U. S. Army Aviation Epidemiology Data Register: Gender-Specific Attrition Among the U. S. Army Student Aviator Class of 1987

By

Kevin T. Mason
Samuel G. Shannon

and

Jennifer P. Harper

Aircrew Protection Division

January 1995

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

KEVIN T. MASON
LTC, MC, MFS
Director, Aircrew Protection Division

Released for publication:

ROGER W. WILEY, O.D., Ph.D.
Chairman, Scientific Review Committee

DENNIS F. SHANAHAN
Colonel, MC, MFS
Commanding
11. TITLE (Include Security Classification)
 U.S. Army Aviation Epidemiology Data Register: Gender-specific attrition among the U.S. Army Student Aviator Class of 1987

12. PERSONAL AUTHOR(S)
 Kevin T. Mason, Samuel G. Shannon, and Jennifer P. Harper

13a. TYPE OF REPORT
 Final

13b. TIME COVERED
 FROM ________ TO ________

14. DATE OF REPORT (Year, Month, Day)
 1995 January

15. PAGE COUNT
 10

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>09</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>05</td>
<td></td>
</tr>
</tbody>
</table>

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
 aviation personnel, aviation medicine, medical standards

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
 Graduated aviators from the U.S. Army student aviator cohort of the Class of 1987 were followed in the Aviation Epidemiology Data Register for 6 years to determine if there was a gender-specific difference in attrition from aviation service. Overall, 30 percent attrition was found in 6 years of observation following initial aviator training. There was no significant gender-specific difference in attrition (p>0.05, life table analysis).

 Pregnancy was the most common identified cause of female aviator attrition. However, there was no significant increased risk for attrition among all pregnant aviators after delivery (relative risk=0.545, CI₉₅=0.144,2.06).

 Among male aviators, flying evaluation boards with nonmedical termination of aviation service, death due to aircraft mishaps, and alcohol abuse were common identified causes of attrition. These three conditions accounted for 47 percent of known causes for male aviator attrition.

 (Continued on next page)
19. Abstract (continued).

Female aviators were more likely to be commissioned officers (relative risk=1.778, CI_{95}=1.453, 2.177). Female aviators were younger than male aviators ((p<0.01, Kolmogorov-Smirnov statistic).

Female aviators were more likely to be granted an exception to policy to enter flight training despite a medical disqualification (relative risk=12.05, CI_{95}=4.78,30.4). Females were given exceptions to policy for failure to meet anthropometric standards, while males were given exceptions to policy primarily for refractive error and hearing loss in excess of flight training medical standards.

By using only a medical database, such as the AEDR, the cause of attrition could not be determined in many cases. We need to use other databases, and possibly interviews, to improve our knowledge on causes of nonmedical attrition in this cohort.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>1</td>
</tr>
<tr>
<td>List of figures</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>Military relevance</td>
<td>3</td>
</tr>
<tr>
<td>U.S. Army Aviation Epidemiology Data Register</td>
<td>3</td>
</tr>
<tr>
<td>Methods</td>
<td>4</td>
</tr>
<tr>
<td>Results</td>
<td>4</td>
</tr>
<tr>
<td>Discussion</td>
<td>8</td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>Other references not cited</td>
<td>10</td>
</tr>
</tbody>
</table>

List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gender versus commissioning source among Army student aviators</td>
<td>5</td>
</tr>
<tr>
<td>2. Gender-specific attrition among U.S. Army student aviators</td>
<td>6</td>
</tr>
<tr>
<td>3. Causes of medical and nonmedical attrition by gender</td>
<td>7</td>
</tr>
<tr>
<td>4. Causes of exception to policy by gender</td>
<td>8</td>
</tr>
</tbody>
</table>

List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gender-specific age distribution of Army student aviators in the Class of 1987</td>
<td>5</td>
</tr>
</tbody>
</table>
Background

Military relevance

The Army has been recruiting female aviators since 1973 (Ludowese, 1992), most in the last decade. By 1994, less than 1.0 percent of U.S. Army female aviators were older than 40, and thus potentially reaching military retirement age (Mason and Shannon, 1994). Therefore, the number of female aviators should be increasing as they accumulate to a steady state of recruitment and retirement. However, the number of U.S. Army female aviators began decreasing in 1989 (Shannon and Mason, 1995).

To analyze this observation, the authors of this study previously selected a cohort of trained U.S. Army aviators in 1988 and followed them into early 1994 (Shannon, Mason, and Harper, 1994). The study showed that U.S. Army female aviators in the cohort of 1988 were significantly younger than male aviators (Mantel-Haenszel χ^2, $p<0.001$). Based on male attrition, and controlling for age differences, the study showed there was a 9.1 percent excess attrition among female aviators. The risk for attrition was greatest in the female age groups 18 to 44 years old ($OR_{(Mantel-Haenszel)}=1.23$, CI$_{0.95}=1.025,1.470$). The reasons for the excess attrition were unknown.

In contrast, the U.S. Navy studied attrition among U.S. Navy female aviators (Hutton, 1990). The retention rate for females was greater than for males, 53 percent versus 38 percent. The method on how these rates were derived was not described. Analysis of confounders, such as age, was not done.

Since we could find no other articles addressing attrition of female aviators from aviation service, we continue our efforts to find out if the male and female attrition rates from U.S. Army aviator duties are significantly different. This study uses the U.S. Army Aviation Epidemiology Data Register (AEDR) to follow a cohort of U.S. Army student aviators who began flight training in 1987. They are followed until 1994. An estimate of gender-specific attrition was developed by finding out who left aviation service by failure to maintain medical certification for Army flying.

U.S. Army Aviation Epidemiology Data Register

Data were obtained from the U.S. Army Aviation Epidemiology Data Register. The AEDR is a family of databases storing medical history and physical parameters of U.S. Army student and trained aviators. One component is a flying duty medical examination (FDME) database. All U.S. Army flight training applicants and trained aviators are required to submit a FDME upon application, and then annually within 90 days of the end of their next birth month (Department of the Army, 1989). Another component is the waiver and suspension file (WSF), a mortality and morbidity index of flight physical disqualifications, casualty reports, and aeromedical board outcomes. The WSF references a medical document archive, containing the details of WSF cases.
Methods

Fort Rucker was the only training base for U.S. Army student aviators during the study period. Students arrived at Fort Rucker in groups for training. They underwent a repeat entrance flight physical at the U.S. Army Aeromedical Center in flight school groups, usually during the first week of training.

The study cohort for this attrition study, called "the Class of 1987," was formed by applying two criteria. First, the student aviators had their Fort Rucker Class 1 (Warrant officer) or Class 1A (Commissioned officer) flight physical in the calendar year of 1987. Second, the student aviators needed at least one Class 2 (graduate aviator) after their first Fort Rucker FDME, indicating they graduated from the Initial Entry Rotary-wing training course. Thus, they were designated as "in aviation service" and were wearing the U.S. Army aviator skill badge (Department of the Army, 1994).

The Class of 1987 was followed from 1987 through the summer of 1994, looking for attrition in the calendar years 1988 through 1992. A database was extracted and compiled from the AEDR flight physical database and the waiver and suspense file. The database elements were: the aviator's name and Social Security number, gender, age at first and last FDME, medical class of aviation service on the entry and last FDME, date of the first and last FDME, calendar year of the presumed attrition, years of aviation service up to attrition, status of any medical or nonmedical disqualifications, and the reason for the medical and nonmedical disqualification.

Attrition was defined to exist when aviators no longer completed their required annual FDME, were medically and nonmedically terminated from aviation service, or died. For example, an aviator had an entry Fort Rucker student aviator FDME in 1987, and trained aviator FDMEs in 1988, 1989, and 1990; but no FDMEs after 1990. The aviator was lost to followup in 1990, and thus, had 3 years of aviation service as defined by this study.

Calendar year 1993 was the last full year of the study. Aviators, who had a FDME in calendar year 1993, were presumed to be retained in the cohort for a total of 6 years of aviation service. The cohort was observed through the summer of 1994 to gather any late arriving FDMEs with a FDME date in calendar year 1993.

Results

Table 1 tabulates gender by source of commissioning. Class 1A are Commissioned officers from the Reserve Officer Training Corps (ROTC) and the United States Military Academy (West Point). Class 1 are Warrant officers from civilian recruitment and the enlisted ranks of the Army. In the cohort, 3.7 percent were female. Female aviators were more likely to be Class 1A than male aviators (Relative risk_{(Katz)}=1.778, CI_{95}=1.453, 2.177; Kahn and Sempo, 1989).
Table 1.
Gender versus commissioning source among Army student aviators.

<table>
<thead>
<tr>
<th></th>
<th>Class 1A Commissioned officer</th>
<th>Class 1 Warrant officer</th>
<th>N</th>
<th>Percent of N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>34</td>
<td>16</td>
<td>50</td>
<td>3.7</td>
</tr>
<tr>
<td>Male</td>
<td>499</td>
<td>806</td>
<td>1305</td>
<td>96.3</td>
</tr>
<tr>
<td>N</td>
<td>533</td>
<td>822</td>
<td>1355</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 shows the cumulative frequency distribution of the ages for U.S. Army female and male aviators in the Class of 1987. Female aviators were significantly younger than male aviators (p<0.01, Kolmogorov-Smirnov statistic, 2-sided; Daniel, 1983).

Figure 1. Gender-specific age distribution of Army student aviators in the Class of 1987.
Table 2 shows attrition for U.S. Army female and male aviators in the Class of 1987. There was no significant gender-specific difference in attrition (p>0.05, life table analysis, Kahn and Sempos, 1989).

Table 2.
Gender-specific attrition among U.S. Army student aviators.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Years of aviation service</th>
<th>Number remaining under observation</th>
<th>Number leaving in the year of service</th>
<th>Percent remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49</td>
<td>1</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>48</td>
<td>2</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>46</td>
<td>4</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>42</td>
<td>7</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>1305</td>
<td>27</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1278</td>
<td>29</td>
<td>95.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1249</td>
<td>60</td>
<td>91.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1189</td>
<td>98</td>
<td>83.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1091</td>
<td>164</td>
<td>71.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>927</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A review of AEDR records showed the cause of attrition in 3 of 15 female aviators and 36 of 378 male aviators. Table 3 shows the identified medical and nonmedical causes for attrition by gender.

Pregnancy without return to flying duties after delivery accounted for 2 of the 3 female aviator attritions. Another 9 female aviators had a total of 10 pregnancies, but returned to flying duties after delivery. Becoming pregnant was not associated significantly with an increased risk for female aviator attrition (Relative risk_{Katz}=0.545, CI_{0.95}=0.144,2.06; Kahn and Sempos, 1989).

In contrast, male aviators in the Class of 1987 were prone to flying evaluation boards resulting in nonmedical termination of aviation service; death due to aircraft mishaps, and alcohol abuse. Some male attrition cases were due to concealed disqualifying medical conditions that existed before acceptance to flight school. These concealed conditions included a history of attention deficit disorder with learning disability, migraine disorder, alcohol abuse, and seizure disorder.
Table 3.
Causes of medical and nonmedical attrition by gender.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Cause of attrition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>Pregnancy without return to flying after delivery</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Post concussion syndrome</td>
<td>1</td>
</tr>
<tr>
<td>Male</td>
<td>Flying evaluation board with nonmedical termination of aviation service</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Death due to noncombat aircraft mishap</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Alcohol abuse</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Migraine disorder</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Post concussion syndrome</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Herniated nucleus pulposus</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Seizure disorder</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>History attention deficit disorder with current learning disability</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Diabetes mellitus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pedophilia with depression</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Human immunodeficiency virus infection</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chronic lumbago</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Neurotic disorder</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sarcoidosis</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Regional enteritis</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Recurrent ventricular tachycardia</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Unsatisfactory adaptability and suitability for aviation service (ARMA)</td>
<td>1</td>
</tr>
</tbody>
</table>

Female aviators were twice as likely as male aviators to have waivers for disqualifying medical conditions that were identified after aviator training was completed. However, this finding had borderline significance only (Relative risk_{Katz}=2.0, CI_{0.05}=1.084,3.72; Kahn and Sempo, 1989).

Exceptions to policy are special waivers granted to student aviators who are medically disqualified during the flight school application process or after arrival at Fort Rucker for flight training. Female aviators in the Class of 1987 were significantly more likely to have an exception to policy to enter flight training (Relative risk_{Katz}=12.05, CI_{0.95}=4.78,30.4; Kahn and Sempo, 1989). Table 4 shows the causes for exceptions to policy by gender.
Table 4
Causes of exception to policy by gender.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Cause of exception to policy</th>
<th>N with exception</th>
<th>N in cohort</th>
<th>Percent with exception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>Failure to meet anthropometric standards</td>
<td>6</td>
<td>50</td>
<td>12.0</td>
</tr>
<tr>
<td>Male</td>
<td>Refractive error</td>
<td>7</td>
<td>1305</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Hearing loss</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>History of skull fracture</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Color vision deficiency</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beta thalasemia minor</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

To recoup the high cost of flight training, aviators have a 6-year military service obligation following flight training. Therefore, we would assume that most would remain in aviation service during the 6 years of observation in this study. There might be some involuntary cases of attrition, such as that due to courts-martial, flying evaluation boards, permanent medical disqualifications, and death. It is possible for aviators to apply for resignation due to a variety of personal causes, such as family crisis. But, despite the service obligation, a surprising 30 percent of aviators in the Class of 1987 were lost to follow-up. Unfortunately, the cause of attrition could not be identified in most cases. We will need to use other records or databases outside the AEDR to find other nonmedical causes for attrition, such as Army personnel, mishap, and medical disability databases.

We would like to continue following this cohort. One complication in following this cohort in the future is the significant military force reduction that began in 1989. The reductions have been accelerating in the last 2 years, and will continue until the late 1990s. Many in this cohort will be passed over for promotion and separated from military service. Some will elect to leave the service upon completion of obligations, perceiving reduced opportunities for promotion and career service. Force reductions may have affected many in the cohort to date. For example, after Desert Storm operations in 1991, certain aviators with service obligations were offered voluntary separations from the active Army to reduce the force. Some may have been in the cohort of this study.

Summary and conclusions

Graduated aviators from the U.S. Army aviator training Class of 1987 were followed for 6 years to determine if there was a gender-specific difference in attrition from aviation service. Overall, 30 percent attrition was found in 6 years of observation following initial aviator training. There was no significant gender-specific difference in attrition (p>0.05, life table analysis).
Pregnancy was the most common identified cause of female aviator attrition. However, there was no significant increased risk for attrition among all pregnant aviators after delivery (Relative risk=0.545, CI_{0.95}=0.144,2.06).

Among male aviators, flying evaluation boards with nonmedical termination of aviation service, death due to aircraft mishaps, and alcohol abuse were common identified causes of attrition. These three conditions accounted for 47 percent of known causes for male aviator attrition.

Female aviators were more likely to be Commissioned officers (Relative risk=1.778, CI_{0.95}=1.453, 2.177). Female aviators were younger than male aviators ((p<0.01, Kolmogorov-Smirnov statistic).

Female aviators were more likely to be granted an exception to policy to enter flight training despite a medical disqualification (Relative risk=12.05, CI_{0.95}=4.78,30.4). Females were given exceptions to policy for failure to meet anthropometric standards, while males were given exceptions to policy primarily for refractive error and hearing loss in excess of flight training medical standards.

The cause of attrition was not determined in many cases by using only a medical database, such as the AEDR. We need to use other databases, and possibly interviews, to improve our knowledge on causes of nonmedical attrition in this cohort.
References

Other references not cited

Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Executive Director, U.S. Army Human Research and Engineering Directorate
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Chairman
National Transportation Safety Board
800 Independence Avenue, S.W.
Washington, DC 20594

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Commander
Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: SFAE-IEW-JS
Fort Monmouth, NJ 07703-5305

Director
Federal Aviation Administration
FAA Technical Center
Atlantic City, NJ 08405

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Director
Walter Reed Army Institute of Research
Washington, DC 20307-5100
Commander, U.S. Army Test and Evaluation Command
Directorate for Test and Evaluation
ATTN: AMSTE-TA-M (Human Factors Group)
Aberdeen Proving Ground, MD 21005-5055

Naval Air Systems Command
Technical Air Library 950D
Room 278, Jefferson Plaza II
Department of the Navy
Washington, DC 20361

Director
U.S. Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST Tech Reports
Aberdeen Proving Ground, MD 21005

Commander
U.S. Army Medical Research Institute of Chemical Defense
ATTN: SGRD-UV-AO
Aberdeen Proving Ground, MD 21010-5425

Commander
USAMRMC
ATTN: SGRD-RMS
Fort Detrick, Frederick, MD 21702-5012

HQ DA (DASG-PSP-O)
5109 Leesburg Pike
Falls Church, VA 22041-3258

Harry Diamond Laboratories
ATTN: Technical Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197

U.S. Army Materiel Systems Analysis Agency
ATTN: AMXSY-PA (Reports Processing)
Aberdeen Proving Ground
MD 21005-5071

U.S. Army Ordnance Center and School Library
Simpson Hall, Building 3071
Aberdeen Proving Ground, MD 21005

U.S. Army Environmental Hygiene Agency
ATTN: HSHB-MO-A
Aberdeen Proving Ground, MD 21010

Technical Library Chemical Research and Development Center
Aberdeen Proving Ground, MD 21010-5423

Commander
U.S. Army Medical Research Institute of Infectious Disease
ATTN: SGRD-UIZ-C
Fort Detrick, Frederick, MD 21702

Director, Biological Sciences Division
Office of Naval Research
600 North Quincy Street
Arlington, VA 22217

Commandant
U.S. Army Aviation Logistics School
ATTN: ATSQ-TDN
Fort Eustis, VA 23604

Headquarters (ATMD)
U.S. Army Training and Doctrine Command
ATTN: ATBO-M
Fort Monroe, VA 23651
IAF Liaison Officer for Safety
USAF Safety Agency/SEFF
9750 Avenue G, SE
Kirtland Air Force Base
NM 87117-5671

Naval Aerospace Medical Institute Library
Building 1953, Code 03L
Pensacola, FL 32508-5600

Command Surgeon
HQ USCENTCOM (CCSG)
U.S. Central Command
MacDill Air Force Base, FL 33608

Director
Directorate of Combat Developments
ATTN: ATZQ-CD
Building 515
Fort Rucker, AL 36362

U.S. Air Force Institute of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson
Air Force Base, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

Chief, National Guard Bureau
ATTN: NGB-ARS
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

AAMRL/HEX
Wright-Patterson
Air Force Base, OH 45433

Commander
U.S. Army Aviation and Troop Command
ATTN: AMSAT-R-ES
4300 Goodfellow Bouvelard
St. Louis, MO 63120-1798

U.S. Army Aviation and Troop Command
Library and Information Center Branch
ATTN: AMSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
Library AAM-400A
P.O. Box 25082
Oklahoma City, OK 73125

Commander
U.S. Army Medical Department and School
ATTN: Library
Fort Sam Houston, TX 78234

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USM
Fort Sam Houston, TX 78234-6200

Air University Library
(AUL/LSE)
Maxwell Air Force Base, AL 36112

Product Manager
Aviation Life Support Equipment
ATTN: SFAE-AV-LSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
Commander and Director
USAE Waterways Experiment Station
ATTN: CEWES-IM-MI-R,
 CD Department
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189-0407

Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Mr. Peter Seib
Human Engineering Crew Station
Box 266
Westland Helicopters Limited
Yeovil, Somerset BA20 2YB UK

U.S. Army Dugway Proving Ground
Technical Library, Building 5330
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

AFFTC Technical Library
6510 TW/TSTL
Edwards Air Force Base,
CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

Strughold Aeromedical Library
Document Service Section
2511 Kennedy Circle
Brooks Air Force Base, TX 78235-5122

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army White Sands
Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

Director, Airworthiness Qualification Test
Directorate (ATTC)
ATTN: STEAT-AQ-O-TR (Tech Lib)
75 North Flightline Road
Edwards Air Force Base, CA 93523-6100

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035

Commander
USAMRMC
ATTN: SGRD-UMZ
Fort Detrick, Frederick, MD 21702-5009
Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

U. S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander
USAMRMC
ATTN: SGRD-PLC (COL R. Gifford)
Fort Detrick, Frederick, MD 21702

TRADOC Aviation LO
Unit 21551, Box A-209-A
APO AE 09777

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Italian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362-5349

Commander, U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Dr. Sechchang Hah
Dept. of Behavior Sciences and
Leadership, Building 601, Room 281
U. S. Military Academy
West Point, NY 10996-1784

Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

French Army Liaison Office
USAAVNC (Building 602)
Fort Rucker, AL 36362-5021

Australian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Dr. Garrison Rapmund
6 Burning Tree Court
Bethesda, MD 20817

Commandant, Royal Air Force
Institute of Aviation Medicine
Farnborough, Hampshire GU14 6SZ UK
COL Yehezkel G. Caine, MD
Surgeon General, Israel Air Force
Aeromedical Center Library
P. O. Box 02166 I.D.F.
Israel

HQ ACC/DOHP
205 Dodd Boulevard, Suite 101
Langley Air Force Base,
VA 23665-2789

41st Rescue Squadron
41st RQS/SG
940 Range Road
Patrick Air Force Base,
FL 32925-5001

48th Rescue Squadron
48th RQS/SG
801 Dezonia Road
Holloman Air Force Base,
NM 88330-7715

HQ, AFOMA
ATTN: SGPA (Aerospace Medicine)
Bolling Air Force Base,
Washington, DC 20332-6128

ARNG Readiness Center
ATTN: NGB-AVN-OP
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

35th Fighter Wing
35th FW/SG
PSC 1013
APO AE 09725-2055

66th Rescue Squadron
66th RQS/SG
4345 Tyndall Avenue
Nellis Air Force Base, NV 89191-6076

71st Rescue Squadron
71st RQS/SG
1139 Redstone Road
Patrick Air Force Base,
FL 32925-5000

Director
Aviation Research, Development
and Engineering Center
ATTN: AMSAT-R-Z
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Commander
USAMRMC
ATTN: SGRD-ZB (COL C. Fred Tyner)
Fort Detrick, Frederick, MD 21702-5012

Commandant
U.S. Army Command and General Staff
College
ATTN: ATZL-SWS-L
Fort Leavenworth, KS 66027-6900

ARNG Readiness Center
ATTN: NGB-AVN-OP
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

Director
Army Personnel Research Establishment
Farnborough, Hants GU14 6SZ UK

Dr. A. Kornfield
895 Head Street
San Francisco, CA 94132-2813

ARNG Readiness Center
ATTN: NGB-AVN-OP
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382