution
indicating the value of all environment variables. An example of the use of pp
with the -1 flag is shown in Figure 5.1. Lines such as those shown in Figure 5.1
can be accumulated in a file, resulting in a complete record of the performance
data necessary for lca.

A Model Selection Tool: 1ca

lcais a too] that manages performance data and focuses the user on a selection
of appropriate models for each category of lost cveles. It assists the user in two
ways:

L. It guides the user’s selection of models for each category and environment
variable, using defaults based on the typical behaviors of each category of
lost cvcles.

2. It provides error estimates for the goodness-of-fit for each of the default
models, and for any models explicitly requested by the user. These estimates
give the user the opportunity to compare the quality of each of the default
models and to additionally compare any models the user feels might be
better than the defaults.

The manual page detailing the user interface for lca is presented in Ap-
pendix A. An example output from lca is shown in Figure 5.2. This example first
shows the collection of a number of predicate profiles for the program runfast, in
which the number of processors used (p) is varied. The resulting datafile is then
processed by lca. The arguments given to lca specify that we are interested in

39

% runfast -p 1
% pp -1 >> runfast.pp
% runfast -p 2
% pp -1 >> runfast.pp
% runfast -p 3
% pp -1 >> runfast.pp

...]

% lca -v p -c 1i -f runfast.pp

lca v. 2.0.

Datafile: runfast.pp, Variable: p, Category: li, Constraints: d4=32
(0.01022 +/- 0.00316) * p * sqrt(p) R2 : 0.9752
(0.04535 +/- 0.00101) * p R2 : 0.5675
(0.5881 +/- 0.4871) R2 : 0.0013

Figure 5.2: Example Output of lca

selecting a model for Load Imbalance, while varying p. The tool has 3 default
models that describe how Load Imbalance often varies with p: p,/p, p, and null
(independent of p). The R? column shows that p,/p is the best-fitting model, and
the form column indicates that the coeflicient based on a least squares fit of these
data 1s 0.01022.

The R? value provided by 1lca is the fraction of the total variation in the
measurements that is explained by each model. Generally, the user can select a
model if it explains a large fraction of the total variation (e.g., more than 95%).
Each parameter estimated by lca is also given a 90% confidence interval. The
confidence interval is provided so that the user can distinguish terms in each model
that do not contribute to goodness-of-fit; if any parameter’s confidence interval
contains zero, then that parameter cannot be statistically differentiated from zero,
and the associated term should be eliminated. Eliminating terms from a model is
useful because it narrows the confidence intervals on the model’s predictions.

lca can also provide graphical help in evaluating the goodness-of-fit of each
typical behavior. By supplying the -g option, lca creates input for the plotting
program GNUPLOT. Graphical output of 1ca for the example used in Figure 5.2
is shown in Figure 5.3.

All of the typical behaviors used by 1ca are read in from text files, allowing easy
update and modification by the user as new understanding of typical behaviors
is developed. In addition. to aid in exploring various candidate functional forms,
any formulae supplied by the user on the command line will also be tested for

60

lias a function of p (ica)

1.4 T T T T T
o
Measured Data ¢ ‘
0.01022 * x * sqrt(x) - R*2 : 0.9752 ---- °
19k 0.04535 * x -- RA2 . 0.5675 ----- o i
0.5881 -- R*2: 0.0013 -
1F 4
08 1
06 . " ‘_.“ ; /,’ A
g
°
0.4k T .
;”6’,
02k P 1
0 s L ' L [L
0 5 10 15 20 25 30

Figure 5.3: Example Graphical Output from lca

goodness-of-fit and compared to the default forms by lca.

Internally 1ca uses a direct method of general linear least squares minimiza-
tion based on Singular Value Decomposition (SVD) [Press et al., 1983]. Direct
methods such as SVD are limited to fitting curves which are a linear combination
of functions of . Thus direct methods can find the values for the constants (k's)
in expressions such as kyrlog() + kya? + ksze®. but cannot typically do so for

expressions such as kyef2®

. To solve nonlinear expressions it is usually necessary
to use iterative methods, but fortunately the expressions used in modeling parallel

overheads are normally quite simple and are characteristically linear in z.

5.2 Lost Cycles Analysis

The previous section showed that overhead decomposition significantly assists
in the process of performance modeling because, once decomposed, overheads can
be seen to have simple behaviors. This section shows how overhead decomposition
can be exploited in practice.

Lost cycles analysis of an application involves three main steps. shown in
Figure 5.4 for a hypothetical program named runfast. The remainder of this
section describes in detail the steps shown in the figure.

Program measurement for lost cycles analysis is performed using the predicate
profiler pp, as shown in Step 1 of Figure 5.4. Output from the predicate profiler is

61
1. For each environment variable V € £ [Measure]
(a) For a small number of values of V
1. run runfast
ii. pp -1 "V=<value>" >> runfast.pplog
2. For each category C € (IP,LI1,SL,CL,RC,PC) [Model]

(a) For each environment variable VV € £

i. lca -v V -c C -f runfast.pplog -x <extr-expr>

ii. Select a resulting functional form Fy
(b) Form all functions Fi, F, ... whose projections are the Fy-’s
(c) lca -v E -c C -f runfast.pplog "I}, Fy,.."
(d) Select a resulting model for C(E)

3. Form the program’s performance function as Tp(E) = 3¢ C—(pE—) [Sum]

Figure 5.4: Overview of Lost Cycles Analysis Steps

stored in a single datafile that eventually contains all of the needed performance
data for the application.

Useful measurement of the application under study requires proper experimen-
tal design [Atkinson and Donev, 1992]. In order to determine when environmental
factors interact, that is, are not strictly additive, the user must use a factorial or
reduced-factorial design [Box et al., 1978]. These designs are suitable for assessing
interaction because they do not vary factors in isolation; instead they vary each
factor over a range of settings of the other factors. In practice a factorial design
can be accomplished if the user samples the “edges” of the parameter space, for 3
or more points on each edge. For a large number of environmental factors, how-
ever, this can result in the need for many measurements. In such high-dimensional
cases, the number of measurements can be decreased by using a reduced-factorial
design, at a small cost in accuracy and complexity of experimental design.

Step 2 of Figure 5.4 shows that the model construction for each overhead
category is performed separately. In this step we refer to the T. component of
the application’s execution as “Pure Computation” (PC) and treat it as another
performance measurement to be modeled.

Step 2(a) selects a projection for the overhead category along each axis of
E. This is the principal use of the lca tool in our approach. For the overhead
category (' and the external factor V', 1ca performs a least-squares fit of all typical
behaviors to the measured data, as described in Section 5.1.2. Based on the R?
values output from lca, and using the graphical presentation of each fit if desired.
the user selects a functional form to describe the behavior of category C' as a
function of V.

For some combinations of categories and variables, there can be no typical
behaviors. For example, the relationship between Pure Computation and prob-
lem size is entirely application-dependent. In these cases simple static analysis
provided by the programmer will be sufficient. For PC(n), the programmer need
only determine the big-O running time expected from the serial algorithm. For
example, for LU Decomposition, a simple analysis of the triply-nested loop would
lead the programmer to expect running time to be modeled by a third-order
polynomial in n {a side of the matrix). The algorithmic constants need not be de-
termined; instead the programmer uses a third-order polynomial as input to lca,
which then returns the necessary constants, incorporating in the process both
algorithmic constants and machine parameters.

After Step 2(a) the user knows what the projection of the performance function
for category C' is for each external factor in E — the univariate models. In Step
2(b) the user then must develop a single performance function that has as its
domain all the external factors in L' - the multivariate model. In many cases,
external factors interact. Assessing which factors are additive and which factors
are multiplicative (interacting) is done using the methods of multivariate data

63

analysis [Jain, 1991, Part IV]. The basic method is to form terms which represent
all posible interactions of environmental factors, and then assess the amount of
variation in the data that is explainable by each of the terms. Terms that explain
large amounts of variation in the data represent significant interactions, and terms
that do not explain much variation can be ignored.

This analysis can be done using lca by forming functions F; that represent the
various possible combinations (via addition or multiplication) of the univariate
models. These functions, developed in Step 2(b), are then compared for their
relative goodness-of-fit. Steps 2(c) and 2(d) use lca to compare the functions,
and the user selects the overall performance function for the category that best
fits the measured data.

Once a performance function has been selected for each category, the perfor-
mance model of the entire application is constructed (Step 3) by simply summing
the expressions, and dividing by the number of processors used (p), since all over-
head measurements were originally taken as sums over all processors.

Although the process outlined in Figure 5.4 contains a number of iterative
steps, the iterations will usually be limited. The primary reason that iterations
will be limited is that we are often concerned with only two environmental factors,
n and p, so Steps 1 and 2(a) will only loop twice.

5.3 Using Lost Cycles Analysis

This section presents three case studies of the use of lost cycles analysis. First
we show how lost cvcles analysis can help construct accurate analytic models of
program scalability based on a small number of measurements. Then we present
two examples that illustrate how lost cycles analysis can help solve the problem of
selecting the best parallelization for a program by comparing lost cycles models.

5.3.1 Modeling the Performance of 2D FFT

The ability to capture the expected performance of a program based on a small
number of measurements is critical to managing the problem of understanding and
selecting among differing implementations. Measuring and debugging program
performance without gathering large amounts of data is an important capability
in its own right, and is the subject of much current effort [Ball and Larus, 1992;
Hollingsworth and Miller, 1993; Miller and Choi, 1988; Netzer and Miller, 1992].
The results in this section show that lost cycles modeling is a convenient way
of capturing large amounts of performance data, requiring minimal measurement
effort and little storage.

In this example we will:

64

Table 5.2: Models of Overhead for 2D FFT as Functions of n and p

Category Abbrev. Model
Varying n | Varying p
Pure Computation PC n?log(n) 1
Load Imbalance LI nlog(n) PP
Insufficient Parallelism P 1 P
Synchronization Loss SL 0 0
Communication Loss CL n?
Resource Contention RC n? p.p >0

1. Measure the program’s lost cycles for two cases: the highest-overhead case,
and the lowest-overhead case.

Lo

Select appropriate simple models for each category of lost cycles and for
pure computation, as separate functions of varying data size and varying
number of processors.

3. Use the lost cycles measurements to parameterize the models selected, yield-
ing predictions for running time over the entire range of data sizes and
numbers of processors.

We selected the highest- and lowest-overhead data points for measurement be-
cause by measuring an execution with high relative overhead we get an accurate
estimate of true overhead, and by measuring an execution with low relative over-
head we get an accurate estimate of pure computation. Rules of scalability anal-
ysis guide us in selecting the data points for measurement: in a parallel system,
overheads tend to grow with increasing processors and decrease with increasing
data size. These observations suggest that we should capture lost cycles for an
execution with maximum processors and minimum data (highest overhead) and
for an execution with minimum processors and maximum data (lowest overhead).

The simple models we chose to describe each overhead are listed in Table 5.2,
as separate functions of » (which in this section represents the length of a side
of the input matrix) and p (number of processors). Each model has an implicitly
associated constant; the purpose of our lost cycles measurements is to discover
the constants. Each of these models is a simple, initial approximation to reality.
Better models for each are possible, but not necessary in this context since they
trade increasing accuracy for increasing measurement cost, and decreasing analytic
tractability.

Considering first the models for varying n, the model for pure computation is
based on simple algorithmic analysis of 2D FF'T. The model for load imbalance is

65

based on the length of an iteration of the program’s parallel loops. There are no
synchronization operations in the program, so we expect no synchronization loss.
The model for insufficient parallelism is based on the portion of the code that runs
serially, which has no data size dependencies. The model for communication loss is
based on the total amount of data used. Finally, the model for resource contention
is based on the expectation that resource contention will be proportional to data
size.

In choosing models of overhead as we vary the number of processors, we can
relv on the large body of work reviewed in Section 2.2.2 to provide likely candi-
date models. Most of the models we use are straightforward: pure computation
does not vary as we vary processors, insufficient parallelism obeys Amdahl’s Law
[Amdahl, 1967], and synchronization loss is zero.

Load imbalance can arise in two ways: variation in the running time of each
loop iteration. and unequal numbers of loop iterations handled by different pro-
cessors. If variation in running time of iterations is random, the time taken by
the longest iteration can be modeled using order statistics (e.g., [Hummel el al.,
1992]) and predicted to grow proportionally to /p. Communication loss for this
application is proportional to p. Finally, resource contention can be expected to
grow linearly once the number of processors passes a threshold value.

Using the lost cycles measurements from the two executions we then parame-
terize the six models (PC, LI, IP, SL, CL, and RC). For example, the final form

for Load Imbalance is:
nlog(n)p/p
36200
Using the basic identity Tp(n.p) = (T.(n) + T.(n.p))/p, we construct the perfor-
mance model for the implementation as:

Li(n,p)=

PC(n,p)+ LI(n,p)+ IP(n,p) + SL(n,p) + CL(n,p) + RC(n,p)

Tp(n.p) = 5

The results for the 2D FFT program are shown in Figure 5.5. These plots show
the performance of the application measured in Mflops, as a function of both
number of processors and of dataset size. The upper plot shows the predictions
of our model for 78 data points, that is, all points within the range of processors
and data set sizes we set out to model. The lower plot shows the actual measured
performance of the application on the KSR1 for those same 78 data points.

As can be seen, the model is an idealized but reasonably accurate approxima-
tion to actual performance. In fact, the average relative error of the model with
respect to the actual performance, over all 78 points, is only 12.5%. For compar-
ison, the average relative error of a simple linear interpolation based on a least
squares fit of the four “corner” points is over 750%. Thus both the overall shape
of the predicted performance curve and its actual values are sufficiently accurate

of 2D FFT

) Performance

and Actual (bottom

Figure 5.5: Predicted (top)

66

67

to allow it to be used in studying tradeoffs against an alternative implementation,
which we will do in the next section.

5.3.2 Task Parallel vs. Data Parallel 2D FFT

A comparison of the task parallel and data parallel implementations of 2D
FFT on the iWarp was presented in [Subhlok et al., 1993]. On that machine, the
authors discovered that as data set sizes are varied past a certain threshold, the
choice of which implementation is best changes. For small data sets (n < 128) the
parallel tasking implementation outperformed the pure data parallel implementa-
tion. For large data set sizes (n > 256), the purely data parallel implementation
outperformed the parallel tasking implementation. The principal reason for this
effect 1s that in the parallel task version, communication between tasks must pass
through a single channel of the iWarp network, while purely data parallel commu-
nication can take place along multiple channels. For small data sizes, the larger
problem granularity of parallel tasking leads to better performance, but as the
problem size increases, intertask communication becomes a bottleneck.

It is interesting to ask whether a similar effect would be observed when this ap-
plication is run on the KSR1, a machine with a significantly different architecture.
Unfortunately, the data from the iWarp cannot help us decide which executions
to measure, since the machines are so different. Thus we immediately run into a
problem: perhaps there is a crossover between implementations in some section
of the environment space (here, n and p), but finding the crossover would require
measurements over the entire space.

To answer this question using the lost cycles approach, we only need to con-
struct a model for the application. The simplest approach in this case is to 1)
decide whether the category models used for the pure data parallel implementa-
tion follow the same functions as did the task parallel models; and 2) determine
new constants for the overhead functions. To do this we measured 6 points varying
the data set size (to explore the functions of n) and 6 points varying the number
of processors (to explore the functions of p).

The results are shown in Table 5.3. The table shows the functions and the
associated constants for the variable n, since the models did not differ signifi-
cantly in the p dimension.! These functions immediately answer our questions
about these two implementations. First of all, resource contention in the task
parallel implementation is significantly less than in the data parallel implemen-
tation, indicating that the channel bottleneck effects observed on the iWarp will
not be present on the KSR1. This conclusion is reasonable, since intra-ring com-
munication costs are insensitive to source and destination on the KSR1. In fact,
we see that resource contention is only about half as great in the task parallel

1We hold p constant at its maximum value (26) in these formulae.

63

Table 5.3: Performance Models for Data Parallel and Task Paralle! 2D FFT

Category Data Parallel | Task Parallel
Pure C tat; n° log(n) n* log(n)
ure Computation T3R50 3350
Load Imbalance n log(n) nlog(n)
63.0 81.9
2
Insufficient Parallelism 3.36)
Synchronization L 0 n
Synchronization Loss 31600
C cation L n? n?
jommunication Loss 14900 12900
R ce Contenti n? n?
esource Contention 50100 35600

version, since in the pure data parallel version. all processors are simultaneously
requesting and providing data during the matrix transpose, while in the parallel
task version, half the processors request data and the other half provide it.

The second observation is that on the KSR, the task parallel implementa-
tion will always perform more poorly than the pure data parallel implementation.
Synchronization loss and insufficient parallelism are functions of n? in the task
parallel implementation. The reason for this change from constant values to func-
tions of n? when the implementation is changed can be seen in observing that
synchronization loss is now equal to about a third of the communication loss. In
fact, in this implementation, the two tasks do nof incur equal overhead. The
task that transposes the matrix incurs more overhead because it must traverse
the source matrix across cache lines. destroying locality. Thus each loop iteration
for the transposing task takes slightly longer than an iteration of the initializing
task; a pair of spin locks prevents either task from overtaking the other. As a
result of this synchronization loss in the main thread of the initializing task, the
other threads in its group must wait without work, incurring lost cycles due to
insufficient parallelism. This insufficient parallelism has a particularly small con-
stant in the denominator and hence dominates the small improvements in resource
contention and load imbalance generated by task parallelism.?

Thus we have quickly answered the question of whether two implementations,
known to have a performance tradeoff on at least one architecture, have a similar

*Presumably these effects were not present on the 1Warp because of message passing
optimizations.

69

Table 5.4: Seconds of Pure Computation and Wasted Speculation in Subgraph
Isomorphism

Category Processors

1 2 3 4 5 6 7
Wasted Speculation | 0.00 | 50.1 | 103 | 10.7 | 14.2 | 1.25 | 1.44
Pure Computation | 51.4 | 50.1 | 51.7 | 3.56 | 3.52 | 0.227 | 0.214

performance tradeoff on the architecture of interest to us. To do this, we only
needed to measure a small number of data points in each of the two environmental
dimensions, and compare the resulting lost cycles models.

5.3.3 Subgraph Isomorphism

We now return to the example of subgraph isomorphism. Referring to Fig-
ure 3.1, we would like to understand the differences among the four paralleliza-
tions of subgraph isomorphism (tree, tree plus instruction, loop, and loop plus
instruction) as a function of p. Since we are only studying one dimension of the
environment in this case, we can measure the implementations over the entire
range and use the resulting models to explain their relative performance.

In order to achieve completeness for this application, we need to include mea-
surement of cycles lost in wasted computation (due to fruitless speculation). We
will define wasted computation in this case as the processor cycles spent searching
a subtree under the root in which no solutions are found. Modeling this category
is difficult because of the effects of speculative parallelism, but since we are only
searching a single dimension, we can simply measure lost cycles due to wasted
computation for the points of interest.

First of all, we show the wasted speculation and pure computation data for
the tree parallel case in Table 5.4. This table immediately explains why the tree
parallel versions outperform the loop parallel versions when p > 3, yet do worse
than loop parallel versions when 1 < p < 4. The pure computation required to
solve the problem changes drastically with increasing p because these executions
of the program are searching for only one solution — the first processor to find
a solution ends the computation. Clearly, the subtrees searched by processors
2 and 3 do not yield the solution, since wasted computation increases in steps
of 50 seconds (the time spent by processor 1 in finding a solution). Processor
4 finds a solution in its subtree much sooner than the others however, and the
effect is repeated again by processor 6. The data in this table shows that even

Table 5.5: Lost Cycles Models for Two Implementations of Subgraph Isomorphism

Category Implementation

Loop Loop + Instr.
Pure Computation 54.7 55.9

PP PP
Load Imbalance 750 146
Insufficient Parallelism 196 503
Synchronization Loss 0 0
Communication Loss 17 933

when overhead categories are difficult to model, the raw lost cycles data can be
informative in ways that are difficult for tools that do not provide completeness.

Next, we consider why loop and instruction parallelism together outperform
loop parallelism alone. Since there is no speculative computation in the loop
parallel executions, this is done most easily by considering the lost cycles models,
which are shown in Table 5.5.3

We might expect that the benefit of adding instruction parallelism to the imple-
mentation would be in decreased pure computation (since instruction parallelism
shows up as decreased pure computation). However, the lost cycles models show
that in fact, pure computation is relatively unchanged between the two implemen-
tations. The model shows that the additional cost of packing and unpacking data
counterbalances the pure computational decrease gained in parallel set operations,
actual increasing pure computation slightly.

In fact, the gains from adding instruction parallelism come from a less expected
direction. First of all, by packing datasets. the overall data being transferred de-
creases, cecreasing communication loss by a factor of 2. Secondly, load imbalance
within loops and insufficient parallelism are decreased, since these overheads both
tend to increase as communication increases.

The lost cycles models in Table 5.5 also explain why the loop parallel im-
plementation benefits from the addition of instruction parallelism, while the tree
parallel implementation actually suffers slightly from the same addition. Since
the tree parallel version searches separate subtrees in parallel, it has essentially
no communication loss (this effect can be observed from the lost cycles data as
well). The absence of communication loss in the tree parallel implementation

3These data are derived from the SGI implementation of the predicate profiler, which did
not support the measurement of resource contention.

71

means that it cannot reap the benefits of instruction parallelism, whether directly
in decreased communication, or indirectly through decreased load imbalance and
insufficient parallelism. Instead the tree parallel version only pays the (small)
price of instruction parallelism, a fact reflected in the performance data shown in
Figure 3.1. '

In this example we have gained a number of insights into the relationship
between the particular implementation of the subgraph isomorphism program and
its corresponding performance. These insights were gained from measurements of
only 12 data points, showing the power of lost cycles analysis to provide tuning
guidance — especially since these insights were not evident from our original
collection of over 37,000 data points.

5.4 Summary

In this chapter we have shown a method for constructing an application’s per-
formance model based principally on dynamic measurements. For each external
variable, we empirically determine its effect on parallel overhead. This determi-
nation is accelerated by a curve fitting tool incorporating a priori knowledge of
typical overhead behaviors. The application’s performance model can then be
composed from the effects of the component overheads.

Most previous performance prediction methods incorporate a static analysis
component to help model external factors. Our approach can be seen as an at-
tempt to extend dynamic analysis as far as possible in solving this problem. The
benefit of using dynamic analysis arises from the use of the machine itself to
identify significant performance effects. For example, using static performance
prediction to accurately predict the costs of cache conflicts, register management,
and communication traffic can be quite difficult and expensive. Dynamic analysis
allows us to capture these costs accurately without significant effort or expensive
simulation.

Lost cycles analysis serves as a bridge between mathematical modeling. such
as scalability analysis, and performance measurement. It extends the power of the
user to generalize from performance measurements, and it provides a measurement
tool for the analyst to ground analyses in experiments. However, the dynamic
approach taken by lost cycles analysis cannot assist the user directly in predicting
the effect of program modifications. The next chapter describes our method of
static analysis. which builds on lost cycles analysis to provide the user with a
complete performance prediction capability.

6 Predicting The Effects of
Varying Program Structure

The previous chapter showed how to construct a performance model Tp(E) prin-
cipally from dynamic execution data, using the technique of lost cycles modeling.
However, as described in Section 1.2, the goal of performance prediction is to build
the function Tp(I, E), where I denotes the internal performance factors of the ap-
plication. That is, to be truly useful to programmers, a performance prediction
method must estimate the performance of a range of potential implementations.
In this chapter we show a method for constructing performance models that are
functions of both implementation and environment; we call our method lost cycles
modeling. Lost cycles modeling has two parts: first lost cycles analysis is used to
form models for portions of the application, which we call code fragments. Next,
the lost cycles models for the program’s fragments are composed into an overall
application model using static analysis of the program’s source code.

As discussed in Chapter 3, internal factors include the type of parallelism used
(€.g., task parallelism, data parallelism, or vector parallelism) and the choice of
which code to parallelize (e.g.. how many of the program’s loops to parallelize).
Lost cycles modeling takes a static approach to building performance models based
on program structure. Lost cycles modeling can construct performance models
based on program structure because of the utility of lost cycles analysis for code
fragments. Since lost cycles analysis describes the performance of code fragments
in terms of external factors, it captures the information necessary to describe how
components of an application will behave when reorganized into a new parallel
structure. This greatly simplifies the static analysis required to construct the new

implementation’s performance model.

6.1 Constructing Performance Models

Lost cycles modeling avoids complex static analysis by using the tools de-
scribed in the last chapter to empirically discover the performance of code frag-
ments. In the next two sections we describe how lost cycles modeling constructs

performance models; first we describe the notion of code fragments more formally,
then we describe how lost cycles modeling composes fragment models into appli-
cation models.

6.1.1 Code Fragments and Parallel Structure

Lost cycles modeling operates on applications with primary emphasis on their
parallel structure. We will define parallel structure as a particular hierarchical
composition of the application’s source code. The hierarchy can be represented
as a directed acyclic graph (DAG); internal nodes of the graph represent either
sequential (depth-first, left-to-right) or parallel execution of their children. Leaves
of the graph each represent some contiguous portion of the application’s source
code; the graph is similar to the static basic-block representation of a program
typically used by compilers [Aho et al., 1988]. We require that the children of
a node be homogeneous — that is, all internal nodes or all leaf nodes. This
framework, while quite simple, is adequate for the static analysis performed by
lcm because of the performance annotations we will associate with certain internal
nodes of the graph.

We will refer to nodes whose children are leaves as penultimate nodes. We
make the homogeneity requirement so that all the children of any penultimate
node are leaf nodes, which ensures that we can clearly identify the points in the
tree at which to perform lost cycles analysis. The source code represented by
each penultimate node is a code fragment. Given this framework. we can state
the lost cycles modeling process more precisely. Lost cycles modeling consists of
performing lost cycles analysis for each penultimate node. {followed by composition
of the resulting fragment models into a program model. The benefit of lost cvcles
modeling derives from the flexibility of program rearrangement possible once the
various fragment models have been built: any alternative parallel structure using
those fragments can be evaluated automatically by lcm.

As an example, consider the (edited) source code for task parallel 2D FFT
shown in Figure 6.1 and Figure 6.2. Figure 6.1 shows the main routine of
the program and Figure 6.2 shows the important subroutines. In the fig-
ures we have edited out the synchronization operations and the body of the
computation for clarity. Comments preceded by c*ksr* are compiler direc-
tives that introduce parallelism [Kendall Square Research, 1992]. The directive
cxksr* parallel sections creates parallel tasks, each of which is introduced
by the directive c*ksr* section. The directive cxksr* tile creates a parallel
loop, with a variety of possible scheduling strategies; in this example the strategy
1s slice, which statically schedules the N loop iterations in chunks of size N/p.

A parallel structure for task parallel 2D FFT is shown in Figure 6.3. In the
figure, node 1 represents the entire program — it is a serial node. Likewise. serial

75

program main
real a(n,n,2,iters)
call initialize_program
c*ksr* parallel sections
c*¥ksr* section
do k=1,iters
call initialize(a(k))
call cffts(a(k))
end do
c*¥ksr* section
do k=1,iters/2
call transpose(a(k))
call cffts(a(k))
end do
ckksr* end parallel sections
call print_performance
end

Figure 6.1: Edited Source for the Main Routine of Task Parallel 2D FF'T

nodes 2 and 4 represent the execution of their (single) children. Node 3 represents
the task parallelism created by the cx¥ksr* parallel sections directive — it is
a parallel node. Nodes 5 and 6 are serial nodes corresponding to the two tasks,
each of which contains two serial subroutine calls. Nodes 7 through 10 are parallel
nodes, each corresponding to a parallel loop created by the cxksr* tile directive.
Nodes 8 and 10 are in fact the same node, making the true graph a DAG rather
than a tree; they are only shown as separate nodes in the figure for clarity.

To perform lost cycles modeling on Task Parallel 2D FFT, the programmer
uses lost cycles analysis to construct performance models of the penultimate nodes,
which are 2, 4, 7. 9 and 8/10. The programmer then uses the tool lcm to auto-
matically compose those models into an overall model of application performance,
based on a parallel structure such as the one in Figure 6.3.

As long as the structure of the DAG meets the homogeneity requirement, its
details are up to the user, and lost cycles modeling can be used to construct a
performance model of the application. For example, the entire 2D FFT application
could be represented by a root node and a single leaf; in this case the process
would degenerate into the lost cycles analysis described in the previous chapter.
Naturally, the user would like to minimize the number of penultimate nodes,
since each one must be analyzed separately using lost cycles analysis. However,
to be maximally useful in exploring alternative parallelizations, the DAG should

subroutine transpose(a)
cxksr*tile(k,strategy=slice)
do k=1,n
[... parallel loops performing matrix transposition ...]
enddo
c*ksrxendtile
return
end

subroutine initialize(a)
c¥ksr*tile(j,strategy=slice)
do j=1,n
[... parallel loop performing matrix initialization ...]
enddo
c*¥ksr*endtile
return
end

subroutine cffts(a)
Cck*ksr* tile(col,strategy=slice)
do col=1,n
[... parallel loop -- each iteration performs a 1D fft ...]
enddo
c*¥ksr*endtile
return
end

Figure 6.2: Edited Source for Subroutines of Task Parallel 2D FFT

7
initialize print_
performance
_program
[[1 [[1
initialid s
initialize 1D FFT transpose 1D FFT
row row

Figure 6.3: Parallel Structure for Task Parallel 2D FFT

78

contain penultimate nodes whose leaves are not likely to be candidates for parallel
decomposition. These two goals are in tension, but can be satisfied as follows.
In practice, identifying the penultimate nodes in a program only requires the
programmer to 1) identify all the sources of parallelism the user expects to explore;
and 2) form a partition of the serial code in the source that does not mix source
lines from different sources of parallelism in the same fragment.

This principleis illustrated in Figure 6.3. Nodes 5 and 6 could have been chosen
as penultimate nodes. Then lost cycles analysis need only have been performed on
the two tasks within the parallel section, rather than on the three loops. However,
by decomposing nodes 5 and 6, the user has the ability to consider a wider range
of alternative parallel structures — including one which runs each loop in its own
task, so that all four loops execute at once.

6.1.2 Composing Fragment Models

In order to compose models of code fragments into a model for the entire ap-
plication, two steps are needed. First, the relationship between external variables
of the application and those of the fragment models must be determined. Then
the additional or decreased overheads incurred due to the relationship between
fragments at runtime must be estimated.

The first step consists of determining how the values of external variables
vary for the component models. This is demonstrated graphically by comparing
Figure 3.2 with Figure 3.3. Both figures represent the execution of 2D FFT on
six processors. However, in Figure 3.2, the number of processors (value of p) used
in the component models is six, while the value of p for the fragment models
in Figure 3.3 is three. The difference occurs because the task parallel 2D FFT
employs two parallel loops simultaneously: these loops must share the available
processors. In comparison, the values of n for the fragment models in both parallel
structures are equal.

The second step consists of determining any additions or subtractions neces-
sary to the parallel overheads predicted by the modified fragment models. For
example, task parallel 2D FFT can incur load imbalance and additional commu-
nication between the two tasks that does not occur in data parallel 2D FFT. In
addition, the need for the transpose task to wait for the first array to become
available before it can begin work (a type of pipeline filling delay) creates syn-
chronization loss that does not exist in data parallel 2D FFT. The approach used
by lcm to implement these two steps will be described in Section 6.2.2.

The overheads added or subtracted during composition are expected to tvp-
ically be small in relation to the overheads accounted for in the component lost
cycles models. For example, the lost cycles model for a program fragment con-
sisting of a parallel loop will contain predictions for the communication occcuring

79

between loop iterations. Only the communication required to initially access the
data items used will be added during the composition step.

In summary, given the ability to build fragment models and then to com-
pose fragment models into application models, lost cycles modeling can provide
the programmer with considerable power to experiment with alternative paral-
lel structures for an application, without fully implementing all the alternatives.
Lost cycles modeling can achieve this result in part by not attempting to provide
performance prediction capabilities for arbitrary restructurings of source code;
instead it relies on the programmer to identify the range of reasonable program
structures. However, once a set of code fragments have been identified, any re-
structuring of those fragments is suitable for analysis using lost cycles modeling.
In the next section we describe tools to automate this process.

6.2 Lost Cycles Modeling

Lost cycles modeling is supported by modifications to the tools pp and lca,
and by a tool currently under development, lcm. In the next section we de-
scribe the modifications we have made to our existing tools to support lost cycles
modeling. and then we present design details for the tool lcm.

6.2.1 Tool Support for Source Code Annotations

We made two modifications to our existing tool set to provide support for lost
cvcles modeling. We modified pp to profile code fragments, and we modified 1ca
to output models in a format for use in annotating source code.

Our modifications to pp allow the user to specify each code fragment in the
source, and identify it with an integer tag. Identifying a code fragment is accom-
plished by simply bracketing it with calls to library functions, and providing the
value of the tag. pp was also modified to accept the tag value of interest as a
command line parameter. Thus one execution of the application can be used for
multiple runs of pp, each profiling a different portion of the execution by specify-
ing a different tag. The presence of both code-bracketing tags and synchronization
events in the event log allows 1cm to perform critical path analysis when necessary,
as discussed in the following section.

Since the tag is a numeric value, it is included in each record of the application’s
profile data, allowing the profiles for all code fragments to be placed in the same
file. 1ca can be used to construct models for each profile by specifying the value
of the tag in the extraction-expression via the -x option.

Finally, 1ca can be used to output a performance model in the form of source
code comments using Fortran 77 syntax. These models can be cut-and-pasted di-

80

rectly into the application’s source; as the code is rearranged to explore alternative
representations, the performance models are moved with the code fragments.

6.2.2 Tool Support for Lost Cycles Modeling: 1cm

The primary role of lcm is in composing fragment models into an application
model. The approach taken by lcm to compose models is presented in this section.

As described in section 6.1.2, 1cm has two steps to perform. In the first step,
lem must determine the relationship between external variables of the application
(e.g., n and p) and those of the fragment models. In the second step, lem must
estimate the increased or decreased overheads incurred due to the relationship
between fragments at runtime.

lcm handles the first step using default rules, which can be overridden by the
user. Rules are applied from the root node downward in the DAG. For example,
the default rule for the creation of T parallel tasks is that each parallel task has
p/T processors assigned to it. To modify the defaults, the user simply places
an annotation on the code fragment specifying the value of p as a constant, or
symbolically (e.g., p/T — 1).

The default rules for external variables provide new values for the inputs to
each code fragment’s lost cycles model. The ability to use simple rules in this step
provides an example of the value of separating the static and dynamic components
of performance prediction along the boundary between internal and external fac-
tors. Static analysis can easily determine the new values of the external factors,
while the results of dyvnamic analysis to determine the effects of external factors
can simply be reused.

To handle the second step. 1em uses more complex processing. Models are com-
posed from the leaf nodes upward in the DAG. The method of modifving overhead
predictions is specific to the category of overhead, and the type of composition
occurring at the node (serial or parallel). Three methods are used: structural
rules, data traces, and synchronization traces.

Structural Rules

Structural rules handle the Load Imbalance and Insufficient Parallelism cat-
egories of overhead. The structural rules for serial composition don’t introduce
any modifications to overhead. For parallel composition of T" tasks, the structural
rule states that load imbalance (LI1) is added according to the formula:

LIT(n.p) = Z EI}EH%(TP,#(NW,PN)) — Tping, p;)
teT

81

where Tp, is the lost cycles fragment model for task ¢, and n, and p, are that
model’s modified inputs. This formula states formally the commonly understood
definition of load imbalance as the time spent by all tasks while waiting for the last
task to finish. For parallel composition, no modifications to Insufficient Parallelism
are necessary.

Data Traces

Data traces handle the Communication Loss and Resource Contention cate-
gories of overhead. Currently, input to the structural rules are simple data use
annotations supplied by the user. These data use annotations could supplied in
large part by compiler analysis, but for proof-of-concept purposes user annotations
are easily enough supplied. The annotations specify which variables are read and
written by each code fragment, and are similar to those used to assist parallelizing
compilers [Rinard et al., 1992; Subhlok et al., 1993].

Examples of the data trace annotations are shown in Figure 6.4. lcm tracks
the movement of data between code fragments based on the data dependencies
resulting from the user-supplied data annotations. First lcm converts the DAG
into a tree by replicating any subtrees that have more than one parent. Then
lcm performs a depth-first, left-to-right traversal of the tree’s penultimate nodes
to track the data movements that would occur between code fragments during
execution. Each penultimate node is considered a logically separate location for
data. Movement of data from one processor or set of processors to another occurs
when two penultimate nodes have a least upper bound that is a parallel node, and
a data dependence occurs between the nodes (either a true dependence, an anti
dependence, or a write dependence).

For example, when processing task parallel 2D FFT using the structure shown
in Figure 6.3 and the annotations shown in Figure 6.4, lcm proceeds as follows.
The first node visited is 2, which has no data annotations, followed by node 7,
which outputs a(k) . Next lcm vists node 8, whose least upper bound with node
7 is node 5, a serial node, so no communication occurs; however, node 8 acquires
a(k) since node 8 outputs a(k). Next lcm visits node 9, whose least upper bound
with node 8 is node 3, a parallel node. In addition, there is a true dependence
between node 8 and node 9, so communication of data item a(k) occurs at this
point. Finally, lcm visits node 10, at which no communication occurs, and node
4 which has no data trace annotations.

After determining how data moves among the code fragments in the applica-
tion, lcm estimates the inter-fragment communication in the original source code.
Communication Loss and Resource Contention are then added or subtracted from
the predictions of the fragment models based on the communication occurring
between fragments in the measured executions, and the communication in the ap-
plication structure under study. The amount of communication loss is predicted

program main
real a(n,n,2,iters)
call initialize_program
cx¥ksr* parallel sections
c*¥ksr* section
do k=1,iters
c¥lcm* output: a(k)
call initialize(a(k))
ck¥lcm* input: a(k)
c¥lem* output: a(k)
call cffts(a(k))
end do
c*ksr* section
do k=1,iters/2
ck¥lcm* input: a(k)
ck¥lcm* output: a(k)
call transpose(a(k))
ck¥lcem* output: a(k)
call cffts(a(k))
end do
c*ksr* end parallel sections
call print_performance
end

Figure 6.4: Main Routine of Task Parallel 2D FFT With Data Trace Annotations

as the cost of a single transfer of each data item read. Resource Contention is
handled in a similar way, except that the resource contention cost is a function
of the number of processors reading the data and the amount of data transferred.
The machine parameters needed to predict these costs are measured once per
machine.

Synchronization Traces

Synchronization traces handle the Synchronization Loss category of overhead.
Essentially, these traces are used to identify when synchronization constraints
occur between tasks; if they do occur, 1em does not output a closed-form solution
to the performance model. Instead, it provides a critical path analysis of the
application under study.

Critical path analysis [Lockyer, 1964; Yang and Miller, 1988] takes as input
a synchronization trace of an application, along with the measured time between

83

each synchronization event, and outputs the expected running time of the appli-
cation. Critical path analysis finds the longest sequence of computations dictated
by synchronization dependencies.

We perform critical path analysis in the context of lost cycles modeling only
if it is determined to be necessary by lcm. Synchronization events are captured
and correlated with code fragments during the lost cycles analysis phase. The
synchronization events generated by each code fragment are stored in trace files,
along with their time of occurrence relative to the execution time of the code
fragment. To perform critical path analysis, 1cm tool takes as input the application
source, the synchronization traces, and the values of the external variables; it
then performs critical path analysis by rescaling and reordering the event traces
according to the predicted running time and order of each code fragment in the
new environment. The process is similar to that taken for data traces; the DAG
is converted to a tree, and traversed to simulate execution.

We have applied the algorithms used in lcm by hand to case studies as a proof
of concept. These case studies are presented in the next section.

6.3 Lost Cycles Modeling in Practice

To evaluate the potential effectiveness of lost cycles modeling in practice, we
have performed it (without the aid of the lcm tool) on the task parallel 2D FI'T
application. We are interested in the comparison of the TP version with the DP
version as an typical example of the kind of application restructuring of interest
to parallel programmers.

We start by partitioning the program into code fragments. We used a subset
of the code fragments discussed in Section 6.1.1 to simplify the manual process.
We studied only the code fragments corresponding to nodes 7, 9, and 8/10 in
Figure 6.3 — that is, the three different parallel loops in the application.

Next we instrumented the program according to the partition we used — plac-
ing delimiters around each of the parallel loops. We then performed lost cycles
analysis on the three code fragments. The resulting models were input into the 5
data analysis system [Becker et al., 1988]. The use of S allows us to specify sym-
bolicallv the rules for transforming the external variables of the application to the
external variables of the component models, and to programmatically construct
structural rules such as the load imbalance rule.

Although this section describes the application of default and compositional
rules in detail, in practice the application of these rules is handled automatically
by lem. When using lcm, the user must only provide the program’s annotated
source code; the corresponding performance model is then output directly by lem.

84

6.3.1 Predicting the Performance of TP 2D FFT

Our first goal was to predict the performance of the TP version itself, using
lost cycles modeling. We applied the default rules for p and n, resulting in each
loop model taking as its external variables p/2 and n. Next we composed the
models, working upward from the leaves of the DAG in Figure 6.3.

We applied composition rules at internal nodes as follows. Nodes 5 and 6 are
serial nodes; they generate no additional overhead, and their composite models
are the sums of their component, loop fragment models. Node 3 is a parallel node,
and all three composition issues come into play here. Considering structural rule
issues, we must apply the Load Imbalance formula. since the predicted running
times of the two composite models (for nodes 5 and 6) are different. Second, we
must consider data trace issues: node 6 reads in the output of node 5. However,
since these communication events in fact did occur in the measured program, they
were captured in the fragments’ lost cycles models, so no overhead modification
is needed for data trace reasons. Finally, synchronization traces show that node
6 must wait for the first matrix to be finished by node 5; this pipeline-fill cost
was estimated as the time to execute a single iteration of task 5’s main loop. For
this reason, synchronization cost was added as the predicted execution time of
task 5 divided by the number of iterations it executed — equal to what would be
predicted by critical path analysis.

The predictions of the resulting model of task parallel 2D FFT are shown
n Figure 6.5, for the three largest data sizes studied. The graphs on the left
compare the measured execution time to the predicted execution time, and the
graphs on the right compare the measured speedup to the predicted speedup.
Note that although we compare model predictions to measured execution time,
these measurements were not an input to the lost cvcles modeling process; only
the three component lost cycles models were used.

Figure 6.5 shows that the lost cycles model of the application is quite accurate
for large values of n. Accuracy on large values of n is important since these
values represent the most computationally challenging problems. However model
predictions are not quite as accurate for small n. Figure 6.6 shows lost cycles
model predictions for n = 64. This figure reflects two sources of inaccuracy in
the lost cycles model. First, we have not accounted for two code fragments in our
model — the initialization and finalization segments of the program, represented
by nodes 2 and 4 in Figure 6.3. These code fragments grow in execution time
with increasing n much more slowly than the rest of the program: hence for
small n their effects are much more noticeable. The second source of inaccuracy
concerns the resolution of our measurements. The measurements made by pp are
accurate to microsecond resolution, but each profile is the sum of a number of
such measurements, which can accumulate errors. The errors are only significant
when overall running time is very small; however, Figure 6.6 shows that running

Running Time In Soconds

Running Time in Seconds

Aunning Time in Seconds

1200 T T T T 30 T T T T T
o Pradicted — Predicled —
Actual ¢ Actual ©
Ideal -----
1000 [25 d
800 [20
600 - N § 15 F 4
400 A 10+ B
200 <] s |
. 0
¢ 10 15 20 25 30 0 5 10 35 20 25 30
Processors Procossors
Execution Time (left) and Speedup (right) for n = 1024
= j j j F”vomcled —_ * i i " ' Fl'redn:led —_—
200 | Actual o | Al o
180 b By ’ 1
160 +
20+ i
140 4
120 1 g
£l
o | {8
80
10 4
60 | B
a0} s
ol
. . X
o 10 15 20 25 30 0 5 10 18 20 25 30
Processors Processors
Execution Time (left) and Speedup (right) for n = 512
* j " ' I;mdvclod —_ * " ' i i ;Iedlcled —
Actual o Actual ©
50 1 ideat -+
2 i
45 -
40
20 -
sk
30 B g 15+
25
10 F B
20 ¢
15 |
ol
10 -
. . . , . .
] 0 o 5 10 20 25 30

15
Processors

15
Processors

Execution Time (left) and Speedup (right) for n =

Figure 6.5: Predicted and Actual Performance of TP 2D FFT for n > 256

86
32 T T 30 T
Preflicted — Predicied —
sl Actual o | Actual o
ideal -
28 | EC
26
- 20
K 24F o °
&
2
&
e 22 ° ° s
g § 15
E 2} ° @
o
£
g
£
5
a

15 15
Processars Processors

Figure 6.6: Predicted and Actual Performance of TP 2D FFT for n = 64

times are on the order of 1 - 3 seconds, small enough to be comparable to the
accumulated errors in measurement.

This section shows that lost cycles modeling can accurately construct a per-
formance model from the models of an application’s code fragments. In the next
section we will show how lost cycles modeling can predict the performance of an
application in advance of implementation.

6.3.2 Predicting the Performance of DP 2D FFT

A primary goal of this thesis is to develop techniques for predicting the per-
formance of applications in advance of implementation. The 2D FFT application
provides an example we can use to demonstrate the utility of lost cycles modeling
to achieve our goal. This section describes the construction of a lost cycles model
for an (effectively) unimplemented version of 2D FFT.

The model developed in the last section was based on measurements of a
particular implementation of 2D FFT - the task parallel implementation. From
the same measurements used in the last section, we can construct a performance
model for data parallel 2D FFT. This is done by simply reorganizing the source
code into the data parallel form, and using lost cycles modeling to construct the
performance model from the modified source.!

The reorganized main routine is shown in Figure 6.7. The new structure of the
program consists of the four parallel loops executed in sequence (each subroutine
contains a paralle] loop as shown in Figure 6.2. Based on the new structure for the
program, we can construct the parallel structure graph shown in Figure 6.8. The

'Eventually, we compiled and executed the data parallel version of 2D FFT, but only to
gather performance data for comparison with model predictions.

87

program main

real a(n,n,2,iters)

call initialize_program

do k=1,iters
call initialize(a(k))
call cffts(a(k))
call transpose(a(k))
call cffts(a(k))

end do

call print_performance

end

Figure 6.7: Edited Source for the Main Routine of Data Parallel 2D FF'T

figure shows that nodes 3, 5, and 6 in the task parallel graph have been replaced
by a single internal node in the data parallel graph — a serial node whose children
are the four parallel loops.

The parallel structure shown in Figure 6.8 has only one internal node requiring
processing (again overlooking nodes 2 and 4). Since it is a serial node, default
rules specify that external variables remain unchanged when applied to compo-
nent models. Thus each component model is supplied with n and p unchanged
as inputs. Composition rules are similarly straightforward for this version. No
structural rules apply. since this is a serial node, and no synchronization events
are generated in this version. Modification is necessary to Communication Loss,
since the transfer of the matrix between the initialization task and the transpose
task does not occur in this version.

The results of performing lost cycles modeling on the new version of the ap-
plication are shown in Figure 6.9 for n > 512. The figure shows that lost cycles
modeling can accurately predict the performance of an application that has not
been compiled or executed. Again, the model’s accuracy is greatest for large
values of n, which are shown in the figure.

The utility of lost cycles modeling can be seen from Figure 6.10. This figure
shows the predicted and actual values for both implementations (n = 1024). The
figure shows that over most of the range of processors considered, the two models
provide a reasonably accurate assessment of the measured difference between the
two implementations. The models show that over the entire range, the data
parallel version outperforms the task parallel version, agreeing with the conclusion
from Section 5.3.2. Whereas in Section 5.3.2 it was necessary to perform lost
cvcles analysis on the new application in order to reach that conclusion, using

88

o

initialize

_program

initialize
row

\

print__
performance

transpose

row

1D FFT

Figure 6.8: Parallel Structure for Data Parallel 2D FFT

900

800

700

600

500

400

Running Time in Seconds

300

200

180

160

140

120

100

80

Running Time in Seconds

60

40

20

89

1 L 1 1

Predicted ——
Actual o

5 10 15 20
Processors

Execution Time for n = 1024

T T T T

1 1 Il 1

T

Predicted —
Actual ©

5 10 15 20
Processors

Execution Time for n = 512

25 30

Figure 6.9: Predicted and Actual Execution Time for DP 2D FFT, n > 512

90

T T T T T

TP - Predicted —
TP - Actual ©
1000 DP - Predicted «--- 7
DP - Actual +

800 | 8

2]

©

=

[=3

(43

Q

w

C

S s00 F &

£

=

o

&

=4

C

=

& 400 | .
200 F 4

1
Processors

Figure 6.10: Lost Cycles Model Predictions for Two Implementations of 2D FFT

lost cyvcles modeling instead allows the same conclusion to be reached through a
highly automated process.

With the completion of the lem tool, our investigation of 2D FFT could be
summarized as follows. After instrumenting the code for task parallel 2D FFT,
lost cycles analysis is performed on each code fragment, resulting in a performance
model for each fragment which is embedded in the source as Fortran comments.
lcmis then run on the commented source, resulting in a performance model of the
entire application. Figure 6.5 shows results obtained from such a model. Then,
to explore the tradeoffs of an alternative parallelization. the program source is re-
arranged into the data paralle] version, moving comments along with their corre-
sponding code. lcmis then run on the new source, resulting in a new performance
model. The results in Figure 6.9 show predictions based on the new model.

6.4 Summary

In this chapter we have shown a method for constructing an application’s
performance function Tp(/, E) as a function both of execution-time variables ()
and the application’s source code (I). We break the application up into fragments
that are large enough to exhibit most of the significant performance effects in the
application, but small enough to provide useful building blocks for application
restructuring. Using lost cycles analysis, we create performance models for each

91

fragment; the performance models contain most of the important performance
information for the application. Simple static analyses are then sufficient to com-
pose the fragment models into an application model, and supply the remaining
performance information necessary to create an accurate performance model of
the application.

The benefit of lost cycles modeling derives from the flexibility of program
rearrangement possible once the various fragment models have been built: any
alternative parallel structure using those fragments can be evaluated automatically
by lecm. Thus the programmer is given the freedom to experiment with alternative
implementations without the need to fully implement them.

Our approach relies on dynamic measurement to solve the aspects of perfor-
mance prediction that are difficult to solve statically, and uses static analysis to
solve the aspects that are hard to solve empirically. In our approach, dynamic
measurement provides machine and algorithmic constants, models of loop execu-
tion times, and models of communication costs. These are all requirements of
performance prediction that are typically difficult to predict statically. On the
other hand, our approach uses static analysis to evaluate the effects of code mod-
ification; this is appropriate since a measurement-based approach to evaluating
alternative structures would require their full implementation and execution.

93

7 Conclusions

Parallel processing offers tremendous price/performance advantages, but reaping
its benefits requires efficient use of machine resources. This disseration addresses
the problem of finding efficient implementations for parallel applications, by pre-
senting techniques and tools for performance measurement and prediction of par-
allel programs.

Our approach throughout this dissertation has been to decompose each prob-
lem in a structured way. Parallel overheads are decomposed into overhead cat-
egories that together meet the criteria of completeness, mutual exclusion, and
meaning. These three criteria are necessary and sufficient for both performance
tuning, and for performance prediction. The factors affecting parallel program
performance are decomposed into internal and external effects, allowing a clear
distinction between the role of dynamic and static techniques in our method of
performance prediction. Program structure is decomposed into parallel structure
and code fragments, supporting the maximum use of dynamic information to sim-
plify static analysis.

7.1 Contributions

We have presented three techniques to facilitate the rapid development of
efficient parallel programs: predicate profiling, lost cycles analysis, and lost cycles
modeling.

Predicate profiling is a method of measuring the parallel overhead present
in the execution of a parallel program. Predicate profiling works by assigning
the measured overhead to categories (defined by performance predicates), which
together meet three criteria: completeness, orthogonality, and meaningfulness.
Completeness ensures that all the parallel overhead in an execution is captured;
orthogonality ensures that no overhead is counted twice (thus overheads can be
summed in a straightforward way); and meaningfulness ensures that overhead cat-
egories correspond to states of the execution that have significance in performance

94

tuning. Predicate profiling differs from previous measurement work in emphasiz-
ing these three criteria, and in its dual support for performance evaluation and
performance prediction.

Section 2.3 pointed out that techniques for performance prediction of paral-
lel applications include static and dynamic components. Our approach to per-
formance prediction also contains dynamic and static components; the dynamic
component, lost cycles analysis, is concerned exclusively with factors that are
external to the source code. The static component of our approach, lost cycles
modeling, is likewise restricted to factors internal to the source code.

Chapter 3 described external factors, which are the number of processors used
to run the program, the size of the input data set, the structure of the input data
set, the problem definition, and the machine used to run the program. Lost cycles
analysis is a dynamic approach that empirically develops performance models
of the application as a function of each of these external factors. Lost cycles
analysis can address external factors using only runtime measurements because
of the utility of overhead decomposition. Decomposing overheads simplifies the
modeling process and exposes many typical behaviors that can be exploited to
develop performance models.

Internal factors include the tvpe of parallelism used and the choice of which
code to parallelize. Lost cycles modeling takes a static approach to building per-
formance models based on program structure. which is possible because of the
leverage obtained from using lost cycles analysis in modelling code fragments.
Since lost cvcles analysis describes the performance of code fragments in terms
of external factors, it captures the information necessary to describe how compo-
nents of an application will behave when reorganized into a new parallel structure.
This simplifies the static analysis required to construct the new application’s per-
formance model.

7.2 Future Directions

7.2.1 Performance Tuning

Predicate profiling is based on accurate measurements of machine-level events
such as communication and contention. Unfortunately, this is not easy to do on
many multiprocessors, which will limit the widespread use of predicate profiling.
One solution is for hardware designers to design performance monitoring hardware
into new processors; hopefully performance monitoring features like those found
in the Alpha design [Digital Equipment Corporation, 1992] will become more
widespread over time.

A useful extension of the predicate profiler would be the ability to provide
procedure-level or line-level predicate profiles of an application. Highly detailed

95

profiles could be based on sampling the program counter as well as the performance
predicates, and relating overheads to code segments at the source line level. This
would address the problem presented by long-running applications with multiple
distinct phases of execution, often with differing performance issues.

7.2.2 Performance Prediction

Performance prediction is not currently a tool that most parallel programmers
use. While this thesis attempts to make performance prediction more tractable
for parallel programmers, a number of questions need to be answered to fully solve
the problems facing users.

The extent to which external factors in application performance are orthogonal
is an issue in our approach. A high degree of interdependence of external factors
could make lost cycles analysis inaccurate. The cases we have studied to date
indicate that external factors are typically orthogonal, but more work needs to be
done before we can be confident.

The best balance between static and dynamic analysis is still unclear in per-
formance prediction. This thesis has attempted to use dynamic analysis to its
fullest potential, but greater accuracy may be possible with a larger effort in
static analysis.

A related question concerns the quantity of data that needs to be collected to
accurately predict performance. The collection of large amounts of data for the
purpose of performance prediction can in some cases require more effort than it
saves. However, dynamic data provides answers to questions that are currently
difficult or impossible to answer using static analysis. The best compromise be-

tween these goals is an open question in parallel performance prediction.

S
R NS A T I A IS Sy N OGN AaE ON G By oE B G am o

97

Bibliography

[Abrams et al., 1992] Marc Abrams, Naganand Doraswamy, and Anup Mather,
“Chitra: Visual Analysis of Parallel and Distributed Programs in the Time,
Event, and Frequency Domains,” Journal of Parallel and Distributed Comput-
ing, 3(6):672-685, November 1992.

[Aho et al., 1988] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers,
Principles, Techniques and Tools, Series in Computer Science. Addison Wesley,
1988.

[Amdahl, 1967] G. M. Amdahl, “The Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities,” In AFIPS Conference Pro-
ceedings, volume 20, pages 483-485. AFIPS Press, Reston, Va., April 1967.

[Anderson and Lazowska, 1990] Thomas E. Anderson and Edward D. Lazowska,
“Quartz: A Tool for Tuning Parallel Program Performance,” In ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems,
pages 115-125, May 1990.

[Aral and Gertner, 1988] Ziya Aral and Ilya Gertner, “High-level Debugging in
Parasight.” In Proceedings ACM SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, pages 151-162, May 1988.

[Atkinson and Donev, 1992] A. C. Atkinson and A. N. Donev, Optimum Ezperi-
mental Design, Oxford Statistical Science Series. Oxford Science Publications,
1992.

[Bailey et al., 1994] David H. Bailey, Eric Barszcz, Leonardo Dagum, and
Horst D. Simon, “NAS Parallel Benchmark Results 4-94,” Technical Report
RNR-94-006, NASA Ames Research Center, 1994.

[Balasundaram el al., 1991] V. Balasundaram, G. Fox, K. Kennedy, and U. Kre-
mer, “A Static Performance Estimator to Guide Data Partitioning Decisions,”
In Proceedings of PPoPP 91, pages 213-223. ACM Sigplan Notices, 1991.

98

[Ball and Larus, 1992] Thomas Ball and James R. Larus, “Optimally Profiling
and Tracing Programs,” In Conference Record of the Nineteenth POPL, Albu-
querque, NM, 19-22 January 1992.

[Becker et al., 1988] Richard A. Becker, John M. Chalmers, and Allan R. Wilks,
The New S Language: A Programming Environment for Data Analysis and
Graphics, Computer Science Series. Wadsworth & Brooks / Cole, Pacific Grove,
California, 1988.

[Bodin et al., 1990] F. Bodin, D. Windheiser, W. Jalby, D. Atapattu, M. Lee, and
D. Gannon, “Performance Evaluation and Prediction for Parallel Algorithms
on the BBN GP1000,” In Proceedings of the 1990 International Conference on
Supercomputing, pages 401-413, Amsterdam, The Netherlands, June 1990.

[Box et al., 1978] George E. P. Box, William G. Hunter, and J. Stuart Hunter,
Statistics for Experimenters: An Introduction to Design, Data Analysis, and
Model Building, Wiley Series in Probability and Mathematical Statistics. John
Wiley and Sons, Inc., 1978.

[Brochard and Freau, 1990] L. Brochard and A. Freau, “Designing Algorithms
on Hierarchical Memory Multiprocessors,” In Proceedings of the 1990 ACM
Conference on Supercomputing, pages 414-427. ACM, 1990.

[Burkhart and Millen, 1989] Helmar Burkhart and Roland Millen. “Performance
Measurement Tools in a Multiprocessor Environment.,” IEEE Transactions on
Computers, 38(5):725-737, May 1989.

[Callahan et al., 1990] David Callahan. Ken Kennedy. and Allan Porterfield, “An-
alyzing and Visualizing Performance of Memory Hierarchies,” In Performance
Instrumentation and Visualization. pages 1-26. ACN Press, 1990.

[Carmona and Rice. 1991] Edward A. Carmona and Michael D. Rice. “Modeling
the Serial and Parallel Fractions of a Parallel Algorithm,” Journal of Parallel
and Distributed Computing, 13:286-298, 1991.

[Char et al., 1991] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B.
Monagan, and S. W. Watt, Maple V Language Reference Manual, Springer-
Verlag, New York, 1991.

[Cheriton et al., 1991] David R. Cheriton, Hendrik A. Goosen. and Philip Ma-
chanick, “Restructuring a Parallel Simulation to Improve Cache Behavior in a
Shared-Memory Multiprocessor: A First Experience,” Proceedings of the Inter-
national Symposium on Shared-Memory Multiprocessing, pages 109-118, 1991.

99

[Clement and Quinn, 1993] Mark J. Clement and Michael J. Quinn, “Analytical
Performance Prediction on Multicomputers,” In Proceedings of Supercomputing

93, pages 886-894, November 1993.

[Clement and Quinn, 1994] Mark J. Clement and Michael J. Quinn, “Symbolic
Performance Prediction of Scalable Parallel Programs,” Unknown, 1994.

[Crovella et al., 1992] Mark Crovella, Ricardo Bianchini, Thomas LeBlanc;
Evangelos Markatos, and Robert Wisniewski, “Using Communication-to-
Computation Ratio in Parallel Program Design and Performance Prediction,”
In Proceeedings of the Fourth IEEE Symposium on Parallel and Distributed
Processing, December 1992.

[Crowl et al., 1994] Lawrence A. Crowl, Mark Crovella, Thomas J. LeBlanc, and
Michael L. Scott, “The Advantages of Multiple Parallelizations in Combina-
torial Search,” Journal of Parallel and Distributed Computing, 21(1):110-123,
April 1994.

[Culler et al., 1993] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos. R. Subramonian, and T. von Eicken, “LogP: Towards a Realistic
Model of Parallel Computation,” In Proceedings of the Fourth PPOPP, San
Diego, CA, 20-22 May 1993.

[Cybenko et al., 1991] G. Cybenko, J. Bruner, S. Ho, and S. Sharma, “Parallel
Computing and the Perfect Benchmarks,” In Intl. Symposium on Supercom-
puting, Fukwoka, Japan, November 1991.

[Davis and Hennessy, 1988] Helen Davis and John Hennessy, “Characterizing the
Synchronization Behavior of Parallel Programs,” In Proceedings of the First
PPEALS. pages 198-211, July 1988.

[Digital Equipment Corporation, 1992] Digital Equipment Corporation, “DEC-
Chip 21064-AA RISC Microprocessor Preliminary Data Sheet,” Digital Equip-
ment Corporation, Maynard, MA, 1992.

[Dimpsey and Iyer, 1991] R.T. Dimpsey and R. K. Iyer, “Performance Prediction
and Tuning on a Multiprocessor,” In Proceedings of the Eighteenth ISCA, pages
190-199, Toronto, Canada, May 1991.

[Dongarra et al., 1990] J. Dongarra, O. Brewer, J. A. Kobl, and 5. Fineberg, “A
Tool to Aid in the Design, Implementation, and Understanding of Matrix Algo-
rithms for Parallel Processors.” Journal of Parallel and Distributed Computing,
9(2):185-202, June 1990.

100

[Eager and Zahorjan, 1993] Derek L. Eager and John Zahorjan, “Chores: En-
hanced Run-Time Support for Shared-Memory Parallel Computing,” ACM
Transactions on Computer Systems, 11:1-32, February 1993.

[Eager et al., 1989] Derek L. Eager, John Zahorjan, and Edward D. Lazowska,
“Speedup Versus Efficiency in Parallel Systems,” IEEE Transactions on Com-
puters, 38(3):408-423, 1989.

(Fahringer, 1994] Thomas Fahringer, “Evaluation of Benchmarking Performance
Estimation for Parallel Fortran Programs on Massively Parallel SIMD and
MIMD Computers,” In IEEE Proc. of the 2nd Euromicro Workshop on Parallel
and Distributed Processing, Malaga, Spain, January 1994.

[Fahringer and Zima, 1993] Thomas Fahringer and Hans P. Zima, “A Static Pa-
rameter Based Performance Prediction Tool for Parallel Programs,” In Pro-
ceedings of International Conference on Supercomputing, pages 207-219. ACM
SIGARCH, ACM Press, July 20-22 1993.

[Flatt and Kennedy, 1989] Horace P. Flatt and Ken Kennedy, “Performance of
Parallel Processors,” Parallel Computing. 12:1-20, 1989.

[Gallivan et al., 1991] K. Gallivan, W. Jalby, A. Maloney, and H. Wijshoff, “Per-
formance Prediction for Parallel Numerical Algorithms,” International J. of
High Speed Computing, 3(1):31-62, 1991.

[Goldberg and Hennessy, 1993] Aaron J. CGoldberg and John L. Hennessy,
“Mtool: An Integrated System for Performance Debugging Shared Memory
Multiprocessor Applications,” IEEE Transactions on Parallel and Distributed
Systems, 4(1):28-40, January 1993.

[Graham ef al.. 1982] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof:
a call graph execution profiler,” In SIGPLAN ‘82 Symposium on Compiler
Construction, pages 120126, Boston, June 1982.

[Grama et al.. 1993] Ananth Y. Grama, Anshul Gupta, and Vipin Kumar, “Isoef-
ficiency function: A scalability metric for parallel algorithms and architectures,”
IEEE Parallel and Distributed Technology, Special Issue on Parallel and Dis-
tributed Systems: From Theory to Practice, 1993.

[Grama and Kumar, 1992} Anarh Y. Grama and Vipin Kumar, “Scalability Anal-
ysis of Partitioning Strategies for Finite Element Graphs: A Summary of Re-
sults,” In Proceedings Supercomputing '92, pages 83-92, Minn., MN, November
1992. TEEE.

[Gumbel, 1954] E. J. Gumbel, “The Maxima of the Mean of the Largest Value of
the Range,” Annals of Mathematical Statistics, 25:76-84, 1954.

- el D S S o BN EE T TR By S B B S e

101

[Gustafson, 1988] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Communica-
tions of the ACM, 31(5):532-533, May 1988.

[Gustafson et al., 1988] J.L. Gustafson, G.R. Montry, and R.E. Benner, “Devel-
opment of Parallel Methods for a 1024-processor Hypercube,” SIAM J. on
SSTC, 9(4), July 1988.

[Hartley and David, 1954] H. O. Hartley and H. A. David, “Universal Bounds for
Mean Range and Extrema Observations,” Annals of Mathematical Statistics,
25:85-99, 1954.

[Heath and Etheridge, 1991] Michael T. Heath and Jennifer A. Etheridge, “Vi-
sualizing the Performance of Parallel Programs,” IEEE Software, 8(5):29-39,
September 1991.

[Hickey et al., 1992] Timothy J. Hickey, Jacques Cohen, Hirofumi Hotta, and
Thierry Petitjean, “Computer-Assisted Microanalysis of Parallel Programs,”
ACM Transactions on Programming Languages and Systems, 14(1):54-106,
January 1992.

[Hollingsworth and Miller. 1993} Jeffrey K. Hollingsworth and Barton P. Miller,
“Dynamic Control of Performance Monitoring on Large Scale Parallel Systems,”
In 7th ACM International Conference on Supercomputing, July 1993.

[Hummel et al., 1992] Susan Flynn Hummel, Edith Schonberg, and Lawrence E.
Flynn. “Factoring: A Method for Scheduling Parallel Loops,” Communications

of the ACM, 35(8):90-101, August 1992.

[Jain. 1991] Raj Jain. The Art of Computer Systems Performance Analysis, Wiley
and Sons, Inc., 1991.

[Kaelbling and Ogle, 1990] Michael J. Kaelbling and David M. Ogle, “Minimizing
Monitoring Costs: Choosing Between Tracing and Sampling,” In Proceedings
of the 23rd Hawaii International Conference on Systems Sciences, pages 314 —
320, January 1990.

[Karp and Flatt, 1990} A.H. Karp and H. P. Flatt, “Measuring Parallel Processor
Performance,” Communications of the ACM, 33(5):539-543, May 1990.

[Karp and Ramachandran, 1990] R. M. Karp and V. Ramachandran, “A survey
of parallel algorithms for shared-memory machines,” In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science. North Holland, 1990.

[Kendall Square Research, 1991] Kendall Square Research, “KSR1 Principles of
Operation,” Kendall Square Research, 170 Tracer Lane, Waltham MA, 15
October 1991.

[Kendall Square Research, 1992] Kendall Square Research, “KSR1 Fortran Pro-
gramming,” Kendall Square Research, 170 Tracer Lane, Waltham MA, 15
February 1992.

[Kilpatrick and Schwan, 1991] Carol Kilpatrick and Karsten Schwan, “Chaos-
MON — Application-Specific Monitoring and Display of Performance Infor-
mation for Parallel and Distributed Systems,” In Proceedings of the ACM
SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, May
1991, Published in SIGPLAN Notices, Jan, 1992.

[Knuth, 1976] D. E. Knuth, “Big Omicron and Big Omega and Big Theta,”
SIGACT News, 8(2):18-24, 1976.

[Kohn and Williams, 1993] James Kohn and Winifred Williams, “ATExpert,”
Journal of Parallel and Distributed Computing, 14, May 1993.

[Kumar et al., 1994] Vipin Kumar, Ananth Grama, Anshul Gupta, and George
Karypis, Introduction to Parallel Computing, Benjamin Cummings Publishing
Co., 1994.

[Kumar and Gupta, 1991] Vipin Kumar and Anshul Gupta, “Analyzing Scala-
bility of Parallel Algorithms and Architectures,” Technical report, TR-91-18.
Computer Science Department, University of Minnesota, June 1991.

[Lai and Sahni, 1984] Ten-Hwang Lai and Sartaj Sahni, “Anomalies in Parallel
Branch and Bound Search.,” Communications of the ACM, 27(6). June 1984.

[Lazowska et al., 1984] Edward D. Lazowska. John Zahorjan, G. Scott Graham,
and Kenneth C. Sevcik, Quantitative System Performance, Prentice-Hall Inc.,
Englewood Cliffs, NJ 07632, 1984.

[LeBlanc. 1988] T. J. LeBlanc, “Problem Decomposition and Communication
Tradeoffs in a Shared Memory Multiprocessor,” In Numerical Algorithms for
Modern Parallel Computer Architectures, IMA Volumes in Mathematics and Its
Applications. Springer-Verlag, 1988.

[LeBlanc ef al., 1990] Thomas J. LeBlanc, John M. Mellor-Crummey, and
Robert J. Fowler, “Analyzing Parallel Program Executions Using Multiple
Views,” Journal of Parallel and Distributed Computing, 9:203-217, June 1990.

[LeBlanc and Mellor-Crummey, 1987] T.J. LeBlanc and J.M. Mellor-Crummey,
“Debugging Parallel Programs with Instant Replav,” IEEE Transactions on
Computers, C-36(4):471-482, April 1987.

[Lehr et al., 1989] Ted Lehr, Zary Segall, Dalibor Vrsalovic, Eddie Caplan, Alan
Chung. and Charles Fineman, “Visualizing Performance Debugging.” [EEE
Computer, pages 33-51, October 1989.

N 7 3 ; ; 8]

7 ; [
. L3 . . >

103

[Lockyer, 1964] K. G. Lockyer, Introduction to Critical Path Analysis, Pitman
Publishing Co., New York, N.Y., 1964.

[Markatos et al., 1991] Evangelos Markatos, Mark Crovella, Prakash Das, Cezary
Dubnicki, and Thomas LeBlanc, “The Effects of Multiprogramming on Barrier
Synchronization,” In Proceeedings of the Third IEEE Symposium on Parallel
and Distributed Processing, pages 662-669, December 1991.

[Martonosi et al., 1992] Margaret Martonosi, Anoop Gupta, and Thomas Ander-
son, “MemSpy: Analyzing Memory System Bottlenecks in Programs,” In Pro-

ceedings of the ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pages 1-12, June 1992.

[Mehra et al., 1994] P. Mehra, M. Gower, and M. Bass, “Automated Modeling of
Message-Passing Programs,” In Proc. Int’l. Workshop on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS 94),
pages 187-192, Durham, NC, Jan. 1994. IEEE Computer Society Press.

[Miller and Choi, 1988] Barton P. Miller and Jong-Deok Choi, “A Mechanism for
Efficient Debugging of Parallel Programs,” In Proceedings of the SIGPLAN
Conference on Programming Language Design and Implementation, pages 135—
144, June 1988.

[Miller et al., 1990] Barton P. Miller, Morgan Clark, Jeft Hollingsworth, Steven
Nierstead, Sek-See Lim, and Timothy Torzewski, “IPS-2: The Second Gen-
eration of a Parallel Program Measurement System,” [EEE Transactions on
Parallel and Distributed Systems, 1(2):206-217, April 1990.

[Moller-Nielsen and Staunstrup, 1987] Peter Mgller-Nielsen
and Jgrgen Staunstrup, “Problem-heap: A Paradigm for Multiprocessor Al-
gorithms,” Parallel Computing, 4:64-74, 1987.

[Nanda et al., 1991] Arun K. Nanda, Honda Shing, Ten-Hwan Tzen, and Li-
onel M. Ni, “Resource Contention in Shared-Memory Multiprocessors: A Pa-
rameterized Performance Degradation Model,” Journal of Parallel and Dis-
tributed Computing, 12:313-328, 1991.

[Netzer and Miller, 1992] Robert H. B. Netzer and Barton P. Miller, “Optimal
Tracing and Replay for Debugging Message-Passing Parallel Programs,” In
Proceedings Supercomputing *92, pages 502-511, Minn., MN, November 1992.
IEEE.

[Nicol and Willard, 1988] David M. Nicol and Frank H. Willard, “Problem Size,
Parallel Architectures, and Optimal Speedup,” Journal of Parallel and Dis-
tributed Computing, 5:404-420, 1988.

104

[Nudd et al., 1993] G. R. Nudd, E. Papaefstathiou, Y. Papay, T. J. Atherton,
C. T. Clarke, D. J. Kerbyson, A. F. Stratton, R. Ziani, and M. J. Zemerly, “A
Layered Approach to the Characterisation of Parallel Systems for Performance
Prediction,” In Performance Evaluation of Parallel Systems (PEPS) "93, pages
26-34, U. Warwick, U.K., 29-30 November 1993.

[Pease et al., 1991] D. Pease, A. Ghafoor, I. Ahmad, D. Andrews, . Foudil-Bey,
T. Karpinski, M. Mikki, and M. Zerrouki, “PAWS: A Performance Evaluation

Tool for Parallel Computing Systems,” IEEE Computer, pages 18-29, January
1991.

[Press et al., 1988] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling, Numerical Recipes in C: The Art of Scientific Comput-
ing, Cambridge University Press, 1988.

[Rao and Kumar, 1989] V. Nageshwara Rao and Vipin Kumar, “Parallel Depth-
First Search,” International Journal of Parallel Processing, 16(6), 1989.

[Rinard et al., 1992] Martin C. Rinard. Daniel J. Scales, and Monica S. Lam,
“Heterogeneous Parallel Programming in Jade,” In Proceedings Supercomputing
92, pages 245-256, Minn., MN, November 1992. IEEE.

[Rothberg and Gupta, 1990] Edward Rothberg and Anoop Gupta. “Parallel
ICCG on a Hierarchical Memory Multiprocessor — Addressing the Triangular
Solve Bottleneck.” Technical Report CSL-TR-90-449. Department of Computer
Science, Stanford University. September 1990.

[Singh et al.. 1991} Vineet Singh. Vipin Kumar. Gul Agha, and Chris Tomlin-
son, “Scalability of Parallel Sorting on Mesh Multicomputers,” International
Journal of Parallel Processing, 20(2). 1991.

[Sivasubramaniam et al.. 1994] Anand Sivasubramaniam, Aman Singla, Umak-
ishore Ramachandran, and H. Venkateswaran, “An Approach to Scalability
Study of Shared Memory Parallel Systems,” In Proceedings of the ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems,
May 1994.

[Smith, 1990] C. U. Smith, Performance Engineering of Software Systems, The
SEI Series in Software Engineering. Addison-Wesley Publishing Co., 1990.

[Snyder, 1986] L. Snyder, “Type Architectures, Shared Memory, and the Corol-
lary of Modest Potential,” Annual Review of Computer Science, 1, 1986.

[So et al., 1987] K. So, A.S. Bolmarcich, F. Darema, and V.A. Norton, *“A
Speedup Analyzer for Parallel Programs,” In Proceedings of the 1987 Inter-
national Conference on Parallel Processing, pages 653-662, August 1987.

: : \ . " S : i 1
Ml ER NN B WS .S W an N B D B e

- “ § R

‘ - W . . .

g

[Sreekantaswamy et al., 1991] H.V. Sreekantaswamy, S. Chanson, and A. Wag-
ner, “Performance Prediction Modelling of Multicomputers,” Technical Report
91-27, Department of Computer Science, University of British Columbia, Van-
couver, BC, Canada V6T 1W5, November 1991.

[Subhlok et al., 1993] J. Subhlok, J. M. Stichnoth, D. R. O’Hallaron, and
T. Gross, “Programming Task and Data Parallelism on a Multicomputer,”

In Proceedings of the Fourth PPOPP, San Diego, CA, 20-22 May 1993.

[Tsuei and Vernon, 1990] Thin-Fong Tsuei and Mary K. Vernon, “Diagnosing
Parallel Program Speedup Limitations Using Resource Contention Models,” In
Proceedings of the 1990 International Conference on Parallel Processing, pages
[-185 — 1-189. The Pennsylvania State University Press, August 1990.

[Valiant, 1990] L. Valiant, “A Bridging Model for Parallel Computation,” Com-
munications of the ACM, 33(8):103-111, August 1990.

[van Gemund, 1993] Arjan J.C. van Gemund, “Performance Prediction of Parallel
Processing Systems: The PAMELA Methodology,” In Proc. 7th ACM Int. Conf.
on Supercomputing, pages 318-327, Tokyo, Japan, July 1993.

[Vrsalovic et al., 1984] Dalibor Visalovic, Daniel P. Siewiorek, Zary Z. Segal, and
Edward F. Gehringer, “Performance Prediction for Multiprocessor Systems,” In
Proceedings of the 1984 International Conference on Parallel Processing, pages
139-146, 1984.

[Vrsalovic et al., 1988] Dalibor Vrsalovic, Daniel P. Siewiorek, Zary Z. Segal, and
Edward F. Gehringer, “Performance Prediction and Calibration for a Class of
Multiprocessor Systems,” IEEE Transactions on Computers, 37(11):1353-1365,
November 1988.

[Yang and Miller, 1988] Cui-Qing Yang and Barton P. Miller, “Critical Path
Analysis for the Execution of Parallel and Distributed Programs,” In Proceed-
ings of the Eighth International Conference on Distributed Compuling Systems,
pages 366-373, 1988.

[Zhang and Srinivasan, 1990] X.Zhang and P. Srinivasan, “Distributed Task Pro-
cessing Performance on a NUMA Shared Memory Multiprocessor,” In Proceed-
ings of the 2nd IEEE Symposium on Parallel and Distributed Processing, pages
786-789, December 1990.

[Zimran et al., 1990] Eyal Zimran, Manohar Rao, and Zary Segall, “Performance
Efficient Mapping of Applications to Parallel and Distributed Architectures,” In
Proceedings of the 1990 International Conference on Parallel Processing, pages
11-147 - [1-154, August 1990.

Sl i O Y O S AE TN NN SO A B BE N @GN O N EE B

106

¥y & R W
{

’ N
A
N =

AR Wy

\ . " =
/ N : . { § . R

B I
. a

107

A Manual Pages

This appendix presents the user interface specifications for the tools pp and 1lca,
respectively described in Section 4.2.2 and Section 5.1.2. The specifications are
given in UNIX™ man (1) format.

A.1 Manual Page for pp

PP(1) UNIX Programmer’s Manual PP(1)

NAME
PP

SYNOPSIS
pp [-f filename] [-d] [-c] [-i] [-E] [-B] [-m] [-t tagl [-1
[lca_notel]] [filename]

DESCRIPTION
pp is a profiler based on work described in the paper, "Per-
formance Debugging Using Parallel Performance Predicates" by
M. Crovella and T. LeBlanc, in Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, May 1993.
This is an experimental version but is being provided to
Theory Center users to help determine where bottlenecks in
their application programs might be.

PP
reads in the specified event log and breaks down the total

time of the profiled program into 5 different categories:

108

Load Imbalance, Insufficient Parallellism, Synchronization
Loss, Communication Loss, and Resource Contention. The data
shown is total time for that category over all threads in
the team.

To obtain the event log file that pp needs for input, one
must instrument one’s source program with calls to "pp" rou-
tines (see manpage for pplib), and set the PL_ELOG environ-
ment variable to 1 before running the program.

OPTIONS

-f <logfile> The name of the logfile (default: elog.log).

-d Present detailed debugging output. Useful for inspecting
gist log files directly.

-c Present ceu_stall_time data (printing it out as "Cache
Loss"). This data is not considered accurate in some cir-
cumstances.

-1 Add the cost of inserted instructions into "Communication
Loss".

~E The logfile is in ascii E format, as converted by gist.
-B The logfile is in ascii brief format, as converted by
gist. '

-m Multiple teams were created in the application. When
using multiple teams, additional instrumentation must be
added to the application. See pplib(3f).

-t <tag> The value of tag is used to delineate the code seg-
ments to be profiled in this run of pp. See pplib(3f) for
more details.

-1 [lca_note] The output of pp is concisely formatted in a
form suitable as input to the tool lca(l). The optional
string lca_note will be included on the output line; it can
be used to identify the run for lca, and should take the
form '"<variable>=<value>".

filename - Name of the logfile. If omitted, the default is
elog.log. You may also use redirection to specify the input
file.

EXAMPLES

77 -o runfast -r8 -02 -para myprog.f -lctc -lpmon

A W R O wS W A

Wl .

I e N

setenv PL_ELOG 1
setenv PL_NUM_THREADS 5
runfast

PP

Typical Output:

PP version 4.0

** processors: 5
Load Imbalance
Insuff Parallellism
Synchronization Loss
Communication Loss
Resource Contention
Total Time
Remaining Time

R T /A ey NP &SE T

FILES
pplib.o

‘R e

SEE ALSO
pplib(3f), gist

AUTHOR

‘- A N A ma N

.180677
16.
.003779

813304

2.274899

28

.351362
49.
.669868

293890

Mark Crovella, U. of Rochester Computer Science Dept.

N R NS A

110

A.2 Manual Page for pplib

pplib(3F) UNIX Programmer’s Manual pplib(3F)

NAME

pp_start_profiling, pp_create_team, pp_loop_start,
pp_loop_end, pp_psect_start, pp_psect_end, pp_stop_team,
pp_end_profiling, pp_synch_start, pp_synch_end

SYNOPSIS

subroutine pp_start_profiling
subroutine pp_end_profiling

subroutine pp_start_profiling_tag(itag)
subroutine pp_end_profiling_tag(itag)

subroutine pp_create_team(iteam_id, num_threads)
pp_stop_team(iteam_id)

pp_loop_start(iteam_id)
pp_loop_end(iteam_id)

pp_psect_start (team_id)
pp_psect_end(team_id)

pp_synch_start
pp-synch_end

integer iteam_id, num_threads

DESCRIPTION

These entry points are used to instrument your program to
determine parallel overhead. (See pp (1).) Profiling is
started by a call to pp_start_profiling and completed by a
call to pp_end_profiling. These calls may be placed anywhere
in the program; they may appear multiple times in the pro-
gram; and they may each be executed multiple times during an
execution. However, the thread that calls
pp._start_profiling must be the thread that makes the next

7

- O W S vIE . _

Il N N

SR

111

call to pp_end_profiling, and these two calls must strictly
alternate during execution.

Programs to be profiled must manage teams explicitly (many
programs will only use a single team). Each team used in the
program must be created using pp.create_team. pp_create_team
creates a team of num_threads threads and returns the team
ID in iteam_id. If num_threads is zero, pp_create_team uses
the value of the environment variable PL_NUM_THREADS. If a
team is to be destroyed explicitly, the program must call
pl_stop_team first. Once created, teams must be specified
in each parallel construct of the profiled section. For
example,

cxksr* user tile (i,teamid=iteam_id)
cxksr* parallel sections (teamid=iteam_id)
ckksr* parallel region (teamid=iteam_id)

In addition, synchronization operations must be bracketed
with calls to pp_synch routines:

subroutine wait(ivar)

volatile ivar

if (ivar .ne. 1) then
call pp_synch_start

100 if (ivar .nme. 1) goto 100
call pp_synch_end
end if
end

Finally, if more than one team is used in the application,
then each parallel construct must be bracketed with calls to
the appropriate pplib routines. For example:

call pp_loop_start(iteam_id)
ckksr* user tile (i,teamid=iteam_id)
do 100 i=1,niters

100 continue

c*ksrxendtile
call pp_loop_end(iteam_id)

In this case, when using pp to generate the profile, it
should be given the -m option.

Recompile the program as follows:
f77 -para -o pgm pgm.f -lctc -lpmon

Before running the program, set the environment variable
PL_ELOG to 1.

As of version 4.3, pplib and pp now support the notion of
profiling tags. By using the calls pp_start_profiling_tag
and end_profiling_tag the programmer can independently and
simultaneously profile multiple regions of code. The code
regions profiled under different tags can overlap in any
manner. These calls are used in exactly the same way as
pp_start_profiling/pp_end_profiling, except that a user-
supplied tag (integer) is supplied to the calls. This tag
is then provided to pp, via the -t option, and pp reports
only on code segments associated with that tag.

NCGTES

You may have to put iteam_id into a common (or pass it as a
parameter) if the parallel comstruct occurs within a subrou-
tine.

EXAMPLE

Below, "myprof.f'" uses a team of 5 threads for each parallel
construct between calls to pp_start_profiling and
pp_end_profiling The program is recompiled and executed to
produce a trace file ("elog.out") that is then processed

using pp.

f77 -o runfast -r8 -02 -para myprof.f pplib.o -lpmon
setenv PL_ELQG 1

setenv PL_NUM_THREADS &

runfast

PP

3 4

N G A T ‘.i.? o O T

AR N AN EGE Ty S e

) N B EE AR Al - A Gy Yy aEm e

113

FILES
pplib.o

SEE ALSO
pp(1), gist(1)

AUTHOR
Mark Crovella, U. of Rochester Computer Science Department

114

A.3 Manual Page for 1lca

LCA(1) UNIX Programmer’s Manual LCA(1L)

NAME
LCA

SYNOPSIS
lca -c <category> -v <variable> -f <filename> [-d]
[-x <extraction-expression>] [-g <gnuplot-filename>]
[<optional-formulae>]

DESCRIPTION
lca is a tool for fitting performance data to analytic
models, based on work described in the paper, "Parallel Per-
formance Prediction Using Lost Cycles Analysis", by M. Crov-
ella and T. LeBlanc, in Proceedings of Supercomputing ’94.

lca reads in the specified datafile of performance data,
and: 1) extracts the overhead data for <category>, addition-
ally restricting it by any <extraction-expression>, 2)
selects models that are appropriate to the particular over-
head category, and 3) presents the goodness-of-fit for each
of the models as a function of <variable>.

OPTIONS
-c <category> The overhead category of interest. Currently
defined categories are ip (Insufficient Parallelism), 1i
(Load Imbalance), sl (Syncrhonization Loss), cl (Communica-
tion Loss), and rc (Resource Contention). Additionally, lca
can be used to model rt (Remaining Time - the pure computa-
tion in an execution) although it has no default models for
rt.
-v <variable> The variable(s) under study. Typically

these are p (number of processors) and d (data size).
Multiple variables can be simultaneously fit by listing
them separated by spaces, e.g., "d p". No default

multi-variable models exist, but commandline-supplied models

o T &am

-

115

can be used which specify variables as as x0, x1, etc
(numbering in the order the variables are listed).

-f <datafile> The datafile contained the measured perfor-
mance data, typically output from pp(1) using that program’s
-1 flag.

-d Present considerable amounts of debug output.

-x <extraction-expression> Normally lca will extract all the
records from <datafile> that refer to both <category> and
<variable>. However, in cases where multiple variables are
being studied, only a subset of those records may be of
interest. For example, from data varying both p and d, one
might only be interested in fitting a model to those perfor-
mance records where, say, p=32. This would then be speci-
fied as such after the -x option.

-g For single-variable fits, create gunplot files that can
be used to graphically inspect the quality of each fit
("Chi-by-eye"). These files are named <gnuplot-
filename>.data and <gnuplot-filename>.gp. Starting gnuplot
and executing a "load <gnuplot-filename>" will then present
the plot.

<optional-formulae> In many cases the user may wish to add
additional formulae to those selected by lca based on the
category. Any additional formulae present on the command-
line (specified in terms of x0, x1, etc) will be processed
by lca. Multiple formulae should be separated by spaces and
the entire set should be surrounded by quotes.

SEE ALSO

pp(1), pplib(3f)

AUTHOR

Mark Crovella, U. of Rochester Computer Science Dept.

