Manikin Integrated Data Acquisition (MIDAS) Initial Modifications

By

Nabih M. Alem
Aircrew Protection Division

and

James A. Lewis
Robert M. Dillard
Research Support Division

December 1994

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

Kevin T. Mason
KEVIN T. MASON
LTC, MC, MFS
Director, Aircrew Protection Division

Released for publication:

Roger W. Wiley, C.D., Ph.D.
Chairman, Scientific Review Committee

Dennis F. Shanahan
Colonel, MC, MFS
Commanding
REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release, distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
USAARL Report No. 95-11

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
U.S. Army Aeromedical Research Laboratory

6b. OFFICE SYMBOL
(SGRD-UAD-IV)

7a. NAME OF MONITORING ORGANIZATION
U.S. Army Medical Research and Materiel Command (Provisional)

6c. ADDRESS (City, State, and ZIP Code)
P.O. Box 620577
Fort Rucker, AL 36362-0577

7b. ADDRESS (City, State, and ZIP Code)
Fort Detrick
Frederick, MD 21702-5012

8a. NAME OF FUNDING/SPONSORING ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO.
62787A

PROJECT NO.
30

TASK NO.
62787A878

WORK UNIT ACCESSION NO.
ED 141

11. TITLE (Include Security Classification)
Manikin integrated data acquisition system (MIDAS) initial modifications

12. PERSONAL AUTHOR(S)
Nabil M. Alem, James A. Lewis, and Robert M. Dillard

13a. TYPE OF REPORT
Final

13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)
1994 December

15. PAGE COUNT
25

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
prototype, manikin, crash testing, data acquisition, anthropomorphic test device, injury assessment

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A prototype manikin with internal data acquisition system (MIDAS) has been developed and received by the US Army Aeromedical Research Laboratory. In addition to a novel design of the spinal column and pelvis of the Hybrid III automotive manikin, the new MIDAS includes a built-in signal conditioning and acquisition electronics. This report documents the initial modifications to the manikin and includes a description of the external software (MIDAS 3.0) for control, communication, and posttest downloading and analysis of the data.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Chief, Science Support Center

22b. TELEPHONE (Include Area Code)
205-255-6907

22c. OFFICE SYMBOL
(SGRD-UAX-ST)
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>Screen printout of the test identification menu which allows the user to enter a test label and additional comment associated with the test.</td>
<td>15</td>
</tr>
<tr>
<td>B-2</td>
<td>Screen printout of the data extraction menu where the user selects the source and destination of the data to be extracted.</td>
<td>15</td>
</tr>
<tr>
<td>B-3</td>
<td>Screen printout of the data processing and analysis menu. This menu opens several submenus where various types of signal analyses are allowed.</td>
<td>16</td>
</tr>
<tr>
<td>B-4</td>
<td>Screen printout of the menu to setup the data acquisition sampling rate and the parameters for impact detection and data extraction from the credit card</td>
<td>16</td>
</tr>
<tr>
<td>B-5</td>
<td>Screen printout of the menu to define channel labels and designate those active channels to be extracted after the test.</td>
<td>17</td>
</tr>
<tr>
<td>B-6</td>
<td>Screen printout of the menu to define the amplifiers gains in the data acquisition system, and to label the engineering units of each active channel.</td>
<td>17</td>
</tr>
<tr>
<td>B-7</td>
<td>Screen printout of the menu to enter the transducers sensitivities of the manikin, as supplied by the manufacturers or determined from calibrations.</td>
<td>18</td>
</tr>
<tr>
<td>B-8</td>
<td>Screen printout of the menu to backup credit card data and other labels and settings for later retrieval and analysis.</td>
<td>18</td>
</tr>
<tr>
<td>B-9</td>
<td>Screen printout of the manikin controls menu which allows communication with the manikin internal data acquisition sub-system over serial communication port.</td>
<td>19</td>
</tr>
<tr>
<td>B-10</td>
<td>Screen printout of the manikin controls menu when the "monitor" mode is activated allowing synchronous serial communication with the manikin.</td>
<td>19</td>
</tr>
<tr>
<td>B-11</td>
<td>Screen printout of the menu to setup the colors and communication port parameters. Choosing colors becomes important for laptop LCD screens.</td>
<td>20</td>
</tr>
</tbody>
</table>
List of figures (Continued).

Figure Page

B-12. Screen printout of data processing submenu which allows the selection of up
to six channels to be graphically displayed, in raw form, on the screen 20

B-13. Screen printout of the data processing submenu allowing the selection of
up to four channels to be plotted in portrait format "A"
hard copy for quick look ... 21

B-14. Screen printout of the data processing submenu allowing the selection of
up to nine channels to be plotted in portrait format "B"
hard copy for quick look ... 21

B-15. Screen printout of the data processing sub-menu allowing the selection of
up to four channels to be plotted in landscape format "C"
hard copy for quick look ... 22

B-16. Screen printout of the data processing submenu allowing the selection of
up to nine channels to be plotted in landscape format "D"
hard copy for quick look ... 22

B-17. Screen printout of the data processing submenu allowing the selection of
up to eight channels to be plotted in two columns in
landscape format "E" hard copy for quick look .. 23

B-18. Screen printout of the data processing submenu allowing the selection of
up to 18 channels to be plotted in landscape format "F"
hard copy for quick look ... 23

B-19. Screen printout of the data processing submenu showing test information
and allowing the printing of hard copy of pertinent information 24

B-20. Screen printout of the data processing submenu showing (bottom third)
parameters for integral/derivative analysis and allowing the
user to modify the parameters .. 24

B-21. Screen printout of the data processing submenu showing parameters
for over-plot of two signals. This analysis also allows
plotting of a single channel .. 25

B-22. Screen printout of the data processing submenu showing (bottom third)
the parameters selected to analyze a triaxial cluster of transducers 25
This page left blank intentionally.
Introduction

A prototype manikin with internal data acquisition system (MIDAS) has been developed and received by the U.S. Army Aeromedical Research Laboratory (USAARL), Fort Rucker, Alabama, for initial evaluations. New features in this anthropomorphic manikin include a novel design of the spinal column that offers more flexibility in compression and twisting than other manikins, a pelvis that contains the signal conditioning and data acquisition electronics required in most impact tests, and two new upper legs where rechargeable nickel-cadmium cells are placed to provide power supply for the instrumentation and data acquisition system.

As with most prototype systems, MIDAS must be evaluated before it can be put to full use in crash tests and other impact exposures. The evaluation process is simple: expose the manikin to impact tests, collect its biodynamic response signals, then compare the impact response to that of other validated manikins such as the original Hybrid III. This requires that the MIDAS internal electronics and data acquisition system operate properly and allow the data to be extracted in a short time.

Initial bench testing of MIDAS's signal conditioning electronics pointed out areas of potential problems which must be addressed prior to any sled or field testing. First, the battery packs which were installed in the manikin femurs were not supplying adequate power to the electronics. Additionally, the power supply that runs off the standard 120 VAC line and which was delivered with the prototype introduced unacceptable levels of noise to the signal amplifiers. Therefore, a new power supply was needed to replace the current battery packs and provide power from an external source through an umbilical line.

The second area where difficulties were encountered was the software for data acquisition, downloading, and display, which was delivered with the system. Since our immediate goal was the evaluation of the biodynamic response, it was essential that we are able to modify the internal settings of the electronics and to immediately examine the data captured after each test for quick assessment of the manikin performance. Our bench tests also pointed out the need for reliable and flexible software which allows us to achieve these two simple goals: modify the settings and examine the data as quickly as possible.

This report is intended to document the initial improvements made to the MIDAS prototype since its delivery. Because it was only a prototype, modifications were made only to bring the manikin to an acceptable level of reliability during sled tests.
Materials and methods

Electronics hardware

The external power supply was designed to convert 120 VAC to provide several regulated DC voltages to MIDAS's internal computer CPU, memory, disks, transducers, and amplifiers. The box delivered with the manikin had to be reworked by first removing the battery charger subsystem from the power supply box itself. Second, the soldering joints of the cables had to be redone because of potential breakage during anticipated sled mounting of the power supply box.

A serious problem that was identified after extensive debugging was the so-called "common mode problem." This problem caused the signal amplifiers to saturate due to the transducer excitation being tied to system ground. The problem was corrected by floating (relative to system ground) the 15-Volt excitation voltage of each transducer power supply.

Another shortcoming was cumbersome access to the analog signals from the 24 transducers installed in the manikin. Access to these signals is necessary for debugging and maintenance, for bypassing the data acquisition system in case of failure, and for recording the analog signals on an external data recording medium. At one stage during the development and testing of MIDAS, the contractor has built into the wiring access to all the transducer signals. Since this was not part of the contract and because of space constraints, the access cables were removed. In order for USAARL to make its evaluation, it was necessary to reconstruct the access cable and connect it to a breakout box where BNC-type connectors may be used. This proved later to be a valuable modification when it became necessary to record the signals external to the MIDAS hardware.

Data acquisition settings

Precise measurements require accurate knowledge and control of the sampling rate and the gains for each amplifier in the manikin internal data acquisition system. Therefore, it was essential to verify the values of sampling rate and gains claimed by the contractor. We used the voltage insertion method, where a low level sine wave signal, generated by a precision calibrator, was used to replace a transducer and provide an input to the amplifier. By measuring the output of the amplifier, we determined its actual gain as the ratio of its output over the input, and its zero offset as the midpoint of the peak-to-peak range of the output.

Although it was possible to determine the amplifiers' gains by monitoring analog input and output signals, it was necessary to determine the sampling rate of the A/D convertor from the digitized data after it was stored on the thin credit-card memory, then dumped onto a PC disk file and examined. This was done after the first version of the MIDAS software became operational.
External software

As delivered, the operation of MIDAS requires the user to turn on the power supply, modify the amplifier gains and other data acquisition parameters to accommodate specific test conditions, conduct the tests, then remove the credit-card memory module (where the manikin internal computer stored the data) for down-loading and analysis of the digitized data. A new MIDAS program was written to externally control the amplifier settings and sampling rate, and to extract the data from the credit-card and display it for quick look and assessment of the quality of the data acquisition.

Because of its intended use, the MIDAS program was designed to improve the communication by automating most of the functions which were required to be repeated by the user. The program was written in Fortran language (Microsoft Corp, 1988) to be run on an IBM-PC computer under a MS-DOS environment. All test data would be downloaded and archived along with descriptive and calibration data. These archived files may be accessed by MIDAS for further analysis and plotting at a later time after completing a test series. The program produces hard copies of raw and processed signals and summaries of analyzed signals. The program offered significant improvements in the operation of the manikin and, although several additions were contemplated, the first version was deemed adequate for evaluating the results from sled tests.

Results

The bench evaluation of the electronics, wiring, and data acquisition system produced the following observations. Refer to Frisch, Boulay, and Alem, 1994, for a description of the delivered MIDAS and explanation of the components mentioned here.

1. The signal conditioner circuitry has no offset capability. Potentiometers on the board that are connected to the sample-and-hold (S/H) amplifiers have no effect on the direct analog or S/H output.

2. The voltage substitution calibration, as currently provided, is not useful. The resistor calibration (RCAL) is not implemented.

3. Gain and sample rate settings cannot be verified and sometimes are in error. Occasionally the gain sets to gain code 0, and at other times the sample rate sets to lowest value, as evidenced by a very dim data card light-emitting diode (LED).

4. For proper operation of the sensors, the power supplies required rewiring to "float" the grounds. The following supplies were affected: +15 volts for all of the accelerometers, +15 volts for all of the load cells, and +10 volts for the angular accelerometer in the head.

5. The specified rates for sampling are only approximate values.
6. Sampling at the highest two rates, 5 kilo-Hertz (KHz) and 10 KHz, is not possible with the current system which writes 48 channels to the data card.

7. The manikin's internal wiring harness is difficult to check or correct. It should have been of a more replaceable design, so that sensors or cables could be replaced easily. The copper tape shielding is ineffective.

8. The definitions of channels 18 and 20 appear to be swapped from their original designations.

9. Several signal conditioner hybrid circuits are bad, in one or both channels of the hybrid.

10. The L5 load cell channels have noise problems; so do the Head-X and the T1-Y channels.

11. Channel 19 is nonfunctional, producing a 147 Hertz noise signal.

12. Signal conditioner module card #1 has bad U-11 chip.

External software (MIDAS 3.0)

The MIDAS software initially was written to replace the software delivered as part of the contract because that software did not allow sufficient flexibility and reliability in operating the manikin, nor adequate speed in downloading and examining the acquired data. The latest version of MIDAS (version 3.0) was the result of actual tests and experience in the manikin's operation as intensive bench testing was conducted.

The step-by-step procedure to operate the manikin is summarized in Appendix A. This requires the MIDAS software and a PC connected through an RS-232 cable to the manikin internal computer. The capabilities of the MIDAS (version 3.0) software are summarized in Appendix B in the form of a series of screen printouts of the program menus. Although shown in black and white, these "screens" are produced on a VGA monitor in colors which are used for emphasis of key words or important text, and for demarcation between blocks of information. The following features are the highlights of the software.

1. The program consists of over 200 subroutines, written in Microsoft Fortran 5 and developed in its entirety at USAARL.

2. The program is interactive when necessary and automated when possible, and is entirely menu driven. All of the major submenus in MIDAS are reproduced in Appendix A as screen printouts.
3. The program requires an IBM-PC compatible running MS-DOS 5.0 or higher.

4. The PC hardware should have a VGA color monitor, although a laptop LCD screen may be used after adjusting the "color" settings to suit the particular screen.

5. No mouse is needed but a serial port (COM1 or COM2) must be available to communicate with the manikin internal computer.

6. MIDAS software is designed to run independent of the manikin to analyze, plot, and produce hard copies of the analyzed data after all the data from a series of tests have been archived.

7. Hard copies are produced in PCL/5 and HP-GL/2 languages and require printers capable of interpreting these languages, such as the HP Laserjet 3 or 4.

Discussion

As with most prototype systems, some adjustments to the delivered version of the system was necessary. The initial modifications were designed primarily to put the manikin in an acceptable and reliable working condition so its performance as a test device could be evaluated. The reliability of the power supply, the calibration of the amplifiers, and the identification and repair (when possible) of known problems were of the utmost concern. Just as critical was the down-load and quick-look capability without which the manikin simply could not have been tested efficiently.

The manikin was designed to be self contained, i.e., capable of operation from an internal power source. The design of the prototype included two sets of nickel-cadmium (nicad) batteries installed in the femur in two cylindrical arrays. Although this approach was discussed and approved during the development phase of the manikin, the execution of this design by a subcontractor resulted in a product that functioned below our expectations. A remedy to this problem was set aside while more important issues were addressed. Thus, the manikin was to operate from external power supply until the internal battery supply issue has been resolved. Indeed, an external power supply was delivered but it also had problems: noise, ground loops, poor shielding, weak soldering connections and unnecessary wiring. All these problem areas were addressed and resolved in the more reliable configuration which was fabricated. This allowed us to advance to the next stage in this research program: the actual sled and controlled drop tests.

Equally important was our ability to program the internal amplifiers' gains and adjust the sampling rate of the manikin data acquisition system to meet the different impact test requirements. The manikin had default settings for all amplifiers and sampling rate which were stored on an erasable/programmable ROM chip in the MIDAS computer and read each time the manikin was turned on. Access to these stored defaults required the "undressing" of the manikin
and the removal of the CPU board, then its installation in a separate but equivalent computer for re-coding. The alternative to this time-consuming task was the transmittal of the desired gain values over the serial communication port every time the manikin was turned on to override the default values.

This approach was an acceptable solution if all goes well. Unfortunately, it took nearly half an hour of interaction between the user and the manikin internal software before the new settings had been transmitted. Frequently, the transmittal was so erratic because of poor COM port hardware and software drivers or because of unexplainable malfunction in the MIDAS internal electronics that it was necessary to reset the internal electronics by turning off the manikin power supply then switching it back on to restart the entire operation. This frustrating and inefficient process was one of the two primary reasons for writing our own external MIDAS control software.

The other motive for rewriting the MIDAS software was our inability to examine the data immediately after it was acquired. This essential requirement was somewhat met by the software as it was delivered. In fact, we were able to quickly remove the credit card and "download" the raw data to a PC file using utilities supplied by the manufacturer of the credit card. Unfortunately, plotting one impact pulse, which may be of 20 or 30 millisecond duration, required the manual plotting of the entire channel signal (1200 msec) in small segments and, when all segments were finally plotted, did not give the user sufficient timing and magnitude information to judge the quality of the test. The tedious process was lengthy and often was abandoned after examining one or two channels inconclusively.

Therefore, the MIDAS program was designed to truly assist the user in making informed decisions regarding a test. Just as the manikin could not have been operated without a reliable power supply, it would have been unwise to operate this new prototype without the benefit of "quick look" and "hard copy" capabilities.

Summary and conclusions

As with most prototypes, initial modifications were necessary to the hardware and the software delivered with the manikin in order to bring it to an acceptable operating status. These include improvements to the external power supply to be used temporarily in lieu of the internal battery system, and a PC-based program (MIDAS) which facilitates the settings of internal amplifiers gains and sampling rate, and allows quick look at the down-loaded data immediately following a test. Eventually, it will be necessary to redesign the internal battery-based power supply so that field tests can be conducted independent of external connections. Also, it will be necessary to modify the internal data acquisition software to improve serial communication and to allow easier modification and retention of default data acquisition parameters.
References

Appendix A.

MANIKIN operating procedures.

1. Connect RS-232 cable between manikin and PC communications port 1 or 2, as set in the USAARL manikin integrated data acquisition system (MIDAS) program.

2. Install the memory module (credit-card) into the manikin chassis slot.

3. Power-up manikin. The green LED on control unit indicates +5 volt power is present. Wait approximately 20 seconds - a short flash of the red LED indicates end of boot sequence.

4. On PC, run the MIDAS program. Verify sample rate in the "Sampling setup" function, gains and correction factors in "Amplifiers" function, and sensitivities in "Transducers" function.

5. Using "Identify test" function, enter the new test ID and other desired information.

6. Use the "Manikin controls" function to send gains and sample rate (press F1). If manikin will not respond, send "escape" characters (press F8) to clear the communications port. If this doesn't help, check for correct communication settings under the "Colors and comm." section, set port at 1200 baud, 8 bits, no parity, and 1 stop bit. Verify cabling is connected to correct port. Manikin uses upper communications port connector on manikin input/output (I/O) card, which is located inside the rib cage.

7. "Arm" manikin when ready (press F9). Observe that red LED is on and bright. A dim LED indicates improper sample rate. If LED goes off after 6 seconds (at 2500 Hz sample rate) or after 16 seconds (at 1000 Hz sample rate), then a false trigger has occurred. Turn off manikin power, ensure trigger signal is at ground potential (0 volts), and reapply power to manikin. Resend sample rate and gains after manikin boots up. A steady on LED indicates the proper "armed" condition (data is being written to the card in a circular buffer).

8. Disconnect the RS-232 cable from the manikin.

9. Run test. A 0-to-5 volt transition on the trigger signal input will end the 200-points/channel circular buffer and start the post-trigger data recording. When the red LED goes out, the 12,000 post-trigger data points/channel have been written to the card (storage complete).
10. Remove data card. Insert data card in the PC, perform "Backup card data" operation, saving the card image to hard disk. Use "Extract signals" to retrieve data from the data card (or from a saved file). Use the "Process" function to view signals.

11. Turn off manikin power if done, or press RESET and go to step 2 for the next test.
Appendix B

External manikin software.

MIDAS version 3.0.

This appendix contains screen printouts of most menus and sub-menus which are available in the MIDAS program. Because they are printed in black and white, much of the color highlights used to emphasize various key words and text, and to separate blocks of information on the screen are, of course, missing. However, these "screens" do provide a printed documentation in lieu of actually running the MIDAS program itself.
<table>
<thead>
<tr>
<th>Test: LX65-56</th>
<th>MIDAS-3.0 Manikin Integrated DAS 13:01:03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify test</td>
<td>Data ID/Label: LX65-56</td>
</tr>
<tr>
<td>Extract signals</td>
<td>Description of data:</td>
</tr>
<tr>
<td>Process signals</td>
<td>Dynamic testing of MIDAS prototype crash manikin</td>
</tr>
<tr>
<td>Sampling setup</td>
<td>Sled acceleration pulse: 10.3 peak G, 23.1 mph</td>
</tr>
<tr>
<td>Define channels</td>
<td>Seat pitch: +35 degrees</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Identify test data with a unique label to be used in naming binary and exchange data files. Descriptive text may also be added to identify test conditions.</td>
</tr>
<tr>
<td>Transducers</td>
<td></td>
</tr>
<tr>
<td>Backup card data</td>
<td></td>
</tr>
<tr>
<td>Manikin controls</td>
<td></td>
</tr>
<tr>
<td>Colors and comm.</td>
<td></td>
</tr>
<tr>
<td>Quit to DOS</td>
<td></td>
</tr>
</tbody>
</table>

Figure B-1. Screen printout of the test identification menu which allows the user to enter a test label and additional comment associated with the test.

<table>
<thead>
<tr>
<th>Test: LX65-56</th>
<th>MIDAS-3.0 Manikin Integrated DAS 13:06:32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify test</td>
<td>F1 EXTRACT data from THINCARD into RAM, and store them in MIDAS Internal Format on file LX65-56.MIF 20 signals</td>
</tr>
<tr>
<td>Extract signals</td>
<td>F2 SELECT from listed files the name and type of MIDAS file to retrieve from disk LX65-56.MIF LX65-55.MIF LX65-52.MIF LX65-45.MIF LX65-44.MIF</td>
</tr>
<tr>
<td>Process signals</td>
<td>F3 RETRIEVE the selected .MIF disk file into RAM memory. LX65-43.MIF</td>
</tr>
<tr>
<td>Sampling setup</td>
<td>F4 RESTORE data from 3 backup files now on directory \C:\NBDL\BACK\ LX65-56.ini LX65-56.pre LX65-56.dat</td>
</tr>
<tr>
<td>Define channels</td>
<td>F5 EXPORT data to text file: LX65-56.MXP</td>
</tr>
<tr>
<td>Amplifiers</td>
<td></td>
</tr>
<tr>
<td>Transducers</td>
<td></td>
</tr>
<tr>
<td>Backup card data</td>
<td></td>
</tr>
<tr>
<td>Manikin controls</td>
<td></td>
</tr>
<tr>
<td>Colors and comm.</td>
<td></td>
</tr>
<tr>
<td>Quit to DOS</td>
<td></td>
</tr>
</tbody>
</table>

Figure B-2. Screen printout of the data extraction menu where the user selects the source and destination of the data to be extracted.

15
<table>
<thead>
<tr>
<th>Test: LX65-56</th>
<th>MIDAS-3.0 Manikin Integrated DAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify test</td>
<td>F1 Raw channels</td>
</tr>
<tr>
<td>Extract signals</td>
<td>F2 Test/channel information</td>
</tr>
<tr>
<td>Process signals</td>
<td>F3 [3] Integral/derivative</td>
</tr>
<tr>
<td>Sampling setup</td>
<td>F4 [2] Over-plot signals</td>
</tr>
<tr>
<td>Define channels</td>
<td>F5 [3] Integral/derivative</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>F6 [6] Head triax & HIC</td>
</tr>
<tr>
<td>Transducers</td>
<td>F7 [5] Triax and resultant</td>
</tr>
<tr>
<td>Backup card data</td>
<td>F8 [5] Triax and resultant</td>
</tr>
<tr>
<td>Manikin controls</td>
<td>F10 VGA: 640x480, 80x30</td>
</tr>
<tr>
<td>Colors and comm.</td>
<td></td>
</tr>
<tr>
<td>Quit to DOS</td>
<td></td>
</tr>
</tbody>
</table>

Plot signals for screen quick look or hardcopy print. To print, LaserJet III printer port must already be defined with the DOS PRINT command.

Figure B-3
Screen printout of the data processing and analysis menu. This menu opens several submenus where various types of signal analyses are allowed.

<table>
<thead>
<tr>
<th>Test: LX65-56</th>
<th>MIDAS-3.0 Manikin Integrated DAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify test</td>
<td></td>
</tr>
<tr>
<td>Extract signals</td>
<td></td>
</tr>
<tr>
<td>Process signals</td>
<td></td>
</tr>
<tr>
<td>Sampling setup</td>
<td>Sampling rate: 2500.0 Hz/channel (nominal)</td>
</tr>
<tr>
<td>Define channels</td>
<td>Actual: 2512.5 Hz per channel</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>.398 msec interval</td>
</tr>
<tr>
<td>Transducers</td>
<td></td>
</tr>
<tr>
<td>Backup card data</td>
<td>Sampling rate must match rate sent to manikin, other parameters may be re-defined after test.</td>
</tr>
<tr>
<td>Manikin controls</td>
<td>Test duration: 597.0 msec = 1500 pts/ch</td>
</tr>
<tr>
<td>Colors and comm.</td>
<td>Trigger method: SOFTWARE a signal FALLS BELOW threshold</td>
</tr>
<tr>
<td>Quit to DOS</td>
<td>Start of data: -99.5 msec</td>
</tr>
<tr>
<td></td>
<td>250 pts BEFORE trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger signal: Ch 15 = SLED</td>
</tr>
<tr>
<td></td>
<td>Threshold: 41 mV = 10.1 g</td>
</tr>
<tr>
<td></td>
<td>BELOW initial level</td>
</tr>
</tbody>
</table>

Define sampling rate, durations of pre- and post-test calibration lengths, pre-trigger delay and duration of test, all depending on the size of CC memory.

Figure B-4
Screen printout of the menu to setup the data acquisition sampling rate and the parameters for impact detection and data extraction from the credit card.
Figure B-5.
Screen printout of the menu to define channel labels and designate those active channels to be extracted after the test.

Figure B-6.
Screen printout of the menu to define the amplifiers gains in the data acquisition system, and to label the engineering units of each active channel.
Figure B-7. Screen printout of the menu to enter the transducers sensitivities of the manikin, as supplied by the manufacturers or determined from calibrations.

Figure B-8. Screen printout of the menu to backup credit card data and other labels and settings for later retrieval and analysis.
Figure B-9. Screen printout of the manikin controls menu which allows communication with the manikin internal data acquisition subsystem over serial communication port.

Figure B-10. Screen printout of the manikin controls menu when the "monitor" mode is activated allowing synchronous serial communication with the manikin.
Figure B-11. Screen printout of the menu to setup the colors and communication port parameters. Choosing colors becomes important for laptop LCD screens.

Figure B-12. Screen printout of data processing sub-menu which allows the selection of up to six channels to be graphically displayed, in raw form, on the screen.
<table>
<thead>
<tr>
<th>Ctrl - Fn</th>
<th>hardcopy output</th>
<th>Alt - Fn parameters</th>
<th>Tab form/graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 = AX-HEAD = Head X (forward) accel</td>
<td>01 = Head X (forward) accel</td>
<td>01 = AX-HEAD = Head X (forward) accel</td>
<td>01 = Head X (forward) accel</td>
</tr>
<tr>
<td>02 = AY-HEAD = Head Y (lateral) accel</td>
<td>02 = Head Y (lateral) accel</td>
<td>02 = AY-HEAD = Head Y (lateral) accel</td>
<td>02 = Head Y (lateral) accel</td>
</tr>
<tr>
<td>03 = AZ-HEAD = Head Z (vertical) accel</td>
<td>03 = Head Z (vertical) accel</td>
<td>03 = AZ-HEAD = Head Z (vertical) accel</td>
<td>03 = Head Z (vertical) accel</td>
</tr>
<tr>
<td>04 = AAY-HEAD = Head Y (pitch) accel</td>
<td>04 = Head Y (pitch) accel</td>
<td>04 = AAY-HEAD = Head Y (pitch) accel</td>
<td>04 = Head Y (pitch) accel</td>
</tr>
<tr>
<td>05 = FZ-NECK = Neck Z (vertical) force</td>
<td>05 = Neck Z (vertical) force</td>
<td>05 = FZ-NECK = Neck Z (vertical) force</td>
<td>05 = Neck Z (vertical) force</td>
</tr>
<tr>
<td>06 = FX-NECK = Neck X (forward) force</td>
<td>06 = Neck X (forward) force</td>
<td>06 = FX-NECK = Neck X (forward) force</td>
<td>06 = Neck X (forward) force</td>
</tr>
<tr>
<td>07 = MY-NECK = Neck Y (pitch) moment</td>
<td>07 = Neck Y (pitch) moment</td>
<td>07 = MY-NECK = Neck Y (pitch) moment</td>
<td>07 = Neck Y (pitch) moment</td>
</tr>
<tr>
<td>08 = AX-T1 = T1 X (forward) accel</td>
<td>08 = T1 X (forward) accel</td>
<td>08 = AX-T1 = T1 X (forward) accel</td>
<td>08 = T1 X (forward) accel</td>
</tr>
<tr>
<td>09 = AY-T1 = T1 Y (lateral) accel</td>
<td>09 = T1 Y (lateral) accel</td>
<td>09 = AY-T1 = T1 Y (lateral) accel</td>
<td>09 = T1 Y (lateral) accel</td>
</tr>
<tr>
<td>10 = AZ-T1 = T1 Z (vertical) accel</td>
<td>10 = T1 Z (vertical) accel</td>
<td>10 = AZ-T1 = T1 Z (vertical) accel</td>
<td>10 = T1 Z (vertical) accel</td>
</tr>
</tbody>
</table>

Figure B-13. Screen printout of the data processing submenu allowing the selection of up to four channels to be plotted in portrait format "A" hard copy for quick look.

<table>
<thead>
<tr>
<th>Ctrl - Fn</th>
<th>hardcopy output</th>
<th>Alt - Fn parameters</th>
<th>Tab form/graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 = AX-HEAD = Head X (forward) accel</td>
<td>01 = Head X (forward) accel</td>
<td>01 = AX-HEAD = Head X (forward) accel</td>
<td>01 = Head X (forward) accel</td>
</tr>
<tr>
<td>02 = AY-HEAD = Head Y (lateral) accel</td>
<td>02 = Head Y (lateral) accel</td>
<td>02 = AY-HEAD = Head Y (lateral) accel</td>
<td>02 = Head Y (lateral) accel</td>
</tr>
<tr>
<td>03 = AZ-HEAD = Head Z (vertical) accel</td>
<td>03 = Head Z (vertical) accel</td>
<td>03 = AZ-HEAD = Head Z (vertical) accel</td>
<td>03 = Head Z (vertical) accel</td>
</tr>
<tr>
<td>04 = AAY-HEAD = Head Y (pitch) accel</td>
<td>04 = Head Y (pitch) accel</td>
<td>04 = AAY-HEAD = Head Y (pitch) accel</td>
<td>04 = Head Y (pitch) accel</td>
</tr>
<tr>
<td>05 = FZ-NECK = Neck Z (vertical) force</td>
<td>05 = Neck Z (vertical) force</td>
<td>05 = FZ-NECK = Neck Z (vertical) force</td>
<td>05 = Neck Z (vertical) force</td>
</tr>
<tr>
<td>06 = FX-NECK = Neck X (forward) force</td>
<td>06 = Neck X (forward) force</td>
<td>06 = FX-NECK = Neck X (forward) force</td>
<td>06 = Neck X (forward) force</td>
</tr>
<tr>
<td>07 = MY-NECK = Neck Y (pitch) moment</td>
<td>07 = Neck Y (pitch) moment</td>
<td>07 = MY-NECK = Neck Y (pitch) moment</td>
<td>07 = Neck Y (pitch) moment</td>
</tr>
<tr>
<td>08 = AX-T1 = T1 X (forward) accel</td>
<td>08 = T1 X (forward) accel</td>
<td>08 = AX-T1 = T1 X (forward) accel</td>
<td>08 = T1 X (forward) accel</td>
</tr>
<tr>
<td>09 = AY-T1 = T1 Y (lateral) accel</td>
<td>09 = T1 Y (lateral) accel</td>
<td>09 = AY-T1 = T1 Y (lateral) accel</td>
<td>09 = T1 Y (lateral) accel</td>
</tr>
<tr>
<td>10 = AZ-T1 = T1 Z (vertical) accel</td>
<td>10 = T1 Z (vertical) accel</td>
<td>10 = AZ-T1 = T1 Z (vertical) accel</td>
<td>10 = T1 Z (vertical) accel</td>
</tr>
</tbody>
</table>

Figure B-14. Screen printout of the data processing submenu allowing the selection of up to nine channels to be plotted in portrait format "B" hard copy for quick look.
<table>
<thead>
<tr>
<th>Ctrl - Fn parameters</th>
<th>Tab form/graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl - Fn parameters</td>
<td>Tab form/graph</td>
</tr>
</tbody>
</table>

Figure B-15. Screen printout of the data processing submenu allowing the selection of up to four channels to be plotted in landscape format "C" hard copy for quick look.

| F1 | Raw channels | F2 | Test/channel information |
| F9 | Execute all <-> functions | F10 | VGA: 640x480, 80x30 |

Figure B-16. Screen printout of the data processing submenu allowing the selection of up to nine channels to be plotted in landscape format "D" hard copy for quick look.

22
<table>
<thead>
<tr>
<th>F1</th>
<th>Raw channels</th>
<th>F2</th>
<th>Test/channel information</th>
</tr>
</thead>
<tbody>
<tr>
<td>F9</td>
<td>Execute all <-> functions</td>
<td>F10</td>
<td>VGA: 640x480, 80x30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ctrl – Fn</th>
<th>hardcopy output</th>
<th>Alt – Fn</th>
<th>parameters</th>
<th>Tab</th>
<th>form/graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 = AX-HEAD = Head X (forward) accel</td>
<td>01 ————</td>
<td>05 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 = AY-HEAD = Head Y (lateral) accel</td>
<td>02 ————</td>
<td>06 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 = AZ-HEAD = Head Z (vertical) accel</td>
<td>03 ————</td>
<td>07 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 = AAY-HEAD = Head Y (pitch) accel</td>
<td>04 ————</td>
<td>08 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 = FZ-NECK = Neck Z (vertical) force</td>
<td>05 ————</td>
<td>09 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06 = FX-NECK = Neck X (forward) force</td>
<td>06 ————</td>
<td>10 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 = MY-NECK = Neck Y (pitch) moment</td>
<td>07 ————</td>
<td>11 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 = AX-T1 = T1 X (forward) accel</td>
<td>08 ————</td>
<td>12 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 = AY-T1 = T1 Y (lateral) accel</td>
<td>09 ————</td>
<td>13 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 = AZ-T1 = T1 Z (vertical) accel</td>
<td>10 ————</td>
<td>14 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B-17. Screen printout of the data processing submenu allowing the selection of up to eight channels to be plotted in two columns in landscape format "E" hard copy for quick look.

<table>
<thead>
<tr>
<th>F1</th>
<th>Raw channels</th>
<th>F2</th>
<th>Test/channel information</th>
</tr>
</thead>
<tbody>
<tr>
<td>F9</td>
<td>Execute all <-> functions</td>
<td>F10</td>
<td>VGA: 640x480, 80x30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ctrl – Fn</th>
<th>hardcopy output</th>
<th>Alt – Fn</th>
<th>parameters</th>
<th>Tab</th>
<th>form/graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 = AX-HEAD = Head X (forward) accel</td>
<td>01 ————</td>
<td>10 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 = AY-HEAD = Head Y (lateral) accel</td>
<td>02 ————</td>
<td>11 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 = AZ-HEAD = Head Z (vertical) accel</td>
<td>03 ————</td>
<td>12 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 = AAY-HEAD = Head Y (pitch) accel</td>
<td>04 ————</td>
<td>13 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 = FZ-NECK = Neck Z (vertical) force</td>
<td>05 ————</td>
<td>14 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06 = FX-NECK = Neck X (forward) force</td>
<td>06 ————</td>
<td>15 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 = MY-NECK = Neck Y (pitch) moment</td>
<td>07 ————</td>
<td>16 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 = AX-T1 = T1 X (forward) accel</td>
<td>08 ————</td>
<td>17 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 = AY-T1 = T1 Y (lateral) accel</td>
<td>09 ————</td>
<td>18 ————</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 = AZ-T1 = T1 Z (vertical) accel</td>
<td>10 ————</td>
<td>6APRTST3</td>
<td>1F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B-18. Screen printout of the data processing sub-menu allowing the selection of up to 18 channels to be plotted in landscape format "F" hard copy for quick look.
<table>
<thead>
<tr>
<th>Ctrl - Fn</th>
<th>hardcopy output</th>
<th>Ins mark for hardcopy</th>
<th>Esc exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Raw channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Test/channel information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>[3] Integral/derivative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>[2] Over-plot signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>[3] Integral/derivative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>[2] Over-plot signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>[1] Cross-plot signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>[2] Over-plot signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>Execute all functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>VGA: 640x480, 80x30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B-19. Screen printout of the data processing submenu showing test information and allowing the printing of hard copy of pertinent information.

<table>
<thead>
<tr>
<th>Fn or Enter</th>
<th>screen output</th>
<th>Alt - Fn parameters</th>
<th>Tab form/graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl - Fn</td>
<td>hardcopy output</td>
<td>Ins mark for hardcopy</td>
<td>Esc exit</td>
</tr>
<tr>
<td>F1</td>
<td>Raw channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Test/channel information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>[3] Integral/derivative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>[2] Over-plot signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>[3] Integral/derivative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>[2] Over-plot signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>[1] Cross-plot signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>[2] Over-plot signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>Execute all functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>VGA: 640x480, 80x30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B-20. Screen printout of the data processing submenu showing (bottom third) parameters for integral/derivative analysis and allowing the user to modify the parameters.
F1	Raw channels	F2	Test/channel information
F3	Integral/derivative	F4	Over-plot signals
F5	Integral/derivative	F6	Over-plot signals
F7	Cross-plot signals	F8	Over-plot signals
F9	Execute all functions	F10	VGA: 640x480, 80x30

<table>
<thead>
<tr>
<th>Fn or Enter screen output</th>
<th>Alt – Fn parameters</th>
<th>Tab form/graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl – Fn hardcopy output</td>
<td>Ins mark for hardcopy</td>
<td>Esc exit</td>
</tr>
</tbody>
</table>

Figure B-21. Screen printout of the data processing submenu showing parameters for over-plot of two signals. This analysis also allows plotting of a single channel.

F1	Raw channels	F2	Test/channel information
F3	Integral/derivative	F4	Over-plot signals
F5	Integral/derivative	F6	Over-plot signals
F7	Triax and resultant	F8	Over-plot signals
F9	Execute all functions	F10	VGA: 640x480, 80x30

<table>
<thead>
<tr>
<th>Fn or Enter screen output</th>
<th>Alt – Fn parameters</th>
<th>Tab form/graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl – Fn hardcopy output</td>
<td>Ins mark for hardcopy</td>
<td>Esc exit</td>
</tr>
</tbody>
</table>

Signals: 10 AZ-T1 (Left vertical) 00 Seat pit (Right vertical)
Filter: 100 Hz (LP) 24 dB/oct
Labels: Neck (C1) axial force (kN)
LX65-56 Caption: 7 Gx run WITHOUT cushion

Figure B-22. Screen printout of the data processing submenu showing (bottom third) the parameters selected to analyze a triaxial cluster of transducers.

25
Commander, U.S. Army Test
and Evaluation Command
Directorate for Test and Evaluation
ATTN: AMSTE-TA-M (Human Factors Group)
Aberdeen Proving Ground,
MD 21005-5055

Naval Air Systems Command
Technical Air Library 950D
Room 278, Jefferson Plaza II
Department of the Navy
Washington, DC 20361

Director
U.S. Army Ballistic
Research Laboratory
ATTN: DRXBR-OD-ST Tech Reports
Aberdeen Proving Ground, MD 21005

Commander
U.S. Army Medical Research
Institute of Chemical Defense
ATTN: SGRD-UV-AO
Aberdeen Proving Ground,
MD 21010-5425

Commander
USAMRMC
ATTN: SGRD-RMS
Fort Detrick, Frederick, MD 21702-5012

HQ DA (DASG-PSP-O)
5109 Leesburg Pike
Falls Church, VA 22041-3258

Harry Diamond Laboratories
ATTN: Technical Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197

U.S. Army Materiel Systems
Analysis Agency
ATTN: AMXSY-PA (Reports Processing)
Aberdeen Proving Ground
MD 21005-5071

U.S. Army Ordnance Center
and School Library
Simpson Hall, Building 3071
Aberdeen Proving Ground, MD 21005

U.S. Army Environmental
Hygiene Agency
ATTN: HSHB-MO-A
Aberdeen Proving Ground, MD 21010

Technical Library Chemical Research
and Development Center
Aberdeen Proving Ground, MD
21010-5423

Commander
U.S. Army Medical Research
Institute of Infectious Disease
ATTN: SGRD-UIZ-C
Fort Detrick, Frederick, MD 21702

Director, Biological
Sciences Division
Office of Naval Research
600 North Quincy Street
Arlington, VA 22217

Commandant
U.S. Army Aviation
Logistics School ATTN: ATSQ-TDN
Fort Eustis, VA 23604

Headquarters (ATMD)
U.S. Army Training
and Doctrine Command
ATTN: ATBO-M
Fort Monroe, VA 23651
IAF Liaison Officer for Safety
USAF Safety Agency/SEFF
9750 Avenue G, SE
Kirtland Air Force Base
NM 87117-5671

Naval Aerospace Medical
Institute Library
Building 1953, Code 03L
Pensacola, FL 32508-5600

Command Surgeon
HQ USCENTCOM (CCSG)
U.S. Central Command
MacDill Air Force Base, FL 33608

Director
Directorate of Combat Developments
ATTN: ATZQ-CD
Building 515
Fort Rucker, AL 36362

U.S. Air Force Institute
of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson
Air Force Base, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

Chief, National Guard Bureau
ATTN: NGB-ARS
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

AAMRL/HEX
Wright-Patterson
Air Force Base, OH 45433

Commander
U.S. Army Aviation and Troop Command
ATTN: AMSAT-R-ES
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

U.S. Army Aviation and Troop Command
Library and Information Center Branch
ATTN: AMSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
Library AAM-400A
P.O. Box 25082
Oklahoma City, OK 73125

Commander
U.S. Army Medical Department
and School
ATTN: Library
Fort Sam Houston, TX 78234

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USM
Fort Sam Houston, TX 78234-6200

Air University Library
(AUL/LSE)
Maxwell Air Force Base, AL 36112

Product Manager
Aviation Life Support Equipment
ATTN: SFAE-AV-LSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

U. S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander
USAMRMC
ATTN: SGRD-PLC (COL R. Gifford)
Fort Detrick, Frederick, MD 21702

TRADOC Aviation LO
Unit 21551, Box A-209-A
APO AE 09777

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Italian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362-5349

Commander, U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Dr. Sehchang Hah
Dept. of Behavior Sciences and
Leadership, Building 601, Room 281
U. S. Military Academy
West Point, NY 10996-1784

Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

French Army Liaison Office
USAAVNC (Building 602)
Fort Rucker, AL 36362-5021

Australian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Dr. Garrison Rapmund
6 Burning Tree Court
Bethesda, MD 20817

Commandant, Royal Air Force
Institute of Aviation Medicine
Farnborough, Hampshire GU14 6SZ UK
Defense Technical Information
Cameron Station, Building 5
Alexandria, VA 22304-6145

Commander, U.S. Army Foreign Science
and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Commander
Applied Technology Laboratory
USARL-ATCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604

Commander, U.S. Air Force
Development Test Center
101 West D Avenue, Suite 117
Eglin Air Force Base, FL 32542-5495

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

Commander, U.S. Army Missile
Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R
/ILL Documents
Redstone Arsenal, AL 35898

Aerospace Medicine Team
HQ ACC/GST3
162 Dodd Boulevard, Suite 100
Langley Air Force Base,
VA 23665-1995

U.S. Army Research and Technology
Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

Commander
USAMRMC
ATTN: SGRD-ZC (COL John F. Glenn)
Fort Detrick, Frederick, MD 21702-5012

Dr. Eugene S. Channing
166 Baughman’s Lane
Frederick, MD 21702-4083

U.S. Army Medical Department
and School
USAMRDALC Liaison
ATTN: HSMC-FR
Fort Sam Houston, TX 78234

NVESD
AMSEL-RD-NV-ASID-PST
(Attn: Trang Bui)
10221 Burbeck Road
Fort Belvoir, VA 22060-5806

CA Av Med
HQ DAAC
Middle Wallop
Stockbridge, Hants S020 8DY UK

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NLON
Groton, CT 06349-5900

Commander
Aviation Applied Technology Directorate
ATTN: AMSAT-R-TV
Fort Eustis, VA 23604-5577
COL Yehezkel G. Caine, MD
Surgeon General, Israel Air Force
Aeromedical Center Library
P. O. Box 02166 I.D.F.
Israel

HQ ACC/DOHP
205 Dodd Boulevard, Suite 101
Langley Air Force Base,
VA 23665-2789

71st Rescue Squadron
71st ROS/SG
1139 Redstone Road
Patrick Air Force Base,
FL 32925-5000

Director
Aviation Research, Development
and Engineering Center
ATTN: AMSAT-R-Z
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

41st Rescue Squadron
41st ROS/SG
940 Range Road
Patrick Air Force Base,
FL 32925-5001

Commander
USAMRMC
ATTN: SGRD-ZB (COL C. Fred Tyner)
Fort Detrick, Frederick, MD 21702-5012

48th Rescue Squadron
48th ROS/SG
801 Dezonita Road
Holloman Air Force Base,
NM 88330-7715

Commandant
U.S. Army Command and General Staff
College
ATTN: ATZL-SWS-L
Fort Leavenworth, KS 66027-6900

HQ, AFOMA
ATTN: SGPA (Aerospace Medicine)
Bolling Air Force Base,
Washington, DC 20332-6128

ARG Readiness Center
ATTN: NGB-AVN-OP
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

Director
Army Personnel Research Establishment
Farnborough, Hants GU14 6SZ UK

35th Fighter Wing
35th FW/SG
PSC 1013
APO AE 09725-2055

ARG Readiness Center
AATN: NGB-AVN-OP
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

66th Rescue Squadron
66th ROS/SG
4345 Tyndall Avenue
Nellis Air Force Base, NV 89191-6076

Dr. A. Kornfield
895 Head Street
San Francisco, CA 94132-2813
Cdr, PERSCOM
ATTN: TAPC-PLA
200 Stovall Street, Rm 3N25
Alexandria, VA 22332-0413

HQ, AFOMA
ATTN; SGPA (Aerospace Medicine)
Bolling Air Force Base,
Washington, DC 20332-6188