MULTI-FOCAL LENGTH AND MULTI-CHANNEL HOLOGRAPHIC OPTICAL ELEMENT

by

Zhou Ge, Zhang Yimo

Approved for public release; Distribution unlimited.
HUMAN TRANSLATION

NAIC-ID(RS)T-0390-94 29 December 1994

MICROFICHE NR: 05000019

MULTI-FOCAL LENGTH AND MULTI-CHANNEL HOLOGRAPHIC OPTICAL ELEMENT

By: Zhou Ge, Zhang Yimo

English pages: 6

Source: Guangxue Xuebao, Vol. 11, Nr. 7, July 1991; pp. 636-639

Country of origin: China
Translated by: Leo Kanner Associates
 F33657-88-D-2188
Quality Control: Ruth A. Peterson
Requester: NAIC/TATE/Capt Joe Romero
Approved for public release; Distribution unlimited.

This translation is a rendition of the original foreign text without any analytical or editorial comment statements or theories advocated or implied are those of the source and do not necessarily reflect the position or opinion of the National Air Intelligence Center.

PREPARED BY:
TRANSLATION SERVICES
NATIONAL AIR INTELLIGENCE CENTER
WPAFB, OHIO

NAIC-ID(RS)T-0390-94 29 December 1994
GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.
MULTI-FOCAL LENGTH AND MULTI-CHANNEL HOLOGRAPHIC OPTICAL ELEMENT

ZOU GE and ZHANG YIMO

Institute of Contemporary Optical Instruments Engineering, Tianjin University, Tianjin 300072

Received 1 November, 1989, revised 22 October, 1990.

A new holographic optical element (HOE) consisting of the hololenses with different focal lengths and diffractional channels is described. The object space axes of all hololenses in the HOE are the same, while each optical axis in the image space is different. By the aid of such HOE, the object planes at different distances can be imaged into the corresponding channels. Therefore, a 3-D object field may be displayed by many 2-D images. The primary experimental results for sampling 3-D particles field are presented.

I: INTRODUCTION

Optical elements manufactured using optics hologram technology to can easily form a number of elements into the same area of hologram recording material. Material made up of this type of multiple-focal length hologram lens arrays is already widely used for pattern recognition in multiple matching wave filter systems[1]. Each lens in the multiple focal length arrays used in matching wave filters has the same focal length and image diffraction direction. This article will introduce an element that is composed of different focal length and different diffraction channel holographic lenses. It is called the multiple focal length multi-channel holographic optical element.

II: BASIC STRUCTURE AND THE MANUFACTURE OF MULTI-FOCAL LENGTH MULTI-CHANNEL HOLOGRAPHIC OPTICAL ELEMENT

The image forming function of holographic lenses on recurrent
light waves is determined by the phase factors of the two beams of light waves which recorded it[2]. Using Champagne[3] symbol definition method, the hologram imaging formula is:

\[
\frac{1}{R_i} = \frac{1}{R_t} \pm \mu \left(\frac{1}{R_o} - \frac{1}{R_r} \right),
\]

(1)

\[
\sin \alpha_i = \sin \alpha_t \pm \mu (\sin \alpha_o - \sin \alpha_r),
\]

(2)

\[
\cos \alpha_i \sin \beta_i = \cos \alpha_t \sin \beta_t \pm \mu (\cos \alpha_o \sin \beta_o - \cos \alpha_r \sin \beta_r).
\]

(3)

In these equations, \((R_i, \alpha_i, \beta_i), (R_t, \alpha_t, \beta_t), (R_o, \alpha_o, \beta_o), (R_r, \alpha_r, \beta_r)\) correspond respectively to the focal point, reappearance point, objective point and reference light point. The symbol "\(\pm\)" indicates plus or minus diffraction level. Because only positive images are required, the negative symbol is used. Also, when the wavelength is not changed, then \(\mu=1\). From equation (1) we can obtain the focal length of the holographic lens as

\[
\frac{1}{f} = \frac{1}{R_o} - \frac{1}{R_r}
\]

(4)

When making multi-focal length multi-channel holographic optical elements, different \(R_o\) and \(R_r\) values are chosen first which give different focal lengths. At the same time, chose lenses with the same \(\alpha_o\) and \(\beta_o\) angles, and let \(\alpha_o = \beta_o = 0\), while \(\alpha_t\) and \(\beta_t\) are different. When the reappearing light angle of incidence angle \(\alpha_o = \beta_o = 0\), from equations (2) and (3) we obtain \(\alpha_i = \alpha_r, \beta_i = \beta_r\). Therefore, when recording the holographic lenses, choosing the \(R_o\) and \(R_r\), and the \(\alpha_r\) and \(\beta_r\) will make it possible for the element to contain multiple focal lengths and multiple diffraction channels. Figure 1 presents the image plane arrangement and the imaging principles of a four lens multi-focal length multi-channel holographic optical element. In this figure, the four cross sections in the 3-D field are individually imaged by one of four lenses in four diffraction directions. In order to ensure each lens is the same power, each image plane is distributed on a different cross section. Also, the diffraction light axis and incident light axis of each lens has the same included angle. This way it can cause each lens to have the same image quality.
When making each individual lens for a multi-focal length multi-channel holographic element, the authors used an intermediate hologram with phase factors for fairly good imaging and phase factors which satisfy the Bragg diffraction conditions, forming a holographic element which can generate an even image plane for limited distance objective images and for parallel light entering at a perpendicular. The manufacturing process is shown in Figure Two. We first used the process in \(\text{Fig}(a) \) to make the \(H_1 \) element suitable for imaging objects at a limited distance. Its phase factor is

\[\Phi^h = \Phi^h - \Phi^h \]

Then, we placed \(H_1 \) in (2)b, and using the \(H_1 \) reappearing light beam as the objective light of the intermediate hologram \(H_{\text{int}} \), \(\Phi^\text{int} = \Phi^h \), and \(H_{\text{int}} \) phase factor is

\[\Phi^\text{int} = \Phi^0 - \Phi^H - \Phi^H = \Phi^h - \Phi^h - \Phi^m \]

Letting the \(H_1 \) reappearing light be the plane wave entering at a perpendicular angle, its phase on \(H_1 \) is \(\Phi^h = 0 \), then equation (6) becomes

\[\Phi^\text{int} = -\Phi^h - \Phi^h \]

We made a number of intermediate holograms. They had different focal lengths and spacial diffraction directions. After making the intermediate holograms, we replaced them as shown in Figure 2(c). Where \(H_1 \) had originally been, we recorded the final \(H_{\text{f}} \) needed. Using the \(\Phi^\text{int} \) conjugate light \(\Phi^\text{int} = -\Phi^\text{int} \) to reproduce \(H_{\text{int}} \)
and using H_{int} image light wave ϕ_{int}^* as the H_1 object light $\phi_0^* = \phi_{int}^* - \phi_{H_1}^*$. The H_{int} reference light used a plane wave at a perpendicular angle. Its phase was ϕ_{H_1}. Therefore, we finally obtained the final phase parameter of H_1, ϕ_{H_1}:

$$\phi_{H_1} = \phi_0^* - \phi_{int}^* - \phi_{H_1}^*.$$

(8)

When $\phi_{int}^* = -\phi_{H_1}^*$
Substituting (7) in (8),

$$\phi_{H_1} = \phi_{0}^*.$$

(9)

Fig. 2: Schematic for the Manufacture of MFMC-HOE by Recursive Design Technique.

Because the H_1 reference light is a perpendicularly entered plan wave, and because it also has the phase factors presented in equation (9), it can turn the parallel light projected object into a good quality image with even backlighting. This ensures the requirement that all the multiple lenses in the element image the objective fields on the same axis at the same time.

III: USING MULTI-FOCAL LENGTH MULTI-CHANNEL HOLOGRAPHIC OPTICAL ELEMENTS TO SAMPLE 3D PARTICLE FIELDS

The principles and optical circuits in the use of multi-focal length multi-channel holographic optical elements to sample 3D particle fields is shown in Figure 3. The holographic element shown in Figure 3 is composed of lenses L_A and L_B. The parallel planes A and A' and B and B' are the conjugated planes of L_A and L_B. Particles on plane A scatter the incoming light, and the scattered light is focussed on plane A' by lens L_A, thus obtaining
clear image of the particle on plane A'. Because the scattered light of this particle is a diffused spot on plane B, if is a diffused image on plane B'. By the same reasoning, particles on plane B only become distinct images on plane B'. In tests, the degree of clarity of particles on image planes can reflect the location of those particles in space. According to results by Thompson et al[4], the background depth range of particles under illumination such as light is 0.2d2/λ, where d is the diameter of the particle and λ is the wavelength. Therefore, if planes A and B are ΔL>0.2d2λ, then the clarity of the particles on planes A' and B' can be clearly divided.

Fig. 3: Imaging Principles of MFMC-HOE with two Holographic Lenses

Fig. 4. Images of the Particles at Plane A

(a) Image at A'. (b) Image at B'.

In our experiments, we used particle plate shift along a light axis to replace different cross sections of particle fields to test the effectiveness of sampling by multi-focal length multi-channel holographic elements. The results of the test are shown in Figures
4 and 5. The holographic elements we used were composed of dichromic acid film. \(L_A \) had a focal length of 90 mm and \(L_B \) had a focal length of 120 mm.

Fig. 5. Images of Particles Taken at Plant B'

(a). Images at A'. (b). Images at B'.

IV: CONCLUSIONS

By using the holographic method, it is possible to superimpose holographic lenses with different focal lengths and different diffraction directions to make multi-focal length multi-channel holographic optical elements. These elements can image objects in space and different objective distances along the light axis on corresponding image planes, thus displaying a single 3D objective field into a number of two dimensional fields. This type of element can also be used in the reverse, that is, forming a three dimensional field from two dimensional fields on a number of individual image planes.

BIBLIOGRAPHY

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

<table>
<thead>
<tr>
<th>ORGANIZATION</th>
<th>MICROFICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B085 DIA/RIS-2FI</td>
<td>1</td>
</tr>
<tr>
<td>C509 BALLOC509 BALLISTIC RES LAB</td>
<td>1</td>
</tr>
<tr>
<td>C510 R&T LABS/AVEADCOM</td>
<td>1</td>
</tr>
<tr>
<td>C513 ARRADCOM</td>
<td>1</td>
</tr>
<tr>
<td>C535 AVRADCOM/TSARCOM</td>
<td>1</td>
</tr>
<tr>
<td>C539 TRASANA</td>
<td>1</td>
</tr>
<tr>
<td>Q592 FSTIC</td>
<td>4</td>
</tr>
<tr>
<td>Q619 MSIC REDSTONE</td>
<td>1</td>
</tr>
<tr>
<td>Q008 NTIC</td>
<td>1</td>
</tr>
<tr>
<td>Q043 AFMRC-IS</td>
<td>1</td>
</tr>
<tr>
<td>E051 HQ USAF/INET</td>
<td>1</td>
</tr>
<tr>
<td>E404 AEDC/DOF</td>
<td>1</td>
</tr>
<tr>
<td>E408 AFWL</td>
<td>1</td>
</tr>
<tr>
<td>E410 AFDIC/IN</td>
<td>1</td>
</tr>
<tr>
<td>E429 SD/IND</td>
<td>1</td>
</tr>
<tr>
<td>P005 DOE/ISA/DDI</td>
<td>1</td>
</tr>
<tr>
<td>P050 CIA/OCR/ADD/SD</td>
<td>2</td>
</tr>
<tr>
<td>1051 AFTT/LEDE</td>
<td>1</td>
</tr>
<tr>
<td>P090 NSA/CDB</td>
<td>1</td>
</tr>
<tr>
<td>2206 FSL</td>
<td>1</td>
</tr>
</tbody>
</table>

Microfiche Nbr: FTD95C000019
NAIC-ID(RE)T-0390-94