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1 Introduction

A surveillance and tracking system consists of a network of geographically and functionally dis-
tributed sensors (e.g., L-band, S-band, C-band, infrared). The objective of such a system is to
detect an unknown number of targets in its field of view and estimate the states (target position,
velocity, acceleration, etc.) using sensor measurements contaminated by noise. This must be
accomplished in the presence of spurious observations (created by background noise and clutter)
and occasional missed detections by sensors.

The tracking process, as generally practiced today, consists of four interrelated functions:

1. Selection of the state variable models used to represent the target motion and sensor mea-

surements, including models of clutter and measurements uncertainties,
9 Evaluation of an index of desirability for each candidate measurement-target association,
3. Determination of a consistent set of measurement-target associations, and

4. Estimation of target states.

Association is the decision process of linking measurements of a common origin (i.e., a target
or false alarms) such that each measurement is associated with only one origin. A set of linked
measurements can then be statistically filtered to estimate the states of targets. With the ever
increasing demand for higher performance in surveillance and tracking systems, it behooves us to

consider novel methods of associating data from multiple, multi-modality sensor subsystems, and
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As part of the research effort for Rome Laboratories, the University of Connecticut (UConn) is
transitioning the data association and estimation algorithms, developed as part of AFOSR funded
research, to actual tracking problems of interest to the Air Force. The specific objectives of this

work are:

e Develop the maximum likelihood formulation of the data association problem for actual

tracking scenarios with multiple, multi-modality sensor subsystems;
* Develop algorithms for solving the data association problem; and

¢ Demonstrate the effectiveness of models/algorithms on track initiation problem using the RL

surveillance testbed.

We approached the data association and track initiation problem in two phases:

1. Phase 1: All measurements are correctly associated with the appropriate targets based on
target ID (from the beacon returns) to validate the filter design and fine tune the tracking
filter performance. The filter performance will provide a benchmark to evaluate the overall

tracking and data association algorithm of phase 2.

2. Phase 2: Develop the maximum likelihood formulation of the data association problem
and solve the resulting problem using a sliding window 2-dimensional assignment algorithm®
developed at UConn. In this phase the established tracks are associated with the new

measurements from the latest scan — this is a 2-dimensional assignment problem.

In this report, we present the results and a software tool termed MATSurv — Multisensor Air
Traffic Surveillance System for tracking multiple targets using measurements from asynchronous

SEIsors.

IThe near optimal association obtained -using the 2D-assignment algorithm for the measurement database pro-
vided, makes it unnecessary to use the more general S-dimensional algorithm at this juncture. The S-dimensional

algorithm has to be used in more complex situations which have crossing, splitting and merging tracks.




2 Description of the Multisensor Data

In this section a description of the raw scan data to be used by the sensor fusion processor,' which

gathers and organizes the data from several sensors, is presented.

e The data from the fusion processor consists of scans from two L-band 'AA radars located

at Remsen(“R”), and Dansville(“D”), NY.

e The data from two FAA radars consist of scans at approximately every 10 seconds. Each of
these scans contains a number of primary radar or skin returns. Each of these skin returns
consists of a time stamp, a slant range and azimuth angle measurements. For cooperative
targets a secondary or beacon return is also obtained, which provides, in addition to the

above, a target identification number (squawk) and a target altitude measurement.

e The observability of the target state requires a full measurement of its position. Only beacon
returns provide such a measurement of the full target position. All the skin returns provide
only a partial measurement of the target state, and hence are not used in the tracking filter

at the present stage.

The beacon returns also provide the target ID. We make use of this information as follows:

1. In the first phase of the project, all the measurements are associated with the appropriate
targets based on the target ID, and the performance of the tracking filter is evaluated. This

phase helps to validate and fine tune the filter performance.

2. The availability of the ID of the measurements provides a means for evaluating the perfor-

mance of the overall algorithm (which involves both association and tracking) in phase 2.

Figure 1 shows the entire data set of measurements with ID, available from the two FAA radars.
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3 The Sensor Measurement Statistics

The measurement noises of the sensors are assumed to be zero-mean white with variances as

follows.

For the range, the resolution cells are
Ar = — (1)

where ¢ = 3-10% m/s and 7 is the pulse width (6 ps for Remsen and 1.8 gs for Dansville). 1t is as-
sumed that the range measurement is uniformly distributed in each resolution cell, hence the stan-
dard deviation of the range measurement noise is o, = —A—\/%, which yields 0.5196 km = 0.2806 nmz
for Remsen and 0.1559 £m = 0.0842 nm1 for Dansville.

The azimuth measurement noise standard deviations were taken as oy = 2.618 mrad = 0.15°

based on FAA data. No other specific information was available.

The altitude measurement noise was taken, based on FAA data, as

1002
op = 1/50% + T 57.7350 ft =17.5976 m




4 Design of the Tracking Filter

A description of the design and implementation details of the tracking filter is given below. The

overall block diagram of this filter is shown in Figure 2.
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Figure 2: Block diagram of the tracking filter with conversions between three coordinate systems

(sensor, target-local and the global).

The following steps in the tracking filter design are described:

e The scenario of interest cannot be modeled as linear both due to the nonlinearity of mea-

surement equations as well as to the large geographical area involved. The latter makes it

necessary to use a spherical earth model in place of a flat earth approximation.

e In order to be able to apply the standard Kalman filter, we need a three dimensional Carte-

sian coordinate frame of reference. In addition, the instantaneous target motion in this

frame of reference is approximated by a linear model.




e We start the description of the tracking filter after the &*" sampling interval. The esti-
mated target state in geographical coordinates x,(k|k) is a 8 x 1 vector with the following

components:

z4(k|k) - latitude, [—7/2, 7/2]

(

zy(klk) - longitude, [—7, 7]
(k|k) - altitude in km (above MSL)
(

z4(klk) - velocity due north in km/s
(ki) = | T / (2)

k) - velocity due east in km/s

z4(k|k) - vertical velocity up in km/s

4(k|k) - acceleration due north in km/s’

Zr(klk) - acceleration due east in km/s’

e As can be seen from the above definition, the state estimate x4(k|k) is in mixed dimen-
sions (i.e., in angles and distances). Nevertheless, we define the covariance matrix Fy(kl|k)
completely in terms of distance and distance rates only. The compatibility between the
state in mixed dimensions and the covariance in uniform dimensions can be understood by
interpreting latitude as distance due north of equator and longitude as distance due east of
Greenwich meridian. We can thereby define P,(k|k) as the covariance matrix associated with

the distance errors due north, east and up and errors in their corresponding time derivatives.,

e A “local Cartesian coordinate frame” is defined based on the target state estimate x,(kl|k).
The origin of this reference frame is [z4(k|k) z.(k|k) 0] and the axes are oriented along
the north ny, east e, and altitude uy directions. The symbol Ly 1s used to denote this local

reference frame uniquely defined by the origin and the three coordinate axes.




The raw measurement z(k 4 1) vector (consisting of slant range, azimuth and altitude) is
first transformed into the geographical coordinates z,(k + 1). The three components of
z,(k+ 1) are the latitude, longitude and altitude. The raw measurement covariance R(k+1)
is transformed to R,(k + 1) via the first order approximation: Ry = [sz;] R [sz;],. The

Jacobian V,z! is evaluated at the raw measurement z(k + 1),

The measurement z,(k+1) and covariance R (k+1) are transformed into the local Cartesian
axes Ly. This transformation yields zp, (k+ 1) and Rz, (k+1). Note that the measurement
z,(k+1) is in mixed dimensions (two angles and one distance) whereas zr, (k+ 1) consists of
all distance components. A similar mapping occurs in the transformation of the measurement

covariance matrix from Ry(k + 1) to Ry, (k+1).

The geographical state estimate x,(k|k) and covariance P,(k|k) are mapped into the local

coordinate axes L. This yields xp, (k|k) and Pr, (k]k) as:

Xpo(IE) =1 0 0 ao(klk) ay(klk) @a(klk) za(k|k) Zu(klk) &x(k|k) (3)

Pr, (klk) = Fy(k[k) (4)

The predicted state xz, (k + 1|k) and covariance Pp, (k + 1|k) are determined by assuming

that the instantaneous target motion is linear along the local coordinate axes Ly.

xp, (k+1lk) = Ppxp, (k|k) (5)

PLk(k—{—llk) = (I)kPLk(L—Fllk) 2+Fkarz (6)




o The system matrices are given by

100 &
0100
001 0
000 1
O, =
000 0
000 0
000 0
000 0

bk

0

ok

1¢2
20k

I'e

L2 0
0 1
0 0
o 0
0 o
0 0
1 0
I 0 1

0

and & = tyy1 — tx is the sampling time interval?. The process noise covariance matrix Q18

of the form

e The choice of o,(k), o.(k) and o,(k) is a critical design 1ssue. Since o,(k) and o.(k)

are process noise levels along north and east axes, they are set to the same value, i.e.,

on(k) = 0.(k) = ox(k) where h denotes horizontal. The vertical motion of the target is

more predictable than along the horizontal axes. Hence, the process noise level along the

altitude axes o,(k) is different from on(k).

oo(k), process noise levels are chosen according to the graph shown in Figure 3.

Both the horizontal, o4 (k), and the altitude,

2The time interval 8¢ can in general be negative, particularly when the detection at tx41 and the detection at

{ originate from different radars. The implementation of the filter for negative time updates is explained in the

appendix.

9
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Figure 3: Process Noise Level as a function of Sampling Interval

e For o,(k) we chose

Ohpay = 1-5m/s° Ohn = 0.0m/s?
Ohin = 0.0s Ohmay = 40.0's

and for o,(k) the following values were chosen
Oapae = 0.5m/s” Oorn = 0.0m/s®
§o = 10s 8o = 40.0 s
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The linear Kalman filter state and covariance update equations are implemented in the local
Cartesian coordinates. These update equations yield xy, (k+ 1|k + 1) and Pr, (k+ 1|k +1).
In addition we get the innovations v, (k 4+ 1) and the innovations covariance Sg, (k + 1)

which are used to gauge the performance of the filter.

vi, (k+1) = 2z, (k+1)— Hxg,(k+1[k) (9)
Sp(k+1) = HP,(k+1|k)H + R, (k+1) (10)
Wi (k+1) = P (k+1lk)H Sp, (k+1)~" (11)
xp, (k+1k+1) = xp(k+1k)+ W, (k+1) v (k+1) (12)
Pr(k+1k+1) = Py (k+1k) =W (k+1)Sp,(k+1) W, (k+1) (13)

where H = [I 0 0]3xs and the 8 x 3 matrix Wy, (k -+ 1) is the filter gain.

The updated state x;, (k 4 1]k + 1) and covariance Pr, (k + 1|k + 1) are along the Lj
reference frame. To complete the cycle of transformations, we transform the updated state
Xz, (k+1]k+1) and covariance Pr, (k+1|k+1) into geographical coordinates x,(k+1|k+1) and
P,(k + 1]k + 1), respectively. The two equations below illustrate the sequence of operations

that are involved in this transformation.

Ly

xp(k+1k+1) = x(k+1k+1) = L

Ly, L

P (k+1lk+1) "= x,(k+1]k+1), P(k+1]k+1)

The filter is initialized using the first two measurements, i.e., X4(2[2) and P,(2]2) are de-
termined using two point diferencing from z4(1), Ry(1) and z,(2), R,(2). Since only two
measurements are used the initial acceleration components £4(2(2) and £,(2[2) are both set

to zero.

11




5 Data Association

In this section we present the formulation and results of the data association problem. A sliding
window 2-dimensional assignment algorithm has been used.

The formulation of the 2-D assignment problem is presented below. Consider the scenario at
scan k > 1. There are n(k) validated tracks from the previous assignments, and corresponding to
track ¢, 2 = 1,---,n(k), we have the latest state estimate xgi)(klk) and covariance Pg(i)(lclk). Let
scan k + 1 contain m(k + 1) measurements.

The hypotheses upon which the 2-D assignment algorithm is based on are the following:

1. Measurement j, 1 <j < m(k+ 1) originated from a target corresponding to one of the n(k)

validated tracks, say track ¢,z =1,---,n(k).

2. Measurement 7, 1 <7 <m(k+ 1) is a false alarm. Track index ¢ = 0 is used to designate a
dummy target (i.e., a source of false alarms). Such a measurement is also kept as a candidate
for a new track, i.e., if within Tp = 30s it has another measurement in its neighborhood it

initiates a new track.

Each track (excluding track 0) is assigned at most one measurement, and each measurement is
assigned to at most one track. On the other hand, the number of measurements that may be
assigned to track 0 is not limited.

An existing track is dropped if within Tp = 60s no new measurement is associated with it.




5.1 Feasible Assignments

We shall define an assignment w, as the mapping between the measurement indices 5 and the
track indices . This assignment can be represented using the set of binary (0, 1) variables {p; ; }.

A feasible assignment must satisfy the following requirements

w = {,01'1]‘ € {0,1}, 1 = 0,...,?1(/\7), 7= 1,,m(/<:+ 1)} (14)
n(k)
Spii=1 = Lemlk ) (15)
m(k+1

Z pi;=1 i=1,...,n(k) (16)

5.2 The 2D Assignment Problem and its Complexity

Let Q be the set of all feasible assignments, then the total number of feasible assignments, i.e.,

the cardinality of the set 2, can be shown to be

P/ p!
— : q
0] = ;0 (ﬁ) ce_; (17)
where p = min{n(k),m(k + 1)} and ¢ = max{n(k),m(k + 1)}.

Let ¢; ; be the cost incurred in assigning measurement j to track z. The 2-dimensional assign-

ment problem can now be stated simply as finding an optimal assignment w* that minimizes the

overall cost, 1.e.,

n(k) m(k+1)
W= a1gm1nz > pijcii (18)
=0 j=1

The number of feasible assignments, |€}|, is very large even for moderate values of p and ¢, hence an
efficient assignment algorithm is required for solving this problem. The modified auction algorithm
is ideally suited for solving this 2-dimensional assignment problem. A detailed description of this
algorithm can be found in [1].

In the present context of assigning measurements to tracks, the cost criterion ¢; ; is the negative
logarithm of the ratio of the likelihood of measurement j originating from track i(# 0) to the
likelihood of measurement j originating from track 0 (i.e., the likelihood that measurement j is a

false alarm).

13




The evaluation of ¢; ; is presented in the following. The likelihood that measurement 7, 1 <

7 <m(k+ 1), originated from track ¢, 1 <17 < n(k), is given by

(N1

Aok +1) = Po 28,50k + D -exp { S mis (k4 1) (19)

where Pp is the probability of detection, n; ;(k -+ 1) is the normalized innovation squared given by
mig(k 4+ 1) = vej(k+1)7 [Si(k+1)] 7 vig(k+1) (20)

v; ;(k + 1) is the innovation and S; j(k + 1) the innovation covariance, associated with the track 2
filter updated with measurement j.

We shall assume that false alarms are uniformly probable in the whole of the surveillance
region of volume W(k + 1). Since false alarms are assigned to track 0, the likelihood that the

measurement j is a false alarm is,

Ao j(k+1) = (21)

U(k+1)

The cost ¢; ; of assigning measurement j to track ¢ is the negative log-likelihood ratio, given by

Aiy(k+1) |27 Si3(k + 1)|%) (2

! Lkt 1) 41

¢ ;= —log | ————1 = -y 0

g Eldsk+n)| 2™ E\ T Ppu(k+1)
The following values have been used for the probability of detection Pp and the surveillance region

volume of the region in which a candidate false alarm is uniformly distributed:

Pp = 0.999 (23)

U(k+1) = 1000 km? (24)

14




6 Examples

The performance of the tracking filter and the association algorithm is illustrated for two typical
target trajectories.

In example 1, the association algorithm perfectly matches the measurement ID data, and hence
the output of the tracking filter with ID and with association is quite identical. These results are
shown in figures 4-11. Note that the tracking filter, handles the target mancuver (which is a
typical landing pattern) successfully.

In example 2 the trajectory formed using the association algorithm is definitely superior to the
one formed using IDs. The results for this example are shown in figures 12-23.

This case is unusual because it appears that the ID was changed toward the end of the flight
(before landing). The ID-based association came up with 19 measurements while the assignment
algorithm obtained the same 19 plus another 6 by which time there was a new ID but the mea-
surements gave a good filter. This shows the superiority of our assignment algorithm over the
“ground truth” which has its quirks. Once again note that the tracking filter is quite robust in
handling the rather sharp target maneuver.

Example 3 illustrates two very positive aspects of the association algorithm. Firstly the asso-
ciation algorithm drops a measurement that is very noisy (i.e., outlier rejection), thus yielding a
better track than that is obtained using the ID. Secondly, its brings in a measurement that has
been (incorrectly) assigned an ID corresponding to a different target. Comparing the tracks shown
in figures 27 and 28, it can be seen that dropping the outlying measurement definitely improves
the track. The normalized innovations squared shown in figures 31 and 32 clearly indicates that
the measurement that is dropped is an outlier while the new measurement (with a different D)
definitely belongs to this target. This is a known phenomenon of transponder interference when
two aircraft are close. In this case the “ground truth” might not be true (ID codes have been

switched due to the interference).
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3 MAT Surv : Multisensor Air Traffic Surveillance Software
Scans Jracks Jargets Sector Sensor Filter Reset
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Time Interval between the first and the {ast detections : 273.8008 seconds
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Longest backtrack: 1.0000 seconds.
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The 31 detections originate as follows:
31 detections from target with iff: 2111

Figure 7: Example 1. Target trajectory information, using association
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Figure 11: Example 1. Output of tracking filter: Negative log-likelihood ratio

(should be below 0 to indicate “target” more likely than “false track”)
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MATSurv : Muttisensor Air Traffic Surveillance Software
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Figure 12: Example 2. Target trajectory classified using [D
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Figure 13: Example 2. Target trajectory using association
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s altic Surveillance Software
Scans Jracks Iargets( Sector Sensor Filter Reset

Target Index:33 (67}
Target IFF Code: 88
Number of Detections : 19
Average sampling time interval : 10.6423 seconds
Minlmum time Interval between successive detections 1 9.8008 seconds
Maximum time Interval betweén successive detections :  20.3068 seconds
Time interval between the first aiid the dast detections : 202.2031 seconds
0 detections recefved out of sequence. ‘ :
Longest backirack: -0.0000 seconds. i

[

1 Upijated Target Position

«: Fredicted Target Postiion

*: Measuremen fromiRemsenRadar
*: Measurement from Dansvillé Radar

Figure 14: Example 2. Target trajectory information, using |1D

Note: 19 detections because ID was changed in flight

MAT Surv : Multisensor Air Tratfic Surveillance Sottw:
Scans TIracks JTargets Sector Sensor Fitter Reset

Track Index: 31 (235) ¥ '
Numter.of Detections : 25

Average sampling time intervat: 10.5161 seconds

Minimum time interval between successhve detections :  9.8008 seconds

Maximum time Interval between successive detections: 20.3008 seconds

Time interval between the first arid the fast detections : 262.9023 seconds

0 detections received out of sequence. ’

Longest backtrack : -0.0000 seconds.
i

The 25 détech’ons originate as follows:
19 detections from target with iff. 88
6 detections from'target with iff: 640

|

Figure 15: Example 2. Target trajectory information, using association

Note: 25 detections with old & and new ID
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MAT Surv : Mutlisensor Air Tratlic Surveillance Software
Scans Tracks JYargets Sector Sensor fitter Reset
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Figure 16: Example 2. Estimated trajectory of target, using ID

(19 detections)
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Figure 17: Example 2. Estimated trajectory of target, using association

(25 detections)
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&T\\} . MAI Surv : Mullisensor Air Fraftic Surveillance Soltware
Scans Iracks Jargets Sector Sensor Fiter Reset
53 g -

28
27
26}
25
24
23
22}
21

20

i 20 40 60 1) 100 120 140 166 180 200 220
Target 39, iff : 8. with 19 detections. Fitered Alttude (100 1) vs. Time (sec), with errors.

Figure 18: Example 2. Estimated altitude of target, using 1D

(19 detections)

MAT Surv : Multisensor Alr Traffic Surveiliance Software
Scans Iracks Jargets Sector Sensor Filter Reset
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Track 31, with 25 detections. Filtered Alitude {%100 fH) vs. Time {sec). with errors.

Figure 19: Example 2. Estimated altitude of target, using association

(25 detections)




MAL Surv : Multisensor Air Iraltic.Susveillance Soltware
Scans Tracks Iargets Sector Sensor Filter Reset
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Figure 20: Example 2. Output of tracking filter: Normalized Innovation Squared, using 1D

(19 detections)
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Figure 21: Example 2. Output of tracking filter: Normalized Innovation Squared, using association

(25 detections)




’& ) . MATSurv: Multisensor Air Irattic Surveillance Sotlware
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Figure 22: Example 2. Output of tracking filter: Negative log-likelthood ratio, using |D

(19 detections)
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Figure 23: Example 2. Output of tracking filter: Negative log-likelihood ratio, using association

(25 detections)
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Figure 24: Example 3. Target trajectory classified using ID
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Figure 25: Example 3. Target trajectory using association,




Scans, Iracks Jargets Sector Sensor fitter Beset
Target Index: 7 (67) : : :

Target IFF Code : 3019 .

Number of Detections : 40 i

Average sampling time Interval:  7.1400 seconds

Minimum time interval beh ¢ tve detecti : 10009 seconds
i ‘Maidmum time Interval betweén tve detections:  11.9023 d
| Time Interval between the first and the {ast detections : 281.1992 seconds

3 detections recetved out of sequence. . .

Longest backtrack: 2.1016 seconds.

1: Updated Target Posttion

i & Predicted Target Position

i " Measurement from Remsen Radar
*: Measurement from Dansville Radar

Figure 26: Example 3. Target trajectory information, using ID

40 detections, all detections have the same ID 3019

nce Software

:§eans :Jracks Jargets Sector Sensor Ffitter Reset

Track Index: 9 (231) i
Number of Detections : 40 !

Average sampling time Interval : E.‘9199 seconds
: -Minimum time interval between successive detections :  0.0000 seconds
' ‘Mdidmum time interval betwedn successive detections: 11.9023 d:
Time interval between the firsf and the fast detections : 276.7969 seconds
3 detections recetved out of sequence.
Longestbacktrack: -0.0000 seconds.

;. The 40 detections originate as follows:
"' '39 detections from target with iff: 3019
1 detections from target with itf: 1521

Figure 27: Example 3. Target trajectory information, using association

40 detections: one detection with ID 3019 is discarded, and one detection with ID 1521 is added
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Figure 28: Example 3. Estimated trajectory of target, using ID

Observe the effect of the outlying detection in the top right corner of the track
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Figure 29: Example 3. Estimated trajectory of target, using association
Notice that the outlying detection (with 1D 3019) has been discarded

A new detection (with ID 1521) has been included in the top right corner
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Figure 30: Example 3. Estimated altitude of target, using |D
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Figure 31: Example 3. Estimated altitude of target, using association

Note that the additional detection (with ID 1521) “conforms” with the rest of the target track
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Figure 32: Example 3. Output of tracking filter: Normalized Innovation Squared, using 1D

The sharp spike in the NIS is due to the presence of the outlying detection
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Figure 33: Example 3. Output of tracking filter: Normalized Innovation Squared, using association

40

Track 9, with 40 detections. Normalized Innovations Squared (N1S) vs. Time.

Note that the NIS is now within its 95% probability level
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Figure 34: Example 3. Output of tracking filter: Negative log-likelihood ratio, using ID

The outlying detection has a positive log likelihood ratio, hence it is deemed “false”
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Figure 35: Example 3. Output of tracking filter: Negative log-likelihood ratio, using association

The log-likelihood ratio is consistently below zero, hence all the detections are deemed “true”
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7 Discussion

In this section we shall discuss the major results of phase 1 and phase 2 of this project. An
interactive software, MATSurv : Multisensor Air Traffic Surveillance, that runs in MS-Windows
(version 3.0 or higher) has been developed to analyze the performance of the association algorithm
and display the results in a graphical format.

The results of phase 1 relate to the performance of the tracking filter applied to measurements
classified using the ID (designated as iffcode in the database). These results helped in arriving at
the best choice of the design parameters for optimal filter performance. The measurement database
(in file data.bin) from the two FAA radars contained detections of targets that were in a variety
of trajectories. While many of these target trajectories could be described by a straightforward
2" order motion model with a low process noise, there were some maneuvering targets that would
require at least a 2" order (or 3" order) motion model with considerable process noise. Since
the same tracking filter is required to handle these two extreme cases, the choice of the design
paramenters has to be necessarily conservative, i.e., tuned to handle the worst case. This requires
trading off some of the achievable estimation accuracy for an enhanced ability to track targets
during maneuver.

The above ohservation clearly indicates that replacing the Kalman filter (the central block in
the tracking filter shown in figure 4) with an Interacting Multiple Model filter[2] would make the
above design trade-off unnecessary and will enhance the performance.

In phase 2, the measurements were stripped of their IDs and processed using our assignment
algorithm. The results obtained indicate that the association algorithm provides a superior clas-
sification of the measurements into tracks (i.e., trajectories of the hypothesized targets) than
compared to the target trajectories obtained using the measurements IDs. The multiplicity of
targets assigned to the same ID prevents the exclusive reliance on the target 1D, and its use
in evaluating the performance of the association algorithm is clearly inappropriate. A particu-

lar track formed by the association algorithm has, in general, a few measurements less than the




corresponding target trajectory obtained using the IDs. This is primarily due to the fact that
the association algorithm rejects measurements (i.e., outliers) that deviate considerably from the
established track. Discarding these measurements yields a better estimate of the trajectory than

the one obtained by including these outlying measurements.
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& Future Work

The following are some of the major issues that are worthy of attention in the future.

¢ Incorporation of partial 2D measurements (skin returns) into the overall association-estimation
framework. These 2D measurements can be used in the enhancing the purity of an estab-

lished track formed using the full 3D measurements (beacon returns).

e The use of an Interacting Multiple Model estimator to handle both maneuvering and non-

maneuvering targets with maximum accuracy.
¢ Real-time operation.

¢ The 2-dimensional assignment algorithm used in the present context can be extended to the
more general S-dimensional case. The near optimal results obtained using 2D assignment
for the currently available measurement database, suggest that in order to fully utilize the
advanced features of the S-D assignment, a measurement database that contains a more

complex scenario is needed.

e Of more theoretical interest is the issue of modifying the currently used ML formulation of the
data association problem to a more general MAP or MMSE kind of a formulation. This would
require further modifications to the auction algorithm wherein successive 2D assignments are

aggregated into MAP trajectory estimates based on the measurement data.
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A Negative-Time Update

In this section we outline the negative time update procedure used in our implementation of the
tracking filter. In this case the time interval 6 = ty41 — t) is negative. In the standard case (i.e.,
6% > 0) the past is completely described by the current estimate (i.e., it is the sufficient statistic):
xr, (k|k) in the local coordinate frame. In the present context (i.e., for negative time update)
x1, (k|k) is no longer the sufficient statistic, and determination of the optimal - i.e., the minimum
mean squared error (MMSE) — estimate requires the knowledge of past data (i.e, x,(k — 1|k — 1),
z,(k — 1) etc.) Since only the updated state and covariance are stored our implementation, the
following sub-optimal approach is used for negative time updates.

We “predict” the state at ¢4, by propagating the state equation backwards without process

noise i.e.,

XLk(k‘—{-llk) = (I)kXLk(k k) (25)

P (k+1k) = & P (k+ 1]k) ) (26)

where ®;, is the (backwards) transition matrix from ¢x to tx41. Since the latest time instant 1s tg
and not 41, the desired updated state should be at ¢ (in the standard case it is at tz41). The

state is updated directly using xr,(k + 1|k) as the “predicted” state, i.e.,

vi,(k+1) = zr(k+1)— Hxp (k+ 1]k) (27)
S (k+1) = HP,(k+1k)H + R, (k+1) (28)
Wi (k+1) = Pr(k+1k)H Sp,(k+1)7" (29)
xz, (klk) = xp,(klk)+Wr (k+ 1) v, (k+1) (30)
P; (klky = Pp(klk) =W, (k4+1)Sp,(k+1) Wy, (k+1) (31)

The state estimate xp, (k|k) and covariance P, (k|k)) are now updated to x} _(k|k) and Pr, (k|k)
respectively. This method has been found to be quite satisfactory in all the instances where

negative time updates were required.
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